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The beta generalized logistic distribution

Alice L. Morais, Gauss M. Cordeiro and
Audrey H. M. A. Cysneiros
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Abstract. For the first time, a four-parameter beta generalized logistic dis-
tribution is obtained by compounding the beta and generalized logistic distri-
butions. The new model extends some well-known distributions and its shape
is quite flexible, specially the skewness and the tail weights, due to the extra
shape parameters. We obtain general expansions for the moment generating
and quantile functions. The estimation of the parameters is investigated by
maximum likelihood. An application to a real data set is given to show the
flexibility and potentiality of our distribution.

1 Introduction

Because of their flexibility, much attention has been given to the study of gener-
alized distributions in recent times. Prentice (1976) proposed the type IV gener-
alized logistic (GLIV) distribution as an extended distribution to modeling binary
response data under the usual symmetric logistic distribution. The probability den-
sity function (p.d.f.) of the GLIV distribution, say GLIV(p, q), is given by

gp,q(x) = 1

B(p,q)

e−qx

(1 + e−x)p+q
, x ∈ R,p > 0, q > 0. (1.1)

The cumulative distribution function (c.d.f.) Gp,q(x) corresponding to (1.1) is

Gp,q(x) = I1/(1+e−x)(p, q), x ∈ R,p > 0, q > 0, (1.2)

where B(a, b) is the beta function, Bx(a, b) = ∫ x
0 ta−1(1 − t)b−1 dt is the incom-

plete beta function and Ix(a, b) = Bx(a, b)/B(a, b) is the incomplete beta function
ratio. The associated moment generating function (m.g.f.) for −p < t < q is given
by Mp,q(t) = �(p + t)�(q − t)[�(p)�(q)]−1.

The simplicity of the logistic distribution and its importance as a growth curve
have made it one of the most important statistical models. The shape of the logistic
distribution makes it simpler and also profitable on suitable occasions to replace
the normal distribution. In order to improve the fit of the logistic model for bioas-
say and quantal response data, many generalized types of the logistic distribution
have been proposed recently. These generalized distributions (indexed by one or
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more shape parameters) are developed to extend the scope of the logistic model to
asymmetric probability curves and to improve the fit in the non-central probability
regions.

In this note, we extend the GLIV distribution by introducing two extra shape
parameters to define a new distribution refereed to as the beta generalized logis-
tic (BGL) distribution. The role of the two additional parameters is to introduce
skewness and to vary tail weights and provide greater flexibility in the shape of
the generalized distribution and consequently in modeling observed data. It may
be mentioned that although several skewed distribution functions exist on the pos-
itive real axis, not many skewed distributions are available on the whole real line,
which are easy to use for data analysis purpose. The main idea is to introduce two
shape parameters, so that the BGL distribution can be used to model skewed data,
a feature which is very common in practice.

The BGL distribution is defined by the beta c.d.f. at the point Gp,q(x),
where Gp,q(x) is the GLIV c.d.f. Many other generalized distributions obtained
from the beta c.d.f. were introduced in the literature. First, Eugene, Lee and
Famoye (2002) defined the beta normal distribution which has some advan-
tages over the normal distribution. Nadarajah and Kotz (2004) defined the beta
Gumbel distribution which has greater tail flexibility than the Gumbel distri-
bution. Nadarajah and Gupta (2004) defined the beta Fréchet distribution and
Barreto-Souza, Cordeiro and Simas (2011) presented some additional mathe-
matical properties. Nadarajah and Kotz (2006) defined the beta exponential dis-
tribution, whose hazard function can be increasing and decreasing. The beta
Weibull distribution was defined by Famoye, Lee and Olumolade (2005) and Lee,
Famoye and Olumolade (2007) applied this distribution to censored data. Kong,
Lee and Sepanski (2007) proposed the beta gamma distribution. Barreto-Souza,
Santos and Cordeiro (2010) defined the beta generalized exponential distribu-
tion.

The rest of the article is organized as follows. In Section 2, we define the new
distribution. In Section 3, we present some special sub-models and related distri-
butions. General expansions for the BGL density function expressed as linear com-
binations of GLIV densities are derived in Section 4. Expansions for the quantile
and generating functions are determined in Section 5. In Section 6, we obtain the
mean deviations about the mean and the median and the Bonferroni and Lorenz
curves. Expansions for the order statistics and their moments are derived in Sec-
tion 7. Maximum likelihood estimation of the model parameters is discussed in
Section 8. Section 9 provides an application to real data. Section 10 ends with
some conclusions.
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2 The new distribution

Let G(x) be the c.d.f. of a random variable. A method to generalize distributions
consists to define a new c.d.f. F(x) from the baseline G(x) by

F(x) = IG(x)(a, b)
(2.1)

= 1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1 dw, a > 0, b > 0,

Clearly, F(x) coincides with G(x) when a = b = 1.
The BGL distribution is obtained by setting the GLIV c.d.f. (1.2) in (2.1). The

BGL c.d.f. becomes

F(x) = II1/(1+e−x )(p,q)(a, b)
(2.2)

= 1

B(a, b)

∫ I1/(1+e−x )(p,q)

0
wa−1(1 − w)b−1 dw, x ∈ R,

where the parameters a, b, p and q are positive real numbers.
We can verify that the GLIV cumulative function (1.2) can also be written in

form (2.1), whereas (1+e−x)−1 is the standard logistic baseline distribution. From
(2.1) and using the property of the incomplete beta function Bx(a, b) = B(a, b) −
B1−x(b, a), the BGL density function can be expressed as

f (x) = 1

B(p,q)B(a, b)

e−qx

(1 + e−x)p+q

(2.3)
× [

I1/(1+e−x)(p, q)
]a−1[

Ie−x/(1+e−x)(q,p)
]b−1

.

A random variable X having density function (2.3) is denoted by BGL(a, b,p, q).
The BGL distribution is symmetric for p = q and a = b. Using (2.2), we note that
the BGL(m,n,1,1) and BGL(1,1,m,n) distributions are identical.

3 Related distributions

Evidently, the density function (2.3) does not involve any complicated function
but generalizes a few interesting distributions. The GLIV distribution has three re-
markable submodels. So, the BGL distribution generalizes the GLIV distribution
and its submodels. They are formally the type I, II and III beta generalized distri-
butions, which are denoted by BGLI, BGLII and BGLIII, respectively. We present
in Table 1 the parameter restriction to obtain these submodels and their desnity
functions. Let Y ∼ BGL(a, b,p, q). We also present in Table 1 the distribution of
X = e−Y and X = (p/q)e−Y , which returns the Beta Beta Prime (BBP) and Beta
F-Snedecor (BFSn) distributions, respectively. Due to the transformation, the set
R

+ is the support of the last two distributions and then they may be used for model
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Table 1 Some distributions related to the BGL distribution

Distribution Condition Density

BGLI q = 1 f (x) = pe−x

B(a,b)
[(1+e−ax )p−1]b−1

(1+e−x)a+pb

BGLII p = 1 f (x) = qe−bqx

B(a,b)(1+e−x)qb+1 [1 − e−qx

(1+e−x)q
]

BGLIII p = q f (x) = B(p,p)1−a−b

B(a,b)
e−px

(1+e−x)2p [B1/(1+e−x)(p,p)]a+b−2

BBP X = e−Y f (x) = B(p,q)1−a−b

B(a,b)
xq−1

(1+x)p+q [Bx/(1+x)(q,p)](a−1)

× [B1/(1+x)(p, q)](b−1)

BFS X = (p/q)e−Y f (x) = B(a,b)−1(q/p)q/2xq/2−1

B(p/2,q/2)(1+(q/p)x)(p+q)/2

× [Ix/((p/q)+x)(q/2,p/2)]a−1[I1/(1+(q/p)x)(p/2, q/2)]b−1

Figure 1 Plots of the BGL, BGLI, BGLII, BGLIII, BBP and BFSn densities for selected parameter
values.

lifetime data. Figure 1 gives plots of the density functions mentioned in this sec-
tion. The bold lines represent the parent distributions and the dotted lines illustrates
the flexibility inherited from the parameters added after the generalization.

4 Expansion for the density function

We provide an expansion for the BGL density function which will be helpful to
obtain some mathematical properties for this distribution. Beyond the theoretical
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importance, these expansions can be used as an alternative way of numerical inte-
gration. For b > 0 real non-integer, the power series for (1 − w)b−1 in (2.1) yields

∫ x

0
wa−1(1 − w)b−1 dw =

∞∑
j=0

(−1)j
(b−1

j

)
(a + j)

xa+j , (4.1)

where the binomial coefficient is defined for any real. If b is an integer, the index
j in (4.1) stops at b − 1. From (1.2) and (4.1), we can express the BGL cumulative
function as

F(x) =
∞∑

r=0

wrI1/(1+e−x)(p, q)a+r , (4.2)

where the coefficients are

wr = wr(a, b) = (−1)r
(b−1

r

)
B(a, b)(a + r)

.

For a integer, (4.2) provides the BGL c.d.f. as an infinite power series ex-
pansion of GLIV c.d.f.’s. Otherwise, if a is real non-integer, we can expand
I1/(1+e−x)(p, q)a+r to obtain the BGL c.d.f. as an infinite power series of GLIV
c.d.f.’s. We have

I1/(1+e−x)(p, q)a+r =
∞∑

j=0

(
a + r

j

)
(−1)j

{
1 − I1/(1+e−x)(p, q)

}j

and then

I1/(1+e−x)(p, q)a+r =
∞∑

j=0

j∑
k=0

(−1)j+k

(
a + r

j

)(
j

k

)
I1/(1+e−x)(p, q)k.

We substitute
∑∞

j=0
∑j

k=0 for
∑∞

k=0
∑∞

j=k to obtain

I1/(1+e−x)(p, q)a+r =
∞∑

k=0

sk(a + r)I1/(1+e−x)(p, q)k,

where

sk(α) =
∞∑

j=k

(−1)k+j

(
α

j

)(
j

k

)
. (4.3)

Hence, from (4.2), we can write

F(x) =
∞∑

r=0

tr I1/(1+e−x)(p, q)r , (4.4)
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where

tr = tr (a, b) =
∞∑
l=0

wlsr(a + l),

and sr(a + j) is calculated from (4.3). The functions tr (a, b) and sr(a + l) are
easily computed in algebraic statistical software.

Expansions for the BGL density function can be obtained by simple differenti-
ation of (4.2) (for a > 0 integer)

f (x) = gp,q(x)

∞∑
r=0

(a + r)wrI1/(1+e−x)(p, q)a+r−1 (4.5)

and of (4.4) (for a > 0 real non-integer)

f (x) = gp,q(x)

∞∑
r=0

(r + 1)tr+1I1/(1+e−x)(p, q)r . (4.6)

For both equations (4.5) and (4.6), we require a power series expansion for
I1/(1+e−x)(p, q)r . We can use the incomplete beta function expansion for q > 0
real non-integer

Ix(p, q) = xp

B(p,q)

∞∑
m=0

(1 − q)mxm

(p + m)m! ,

where (f )k = �(f + k)/�(f ). First, we obtain an expansion for I1/(1+e−x)(p, q)r

from

I1/(1+e−x)(p, q)r = 1

B(p,q)r(1 + e−x)pr

( ∞∑
m=0

dmym

)r

(4.7)

= 1

B(p,q)r(1 + e−x)pr

∞∑
m=0

cr,mym,

where y = (1 + e−x)−1, dm = (1−q)m
(p+m)m! and the coefficients cr,m (for r = 1,2, . . .)

can be calculated from the expansion of a power series raised to a positive integer
power (Gradshteyn and Ryzhik (2007)) given by the recurrence relation

cr,m = (md0)
−1

i∑
j=1

(rj − m + j)dj cr,m−j , (4.8)

and c0,m = dr
0 . Hence, for a > 0 integer, we can write from (4.5) and (4.7)

f (x) =
∞∑

r,m=0

ρint(r,m)gp(a+r)+m,q(x), (4.9)
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where

ρint(r,m) = (a + r)wrca+r−1,mB(p(a + r) + m,q)

B(p, q)a+r
.

In a similar way, for a real non-integer, we obtain from (4.6) and (4.7)

f (x) =
∞∑

r,m=0

ρreal(r,m)gp(r+1)+m,q(x), (4.10)

where

ρreal(r,m) = (r + 1)tr+1cr,mB(p(r + 1) + m,q)

B(p, q)r+1 .

Equations (4.9) and (4.10) are the main results of this section. They show that the
BGL density function can be written as simple linear combinations of GLIV den-
sities. Then, several mathematical properties of the BGL distribution can follow
from those properties of the GLIV distributions. They (and other expansions in the
article) can be evaluated in symbolic computation software such as Mathematica
and Maple. These symbolic software have currently the ability to deal with analytic
expressions of formidable size and complexity.

5 Quantile and generating functions

The quantile function Q(u) of the BGL distribution follows from (2.1) as

Q(u) = − log
[{

Qp,q

(
Qa,b(u)

)}−1 − 1
]
, (5.1)

where Qp,q(u) denotes the beta quantile function with parameters p and q . The
following expansion for Qp,q(u) can be found in wolfram website1

Qp,q(u) = w + q − 1

p + 1
w2 + (q − 1)(p2 + 3pq − p + 5q − 4)

2(p + 1)2(p + 2)
w3

+ (q − 1)[p4 + (6q − 1)p3 + (q + 2)(8q − 5)p2]
3(p + 1)3(p + 2)(p + 3)

w4

+ (q − 1)[(33q2 − 30q + 4)p + q(31q − 47) + 18]
3(p + 1)3(p + 2)(p + 3)

w5

+ O
(
u6/p)

,

where w = [pB(p,b)u]1/p for p > 0.

1http://functions.wolfram.com/06.23.06.0004.01.

http://functions.wolfram.com/06.23.06.0004.01
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Figure 2 Skewness of the BGL distribution as function of a and b for p = 0.5 and q = 0.4.

The BGL generating function follows from (4.9) and (4.10). For a > 0 integer,
(4.9) gives

MX(t) = �(q − t)

�(q)

∞∑
r,m=0

ρint(r,m)
�(p(a + r) + m + t)

�(p(a + r) + m)
,

whereas for a > 0 real non-integer, (4.10) yields

MX(t) = �(q − t)

�(q)

∞∑
r,m=0

ρreal(r,m)
�(p(r + 1) + m + t)

�(p(r + 1) + m)
.

The r th moment is determined by the r th derivative of MX(t) at t = 0. The
skewness and kurtosis measures can now be calculated using well-known relation-
ships. Plots of the skewness and kurtosis for some choices of the parameters a and
b, fixing p = 0.5 and q = 0.4, are shown in Figures 2 and 3, respectively.

6 Mean deviations

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. If X has the BGL distribution
with c.d.f. F(x), we can derive the mean deviations about the mean ν = E(X) and
about the median m from the relations

δ1 =
∫ ∞
−∞

|x − ν|f (x) dx and δ2 =
∫ ∞
−∞

|x − m|f (x) dx,

respectively. The median m is given by

m = − log
[{

Qp,q

(
Qa,b(0.5)

)}−1 − 1
]
.
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Figure 3 Kurtosis of the BGL distribution as function of a and b for p = 0.5 and q = 0.4.

These measures can be calculated from

δ1 = 2νF (ν) − 2J (ν) and δ2 = E(X) − 2J (m), (6.1)

where

J (s) =
∫ s

−∞
xf (x) dx = 1

B(a, b)

∫ s

−∞
xg(x)G(x)a−1{

1 − G(x)
}b−1

,

and F(ν) is easily calculated from (2.1). We derive a formula to obtain the integral
J (s). For a > 0 integer, we have from (4.2)

J (s) =
∞∑

r,m,n=0

ρint(r,m)

B(p(a + r) + m,q)(n + 1)

× [
B

(
p(a + r) + m + n + 1, q

)
Gp(a+r)+m+n+1,q(s)

− B
(
p(a + r) + m,q + n + 1

)
Gp(a+r)+m,q+n+1(s)

]
,

whereas for a > 0 real non-integer, we obtain from (4.4)

J (s) =
∞∑

r,m,n=0

ρint(r,m)

B(p(r + 1) + m,q)(n + 1)

× [
B

(
p(r + 1) + m + n + 1, q

)
Gp(r+1)+m+n+1,q(s)

− B
(
p(r + 1) + m,q + n + 1

)
Gp(r+1)+m,q+n+1(s)

]
.

The above formulae can be used to determine Bonferroni and Lorenz curves
which have applications in economics, reliability, demography, insurance and
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medicine. They are defined by

B(π) = J (q)

πν
and L(π) = J (q)

ν
, (6.2)

respectively, where ν = E(X) and q = Q(π) is calculated by (5.1) for given prob-
ability π .

7 Expansions for the order statistics

Moments of order statistics play an important role in quality control testing and
reliability, where a practitioner needs to predict the failure of future items based
on the times of a few early failures. These predictors are often based on moments
of order statistics. We derive an explicit expression for the density of the ith order
statistic Xi:n, say fi:n(x), in a random sample of size n from the BGL distribution.
It is well-known that

fi:n(x) = f (x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
F(x)i+j−1 (7.1)

for i = 1, . . . , n. For a beta generalized model defined from the parent functions
g(x) and G(x), fi:n(x) can be written as

fi:n(x) = g(x)G(x)a−1{1 − G(x)}b−1

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
F(x)i+j−1. (7.2)

Expanding F(x)i+j−1 in a similar way to (4.7), we have

F(x)i+j−1 =
∞∑

k=0

ci+j−1,kG(x)a(i+j−1)+k, (7.3)

where the coefficients cr,m come from (4.8) by taking dm = wm. Replacing (7.3)
in (7.2) yields

fi:n(x) = 1

B(a, b)B(i, n − i + 1)
(7.4)

×
∞∑

k=0

n−i∑
j=0

(−1)j
(

n − i

j

)
ci+j−1,kfa(i+j)+k(x),

where fm(x) is the density of the BGL(m,b,p, q) distribution. For a > 0 integer,
we can write from (4.9) and (7.4)

fi:n(x) =
∞∑

r,m,k=0

n−i∑
j=0

τint(r,m, k, j)gp(a(i+j)+k+r)+m,q(x), (7.5)
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where

τint(r,m, k, j)

=
(

n − i

j

)

× (−1)jwrci+j−1,kea(i+j)+k+r−1,mB(p(a(i + j) + k + r) + m,q)

(a(i + j) + k + r)−1B(p,q)a(i+j)+k+rB(a, b)B(i, n − i + 1)

and er,m = cr,m comes from (4.8) by taking dm = (1−q)m
(p+m)m! . For a > 0 real non-

integer, we have

fi:n(x) =
∞∑

r,m,k=0

n−i∑
j=0

τreal(r,m, k, j)gp(r+1)+m,q(x), (7.6)

where

τreal(r,m, k, j)

=
(

n − i

j

)
(−1)j tr+1(a(i + j) + k, b)ci+j−1,ker,mB(p(r + 1) + m,q)

(r + 1)−1B(p,q)r+1B(a, b)B(i, n − i + 1)
.

The r th moment of Xi:n follows from equations (7.5) and (7.6). For a > 0 inte-
ger, (7.5) gives

E
(
Xr

i:n
) =

∞∑
r,m,k=0

n−i∑
j=0

τint(r,m, k, j)E
(
Y r

p(a(i+j)+k+r)+m,q

)
,

and for a > 0 real non-integer, (7.6) yields

E
(
Xr

i:n
) =

∞∑
r,m,k=0

n−i∑
j=0

τreal(r,m, k, j)E
(
Y r

p(r+1)+m,q

)
,

where Yp,q ∼ GLIV(p, q).

8 Estimation

Let x1, . . . , xn be an independent random sample from the BGL distribution. The
total log-likelihood is given by

	 = 	(a, b,p, q;x)

= −n logB(a, b) + n(1 − a − b) logB(p,q)

− (p + q)

n∑
i=1

log
(
1 + e−xi

) + (a − 1)

n∑
i=1

logB1/(1+e−xi )(p, q)

+ (b − 1)

n∑
i=1

logBe−xi /(1+e−xi )(q,p) − q

n∑
i=1

xi.
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The components of the score function are (ψ(·) is the digamma function)

∂	

∂a
= nψ(a + b) − nψ(a) − n logB(p,q) +

n∑
i=1

logB1/(1+e−xi )(p, q),

∂	

∂b
= nψ(a + b) − nψ(b) − n logB(p,q) +

n∑
i=1

logBe−xi /(1+e−xi )(q,p),

∂	

∂p
= (1 − a − b)n

{
ψ(p) − ψ(p + q)

} −
n∑

i=1

log
(
1 + e−xi

)

+ (a − 1)
∂

∂p

n∑
i=1

logB1/(1+e−xi )(p, q)

+ (b − 1)
∂

∂p

n∑
i=1

logBe−xi /(1+e−xi )(q,p),

∂	

∂q
= (1 − a − b)n

{
ψ(q) − ψ(p + q)

} −
n∑

i=1

xi −
n∑

i=1

log
(
1 + e−xi

)

+ (a − 1)
∂

∂q

n∑
i=1

logB1/(1+e−xi )(p, q)

+ (b − 1)
∂

∂q

n∑
i=1

logBe−xi /(1+e−xi )(q,p).

The maximum likelihood estimates (MLEs) of the parameters can be obtained
by solving the system of nonlinear equations ∇	 = 0. Let θ = (a, b,p, q)T be the
parameter vector of the BGL distribution. The total observed information matrix,
say K(θ), has elements given by (ψ ′(·) is the trigamma function)

∂2	

∂a2 = nψ ′(a + b) − nψ ′(a),
∂2	

∂a ∂b
= nψ ′(a + b),

∂2	

∂a ∂p
= nψ(p + q) − nψ(p) + ∂

∂p

n∑
i=1

logB1/(1+e−xi )(p, q),

∂2	

∂a ∂q
= nψ(p + q) − nψ(q) + ∂

∂q

n∑
i=1

logB1/(1+e−xi )(p, q),

∂2	

∂b2 = nψ ′(a + b) − nψ ′(b),

∂2	

∂b ∂p
= nψ(p + q) − nψ(p) + ∂

∂p

n∑
i=1

logBe−xi /(1+e−xi )(q,p),
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∂2	

∂b ∂q
= nψ(p + q) − nψ(q) + ∂

∂q

n∑
i=1

logBe−xi /(1+e−xi )(q,p),

∂2	

∂p2 = n(1 − a − b)
{
ψ ′(p) − ψ ′(p + q)

}

+ (a − 1)
∂2

∂p2

n∑
i=1

logB1/(1+e−xi )(p, q)

+ (b − 1)
∂2

∂p2

n∑
i=1

logBe−xi /(1+e−xi )(q,p),

∂2	

∂p ∂q
= −n(1 − a − b)ψ ′(p + q) + (a − 1)

∂2

∂p ∂q

n∑
i=1

logB1/(1+e−xi )(p, q),

+ (b − 1)
∂2

∂p ∂q

n∑
i=1

logBe−xi /(1+e−xi )(q,p),

∂2	

∂q2 = n(1 − a − b)
{
ψ ′(q) − ψ ′(p + q)

}

+ (a − 1)
∂2

∂q2

n∑
i=1

logB1/(1+e−xi )(p, q)

+ (b − 1)
∂2

∂q2

n∑
i=1

logBe−xi /(1+e−xi )(q,p).

For the BGL distribution, it seems complicated to obtain the expected value of
K(θ). Since the observed and expected information matrix converge to the same
matrix, we believe it is reasonable to give the observed matrix. Under conditions
that are fulfilled for parameters in the interior of the parameter space but not on the
boundary, we can consider the multivariate normal approximation N4(0,K(θ)−1)

for
√

n(θ̂ − θ), where K(θ)−1 is the unit observed information matrix. The ap-
proximate multivariate normal N4(0, n−1K(θ̂)−1) distribution of θ̂ can be used to
construct confidence intervals and confidence regions for the parameters and for
the hazard and survival functions.

The likelihood ratio (LR) statistic is useful for testing the goodness of fit of the
BGL distribution and for comparing this distribution with some of its special sub-
models. If we consider the partition θ = (θT

1 , θT
2 )T , tests of hypotheses of the type

H0 : θ1 = θ
(0)
1 versus HA : θ1 �= θ

(0)
1 can be performed using LR statistics. The LR

statistic for testing the null hypothesis H0 is w = 2{	(θ̂)−	(θ̃)}, where θ̂ and θ̃ are

the MLEs of θ under HA and H0, respectively. Under the null hypothesis, w
d→ χ2

q ,
where q is the dimension of the vector θ1 of interest. The LR test rejects H0 if w >
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ξγ , where ξγ denotes the upper 100γ % point of the χ2
q distribution. For example,

we can check if the fit using the BGL distribution is statistically “superior” to a fit
using the GLIV distribution for a given data set by testing H0 :a = b = 1 versus
HA :H0 is not true.

9 Application

The INPC is a national index of consumer prices of Brazil, produced by the IBGE
since 1979. The period of collection extends from the day 01 to 30 of the ref-
erence month. The INPC measures the cost of living of households with heads
employees. The search is done in the metropolitan regions of Rio de Janeiro, Porto
Alegre, Belo Horizonte, Recife, São Paulo, Belém, Fortaleza, Salvador and Cu-
ritiba, in addition to Brasília and the city of Goiânia. This index can be found on
seriesestatisticas.ibge.gov.br.

We fit the BGL model and some of its special sub-models discusssed in Sec-
tion 3 to these data. The MLEs of the model parameters followed by their esti-
mated standard errors, the maximized log-likelihoods (	̂) and the p-values for the
LR statistics are listed in Table 2.

Clearly, for the usual significance levels in all tests, we can accept the BGL
model. In Figure 4 we show the histogram of the data and the fitted density func-
tions. These results illustrate the potentiality of the BGL distribution and the ne-
cessity to adopt extra shape parameters.

10 Conclusions

In this article, we introduce the four-parameter beta generalized logistic (BGL) dis-
tribution that extends the type IV generalized logistic distribution. This is achieved
following the idea of the cumulative distribution function of the class of beta gen-
eralized distributions proposed by Eugene et al. (2002). The BGL distribution is
quite flexible in analyzing positive data in place of several other logistic distribu-
tions. We provide a mathematical treatment of the new distribution including ex-
pansions for the density function, moment generating function, mean deviations,

Table 2 MLEs for the BGL, GLIV, BGLI, BGLII and BGLIII distributions

Model â b̂ p̂ q̂ 	̂ p-value

BGL 179.92 (0.0570) 0.39 (0.0046) 0.92 (0.0100) 6.96 (0.0767) −118.97 –
GLIV – – 9.43 (1.0582) 5.18 (0.5690) −134.01 2.9 ×10−07

BGLI 11.13 (10.8725) 5.13 (0.5677) 0.86 (0.7319) – −133.94 4.5×10−08

BGLII 19.03 (6.0510) 1.03 (0.5795) – 3.21 (1.0054) −125.20 4.1×10−04

BGLIII 1.59 (0.4909) 0.26 (0.1359) 16.27 (8.8041) – −125.74 2.3×10−04

http://seriesestatisticas.ibge.gov.br
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Figure 4 Plots of the fitted density functions.

Bonferroni and Lorenz curves, order statistics and their ordinary moments. The
estimation of parameters is approached by the method of maximum likelihood and
the observed information matrix is derived. One application of the BGL distri-
bution shows that the new distribution could provide a better fit than other well-
known logistic type models.
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