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Construction of multivariate dispersion models

Bent Jørgensen
University of Southern Denmark

Abstract. We consider methods for constructing multivariate dispersion
models, illustrated by examples. Such methods are motivated by the need for
good regression modelling of multivariate nonnormal correlated data, which
requires multivariate distributions with a flexible correlation structure. We
first review existing methods for constructing multivariate proper dispersion
models, involving quadratic forms of deviance residuals in the style of the
multivariate normal density, which we illustrate by a multivariate hyperbola
distribution. We develop an extended convolution method for constructing
multivariate exponential dispersion models, designed to create a fully flexi-
ble covariance structure, which we illustrate by two bivariate gamma distri-
butions. We develop a similar technique for constructing multivariate extreme
dispersion models for extremes and survival data, and introduce new bivariate
logistic and Gumbel distributions.

1 Introduction

The motivation for this paper comes from the need to develop flexible multi-
variate distribution families for stochastic modelling of nonnormal data. There
is a large variety of such families available, including, for example, multivariate
hyperbolic distributions (Barndorff-Nielsen and Blæsild, 1987), elliptically con-
toured distributions (Fang, 1997), skew-normal and skew-elliptical distributions
(Arellano-Valle and Genton, 2010), and multivariate Birnbaum-Saunders distribu-
tions (Díaz-García and Domínguez-Molina, 2006; Kundu et al., 2010), to name but
a few; see also Jensen (1985). It is not easy to know where to turn, as illustrated
by the following comment by Letac (2007):

While the names of distributions in R are generally unambiguous, at the contrary in
the jungle of distributions in R

k almost nothing is codified outside of the Wishart and
Gaussian cases. The scenario is usually as follows: choose a one-dimensional thingy
type (quite often an exponential dispersion model, namely a natural exponential family
and all its real powers of convolution) such as the gamma or negative binomial; then any
law in R

k whose margins are of thingy type are said to be a multidimensional thingy.
Although the study of all distributions with given marginals is rather in the nonpara-
metric domain of study, actually each author who isolates some parametric family will
declare that he or she has THE multidimensional thingy family.
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An alternative strategy is to create multivariate nonnormal models that are
aimed at preserving the overall look and feel of a given univariate distribution
family, while abandoning the requirement of prespecified marginal distributions.
This approach was taken by Jørgensen and Lauritzen (2000), who introduced a
class of multivariate proper dispersion models parametrized by a vector parame-
ter μ and symmetric positive-definite matrix parameter �, with properties that are
very similar to those of the multivariate normal distribution (Jørgensen and Ra-
jeswaran, 2005). We review the main methods for constructing multivariate proper
dispersion models in Sections 2–3, and introduce some new simulation techniques
for such models; see Section 3.2.

When it comes to the other main type of dispersion model, namely, exponential
dispersion models, the goal of finding a multivariate generalization with a fully
flexible mean and covariance structure corresponding to a mean vector μ and a
symmetric positive-definite dispersion matrix � has proven elusive so far. For ex-
ample, Furman and Landsman (2010) introduced a k-variate Tweedie exponential
dispersion model with 2(k + 1) parameters, which in general falls short of the
k + k(k + 1)/2 parameters required for μ and �. In Section 4 we present a new
class of multivariate exponential dispersion models with the desired number of
parameters, based on an extension of the convolution method for exponential dis-
persion models alluded to by Letac (2007) above. As an illustration we discuss
two new types of bivariate gamma distributions (Section 4.5). We also introduce a
new type of multivariate extreme dispersion model (cf. Jørgensen et al., 2010) for
extremes and survival data, obtained by replacing convolution with the minimum
operation (Section 5).

2 Multivariate dispersion models

We begin with a brief review of multivariate dispersion models. Our starting point
is a univariate dispersion model DM(μ,σ 2) (Sweeting, 1987; Jørgensen, 1987a,
1987b, 1997), which is a family of distributions with probability density functions
on R of the form

f (y;μ,σ 2) = a(y;σ 2) exp
[
− 1

2σ 2 d(y;μ)

]
for y ∈ R (2.1)

for suitable functions a and d . The parameters μ ∈ � (an interval) and σ 2 > 0
are called the position and dispersion parameters, respectively. The function d is
assumed to be a unit deviance satisfying d(μ;μ) = 0 for μ ∈ � and d(y;μ) >

0 for y �= μ. If the function a(y;σ 2) of (2.1) factorizes as a(σ 2)b(y), say, we
obtain the class of proper dispersion models, whose multivariate generalization
we consider below.

The multivariate generalization is based on the so-called deviance residual,
which is defined as r(y;μ) = ±√

d(y;μ), where ± = sgn(y − μ). We assume
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from now on that d(·;μ) is continuous and strictly monotone on each side of μ,
which in turn implies that r(·;μ) is strictly increasing for each μ ∈ �. Let us con-
sider the vector of deviance residuals,

r(y;μ) = [r(y1;μ1), . . . , r(yk;μk)]�, (2.2)

where yj and μj denote the elements of the k-vectors y and μ, respectively. Given
a symmetric positive-definite k × k matrix �, we define the scaled deviance as the
following quadratic form in the vector of deviance residuals,

D(y;μ,�) = r�(y;μ)�−1r(y;μ) = tr[�−1r(Y;μ)r�(Y;μ)]. (2.3)

The ordinary scaled deviance is obtained as a special case for � = σ 2I,

D(y;μ, σ 2I) = 1

σ 2

k∑
j=1

d(yj ;μj). (2.4)

Following Jørgensen (1999) and Jørgensen and Lauritzen (2000), we define a
multivariate dispersion model DMk(μ,�) as follows:

f (y;μ,�) = a(y;�) exp
[−1

2D(y;μ,�)
]

for y ∈ R
k, (2.5)

where a(y;�) is a suitable function such that (2.5) is a probability density func-
tions on R

k . The position vector μ ∈ �k and the dispersion matrix � may be
interpreted as analogues of the mean vector and covariance matrix of the multi-
variate normal distribution, respectively. Since the scaled deviance D is elliptical
in terms of the vector of residuals r(y;μ), there is a certain resemblance with the
class of elliptically contoured distributions, and, in fact, Jørgensen and Lauritzen
(2000) considered a generalization of (2.5) that includes elliptically contoured dis-
tributions as a special case. The multivariate normal distribution is the special case
of (2.5) obtained for r(y;μ) = y − μ and a(y;�) = (2π)−k/2|�|−1/2, where | · |
denotes determinant.

Let us now assume that the unit deviance d is twice continuously differentiable
with nonzero second derivative. We define the variance function σ 2V (μ) on � by

σ 2V (μ) =
[

1

2σ 2 d̈μμ(μ;μ)

]−1

for μ ∈ �, (2.6)

which is finite and nonzero. We call V (μ) the unit variance function. Here we
use the notation ḋy(y;μ), d̈yμ(y;μ) and d̈μμ(y;μ), etc. for the first and second
derivatives of the function d . The (matrix) variance function corresponding to the
scaled deviance D is easily seen to be (Jørgensen and Lauritzen, 2000)

V�(μ) = [1
2D̈μμ(μ;μ,�)

]−1 = V1/2(μ)�V1/2(μ) = � � Ṽ(μ), (2.7)

where V(μ) = diag[V (μ1), . . . , V (μk)] denotes the diagonal variance function, �
is the Hadamard (elementwise) product, and Ṽ(μ) denotes the matrix with ele-
ments V 1/2(μi)V

1/2(μj ) for i, j = 1, . . . , k. This is similar to the variance func-
tion (4.20) for multivariate exponential dispersion models obtained below.
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In general, there seems to be no simple constructive way of connecting the
scaled deviance D(y;μ,�) with the function a(y;�) to make (2.5) a probabil-
ity density function. However, the p∗-formula (or the saddlepoint approximation)
of Barndorff-Nielsen (1983) gives the following asymptotic form for a(y;�):

a(y;�) ∼ (2π)−k/2|V�(y)|−1/2

(2.8)
= (2π)−k/2|�|−1/2V−1/2(y) for y ∈ �k,

which holds in the small-dispersion limit ‖�‖ → 0, where ‖ · ‖ denotes Euclidean
norm. This is closely related with the class of multivariate proper dispersion mod-
els, which we consider next.

3 Multivariate proper dispersion models

3.1 Construction

We call a multivariate dispersion model proper if the function a(y;�) of (2.5)
factorizes as a(�)b(y), and we shall now review the main method for construct-
ing multivariate proper dispersion models proposed by Jørgensen and Lauritzen
(2000). For this purpose, it is useful to parametrize the univariate dispersion model
(2.1) by μ and λ = σ−2 instead of μ and σ 2. Similarly, we use � = �−1 freely
instead of � in the notation, writing a(y;�) instead of a(y;�) and D(y;μ,�)

instead of D(y;μ,�) and so on.
Let us consider a univariate proper dispersion model PD1(μ,λ), say, of the form

f (y;μ,λ) = a1(λ)V −1/2(y) exp
[
−λ

2
d(y;μ)

]
for y ∈ �, (3.1)

where the subscript 1 on the normalizing constant a, etc. indicates the dimen-
sion. Essentially all univariate proper dispersion models are of the form (3.1)
(Jørgensen, 1997, pages 182–183).

A crucial feature of (3.1) is the fact that the normalizing constant a1(λ) depends
on (μ,λ) only through λ. We may also express this by saying that d(Y ;μ) is a
pivot with respect to the measure V −1/2(y) dy. We now make the further assump-
tion that the deviance residual r(Y ;μ), as defined above, is also a pivot. Following
Jørgensen and Lauritzen (2000), we shall now see how this assumption may be
utilized for constructing a multivariate version of (3.1). The main idea is that if
r(Y ;μ) is a pivot, then so is the vector of deviance residuals r(Y;μ) with respect
to the product measure |V(y)|−1/2 dy = V −1/2(y1) dy1 ⊗ · · · ⊗ V −1/2(yk) dyk ,
where V(μ) is the diagonal variance function defined above. We define a multi-
variate proper dispersion model PDk(μ,�) by the following probability density
function:

f (y;μ,�) = ak(�)|V(y)|−1/2 exp
[−1

2D(y;μ,�)
]

for y ∈ �k. (3.2)
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The fact that the normalizing constant ak(�) depends on (μ,�) only through �
follows because the scaled deviance D(Y;μ,�) is also a pivot with respect to the
product measure |V(y)|−1/2 dy. In the special case where � = diag{λ11, . . . , λkk},
it follows from (2.4) that the marginals of Y are independent with distributions
PD1(μj , λjj ). Jørgensen and Lauritzen (2000) considered a number of examples
of (3.2), including multivariate gamma, simplex and von Mises distributions. We
also note that the construction is tied to a particular coordinate system, such that
PDk(μ,�) has support on the product space �k .

3.2 Monte Carlo methods

The main mathematical problem in connection with (3.2) is to calculate the nor-
malizing constant ak(�), and we shall now see how this can be done by Monte
Carlo methods. Let us define the scaled normalizing constant by

ak(�) = ak(�)

(2π)−k/2|�|1/2 , (3.3)

so that the saddlepoint approximation (2.8) is equivalent to ak(�) ∼ 1 in the small-
dispersion limit. It follows that both Y and r(Y;μ) are approximately multivari-
ate normal in the small-dispersion limit (Jørgensen and Rajeswaran, 2005). For
r(Y;μ) we may express this result as the following multivariate normal approxi-
mation:

r(Y;μ) ∼̇Nk(0,�) for ‖�‖ small. (3.4)

The first of the two Monte Carlo methods that we consider is due to Jørgensen
and Lauritzen (2000), who explored the following additive property of the scaled
deviance, obtained from (2.3):

D(y;μ,�) = D(y;μ,�0) + D(y;μ,� − �0),

where �0 = diag{λ11, . . . , λkk} contains the diagonal elements of �. We may
hence calculate the normalizing constant as follows:

a−1
k (�) =

k∏
j=1

a−1
1 (λjj )E0

(
exp

[
−1

2
D(y;μ,� − �0)

])
, (3.5)

where E0 denotes expectation with respect to the distribution PDk(μ,�0) with
independent marginals of the form (3.1). It is usually simple to simulate from the
univariate distributions PD1(μj , λjj ), and, hence, (3.5) gives a practical way of
calculating ak(�) by simulation.

The second Monte Carlo method explores the approximate normality (3.4) for
r(Y;μ). However, rather than using the approximation directly, we shall instead
define a new distribution for Y by assuming that r(Y;μ) ∼ Nk(0,�) holds exactly.
Since the function r(·;μ) is injective, we can find the distribution of Y by an
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easy transformation. Using the form of the multivariate normal probability density
function, we find from (3.2) and (3.3) that Y now has probability density function
of the form

g(y;μ,�) = J (y;μ)(2π)−k/2|�|1/2 exp
[−1

2D(y;μ,�)
]

(3.6)

= J (y;μ)a−1
k (�)f (y;μ,�), (3.7)

where J (y;μ) denotes the Jacobian of the transformation r(·;μ) and

J (y;μ) = J (y;μ)|V(y)|1/2,

which we call the standardized Jacobian. For reasons that will become clear be-
low (cf. Section 3.3), we shall call (3.6) a multivariate BS-like distribution. This
distribution is not in general a proper dispersion model, because of the depen-
dence of J (y;μ) on μ, but the similarity between (3.6) and the PDk(μ,�) density
(3.2) turns out to be useful for simulation purposes. It is easy to simulate from
g(y;μ,�) by simulating R from the multivariate normal distribution Nk(0,�)

and solving r(Y;μ) = R to obtain Y.
To derive the form of the standardized Jacobian J (y;μ), we first note, using the

notation for derivatives introduced above, that

ṙy(y;μ) = ± ḋy(y;μ)

2
√

d(y;μ)
= ḋy(y;μ)

2r(y;μ)
. (3.8)

Using a result from Jørgensen (1997, page 24) along with l’Hospital’s rule, we
obtain from (2.6) that, for y near μ,

ḋy(y;μ)

2r(y;μ)
∼ d̈yy(y;μ)

2ṙy(y;μ)
∼ V −1(y)

ṙy(y;μ)
. (3.9)

Combining (3.8) and (3.9), we obtain ṙy(y;μ) =̇V −1/2(y), and, hence, the stan-
dardized Jacobian satisfies

J (y;μ) =
k∏

j=1

[ṙy(yj ;μj)V
1/2(yi)] ∼ 1,

so that by (3.7) the densities f (y;μ,�) and g(y;μ,�) are asymptotically propor-
tional for y near μ.

In order to calculate the normalizing constant ak(�) by simulation, we define

h(y;μ,�) = a−1
k (�)f (y;μ,�)

= (2π)−k/2|�|1/2|V(y)|−1/2 exp
[−1

2D(y;μ,�)
]
.

Then

a−1
k (�) =

∫
h(y;μ,�) dy =

∫
h(y;μ,�)

g(y;μ,�)
g(y;μ,�) dy

(3.10)
= Eg[J−1

(Y;μ)],
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where Eg denotes expectation with respect to g(y;μ,�). We may hence calcu-
late a−1

k (�) by importance sampling, that is, simulating Y from the multivariate
BS-like distribution g(y;μ,�) as indicated above, and calculating the simulation

average of J
−1

(Y;μ). It seems likely that the use of antithetic variables or a con-
trol variate could improve the efficiency of this simulation somewhat.

In case the standardized Jacobian J (y;μ) is bounded below by a positive con-
stant c, then h(y;μ,�) ≤ c−1g(y;μ,�), such that g(y;μ,�) may be used for re-
jection sampling from f (y;μ,�). The following examples illustrate this method.

3.3 A multivariate hyperbola distribution

As an example of a multivariate proper dispersion model, we consider a multivari-
ate generalization of the hyperbola distribution, defined by the probability density
function

f (y;μ,λ) = e−λ

2K0(λ)
y−1 exp

[
−λ

2

(y − μ)2

yμ

]
for y > 0,

where μ,λ > 0 and K0 is a Bessel function; see Jørgensen (1997, page 192). This
is a univariate proper dispersion model with unit variance function V (μ) = μ2 for
μ > 0. Following Jørgensen and Lauritzen (2000), we consider the corresponding
multivariate proper dispersion model with deviance residual:

r(y;μ) = y − μ√
yμ

=
√

y

μ
−

√
μ

y
, (3.11)

where clearly r(Y ;μ) is a pivot since μ is a scale parameter and the product mea-
sure |V(y)|−1/2 dy is scale invariant. This gives a multivariate hyperbola distribu-
tion Hyk(μ,�) of the form

f (y;μ,�) = ak(�)(2π)−k/2|�|1/2
k∏

j=1

y−1
j exp

[
−1

2
D(y;μ,�)

]
,

where D is derived from the vector of deviance residuals corresponding to (3.11).
The normalizing constant ak(�) may be simulated by importance sampling us-

ing (3.10). For this purpose we need the standardized Jacobian, which takes the
form

J (y;μ) = 2−k
k∏

j=1

(√
yj

μj

+
√

μj

yj

)
≥ 1. (3.12)

In this case, the form of the multivariate BS-like distribution (3.6) is obtained from
the multivariate normal distribution Nk(0,�) by transforming coordinatewise by
the inverse of the transformation r(·;μ) defined by (3.11), which yields a mul-
tivariate Birnbaum–Saunders distribution (Díaz-García and Domínguez-Molina,
2006; Kundu et al., 2010).
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Due to the inequality (3.12), we may simulate from the multivariate hyper-
bola distribution by rejection sampling using the multivariate Birnbaum–Saunders
distribution (3.6). Given a random vector Y from the multivariate Birnbaum–
Saunders distribution, and an independent uniform random variable U , we accept

Y as a multivariate hyperbola random vector provided that U < J
−1

(Y;μ). This
provides a straightforward simulation method for the multivariate hyperbola dis-
tribution.

3.4 Statistical inference

To illustrate the analogies between dispersion models and the multivariate nor-
mal distribution, we shall now summarize the main results of Jørgensen and Ra-
jeswaran (2005) concerning statistical inference for multivariate proper dispersion
models.

Let us consider inference based on a random sample Y1, . . . ,Yn from the mul-
tivariate proper dispersion model PDk(μ,�) defined by (3.2). Jørgensen and Ra-
jeswaran (2005) developed an asymptotic approach based on a combination of con-
ventional large-sample asymptotics and small-dispersion asymptotics. The latter is
derived by means of the saddlepoint approximation, which implies convergence to
the multivariate normal distribution as follows:

�−1/2V−1/2(μ)(Yi − μ)
d→ Nk(0, Ik)

for ‖�‖ small, where
d→ denotes convergence in distribution, which in turn implies

the normal approximation (3.4) from above.
Let μ̂ and �̂ denote the maximum likelihood estimators of the two parameters.

We obtain the following approximations in the small-dispersion limit:

μ̂ ≈ Yn = 1

n

n∑
i=1

Yi and �̂ ≈ 1

n

n∑
i=1

r(Yi;Yn)r�(Yi;Yn).

The precise meaning of these and other approximations in the following is made
clear by Jørgensen and Rajeswaran (2005). An approximately unbiased estimator
Sn for � is obtained by correcting the degrees of freedom in the usual way, giving

Sn = 1

n − 1

n∑
i=1

r(Yi; Ȳ)r�(Yi; Ȳ).

We may now obtain an asymptotic version of Hotelling’s T 2 test for a hypothe-
sis of the form H0 :μ = μ0 with � unknown. Let us define

r(μ) = 1

n

n∑
i=1

r(Yi;μ).
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Then under H0, the statistics r(μ0) and Sn are asymptotically independent in the
small-dispersion limit, with asymptotic distributions

r(μ0) ≈ Nk

(
0,

1

n
�

)
, (n − 1)Sn ≈ Wn−1(�),

where Wn−1(�) denotes the Wishart distribution with n − 1 degrees of freedom.
We define an analogue of Hotelling’s T 2-statistic by

T 2 = nr�(μ0)S
−1
n r(μ0)

H0≈ k(n − 1)

n − k
Fk,n−k. (3.13)

The F approximation holds if either ‖�‖ is small or if the sample size n is large,
the latter in the sense that Fk,n−k is asymptotically proportional to a χ2

k distribution
for n large, which in turn represents the large-sample distribution of T 2 (Jørgensen
and Rajeswaran, 2005).

These results indicate that asymptotic theory for multivariate dispersion models
have many analogies with exact results from classical multivariate analysis; see
also the discussion of multivariate generalized linear models in Section 4.6. Note
by comparison that certain results for the multivariate normal distribution hold
exactly for elliptically contoured distributions (Anderson and Fang, 1987).

4 Multivariate exponential dispersion models

4.1 General

We shall now develop a new version of what we may call the convolution method
for constructing multivariate exponential dispersion models, and we begin by dis-
cussing the bivariate case. The method is based on the following stochastic repre-
sentation for the random vector X = (X1,X2)

�:[
X1
X2

]
=

[
U11
U12

]
+

[
U1
0

]
+

[
0
U2

]
, (4.1)

where the three vectors on the right-hand side are assumed independent. Let
ED∗(μ,λ) be a given univariate additive exponential dispersion model (cf.
Section 4.2) with mean λμ and variance λV (μ), say, and assume that Uj ∼
ED∗(μ,λj ) for j = 1,2. The conventional convolution method, called the
variables-in-common method by Balakrishnan and Lai (2009), is obtained by as-
suming that U11 = U12 ∼ ED∗(μ,λ12). The convolution property (4.7) for ED∗
models (see below) implies that Xj ∼ ED∗(μ,λjj ), where λjj = λj + λ12 for
j = 1,2, such that both marginal distributions belong to the given ED∗ model.
The notation introduced here is slightly more complicated than necessary, but will
become useful later on.

The result is a four-parameter bivariate family of distributions, which unfortu-
nately is one parameter short of the goal of five parameters (two means and three
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variances/covariances). Nevertheless, the decomposition (4.1) seems like a sensi-
ble way to interpolate between independence (λ12 = 0) and complete dependence
(λ1 = λ2 = 0) between X1 and X2, which embodies the traditional way of creat-
ing correlated normal random variables. One drawback of the method is that the
correlation between the the two variables is always positive,

Corr(X1,X2) = λ12√
λ11λ22

,

although we know from the normal case that it may be possible by analytical meth-
ods to extend the domain of the correlation to negative values. It is also required
that the ED∗ model be infinitely divisible, allowing all three λ parameters to vary
freely in R+.

The main complication in extending the above method to the k-dimensional
case is the combinatorial explosion of the number of terms necessary in order
to generalize (4.1). However, in order to construct a family with a fully flexible
covariance structure with k means and k(k + 1)/2 covariance parameters, we need
to generalize the convolution technique slightly, which we do by abandoning the
requirement U11 = U12 and instead work with a joint distribution for U11 and U12.

4.2 Exponential dispersion models

Before moving on to the extended convolution method in Section 4.3 we need to
review some basic facts about natural exponential families and exponential dis-
persion models. A natural exponential family is defined by the probability density
functions

f (x; θ) = a(x) exp[x�θ − κ(θ)] for x ∈ R
k, (4.2)

with respect to a suitable measure on R
k , for some function a, where the domain

for θ is the set

� =
{
θ ∈ R

k :
∫

a(x)ex�θ dx < ∞
}
.

We refer to κ as the cumulant function. We assume that � contains an open subset,
and that the distribution (4.2) is not concentrated on any affine subspace of R

k .
The distribution corresponding to (4.2) has cumulant generating function (CGF)

given by

κθ (s) = κ(s + θ) − κ(θ) for s ∈ � − θ . (4.3)

The mean vector and covariance matrix of a random vector X distributed according
to (4.2) may hence be obtained by differentiating (4.3) and setting s to zero. It
follows that the mean vector is

μ = E(X) = κ̇(θ), (4.4)
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where again dots denote derivatives. Since the covariance matrix κ̈(θ) is positive-
definite, the mapping κ̇ is one-to-one, and we may hence parametrize (4.2) by the
mean vector (4.4) for θ ∈ int�. We may also express the covariance matrix as a
function of the mean vector, which gives rise to the (matrix) variance function

V(μ) = κ̈ ◦ κ̇−1(μ) for μ ∈ �, (4.5)

where � = κ̇(int�) is the domain of μ.
The additive exponential dispersion model generated from (4.2) is defined by

the probability density function

f ∗(x; θ , λ) = a∗(x;λ) exp[x�θ − λκ(θ)] for x ∈ R
k, (4.6)

for some function a∗(x;λ), which corresponds to replacing the cumulant function
κ by λκ in (4.2). We assume that (4.6) is infinitely divisible, such that λ has domain
R+. The mean vector of (4.6) is λμ and the covariance matrix is λV(μ), where V,
defined by (4.5), is now called the unit variance function. We let ED∗(μ, λ) denote
the distribution corresponding to (4.6), a model with k + 1 parameters. This model
satisfies the convolution property

ED∗(μ, λ1) + ED∗(μ, λ2) = ED∗(μ, λ1 + λ2) for λ1, λ2 > 0. (4.7)

The reproductive exponential dispersion model generated from (4.2) is defined
by applying the duality transformation Y = X/λ to (4.6), giving

f (y; θ , λ) = a(y;λ) exp{λ[y�θ − κ(θ)]} for y ∈ R
k (4.8)

for some function a(y;λ). A random vector Y distributed according to (4.8) has
mean μ defined by (4.4), and variance

Var(Y) = λ−1V(μ). (4.9)

In the univariate case (k = 1), the reproductive exponential dispersion model
(4.8) may be rewritten in the dispersion model form (2.1) (Jørgensen, 1997,
page 77). In the multivariate case we see that the variance (4.9) is governed by the
single parameter λ. We shall now see how to generalize this to the form � � V(μ)

involving a matrix � [compare with (2.7)], where � is the Hadamard product in-
troduced in Section 2.

4.3 The bivariate case

Continuing with the bivariate case, we shall now develop the extended convolu-
tion method in order to obtain a fully flexible covariance structure. Our starting
point is a bivariate natural exponential family of the form (4.2), where the cumu-
lant function κ(θ1, θ2) is now considered as a function of the two coordinates of
the vector θ = (θ1, θ2)

� with domain �, say. We let s and t be the arguments of
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the CGF κθ (s, t) defined by (4.3). Hence, the corresponding additive exponential
dispersion model has CGF

(s, t) �→ λ12κθ (s, t), (4.10)

where the parameter λ12 is now called the weight. Since we assume infinite divis-
ibility, the weight parameter λ12 has domain R+.

Compared with the construction of Section 4.1, we now abandon the assump-
tion U11 = U12 and instead assume that the joint distribution of U11 and U12 has
CGF given by (4.10). We assume once again that the marginal distributions of U11
and U1 belong to the same family, and, similarly, that the marginal distributions of
U12 and U2 belong to the same family. We may think of these families as corre-
sponding to the vectors (U1,0)� and (0,U2)

� respectively, so we represent them
as (degenerate) bivariate distributions. Hence, let us assume that (U1,0)� has CGF
with positive weight λ1, defined by

(s, t) �→ λ1κθ (s,0). (4.11)

Similarly, let (0,U2) have CGF with positive weight λ2, defined by

(s, t) �→ λ2κθ (0, t). (4.12)

We now add the three terms (4.10), (4.11) and (4.12), giving the following bivariate
CGF for the random vector X,

Kθ,λ(s, t) = λ12κθ (s, t) + λ1κθ (s,0) + λ2κθ (0, t). (4.13)

We note that the marginal distribution of X1 has the same form as (4.11), but with
λ1 replaced by λ11 = λ12 + λ1, and, similarly, the marginal distribution of X2 has
λ2 of (4.12) replaced by λ22 = λ12 + λ2. Both marginal distributions in general
depend on both parameters θ1 and θ2. Also note that (4.13), contrary to (4.6), is
not a natural exponential family for fixed values of the λ parameter(s).

We shall now calculate the mean vector and covariance matrix for X by differen-
tiating Kθ,λ. Let κ̇1(θ1, θ2) and κ̇2(θ1, θ2) denote the two components of κ̇(θ1, θ2),
and let κ̈ij (θ1, θ2) for i, j = 1,2 denote the second order derivatives of κ . Then

E(X) =
[
(λ12 + λ1)κ̇1(θ1, θ2)

(λ12 + λ1)κ̇2(θ1, θ2)

]
=

[
λ11μ1
λ22μ2

]
, (4.14)

say, where the μj are the components of μ defined by (4.4).
We can now express the covariance matrix for X in terms of the 2 × 2 unit

variance function for (4.6), with entries defined as follows:

V(μ) =
[
V11(μ) V12(μ)

V21(μ) V22(μ)

]
.

The resulting covariance matrix for X is

Cov(X) =
[
λ11κ̈11(θ1, θ2) λ12κ̈12(θ1, θ2)

λ12κ̈21(θ1, θ2) λ22κ̈22(θ1, θ2)

]
(4.15)

=
[
λ11V11(μ) λ12V12(μ)

λ12V21(μ) λ22V22(μ)

]
,
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which is of the form � � V(μ), where � is the weight matrix, defined by

� =
[
λ11 λ12
λ12 λ22

]
. (4.16)

In particular, we find that the correlation between X1 and X2 is

Corr(X1,X2) = λ12√
λ11λ22

V12(μ)√
V11(μ)V22(μ)

, (4.17)

which has the same sign as the original correlation

V12(μ)√
V11(μ)V22(μ)

(4.18)

for the components of the bivariate natural exponential family that we started from.
We also note that the absolute value of the correlation (4.17) is bounded by the
absolute value of (4.18).

This construction gives the additive form of the bivariate exponential dispersion
model, denoted ED∗

2(μ,�), which satisfies the following convolution property:

ED∗
2(μ,�1) + ED∗

2(μ,�2) = ED∗
2(μ,�1 + �2), (4.19)

generalizing (4.7). We hence call this five-parameter family an additive bivari-
ate exponential dispersion model. Just like in the univariate case, this form of
the bivariate exponential dispersion model is particularly suited for discrete data
(Jørgensen, 1997, page 76), thereby complementing the class of proper dispersion
models, which are confined to the continuous case.

As is evident from (4.19), the domain for � is an additive semigroup. It seems
plausible that the set of values for � for which (4.13) is a CGF is bigger than the
domain allowed in the stochastic representation (4.1), possibly containing negative
values for λ12, but this issue remains to be investigated. In the affirmative case the
correlation (4.17) would take both positive and negative values.

As the final step in the construction, we shall now derive the reproductive form
of the bivariate exponential dispersion model by means of an analogy of the duality
transformation used in connection with (4.8) above. We hence define the random
vector Y = (Y1, Y2)

� as follows:[
Y1
Y2

]
=

[
X1/λ11
X2/λ22

]
,

with mean vector

E(X) =
[
μ1
μ2

]
and covariance matrix

Cov(Y) =
⎡⎢⎣

1

λ11
V11(μ)

λ12

λ11λ22
V12(μ)

λ12

λ11λ22
V21(μ)

1

λ22
V22(μ)

⎤⎥⎦ = � � V (μ), (4.20)



298 B. Jørgensen

say, where � is the symmetric positive-definite matrix defined by

� =
⎡⎢⎣

1

λ11

λ12

λ11λ22
λ12

λ11λ22

1

λ22

⎤⎥⎦ . (4.21)

We have hence obtained a covariance structure similar to the variance func-
tion (2.7) for general multivariate dispersion models. We denote the model cor-
responding to Y by ED2(μ,�), where μ is the mean vector, and � is called the
dispersion matrix.

4.4 The multivariate case

In order to work out the general case we shall now extend the above approach by
considering a construction based on single variables and pairs of variables. In the
trivariate case k = 3 we generalize (4.1) as follows:⎡⎣X1

X2
X3

⎤⎦ =
⎡⎣U11

U12
0

⎤⎦ +
⎡⎣U21

0
U23

⎤⎦ +
⎡⎣ 0

U32
U33

⎤⎦ +
⎡⎣U1

0
0

⎤⎦ +
⎡⎣ 0

U2
0

⎤⎦ +
⎡⎣ 0

0
U3

⎤⎦ , (4.22)

where the six terms on the right-hand side of (4.22) are assumed independent. We
now start from a trivariate natural exponential family (4.2) with cumulant function
κ(θ1, θ2, θ3), say, and we let κθ (s, t, u) denote the corresponding version of (4.3).
Proceeding in a similar fashion as above, we define the CGF of (4.22) to be

Kθ,λ(s, t, u) = λ12κθ (s, t,0) + λ13κθ (s,0, u) + λ23κθ (0, t, u)

+ λ1κθ (s,0,0) + λ2κθ (0, t,0) + λ3κθ (0,0, u),

where the weights λ12, λ13, λ23, λ1, λ2 and λ3 are all positive. This CGF defines
the joint distribution of X = (X2,X2,X3)

� in such a way that each of the three
families of marginal distributions is the same as for the additive exponential dis-
persion model (4.6).

To complete the construction, we transform from X to Y by the duality trans-
formation like above. The result is a trivariate reproductive exponential dispersion
model ED3(μ,�) with mean vector μ obtained from (4.4), and dispersion matrix
� defined by analogy with (4.21). In particular, the diagonal entries of � are the
reciprocals of

λ11 = λ1 + λ12 + λ13, λ22 = λ2 + λ12 + λ23 and λ33 = λ3 + λ13 + λ23,

respectively. Again we have achieved a fully flexible covariance structure of the
form Cov(Y) = � � V (μ).

For general k we proceed in a similar fashion, and define a multivariate re-
productive exponential dispersion model EDk(μ,�) by starting from a k-variate
natural exponential family, and adding univariate and bivariate terms similar to



Multivariate dispersion models 299

(4.22) with a total of k + k(k − 1)/2 terms, yielding the desired k + k(k + 1)/2
parameters. In principle, one could obtain additional covariance parameters by, for
example, adding a further independent term of the form (U41,U42,U43)

� to (4.22),
but we avoid this complication in order to obtain models that can be parametrized
by their first two moments. Compare with Joe (1996), who set the same type of
goal for his construction of multivariate distributions based on recursively mixing
conditional distributions.

There are both advantages and disadvantages to the extended convolution
method as presented here. The main difficulty is how to construct the initial natural
exponential family (4.2) from which the multivariate exponential dispersion model
is obtained. Strictly speaking, the extended convolution method merely adds a full
covariance structure to a given multivariate natural exponential family, rather than
constructing a multivariate exponential dispersion model from scratch. However,
the second of the bivariate gamma distributions considered below is constructed
from scratch without requiring a bivariate natural exponential family to start with,
suggesting that there may be a canonical construction available in certain cases.
Further details about multivariate exponential dispersion models are available in
Jørgensen (2011b).

The main advantage of the extended convolution method is that we obtain a
multivariate family parametrized by the mean vector μ and dispersion matrix �,
giving the desired number of parameters and full control over the first two mo-
ments of the distribution, subject to the constraints noted above. This, in turn,
implies that parameter estimation by quasi-likelihood methods will be straight-
forward, as discussed in Section 4.6. It is also straightforward to simulate from
the distribution, in the sense that if we can simulate from the distribution corre-
sponding to λκθ (s, t, u), say, for all values of the parameters λ and θ , then we can
simulate from the marginal and bivariate distributions entering (4.22), and add up
the terms in order to obtain a simulated value of X. The fact that the probability
density function is difficult to obtain, because of the need to perform the multiple
integration implicit from (4.22), is hence less of a practical concern.

4.5 Bivariate gamma distributions

To illustrate some of the issues discussed above, we shall now consider two dif-
ferent bivariate gamma distributions. We note in passing that a bivariate gamma
distribution of proper dispersion model form was introduced by Jørgensen and
Lauritzen (2000), using the technique described in Section 3.

Let us consider Kibble and Moran’s bivariate gamma distribution (Kotz et al.,
2000, page 436), following Letac (2007); see also Bernardoff et al. (2008). Actu-
ally, Letac attributes the distribution to Wicksell (1933). Let the parameter ρ > 0
be fixed, let λ > 0, and consider the additive exponential dispersion model of the
form (4.6) corresponding to

a∗(x1, x2;λ) = (x1x2)
λ−1

�(λ)

∞∑
n=0

(ρx1x2)
n

n!�(λ + n)
for (x1, x2)

� ∈ R
2+.
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The corresponding cumulant function is

κ(θ1, θ2) = − log(θ1θ2 − ρ),

defined on the set

� = {(θ1, θ2) : θ1 < 0, θ2 < 0, θ1θ2 − ρ > 0}.
The corresponding reproductive exponential dispersion model (4.8) has mean vec-
tor [

μ1
μ2

]
= 1

ρ − θ1θ2

[
θ1
θ2

]
with domain R

2+ and covariance matrix

1

λ

[
μ2

1 φμ1μ2

φμ1μ2 μ2
2

]
,

where

φ = 1 − 1

2ρμ1μ2

(√
1 + 4ρμ1μ2 − 1

)
.

The corresponding bivariate exponential dispersion model ED2(μ,�) has gamma
marginals, and has covariance matrix of the form (4.20),[

σ11μ
2
1 σ12φμ1μ2

σ21φμ1μ2 σ22μ
2
2

]
. (4.23)

The presence of φ in (4.23), however, yields a fairly complicated covariance struc-
ture, with the correlation restricted to the interval (0, φ).

We now present a second bivariate gamma distribution, which is a special case
of the multivariate gamma distribution of Mathai and Moschopoulos (1991). Let
us consider the bivariate CGF defined by

κμ(s, t) = − log(1 − μ1s − μ2t),

with mean μ = (μ1,μ2)
�, which corresponds to the distribution of the random

vector [
μ1U

μ2U

]
, (4.24)

where U is a unit exponential random variable. Mimicking (4.13), we define a new
bivariate CGF by

Kμ,λ(s, t) = λ12κμ(s, t) + λ1κμ(s,0) + λ2κμ(0, t), (4.25)

whose marginal distributions are both gamma; see also Balakrishnan and Lai
(2009, page 334) and references therein. The mean vector is again[

λ11μ1
λ22μ2

]
,
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and the covariance matrix is [
λ11μ

2
1 λ12μ2μ1

λ12μ2μ1 λ22μ
2
2

]
,

using the same notation as above. By means of the duality transformation, we
obtain the reproductive case Ga2(μ,�) with mean μ and covariance matrix[

σ11μ
2
1 σ12μ1μ2

σ21μ1μ2 σ22μ
2
2

]
,

where the σij denote the entries of the dispersion matrix � defined by (4.21). The
corresponding correlation ranges from 0 to 1. The result is a five-parameter bivari-
ate gamma family with an intuitively appealing form of covariance matrix. It is
straightforward to define a multivariate gamma distribution by proceeding along
the same lines as for (4.22), using the bivariate gamma distribution Ga2(μ,�) for
each of the three first terms of (4.22). The resulting multivariate gamma distribu-
tion is more general than that of Mathai and Moschopoulos (1991); see Jørgensen
(2011b) for further details.

This construction seems to have certain advantages over the construction based
on Kibble and Moran’s bivariate gamma distribution, not least its simplicity and
the fact that it is generated in a canonical way from the univariate gamma distri-
bution. This example highlights the fact that the extended convolution method in
effect interpolates between, on the one hand, the bivariate generating distribution,
for example, the natural exponential family (4.2), and the distribution with inde-
pendent marginals. For this reason, the correlation of the starting bivariate distri-
bution limits the range of possible correlations for the corresponding multivariate
exponential dispersion model, and from this point of view the distribution (4.24),
having completely correlated marginals, is ideal. The only slight disadvantage of
the method is that only positive correlations are obtained, but again it seems plau-
sible that (4.25) can be shown also to be a CGF for negative values of λ12.

The key to the success of this construction lies in the scaling property of the
gamma distribution, and it hence seems reasonable to speculate that the method
can be extended to the whole class of Tweedie exponential dispersion models with
power variance functions (Jørgensen, 1997, Chapter 4), a topic that is explored in
Jørgensen (2011b).

4.6 Multivariate generalized linear models

The main motivation for constructing multivariate dispersion models comes from
the need to develop flexible regression models for multivariate nonnormal data,
and we shall now outline an approach based on multivariate exponential dispersion
models.

Let Y1, . . . ,Yn be independent k-vectors of response variables such that

Yi ∼ EDk(μi ,�),
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and consider a smooth regression model μi = μi(β), where β is an m-vector of
regression parameters. Following Liang and Zeger (1986), we estimate β using the
quasi-score function

ψβ(β,�) =
n∑

i=1

D�
i C−1

i (Yi − μi ), (4.26)

where Ci = � � V(μi ) is the covariance matrix for Yi and Di is the local model
matrix defined by Di = ∂μi/∂β�. The quasi-score estimator β̂ obtained by equat-
ing (4.26) to zero has asymptotic variance given by the inverse of the Godambe
information matrix defined by

Jβ =
n∑

i=1

D�
i C−1

i Di .

In general, the quasi-score estimator depends on the value of �, and hence re-
quires an estimate of �. However, the quasi-score function (4.26) is �-insensitive
in the sense that the expected �-derivative of ψβ(β,�) is zero. As shown by
Jørgensen and Knudsen (2004), this implies that β̂ varies slowly with �. The dis-
persion matrix � may be estimated by means of a bias-corrected Pearson esti-
mating function involving the cross-product matrix of the residuals Yi − μi ; see
Holst and Jørgensen (2010), who also discuss the Newton scoring algorithm for
this estimation procedure.

An important special case of this setup is obtained when the regression model
μi (β) is defined as follows:

g�(μi ) = x�
i B,

where g is a link function mapping μi coordinatewise, such that g�(μi ) is a 1 × k

vector, xi is an m-vector of covariates, and B is an m × k matrix of regression
coefficients. This model may be called a multivariate generalized linear model.

In the special case � = I, the quasi-score estimator for B corresponds to fitting k

separate univariate generalized linear models, which, because of the slow variation
of B̂ as a function of �, will not be far from the estimator obtained by combining
the quasi-score and Pearson estimating functions to estimate B and � jointly. In
this sense we have obtained a multivariate regression method that is similar to
the conventional multivariate linear regression model with normal errors; see, for
example, Johnson and Wichern (2007, Chapter 7).

5 Multivariate extreme dispersion models

5.1 Hazard location families and extreme dispersion models

We shall now turn to the third type of multivariate dispersion models, which is a
multivariate extension of the extreme dispersion models introduced by Jørgensen
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et al. (2010). This class serves for modelling extremes and survival data, and has
many analogies with exponential dispersion models.

We first establish some basic results and notation for extreme dispersion mod-
els, following Jørgensen et al. (2010) and Rusch (2009). Let G(x1, x2) = P(X1 ≥
x1,X2 ≥ x2) denote a bivariate survival function for the random vector X =
(X1,X2)

�, where G is assumed to be twice continuously differentiable with sup-
port containing the origin of R

2. Let H(x1, x2) = − logG(x1, x2) denote the in-
tegrated hazard function, and define the corresponding (vector) hazard function
by

h(x1, x2) =
[
h1(x1, x2)

h2(x1, x2)

]
= Ḣ (x1, x2). (5.1)

As shown by Rusch (2009), we may think of H as an analogue of the CGF, and
the derivatives H(j)(0,0) are analogues of the cumulants. In particular, we define
the rate vector

r(X1,X2) = h(0,0) (5.2)

(not to be confounded with the deviance residual above) as an analogue of the
mean vector, and the slope matrix

s(X1,X2) = ḣ(0,0) =
[
Ḧ11(0,0) Ḧ12(0,0)

Ḧ21(0,0) Ḧ22(0,0)

]
(5.3)

as an analogue of the covariance matrix. It is important to emphasize that not all
properties of the mean vector and covariance matrix carry over to the rate vector
and slope matrix. We note, for example, that the rate vector is different from the
vector of rates (r(X1), r(X2))

�, say. Here r(X1) is defined from the marginal
hazard function, which in turn is obtained from the marginal integrated hazard
function H(x1,−∞), and similarly for r(X2). We also note that the slope matrix
is not necessarily nonnegative definite.

The rate vector and slope matrix satisfy the following min-additive property:

r(X ∧ Y) = r(X) + r(Y) and s(X ∧ Y) = s(X) + s(Y)

for X and Y independent, where ∧ denotes the componentwise minimum. The rate
vector and slope matrix also satisfy the following scaling properties:

r(CX) = C−1r(X) and s(CX) = C−1s(X)C−1,

where C is a diagonal matrix with positive entries.
From now on we make the additional assumption that h is injective and that

ḣ(x1, x2) is regular for all (x1, x2) in the interior of the support of (X1,X2), as-
sumed to be a closed convex subset of R

2. Following Rusch (2009), we define a
hazard location family to be a location family parametrized by its rate vector μ,
corresponding to the family of integrated hazard functions of the form

x �→ H
(
x + h−1(μ)

)
, (5.4)
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where the rate vector μ belongs to the set � ⊆ R
2+, say. This is analogous to the

natural exponential family (4.2). The slope matrix for (5.4) may be expressed as a
function of the rate vector by means of the slope function (similar to the variance
function), defined by

v(μ) = ḣ ◦ h−1(μ) for μ ∈ �.

The slope function characterizes the family (5.4) among all hazard location fami-
lies.

We now define a min-additive extreme dispersion model XD∗(μ, λ) as corre-
sponding to the following family of integrated hazard functions:

x �→ λH
(
x + h−1(μ)

)
(5.5)

for λ > 0 (assuming min-infinite divisibility), which has rate vector λμ and slope
matrix λv(μ). This model satisfies a property of min-additivity,

X1 ∧ · · · ∧ Xn ∼ XD∗(μ, nλ) (5.6)

for X1, . . . ,Xn i.i.d. from XD∗(μ, λ).
Similarly, we define a reproductive extreme dispersion model XD(μ, λ) by ap-

plying the duality transformation Y = λX to (5.5), which gives the following fam-
ily of integrated hazard functions:

y �→ λH
(
y/λ + h−1(μ)

)
, (5.7)

which has rate vector μ and slope matrix λ−1v(μ). This model is often parame-
trized by μ and the dispersion parameter σ 2 = 1/λ, and we use the notation
XD(μ, σ 2) for the distribution corresponding to (5.7). In the univariate case, fam-
ilies like the Pareto, logistic and extreme value give rise to extreme dispersion
models [see Jørgensen et al. (2010)], whereas Rusch (2009) considered several
examples of bivariate extreme dispersion models.

Similar to the case of exponential dispersion models, we see that the form of
the slope matrix for extreme dispersion models is governed by a single parameter
λ, so there is a need to introduce additional parameters in order to obtain a fully
flexible structure of the slope matrix.

5.2 The bivariate case

Extending the results of Rusch (2009), we shall now introduce a new class of mul-
tivariate extreme dispersion models, which we do by mimicking the construction
of multivariate exponential dispersion models in Section 4.1 above.

In order to develop the bivariate case of extreme dispersion models, let us write[
X1
X2

]
=

[
U11
U12

]
∧

[
U1
∞

]
∧

[ ∞
U2

]
, (5.8)
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similar to (4.1). If we assume that the three components on the right-hand side of
(5.8) are independent, the joint survival function of X1 and X2 has the form

(x1, x2) �→ G(x1, x2)G1(x1)G2(x2), (5.9)

where G1(x1) and G2(x2) are the marginal survival functions of U1 and U2, re-
spectively, and G(x1, x2) is the joint survival function of U11 and U12.

From now on, let H be a bivariate integrated hazard function of the form consid-
ered above, and let G in (5.9) correspond to the integrated hazard function defined
by

(x1, x2) �→ λ12H(x1 − θ1, x2 − θ2), (5.10)

where again λ12 is called the weight. This corresponds to the extreme dispersion
model (5.5), except that it is parametrized by the location parameter (θ1, θ2) instead
of the rate vector μ.

We now look at the marginal integrated hazard functions corresponding to
H(x1 − θ1, x2 − θ2), namely, H(x1 − θ1,−∞) and H(−∞, x2 − θ2), respectively.
We hence let G1(x1) correspond to the integrated hazard function with positive
weight λ1 given by

x1 �→ λ1H(x1 − θ1,−∞). (5.11)

Similarly, we let G2(x2) correspond to the integrated hazard function with positive
weight λ2 given by

x2 �→ λ2H(−∞, x2 − θ2). (5.12)

We now add the three terms (5.10), (5.11) and (5.12), which give the following
bivariate integrated hazard function for the random vector (X1,X2),

Hθ,λ(x1, x2) = λ12H(x1 − θ1, x2 − θ2)
(5.13)

+ λ1H(x1 − θ1,−∞) + λ2H(−∞, x2 − θ2).

We note that the marginal distribution of X1 has the same form as (5.11), but with
λ1 replaced by λ11 = λ12 + λ1, such that

Hθ,λ(x,−∞) = λ11H(x − θ1,−∞) and Hθ,λ(−∞, y) = λ22H(−∞, y − θ2),

and similarly for the marginal distribution of X2, where λ2 is replaced by λ22 =
λ12 + λ2. We call the model corresponding to (5.13) a min-additive bivariate ex-
treme dispersion model; see (5.14) below. In the special case λ1 = λ2 = 0, we
recover the additive extreme dispersion model (5.5) from above, whereas the spe-
cial case λ12 = 0 yields components X1 and X2 that are independent.

We have hence achieved the goal of defining a five-parameter extension of
the min-additive extreme dispersion model (5.5) in such a way that the form
of the marginal distributions has been preserved. It is not possible, however,
to parametrize the family (5.13) by the slope vector in the same way that we
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parametrized the exponential dispersion model above by its mean vector. In fact,
the slope vector takes the form

r(X1,X2) =
[
λ12Ḣ1(−θ1,−θ2) + λ1Ḣ1(−θ1,−∞)

λ12Ḣ2(−θ1,−θ2) + λ2Ḣ2(−∞,−θ2)

]
,

whose components do not factorize in the same way as the mean vector (4.14).
Similarly, the form of the slope matrix is more complicated than the bivariate vari-
ance function (4.15).

We shall denote the min-additive bivariate extreme dispersion model (5.13) by
XD∗

2(θ,�), where θ = (θ1, θ2)
� is the location parameter and � is the matrix

defined by (4.16). This model satisfies the following min-reproductive property:

XD∗
2(θ ,�1) ∧ XD∗

2(θ ,�2) = XD∗
2(θ ,�1 + �2), (5.14)

similar to (5.6). By the duality transformation[
Y1
Y2

]
=

[
λ11X1
λ22X2

]
,

we obtain the reproductive form Y ∼ XD2(θ ,�) of the bivariate extreme disper-
sion model, where � is defined by (4.21).

This construction may be generalized to the multivariate case in much the same
way as we saw for exponential dispersion models in Section 4.4.

5.3 A bivariate logistic distribution

Following Rusch (2009, page 47), we consider the bivariate logistic distribution
with integrated hazard function

H(x1, x2) = log(1 + ex1 + ex2) for (x1, x2) ∈ R
2, (5.15)

and hazard function

h(x1, x2) = (1 + ex1 + ex2)−1
[
ex1

ex2

]
for (x1, x2) ∈ R

2.

We now generate a hazard location model from (5.15), where the rate vector
μ = h(x1, x2) has domain � = {μ ∈ R

2+ :μ1 + μ2 < 1}. The slope matrix has
the following form:

v(μ) =
[
μ1(1 − μ1) −μ1μ2

−μ1μ2 μ2(1 − μ2)

]
,

similar to the covariance matrix of the components of a multinomial distribution.
If we now generate a bivariate extreme dispersion model from (5.15), the inte-

grated hazard function Hθ,λ(x1, x2) becomes

Hθ,λ(x1, x2) = λ12 log(1 + ex1−θ1 + ex2−θ2)

+ λ1 log(1 + ex1−θ1) + λ2 log(1 + ex2−θ2)

for (x1, x2) ∈ R
2. This defines the five-parameter bivariate logistic extreme dis-

persion model Lg2(θ ,�). A multivariate version may be obtained by utilizing the
results of Rusch (2009, page 47).
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5.4 A bivariate Gumbel distribution

In the construction of a bivariate Gumbel distribution we use a technique similar to
the construction of the bivariate gamma distribution via (4.24), except that we use
location parameters instead of scale parameters. Hence, let U denote a standard
Gumbel variable with integrated hazard function ex . Consider the random vector[

U + θ1
U + θ2

]
, (5.16)

where θ1, θ1 ∈ R. The integrated hazard function for (5.16) is

H(x1, x2) = emax{x1−θ1,x2−θ2} for (x1, x2) ∈ R
2.

Let us generate a bivariate extreme dispersion model of the form (5.8) with inte-
grated hazard function

Hθ,λ(x1, x2) = λ12e
max{x1−θ1,x2−θ2} + λ1e

x1−θ1 + λ2e
x2−θ2 (5.17)

for (x1, x2) ∈ R
2. In this case we interpolate between independence (λ12 = 0) and

complete dependence (λ1 = λ2 = 0). As it happens, the parameter (θ1, λ1) is not
identifiable from (5.17), but λ1e

θ1 is, and, similarly, only λ2e
θ2 is identifiable from

(θ2, λ2).
The problem of identifiability, however, disappears when we transform to the

reproductive form by the duality transformation. This gives a bivariate Gumbel
extreme dispersion model defined by the survival function

Hθ,λ(y1, y2) = λ12 exp max{y1/λ11 − θ1, y2/λ22 − θ2}
(5.18)

+ λ1e
y1/λ11−θ1 + λ2e

y2/λ22−θ2,

where all five parameters are identifiable. This bivariate Gumbel distribution is
different from the three conventional types of bivariate Gumbel distributions; cf.
Balakrishnan and Lai (2009). Similar to the Marshall and Olkin (1967) bivariate
exponential distribution, the distribution (5.18) has a singular part, concentrated
on the straight line

y2 = λ22(θ2 − θ1 + y1/λ11).

A multivariate Gumbel distribution may be obtained by methods similar to those
of Section 4.4.

6 Discussion

In order to develop fully flexible multivariate dispersion models, we have reviewed
an existing method for constructing multivariate proper dispersion models, and we
have introduced new methods for constructing multivariate exponential and ex-
treme dispersion models. These different types of dispersion models may seem
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rather disparate at first, but the common form of the variance function in the two
first cases suggests that multivariate dispersion models provide a general and flex-
ible framework for constructing new multivariate distributions.

Such a framework can accommodate a wide variety of different types of data, in-
cluding, for example, multivariate exponential dispersion models for discrete data.
The common interpretation of the parameters μ and � leads to a unified methodol-
ogy for statistical analysis of multivariate data. In addition to the three types of dis-
persion models discussed here, a fourth type has recently been proposed, namely,
the class of geometric dispersion models (Jørgensen and Kokonendji, 2011), but a
possible multivariate generalization of this class remains to be explored.

On this background we propose a program for the systematic development of
multivariate dispersion models, in order to break a path through the jungle of distri-
butions in R

k , in the words of Letac (2007); see the website Jørgensen (2011a) for
details. This program will require a concerted effort on many different fronts, rang-
ing from the practical implementation of simulation and estimation methods to the
development of specialized models for longitudinal, spatial and other forms of cor-
related data. Short of being all-encompassing, such a program holds the promise
of providing a good general methodology for modelling multivariate nonnormal
data, much like generalized linear models do in the univariate case.
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