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Abstract. We consider a stochastic model for species evolution. A new
species is born at rate λ and a species dies at rate μ. A random number,
sampled from a given distribution F , is associated with each new species and
assumed as its fitness, at the time of birth. Every time there is a death event,
the species that is killed is the one with the smallest fitness. We consider the
(random) survival time of a species with a given fitness f . We show that the
survival time distribution depends crucially on whether f < fc, f = fc or
f > fc where fc is a critical fitness that is computed explicitly.

1 Introduction

Consider a stochastic model for species evolution in which a new species is born
at rate λ and an existing species dies at rate μ. A random number, sampled from a
given distribution F , is associated with each new species at the time of birth. We
think of the random number associated with a given species as being the fitness of
the species. These fitnesses are independent of each other and of everything else in
the process. Every time there is a death event, the species that is killed is the one
with the smallest fitness. We assume F to be an absolute continuous distribution
function. In this paper we study the survival time of a given species with fitness f .
We show that there is a critical fitness fc and a sharp phase transition for the
survival time of the species. Our analysis is based on a closed connection between
our model and random walks.

A similar model, meant to build phylogenetic trees, was introduced in Liggett
and Schinazi (2009). A discrete version of this model is studied in Guiol et
al. (2011) where a phase transition is shown.
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2 Main results

Recall we assume that F is an absolute continuous distribution function. This im-
plies that there exists a probability density ϕ on R such that

F(x) =
∫ x

−∞
ϕ(u)du.

Denote Supp(F ) the support of distribution F :

Supp(F ) = {x ∈ R :ϕ(x) > 0}.
Assume that originally there are k species in the process, with associate fitness
f1 < f2 < · · · < fk = f in the support of F . Denote τ k

f the r.v. corresponding to
the survival time of the species with fitness f in that context.

Theorem 2.1. The survival time τ k
f has a Bessel distribution

P(τ k
f > t) = 1 −

(
μ

λf

)k/2 ∫ t

0
e−(μ+λf )u k

u
Ik

(
2
√

μλf u
)
du (2.1)

with λf := λF(f ) < λ and where Ik is the modified Bessel function of the first
kind with index k defined by

Ik(x) =
+∞∑
�=0

1

(� + k)!�!
(

x

2

)2�+k

. (2.2)

Remark 2.2. Devroye (1986, Chapter IX, Section 7, page 470) includes distribu-
tion (2.1) among the class of Bessel function distributions. One can also find it in
Feller (1968, Chapter II, Section 9, Problem 15, page 65) without a specific name.

Remark 2.3. Whenever λf ≤ μ, τ := τ k
f has probability density

ϕτ (t) =
(

μ

λf

)k/2

e−ct k

t
Ik

(
2
√

μλf t
)

for all t > 0

and some c > 0. In the case λf > μ the previous function is not a density proba-
bility since∫ ∞

0

(
μ

λf

)k/2

e−ct k

t
Ik

(
2
√

μλf t
)
dt =

(
μ

λf

)k/2(
μ

λf

)k/2

=
(

μ

λf

)k

< 1.

Remark 2.4. The survival time τ k
f is not affected by living species with fitness

above f . Besides, we have

τ k
f =

k∑
j=1

τ
j
f − τ

j−1
f ,
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being τ 0
f = 0. Observe that τ k

f are a.s. finite stopping times and from the Strong

Markov property (τ
j
f −τ

j−1
f )1≤j≤k is an i.i.d. sequence of r.v. with the distribution

of τf := τ 1
f .

Though formula (2.1) gives the exact distribution of the survival time, it is not
straightforward to come to a conclusion from it. The next result sheds light in the
phase transition property of our model.

Corollary 2.5. With the previous notation,

(a) If λf < μ, then

P(τ k
f > t) ∼ Ck

e−γ t

t3/2

with Ck = k
2
√

π
(

μ
λf

)k/2(μλf )−1/4(
√

μ − √
λf )−2 and γ = (

√
μ − √

λf )2.

(b) If λf > μ, then

P(τ k
f = +∞) = 1 −

(
μ

λf

)k

;

P(t < τk
f < +∞) ∼ Ck

e−γ t

t3/2 .

(c) If λf = μ, then

P(τ k
f > t) ∼ k(πμt)−1/2.

Remark 2.6. Note, from Corollary 2.5, that if λ > μ, there is a phase transition
in f . A species born with a fitness lower than

fc := F−1(μ/λ) (2.3)

dies out exponentially fast, while a species with a fitness greater than fc has a
positive probability of surviving forever. The larger λ/μ (recall that F−1 is non-
decreasing) the more welcoming the environment is to new species. If λ/μ < 1,
all species will die exponentially fast. On the other hand, if λ/μ is large, then even
species with relatively low fitness will make it.

Up to now we have discussed the survival of a species with a given fitness f . It
is particularly relevant to derive some information about the distribution of these
surviving species. Suppose that λ > μ and let Lt and Rt be the sets of species alive
at time t whose fitness is respectively lower than fc and higher than fc. Since each
fitness that has appeared up to time t will not show up again a.s., we can identify
each species with its fitness and think of Lt and Rt as sets of points in (−∞, fc)

and (fc,∞), respectively. The next result states a straightforward application of
the main result of Guiol et al. (2011).
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Proposition 2.7. Suppose that λ > μ. Then

(a) The number |Lt | of species whose fitness is below fc is a null recurrent birth
and death process. In particular, the set Lt is empty infinitely often with prob-
ability one.

(b) Let fc < a < b, then

lim
t→∞

1

t
|Rt ∩ (a, b)| = λ(F (b) − F(a))

λ + μ
a.s.

Remark 2.8. Observe that from Ben-Ari et al. (2011) it would be also possible to
get a Central Limit Theorem and a Law of the Iterate logarithm for Rt .

3 Proofs

3.1 Construction of the process

The construction uses ideas from the Harris Graphical method for Markov Pro-
cesses and basically takes advantage from projection properties of a bidimen-
sional Poisson process with rate 1. In the sequel we construct a bivariate process
Zt = (Z1

t ,Z
2
t ) in which Z1

t will represent the number of living species at time t ,
and Z2

t will be the set of associated living fitness: In particular, |Z2
t | = Z1

t .

Let M be a two dimensional Poisson process with rate 1 on R
+ × R. For nota-

tional convenience we will identify the x-line of the plane as the time line.
Suppose we start the process with k ≥ 1 species, let f1, . . . , fk be k independent

random variables with F distribution, independent from M .
Let T0 = 0 and Z0 = (Z1

0,Z2
0) = (k, {f1, . . . , fk}) ∈ N× S, where S is the set of

finite subsets of real numbers in [0,1]N.
Define

T1 = inf{t > 0 :M([0, t] × [0, λ + μ]) > 0}, (3.1)

that is, the first time t ∈ R
+ that a Poisson mark falls into the strip R

+ ×[0, λ+μ].
Denote by (T1, Y1) the coordinate of the Poisson mark realizing the infimum in
(3.1). Observe that from the Poisson process properties Y1 is a uniform [0,1] r.v.
independent of T1.

• Whenever Y1 ∈ [0, λ], then let fk+1 = F−1(Y1/λ) (observe that fk+1 is also a
r.v. with F law and independent of T1) and let

ZT1 = (Z1
0 + 1,Z2

0 ∪ {fk+1}) = (k + 1, {f0, . . . , fk+1});
this will represent the birth of a new species;

• else, whenever Y1 ∈]λ,λ + μ], let

ZT1 = (Z1
0 − 1,Z2

0 \ {min{Z2
0}}) = (

k − 1, {f0, . . . , fk} \ {
min{fi : 1 ≤ i ≤ k}});

this will represent the death of the weakest species.
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For all t ∈ [0, T1[ denote Zt = Z0. We have thus constructed the process Zt

until time T1 (included).
For all n ≥ 1 denote by Tn the time of the nth mark of the Poisson process M

in the strip R
+ × [0, λ + μ], that is,

Tn = inf{t > Tn−1 :M([0, t] × [0, λ + μ]) > 0}.
Suppose the process Zt is constructed up to time Tn, n ≥ 1. As before, denote by
(Tn+1, Yn+1) the coordinate of the n + 1st Poisson mark.

• Whenever Yn+1 ∈ [0, λ], then let fk+n+1 = F−1(Yn+1/λ) and define

ZTn+1 = (Z1
Tn

+ 1,Z2
Tn

∪ {fk+n+1}),
• else

ZTn+1 = (
Z1

Tn
− 1{Z1

Tn
>0},Z

2
Tn

\ {min{Z2
Tn

}}),
with the convention min∅ = ∅;

then for all t ∈ [Tn,Tn+1[ let Zt = ZTn .
So by induction one can construct the process (Zt )t≥0 so that the second coor-

dinate of Zt , that is, Z2
t , represents our fitness process starting with k species.

3.2 An useful coupling

We are interested in the distribution of τ k
f . One can have this from Xt , a process

coupled to the process Zt , being Xt the number of species whose fitnesses are
smaller than f at time t . Observe that, by construction, X0 = Z1

0 . Moreover, at
time T1,

• if Y1 ∈ [0, λf ]∪ ]λ,λ+μ], then let XT1 = Z1
T1

. Observe that this corresponds to
a simultaneous death or to a simultaneous birth with associate fitness less than
f for the Z process;

• else (when Y1 ∈]λf ,λ]) then let XT1 = X0. In this case there is a birth on the Z

process with associate fitness bigger than f and nothing for the X process.

As before, define Xt = X0 for all t ∈ [0, T1[.
For all set A of numbers in [0,1] denote by

φf (A) = {x ∈ A :x ≤ f }, (3.2)

that is, the set of numbers in A less or equal to f .
Observe that Xt = Z1

t on [0, T1[, XT1 = |φf (Z2
T1

)| ≤ Z1
T1

.
For n ≥ 1 suppose that Xt is constructed up to time Tn.

If XTn �= 0, then |φf (Z2
Tn

)| = XTn .

• If Yn+1 ∈ [0, λf ] (recall that fk+n+1 := F−1(Yn+1/λ) ≤ f ), define

XTn+1 = XTn + 1,
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• if Yn+1 ∈ [λ,λ + μ], then define

XTn+1 = XTn − 1,

• else let XTn+1 = XTn ;

In case XTn = 0 let XTn+1 = 0.
This defines a random sequence (Tn,XTn)n≥0; we define the process (Xt)t≥0 as

Xt = XTn for all t ∈ [Tn,Tn+1[.
The proof of Theorem 2.1 relies on the following lemma.

Lemma 3.1. For any k ≥ 1,

{τ k
f > t} = {Xt > 0}, (3.3)

that is, τ k
f has the same law as the first passage time to 0 of Xt the simple Bernoulli

random walk starting at k with rate c = λf + μ and individual steps equal to 1 or
−1 with respective probability p = λf /c and q = μ/c.

Proof. We have X0 = Z1
t = |φf (Z2

t )| = k > 0. From the construction for all t <

τk
f we have minZ2

t ≤ f ; this implies Xt > 0. Conversely, if τ k
f ≤ t as minZ2

τ k
f

> f ,

this implies Xτk
f

= 0 and, thus, X1
t = 0. �

Proof of Theorem 2.1. Let (Jn)n≥1 denote the jump times of the process (Xt)t≥0
and set J0 = 0. The random sequence (XJn)n≥0 is a simple discrete time random
walk on N with individual steps equal to 1 or −1 with respective probability p

and q . Denote by H0 the first hitting time of 0 of this walk. A standard computation
(see, for instance, Grimmett-Stirzaker (2001, (15), page 79)) gives

P(H0 = n|X0 = k) = k

n

(
n

(n + k)/2

)
q(n+k)/2p(n−k)/2

whenever n + k is even, 0 otherwise. As Jn has a Gamma (see Grimmett-
Stirzaker (2001, Chapter 6)) distribution with parameters c and n, this implies
that

P(Xt = 0) =
∫ t

0

∞∑
n=k

cn

(n − 1)!u
n−1e−cu

P(H0 = n|X0 = k) du

=
∫ t

0
e−cu k

u

∞∑
n=k

1

n!(n − k)!(cu)2n−kqnpn−k du

=
∫ t

0
e−cu k

u

∞∑
�=0

1

(� + k)!�!(cu)2�+kq�+kp� du

=
∫ t

0
e−cu k

u

(
q

p

)k/2 ∞∑
�=0

1

(� + k)!�!
(
cu

√
qp

)2�+k
du,
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and from the definition of the Bessel function (2.2),

P(Xt = 0) =
∫ t

0
e−cu k

u

(
q

p

)k/2

Ik

(
2cu

√
pq

)
. �

As observed in Remark 2.3, whenever λf < μ, the expression (2.1) gives the
density probability of τf :

ϕτf
(t) =

√
μ

λf

e−(μ+λf )t 1

t
I1

(
2
√

μλf t
)

for t > 0, which allows to compute its Moment Generating Function:

M(s) = E(e−τf s) = 2μ√
(s + μ + λf )2 − 4μλf + s + μ + λf

.

This in turns allows us to compute E(τf ) = 2μ
μ−λf

, so that one can see easily that

E(τ k
f ) = k

2μ

μ − λf

for all k ≥ 0.

Proof of Corollary 2.5(a). When λf < μ (2.1) reads

P(τ k
f > t) =

(
μ

λf

)k/2 ∫ +∞
t

e−(μ+λf )u k

u
Ik

(
2
√

μλf u
)
du.

From Abramowitz and Stegun (1992, page 377, Equation 9.7.1) for x large
enough and all fixed ν,

Iν(x) ≈ ex

√
2πx

(
1 − 4ν2 − 1

8x
+ (4ν2 − 1)(4ν2 − 9)

2!(8x)2

− (4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3!(8x)3 + · · ·
)
,

so that for all k ≥ 1

ex

√
2πx

(
1 − 4k2 − 1

8x

)
≤ Ik(x) ≤ ex

√
2πx

(3.4)

for x large enough,

1

2
√

π(μλf )1/4

e−(
√

μ−√
λf )2u

u3/2

(
1 − 4k2 − 1

16
√

μλf u

)
(3.5)

≤ e−(μ+λf )u

u
Ik

(
2
√

μλf u
) ≤ 1

2
√

π(μλf )1/4

e−(
√

μ−√
λf )2u

u3/2 ,
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also for x large enough. Denoting γ = (
√

μ − √
λf )2, observe that

(
1

γ

1

t3/2 − 4k2 − 1

2γ 2

1

t5/2

)
e−γ t ≤

∫ +∞
t

e−γ u

u3/2 du ≤ 1

γ

e−γ t

t3/2 . (3.6)

Thus, ∫ +∞
t

e−γ u

u3/2 du ∼ 1

γ

e−γ t

t3/2 ,

so we have a sharp asymptotic estimate for the integral of the upper bound in (3.5).
For the integral of the lower bound, denoting α = (4k2 − 1)/(16

√
μλf ), just

observe that ∫ +∞
t

(
1 − α

u

)
e−γ u

u3/2 du ≥
∫ +∞
t

e−γ u

u3/2 du − α

γ

e−γ t

t5/2 (3.7)

to see that we also have a sharp asymptotic estimate for the integral of the lower
bound in (3.5). Besides, both asymptotic estimates agree.

Plugging (3.7) and (3.6) into (3.5) and then into (2.1), we finally conclude that
for t large enough

P(τ k
f > t) ∼

(
μ

λf

)k/2 1

2
√

π(μλf )1/4

k

(
√

μ − √
λf )2

e−(
√

μ−√
λf )2t

t3/2 . �

Proof of Corollary 2.5(b). This is immediate from the preceding computations
and Remark 2.3. �

Proof of Corollary 2.5(c). When λf = μ (2.1) reads

P(τ k
f > t) =

∫ +∞
t

e−2μu k

u
Ik(2μu)du,

using in turn inequalities (3.4) leads directly to the result. �

Proof of Proposition 2.7. To see this observe that the embedded discrete Markov
chain for our process is the stochastic model of evolution defined in Guiol et
al. (2011) in such a way that p = λ/(λ + μ). Consider that whenever the total
number of species is 0, the death marks in the construction of the process are ig-
nored so the total number of species stays 0 with probability μ/(λ + μ). �
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