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Abstract. Statistical classification methods based on score statistics have re-
ceived a considerable attention in recent years. The use of these methodolo-
gies requires that asymptotic properties relative to such measures are satisfied.
In this context, the classification error rates generally present biased values to
the nominal level when submitted to small or moderate sample sizes. How-
ever, Nelson, Turin and Hastie [Journal of Pattern Recognition and Artificial
Intelligence 8 (1994) 749–770] proposed a successful classification method
based on score statistic described asymptotically by a chi-square law. That
proposal presented good results for several sample sizes. On the other hand,
stochastic measures with exact distributions described by beta and Hotelling’s
T 2 laws have also been employed in such situations. This paper presents two
Bartlett-type corrections for score statistics considering the method proposed
by Cordeiro and Ferrari [J. Statist. Plann. Inference 71 (1998) 261–269].
Moreover, Monte Carlo experiments are performed in order to compare the
corrected statistics to their respective noncorrected versions and to a classic
classifier defined on the nonmodified score statistic. In a confirmatory sense,
the proposed methodology is applied to actual signature data, obtained by the
Electrical Engineering and Computer Department from the State University
of Campinas (UNICAMP, Brazil).

1 Introduction

The term biometrics is defined as all the different forms of individual recog-
nition, which have the work-variables based on the distinguishing characteris-
tics. Many researchers have addressed the suggestion of novel techniques in this
field (Impedovo and Pirlo, 2008). An important part of biometrics is the signa-
ture verification whose attention is focused on the finding by stochastic patterns in
the statistical structure of database of signatures. One of the signature verification
lines, termed by off-line, works with the attributes of signatures instead of using
coordinates or function signal, as in the online field (Impedovo and Pirlo, 2008). In
this context, the utilization of a statistical hypothesis test theory and its corrections
has a pivotal importance (Fukunaga, 1990).
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Assuming a fixed nominal level, the problem of statistical pattern recognition
aims to define a stochastic decision rule in order to quantify the probability of a
new observation to belong to a particular class. Press and Wilson (1978) suggested
the use of Mahalanobis distance and logistic regression as discriminant methods
when the observations follow multivariate normal and non-normal distributions,
respectively. Nelson, Turin and Hastie (1994) considered test statistics for classi-
fying genuine signatures supposing normality for the vector of observations under
study.

In order to obtain corrections which yield modified statistics whose first k mo-
ments are equal to those of the reference chi-squared distribution to order O(N−1)

(where N indicates the sample size), the Bartlett-type correction has been suc-
cessfully used in several applications. Cordeiro and Ferrari (1998) proposed an
improvement of this correction under the score statistic, aiming that such measure
assumes asymptotically a chi-square distribution to N−1 order.

This paper proposes two Bartlett-type corrections based on the first three sta-
tistical moments: one of them is based on the distributed T 2 statistic derived by
Sena Jr. (1997), while the other correction considers the distributed beta measure
proposed by Gnanadesikan and Kettenring (1972). Additionally, such measures are
applied to the signature verification context, as studied by Nelson, Turin and Hastie
(1994). These corrections for the score statistic take into account the methodology
proposed by Cordeiro and Ferrari (1998). In order to compare the corrected statis-
tics to their noncorrected versions and to the one classical classifier defined by the
nonmodified score statistic, we consider Monte Carlo experiments on which the
estimates for test size are quantified and utilized as comparison criterion. Finally,
the discussed methodologies are applied to a database of signatures obtained in
the Electrical Engineering and Computer Department from the State University of
Campinas (UNICAMP, Brazil).

The remainder of this paper is organized as follows. Section 2 discusses the
employed classification method based on the score statistic. In Section 3, such
methodology is specified in four particular contexts. Section 4 presents a simu-
lation study by means of Monte Carlo experiments. Moreover, an application to
actual data is performed. Finally, the main conclusions are organized in Section 5.

2 Corrected score statistic based on the moment method

The following discussion presents two statistical methods which we use in re-
mainder of this paper: the score statistic and the Bartlett-type correction under the
moment method.

2.1 Score statistic (Mahalanobis distance)

Let x be a p-dimensional random vector with normal distribution whose para-
metric space (termed as class in statistical classification) is represented by Ci =
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{(μi ,�i ) :μi ∈ R
p and �i is a positive definite matrix with order p} for i =

1,2, . . . , M, where M represents the number of classes under study. In this ap-
proach, it is additionally common to assume two conditions: (i) Ci ∩ Cj = ∅,
i �= j = 1,2, . . . , M, and (ii)

⋃M
k=1 Ck = R

p × D, where D is the set of positive
definite matrices. The density of x is given by

fx(x|Ci ) = 1√
(2π)p|�i | exp

{
−1

2
(x − μi )

t�−1
i (x − μi)

}
, (2.1)

where x is the outcome of the random vector x, (·)t indicates the vector transposi-
tion, | · | represents the determinant of a matrix, and the quantities μi and �i are
the ith mean vector and covariance matrix, respectively. In statistical classifica-
tion, subregions Ri ⊂ R

p (
⋃M

i=1 Ri = R
p) are usually sought for allocating a new

observation x0 to a particular class Ci when x0 ∈ Ri ; or, in otherwise, x0 belongs
to the complement of the set Ci . Considering the simplest case (when M = 2),
one aims to test H0 : x0 ∈ C1 vs. H0 : x0 ∈ C2, adopting R1 as the critical region
on which the null hypothesis H0 is rejected. To that end, the theoretical errors are
given by

α = Pr(Reject H0|H0 is true) =
∫

R1

fx(x|C1)dx

and

β = Pr(Not reject H0|H0 is false) =
∫

R2

fx(x|C2)dx,

where the differential element dx is given by dx = ∏p
i=1 dxi and xi is the ith entry

of vector x. In practice, the parameter β is not estimated since the distribution
relative to class C2 is not known. This paper will keep the focus of its investigation
on the estimation for the test size, α.

Specifying a nominal level α and the parameters μ1 and �1, the rejection region
R1 is easily obtained from the equation

α = (2π)−p/2

(2.2)

×
∫
R1

|�1|−1/2 exp
{
−1

2
(x − μ1)

t�−1
1 (x − μ1)︸ ︷︷ ︸

dpop(x)

}
dx.

An important factor of Equation (2.2) is the term dpop(x), known as the squared
Mahalanobis distance of vector x to the population center. This distance presents
a proportional directly relationship to the volume of the R1 region. Thus, we have
that the null hypothesis tends to be rejected for high values of this measure. More-
over, it is easy to verify that this distance follows asymptotically a chi-square dis-
tribution with p degrees of freedom (Mardia et al., 1979).

In practice, both μ and � are unknown. Assuming that a random vector x fol-
lows a p-variate normal distribution, Nelson, Turin and Hastie (1994) proposed
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replacing these parameters by their maximum likelihood (ML) estimators. Thus,
let X = {x1,x2, . . . ,xN } be a random sample with size N under the random vec-
tor x. According to (Mardia et al., 1979), it is known that the ML estimators of
the parameters μ and � are given by the sample mean x = [x1 x2 · · · xp]t
(xi = ∑N

j=1 xji/N , where xji is the single random variable relative to the j th
sample element and to the ith element of vector xj ) and by sample covariance
matrix

S = 1

N − 1

N∑
i=1

(xi − x)(xi − x)t ,

respectively. In this context, the sample squared Mahalanobis distance between a
p-dimensional new observation x0 and the center of a random sample X is repre-
sented by

d(x0) = (x0 − x)tS−1(x0 − x). (2.3)

The statistic of Equation (2.3) presents asymptotically chi-squared distribution.
Using coefficients in a function of the factors N and p, this paper presents two

statistics whose distributions are Hotelling’s T 2 and beta. Moreover, two correc-
tions for the score statistic are proposed considering the moment method. Subse-
quently, this methodology is described.

2.2 The correction by moments

Let d be a test statistic following asymptotically a chi-squared distribution with r

degrees of freedom. Adopting mild regularity conditions, Chandra (1985) proved
that the cumulative distribution function (c.d.f.) of d under null hypothesis and to
order N−1 is given by

Pr(d ≤ t) = Fp(t) +
k∑

i=0

aiFq+2i(t), (2.4)

where k is an arbitrary positive integer (in practice, small values for k are re-
quired for correcting the first k moments of a studied statistic and its respective
c.d.f.), ai is a function defined on the unknown parameters to order N−1 (satisfy-
ing

∑k
i=0 ai = 0), and Fh(t) represents the c.d.f. of a random variable described by

a chi-squared distribution with h degrees of freedom. Cordeiro and Ferrari (1998)
defined the modified statistic by

d∗ = d

(
1 −

k∑
i=1

cid
i−1

)
, (2.5)

where ci = 2(
∑k

�=i a�)/(μ
′
i ), μ′

i = {E(χ2
p)i} = ∏i−1

l=0(p + 2l), and E{·} represents
the statistical expectation operator. Thus, one has that

Pr(d∗ ≤ t) = Pr(χ2
p ≤ t).
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The correction in Equation (2.5) is known as the Bartlett-type correction. The usual
form of this correction is defined as d∗ = d(1 − B), where B is a polynomial of
order N−1 defined at the statistic d . As it will be seen later, the development of the
corrected statistic d∗ is based on the first k moments.

Cordeiro and Ferrari (1998) showed that the classical Bartlett correction for
the likelihood ratio test statistic is obtained using k = 1 and a0 = −a1 = −b/2,

where b is the term of order N−1 in the calculation of the statistic expected value.
The term b was firstly derived by Lawley (1956). With respect to the proposal of
the corrected score statistic, the Bartlett-type correction is a special case of (2.5)
assuming k = 3, that is,

d∗ = d{1 − (c1 + c2d + c3d
2)}.

Using the fact that the ci ’s are O(N−1), Cordeiro and Ferrari (1998) showed
that

(d∗)j = dj − jdj−1(c1d + c2d
2 + c3d

3), (2.6)

where the terms of order less than N−1 are ignored. Taking the expected value of
both sides of Equation (2.6) for each j , a system of linear equations is obtained.
Such a system has as unknown variables the quantities c1, c2 and c3, being the
complementary elements defined by the first three moments of the statistic d . Thus,
Cordeiro and Ferrari (1998) derived the following expression:

μ′
j = m′

j − j

3∑
i=1

cim
′
i+j−1,

where μ′
j and m′

j are the moments of order j of a chi-squared distribution and of
the statistic d , respectively. This equation can also be written as

(m′
j − μ′

j )

j
=

3∑
i=1

cim
′
i+j−1.

From expansion (2.4), one has that m′
i+j−1 = μ′

i+j−1 to O(1) and, since the ci ’s

are O(N−1), it is possible to obtain that

3∑
i=1

ciμ
′
i+j−1 = bj

j
(2.7)

for j ≥ 1, where bj is the term of order N−1 in the expansion of the j th moment
(m′

j ) of the statistic d .
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3 The statistics d and their contexts

This section considers four alternative forms for balancing the statistic d in the
presence of a new observation. In this approach, two are based on modified score
statistics with known exact distributions, while the others are obtained by the use
of the Bartlett-type correction, being asymptotically distributed as chi-squared. In
order to classify a new observation (or to identify the false alarm ratio), we con-
sider the following methodologies. Assuming that N observations are independent
and follow a normal distribution, the estimators x and S are calculated and the
Mahalanobis distance between such sample estimates and a new observation x0
is obtained according to Equation (2.3), d(x0). Additionally, we also adopt the
following method: (i) include the new observation in the sample, (ii) obtain the
estimators, and (iii) calculate the distance d . In the last procedure, the influence of
a new observation under the estimators is captured. Finally, we obtain two closed-
form expressions for Bartlett-type corrections based on two distributed T 2 and
beta modified score statistics.

3.1 Inference concerning the (N + 1)th observation: dT

Let x and S be the ML estimators of the parameters μ and � obtained from a
random sample with size N from a p-variate normal law equipped with such pa-
rameters. Suppose also that we have a new observation of the same population.
Thus, we aim to make statistical inference for classifying such observation. The
following results represent the relationships among the Wishart, Hotelling’s T 2

and Snedecor’s F distributions (Mardia et al., 1979).
Let y be a random vector with distribution Np(0, I) and W be an independent

random matrix of y following a Wishart law with the parameters I and L, termed
by W ∼ Wp(I,L). Here, p is the dimension of the vector y, I is the identity matrix
of order p, and L is the degrees of freedom. Considering the expression

T = LytW−1y,

Sena Jr. (1997) showed that T has a Hotelling’s T 2 distribution with parameters
p and L, termed by T ∼ T 2(p,L). By the definition of the above concepts, the
following theorems are deduced in Mardia et al. (1979).

Theorem 3.1. Let {x1,x2, . . . ,xN } be a set of random vectors based on Np(μ,�)

distribution and S = 1
N−1

∑N
i=1(xi − x)(xi − x)t , then

(N − 1)S ∼ Wp(�,N − 1).

Theorem 3.2. If W ∼ Wp(�,L), then

�−1/2W�−1/2 ∼ Wp(I,L).
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Theorem 3.3. If T ∼ T 2(p,L), then(
T

L

)(
L − p + 1

p

)
∼ F (p,L − p + 1).

Considering x ∼ Np(μ,�), then

y =
√

N

N + 1
�−1/2(x − x) ∼ Np(0, I).

Directly from Theorem 3.1, minor manipulations lead to the following result:

W = (N − 1)�−1/2S�−1/2 ∼ Wp(I,N − 1).

From the last two results, it is possible to show that

T = (N − 1)ytW−1y = N

N + 1
(x − x)tS−1(x − x)

= N

N + 1
d ∼ T 2(p,N − 1).

Writing d as a function of T and using the relation between the F and T 2 distri-
butions, one has then that

d = N + 1

N
T = N + 1

N

(N − 1)p

(N − p)
F,

where F is a random variable with F law whose degrees of freedom are p and
(N − p), nominated by F ∼ F (p,N − p).

From the last equation, it is possible to modify the statistic d and so establish
a critical point, such that one can assure that at most α% of the observations do
not belong to a prefixed confidence region. Writing the statistic F in function of
d , Sena Jr. (1997) obtained an exact distribution for the distance measure given by

F = N − p

p(N − 1)

N

N + 1
d, (3.1)

where F ∼ F (p,N − p). In the remainder of this article, such measure will be
called dT .

3.2 Inference under the N th observation: dB

Another methodology consists in calculating the N distances between each vector
xi (i = 1,2, . . . ,N) and the estimator x. Assuming that xi follows the Np(μ,�)

law, Gnanadesikan and Kettenring (1972) studied the robustness of statistic ui

expressed by

ui = N

(N − 1)2 di. (3.2)
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Such a measure follows the beta distribution with parameters p/2 and (N − p −
1)/2, where di is the sample Mahalanobis distance. According to the above dis-
cussion, the following rule is defined: after a new observation x0 is introduced in
the sample, the estimates for x and S are obtained and the distance between their
values and x0 is then quantified obeying Equation (2.3). In subsequent discussions,
the statistic ui will be represented by dB.

3.3 The correction via the moment method based on beta distribution: d∗
1

Rewriting the Expression (3.2), the following relation of j th moments is obtained
by

E{dj } =
(

(N − 1)2

N

)j

E{uj },

where u ∼ beta(p/2, (N − p − 1)/2). According to Mardia et al. (1979), it is
known that the j th moment of the statistic u is given by

E{uj } = μu
j = B(j + a, b)

B(a, b)
,

where B(a, b) = �(a)�(b)/�(a + b) and �(·) indicates the gamma function. Us-
ing the fact that �(a) = (a − 1)�(a − 1), the three first moments of the statistic d

are expressed by

m′
1(d) = E{d} = (N − 1)2

N
E{u} = N − 1

N
p = p

(
1 − 1

N

)
,

m′
2(d) = E{d2} =

(
(N − 1)2

N

)2

E{u2} = p(p + 2)
(N − 1)3

N2(N + 1)

= p(p + 2)

(
1 − 4

N
+ O(N−2)

)
,

m′
3(d) = E{d3} =

(
(N − 1)2

N

)3

E{u3} = p(p + 2)(p + 4)
(N − 1)5

N3(N + 3)(N + 1)

= p(p + 2)(p + 4)

(
1 − 9

N
+ O(N−2)

)
.

Considering the system formulated in Equation (2.7), the first five moments of
the chi-squared distribution are given by μ′

1 = p, μ′
2 = p(p + 2), . . . , and μ′

5 =
p(p + 2)(p + 4)(p + 6)(p + 8). Thus, the first three terms bj ’s of the expansion
for the j th null moment m′

j of the statistic d are given by b1 = −p/N , b2 =
−4p(p + 2)/N , and b3 = −9p(p + 2)(p + 4)/N . Therefore, Equation (2.7) is
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degenerated in the following system of equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c1μ

′
1 + c2μ

′
2 + c3μ

′
3 = b1,

c1μ
′
2 + c2μ

′
3 + c3μ

′
4 = b2

2
,

c1μ
′
3 + c2μ

′
4 + c3μ

′
5 = b3

3
.

(3.3)

From this system, we derive the quantities c1 = p/2N , c2 = −1/2N and c3 = 0.
Based on the terms c1, c2 and c3, we have that the Bartlett-type correction for the
statistic u is given by

d∗
1 = d

(
1 − (c1 + c2d + c3d

2)
) = d

{
1 +

(
d − p

2N

)}
,

where Pr(d ≤ t) = Pr(χ2
p ≤ t) + O(1) and Pr(d∗

1 ≤ t) = Pr(χp
2 ≤ t) + O(N−1).

3.4 The correction via the moment method based on F distribution: d∗
2

From Equation (3.1), one has that

E{dj } =
(

p(N2 − 1)2

N(N − p)

)j

E{Fj },

where F ∼ F (p,N − p). The j th moment of F is expressed by Mardia et al.
(1979),

E{Fj } = μF
j =

(
N − p

p

)j

�

(
p

2
+ j

)
�

(
N − p

2
− j

)/(
�

(
p

2

)
�

(
N − p

2

))
,

where N > 2j + p. Through minor algebraic manipulations, one can obtain that

m′
1(d) = E{d} = p(N2 − 1)2

N(N − p)
E{F } = N2 − 1

N2 − N(p + 2)
p

= p

(
1 + p + 2

N
+ O(N−2)

)
,

m′
2(d) = E{d2} =

(
p(N2 − 1)2

N(N − p)

)2

E{F 2}

= p(p + 2)
N4 − 2N2 + 1

N4 − 2N3(p + 3) + N2(p + 2)(p + 4)

= p(p + 2)

(
1 + 2(p + 3)

N
+ O(N−2)

)
,

m′
3(d) = E{d3} =

(
p(N2 − 1)2

N(N − p)

)3

E{F 3}
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= p(p + 2)(p + 4)
N6 − 3N4 + N2 + 1

N6 − A1(p)N5 + A2(p)N4 − A3(p)N3

= p(p + 2)(p + 4)

(
1 + A1(p)

N
+ O(N−2)

)
,

where A1(p) = 3p + 12, A2(p) = 3p2 + 24p + 44 and A3(p) = p3 + 12p2 +
44p + 48.

Therefore, the first three terms bj ’s in the expansion of the j th null moment
m′

j concerning to the statistic d is expressed by b1 = p(p + 2)/N , b2 = 2p(p +
2)(p+3)/N and b3 = p(p+2)(p+4)(3p+12)/N . Including theses expressions
for bi in the system (3.3), the quantities c1 = −(2+p)/2N , c2 = 1/2N and c3 = 0
are derived. Thus, the Bartlett-type correction for the statistic F is expressed by

d∗
2 = d

{
1 −

(
p + d + 2

2N

)}
= d∗

1 − d

(
1 + d

N

)
.

4 Applications and simulations

The five discussed score statistics are included in the signature verification con-
text and their performances are investigated. To this end, we use a database of
signatures provided by the Electrical Engineering and Computer Department from
the State University of Campinas (UNICAMP, Brazil) relative to the author David
Schulz. This data set consists of 1000 genuine and 825 false signatures. Figure 1
presents a plot of two signatures and a dispersion graphic between two principal

Figure 1 Signatures and dispersion graphic between two principal components under the larger
eigenvalues.
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components indexed by the two larger eigenvalues based on the correlation ma-
trix of the database. This figure introduces the subsequent analysis based on both
simulated and real data with an illustration of the current database. Additionally,
Figure 1(b) shows evidence that characteristics relative to the signatures are able
for classifying new signatures.

In this section, the empirical study aims to construct a structure with similar
characteristics to actual signatures and to quantify the convergence rate relative to
the estimated test size under different scenarios. Additionally, such estimates are
obtained and assessed from real signatures.

4.1 Synthetic signature

In order to incorporate the signature database characteristics to this simulation
study, 100 genuine signatures with 42 basic features of an author were sampled
among 1000, using a simple random sample without replacement. Based on such
a sample, the pair of sample average vectors and covariance matrices, termed by
(x,S), was obtained. Subsequently, we generate vectors according to the multi-
variate normal and t3 distributions for different sample sizes (N ) and character-
istic numbers (p). Adopting as nominal level α ∈ {1%,5%,10%}, this methodol-
ogy addresses the analysis of non-normality impact under sizes of tests based on
the modified score statistics: (i) the Mahalanobis distance (Mardia et al., 1979),
(ii) their Barllet-type corrections (Cordeiro and Ferrari, 1998), (iii) the classical
Hotelling’s T 2 (Hotelling, 1931), and (iv) one proposed by Gnanadesikan and Ket-
tenring (1972). For notation purposes, the remainder of the paper will refer to such
statistics by terms d , d∗

i (i = 1,2), dT and dB, respectively.
This simulation considered N > p such that p ∈ {2,4} and N ∈ {p + 10,p +

11, . . . ,100}. The selection process of p features among the 42 available in the
signature database was based on the coefficient of variation (CV). Once we speci-
fied the value of p, we select the p variables with CV lower values because these
situations are more difficult to be imitated in practice.

Establishing the pair value, (N,p), we generate N outcomes of the p-
dimensional vector according to the multivariate normal [with density given by
Equation (2.1)] or t3 distribution, whose density function is expressed by McNeil
(2006),

fx(x|v,μ,�) = �((v + p)/2)

�(v/2)(vπ)p/2 |�|−1/2

(4.1)

×
[
1 + 1

v
(x − μ)t�−1(x − μ)

]−(v+p)/2

,

where v > 0 is the degrees of freedom. In this case, the distribution is said to be
‘central’ when μ = 0. This simulation considered its noncentral version, replacing
the parameters μ and � by outcomes x and S obtained by signature actual data.
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The above methodology is nominated as a ‘training step’ and it was used to
obtain μ1 and �1, which are used in the estimation of the test size relative to the
discussed hypothesis tests. Subsequently, we generate other 1000 observations,
termed a ‘test step,’ in a similar way to that used to generate samples in the training
step. Based on the generated observation in the test step, we quantify the test size,
which is defined by

αd = Pr
(
d(x) > χ2

(p,α)

)
,

αd∗
1

= Pr
(
d∗

1 (x) > χ2
(p,α)

)
,

αd∗
2

= Pr
(
d∗

2 (x) > χ2
(p,α)

)
,

αdT = Pr
(
dT (x) > F(p,n − p,α)

)
,

αdB = Pr
(
dB(x) > beta

(
p

2
,
n − p − 1

2
, α

))
,

where χ2
(p,α), beta(p

2 ,
n−p−1

2 , α) and F (p,n − p,α) are critical values such that
the population elements exceed at α%.

This procedure was performed using 1000 Monte Carlo replications, where the
estimates for the theoretical errors αd , αd∗

1
, αd∗

2
, αdT and αdB are recorded for each

replication. The results for the mean of the estimates for test size are presented
in Tables 1 and 2. The estimates closest to the nominal levels are highlighted in
boldface type in the tables.

Table 1 presents the estimates for test size in multivariate normal data. The
hypothesis tests based on the statistics dT and d∗

2 revealed the better performance.

Table 1 Average percentage of observations that exceed the specified critical values, assuming
multivariate normal distribution

α α̂dB α̂dT α̂d α̂d∗
2

α̂d∗
1

α̂dB α̂dT α̂d α̂d∗
2

α̂d∗
1

p = 2, N = 20 p = 4, N = 20
1 5.41 0.96 3.21 1.17 4.70 13.11 0.96 6.87 0.00 10.52
5 11.58 4.87 9.28 6.95 11.02 21.30 4.88 15.46 9.11 19.29

10 17.32 9.89 15.27 13.33 16.89 27.47 9.67 22.88 17.72 26.11

p = 2, N = 30 p = 4, N = 30
1 3.58 1.04 2.41 1.40 3.28 7.30 1.05 4.31 1.71 6.34
5 9.43 5.13 8.06 6.72 9.19 14.94 5.05 11.74 8.51 14.14

10 15.06 10.32 13.89 12.65 14.91 21.26 10.10 18.47 15.77 20.65

p = 2, N = 50 p = 4, N = 50
1 2.32 1.03 1.77 1.29 2.24 3.84 1.01 2.62 1.58 3.57
5 7.27 4.98 6.59 5.86 7.18 10.12 4.97 8.53 7.04 9.87

10 12.59 9.83 11.95 11.31 12.53 16.05 9.97 14.57 13.09 15.86
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Table 2 Average percentage of observations that exceed the specified critical values, assuming
multivariate t3 distribution

α α̂dB α̂dT α̂d α̂d∗
2

α̂d∗
1

α̂dB α̂dT α̂d α̂d∗
2

α̂d∗
1

p = 2, N = 20 p = 4, N = 20
1 9.19 4.56 7.21 3.34 8.60 18.42 6.87 13.85 0.00 16.63
5 13.36 8.77 11.90 9.05 13.02 23.35 12.10 19.90 11.11 22.21

10 16.83 12.29 15.63 13.29 16.57 27.06 16.02 24.36 17.25 26.28

p = 2, N = 30 p = 4, N = 30
1 7.15 4.48 6.10 4.39 6.89 13.30 6.87 10.88 5.94 12.59
5 10.96 8.26 10.12 8.77 10.81 17.95 11.54 16.12 12.37 17.53

10 14.32 11.48 13.59 12.44 14.22 21.38 15.14 19.94 16.72 21.06

p = 2, N = 50 p = 4, N = 50
1 5.70 4.34 5.16 4.46 5.61 9.55 6.51 8.51 6.72 9.36
5 9.25 7.77 8.81 8.17 9.21 13.75 10.46 12.86 11.34 13.60

10 12.32 10.79 11.93 11.39 12.28 17.04 13.65 16.28 14.94 16.94

The study for more situations is presented in Figure 2 and indicated that such
measures have faster convergence rates with respect to the nominal level.

Figure 2 Simulation results considering multivariate normal distribution for p ∈ {2,4}.
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Figure 3 Simulation results considering multivariate t3 distribution for p ∈ {2,4}.

Table 2 shows the empirical test sizes submitted to non-normal data. In general
terms, the estimates were biased with respect to the adopted nominal levels. The
better results were presented by hypothesis tests based on the dT statistic. The in-
creasing of sample size yielded the estimate values more accurate. Such situations
and other cases are illustrated in Figure 3. These plots furnished evidence that the
situations less affected by non-normality were ones with p = 2 and α = 10%.

4.2 Real signature

This section assesses the performance of the discussed hypothesis tests, adopting
as criterion the empirical test sizes. To that end, the following methodology was
considered:

1. Specify the values for quantities N and p;
2. Select 1000 sample with size N from the database (nominated by Ai for i =

1,2, . . . ,1000), using a simple random sample without replacement;
3. For each selected sample Ai , obtain the more significant principal component

p whose coefficients are represented by the columns of the matrix Ci . The tech-
nique of the principal components was used in order to consider all variables of
the database;
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Table 3 Average percentage of observations that exceed the critical values specified, assuming real
data

α α̂dB α̂dT α̂d α̂d∗
2

α̂d∗
1

α̂dB α̂dT α̂d α̂d∗
2

α̂d∗
1

p = 2, N = 20 p = 4, N = 20
1 7.44 3.32 5.72 2.71 6.89 10.71 2.95 7.24 0.00 9.32
5 11.16 7.04 9.86 7.73 10.84 14.89 6.02 11.93 6.79 13.87

10 14.13 10.19 13.11 11.42 13.91 18.28 8.85 15.75 11.44 17.48

p = 2, N = 30 p = 4, N = 30
1 6.31 3.47 5.19 3.85 6.06 8.18 3.20 6.16 3.34 7.58
5 10.30 7.52 9.45 8.47 10.15 12.38 6.70 10.66 8.34 11.97

10 13.36 10.78 12.72 11.98 13.26 15.78 9.79 14.31 12.31 15.46

p = 2, N = 50 p = 4, N = 50
1 5.21 3.35 4.52 3.79 5.11 6.21 3.22 5.09 3.89 5.99
5 9.61 7.90 9.11 8.59 9.56 10.64 7.17 9.65 8.58 10.49

10 12.82 11.28 12.45 12.08 12.78 14.08 10.55 13.25 12.39 13.97

4. In the training step, consider the transformation A∗
i = AiCi for i = 1,2, . . . ,

1000 and calculate μ̂ = A∗
i and �̂ = Cov(A∗

i );
5. As a test step, take Bi as complementary of Ai with respect to the database

observations and consider B∗
i = BiCi . Finally, calculate the means of the es-

timates (in each one selected sample) for the sizes of tests based on distance
between the elements of B∗

i and the pair (μ̂, �̂).

The results of the application of the above methodology to the actual data are
organized in Table 3 and Figure 4. Table 3 shows the performance concerning any
particular situations. Such results furnished evidence that the statistics dT and d∗

2
presented the better rates of false alarm, that is, classify as false a genuine signa-
ture. Figure 2 reveals the extension of these results, considering a higher number of
sample sizes. In this case, one can note that the nominal levels are overestimated.
This fact is justified by the simulation under non-normality situation which pre-
sented the same behavior. The empirical test size relative to the measures dT and
d∗

2 presented faster convergence degrees to the adopted significance levels.

5 Conclusions

This paper proposed two test statistics based on modified score statistics. Two
among them are based on scaling of such measures, while the others were ob-
tained under Bartlett-type corrections. Such methodologies were applied to the
classification context.

In order to assess the performance of discussed measures, we employed a Monte
Carlo experiment. The parameters of this simulation were obtained from an actual
database of signatures. Additionally, such study utilized the estimated test size as
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Figure 4 Results based on real signatures for p ∈ {2,4}.

comparison criterion. The results showed evidence that the hypothesis tests defined
by dT and d∗

2 presented the better estimates for test size. Finally, the proposed
methodology was extended to the actual data.
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