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Extendibility of Marshall–Olkin distributions and inverse
Pascal triangles

Jan-Frederik Mai and Matthias Scherer
Technische Universität München

Abstract. Necessary and sufficient conditions are derived on the parame-
ters of a d-dimensional random vector with Marshall–Olkin distribution to
be extendible to an infinite exchangeable sequence. Interpreted differently,
this result allows to decide if the respective multivariate exponential distribu-
tion can be constructed by means of a model with conditionally independent
and identically distributed components. The proof makes use of the solution
of the truncated Hausdorff moment problem and a reparameterization of the
Marshall–Olkin distribution.

1 Introduction

Multivariate distributions are often constructed from latent one-factor representa-
tions in the sense of De Finetti’s classical theorem; see De Finetti (1937). This
means that a random vector (τ1, . . . , τd)′ is defined by τk := functional(Ek,F ),
k = 1, . . . , d , where E1, . . . ,Ed is an i.i.d. sequence of random variables and F

is an independent stochastic object. Such a construction is independent of the di-
mension d in the sense that the random vector (τ1, . . . , τd)′ can immediately be
extended to an infinite sequence {τk}k∈N. This is achieved by simply extending
the finite i.i.d. sequence E1, . . . ,Ed to an infinite one, using the canonical product
space methodology. For this reason, the multivariate distribution of (τ1, . . . , τd)′ is
called extendible. In particular, every extendible distribution is always exchange-
able. The converse, however, is not true in general.

What if the random vector (τ1, . . . , τd)′ is not constructed by means of a latent
one-factor representation as above? This does not necessarily imply that its dis-
tribution is not extendible. There could still be a latent one-factor representation,
that is, a different stochastic model of the above extendible nature yielding exactly
the same multivariate law. Generally speaking, to find effective criteria whether a
given multivariate distribution is extendible or not is a difficult—and, in general,
unsolved—task, as already noted in Aldous (1985), Problems (1.11) and (1.12),
pages 9–10. In the literature, one can find solutions to this problem only for some
specific families of distributions. For instance, it is well known that a spherically
symmetric distribution is extendible if and only if it is a mixture of zero-mean
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normal distributions with randomly drawn variance; see Schoenberg (1938) and
Fang, Kotz and Ng (1990), Theorem 2.21. For the family of l1-norm symmetric
distributions, McNeil and Nešlehová (2009) show that extendibility is equivalent
to the generating Williamson d-transform actually being a Laplace transform. This
corresponds to checking whether a given generator function is completely mono-
tone or not, which might be a difficult task. In the present reference, we provide a
very effective criterion to decide whether a given d-dimensional Marshall–Olkin
distribution is extendible or not.

Motivated by a multivariate extension of the lack-of-memory property, the
Marshall–Olkin distribution is introduced by Marshall and Olkin (1967); see also
Barlow and Proschan (1975), Galambos and Kotz (1978). Formally, a random vec-
tor (τ1, . . . , τd)′ follows the Marshall–Olkin distribution if there are parameters
λI ≥ 0,∅ �= I ⊂ {1, . . . , d}, with �i := ∑

I :i∈I λI > 0 for all i = 1, . . . , d , such
that for t1, . . . , td ≥ 0 its survival function has the form

F̄ (t1, . . . , td) := P(τ1 > t1, . . . , τd > td)
(1.1)

= exp
(
− ∑

I :∅ �=I⊂{1,...,d}
λI max

i∈I
{ti}

)
.

Multivariate distributions of this kind are motivated by an exogenous shock model.
For instance, they can be constructed as follows. On a probability space (�, F ,P)

let EI ,∅ �= I ⊂ {1, . . . , d}, be a collection of 2d − 1 independent exponential ran-
dom variables with E[EI ] = 1/λI > 0, where λI = 0 is conveniently interpreted
as EI ≡ ∞ almost surely. The random vector (τ1, . . . , τd)′, defined by

τk := min
I :k∈I

{EI }, k = 1, . . . , d, (1.2)

is easily shown to have the survival function (1.1). Intuitively, (τ1, . . . , τd)′ is in-
terpreted as the vector of lifetimes of d components in a system. The random
variable EI corresponds to an exogenous shock destroying all components with
indices in I . It follows that the lifetime τk of the kth component equals the mini-
mum of all exogenous shocks affecting it, motivating the definition in (1.2). In this
classical construction, dependence is caused by 2d − d − 1 different shocks, only
d shocks are specific to a certain component.

For some applications, the general probabilistic model (1.2) is too flexible, and,
hence, inconvenient. For example, a simulation of the random vector (τ1, . . . , τd)′
in dimensions d 	 2 is quite expensive, due to the large number of involved
shocks. Moreover, many practical applications rely on a much simpler kind of
probabilistic model: they assume that the random variables τ1, . . . , τd are i.i.d.
conditioned on a single latent factor. Such approaches are not only useful for effi-
cient simulations, but also for the approximation of the distribution of functionals
from (τ1, . . . , τd)′. This is typically achieved by exploiting the latent factor con-
struction and using stochastic limit theorems. A popular example in the context
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of credit-risk modeling is the derivation of an approximate loss distribution for
large homogeneous credit portfolios. References are Frey and McNeil (2001) for
a general treatment, Vasicek (1987), Schönbucher (2002), Kalemanova, Schmid
and Werner (2005), Albrecher, Ladoucette and Schoutens (2007) for models with
specific factor distributions.

For a given Marshall–Olkin distribution it is difficult to decide if a latent fac-
tor representation is available, since construction (1.2) is obviously not based on
a single latent factor in the case d ≥ 3. Only for d = 2 it is immediate that τ1 and
τ2 are i.i.d. conditioned on E{1,2} if and only if λ{1} = λ{2}. This article provides
necessary and sufficient conditions on the parameters λI of a given d-dimensional
Marshall–Olkin distribution to be extendible. To this end, it is convenient to ar-
range the parameters in a geometric scheme of triangular form, called an inverse
Pascal triangle. The extendibility is then equivalent to the extendibility of such tri-
angles. A solution to the latter problem can be derived combining the results of
Mai and Scherer (2011) and Karlin and Shapley (1953). Finally, in the extendible
case a latent factor representation of Marshall–Olkin distributions based on Lévy
subordinators is available; see Mai and Scherer (2011). The rest of the article is
organized as follows. Section 2 presents the main result and Section 3 concludes.

2 Extendibility criteria

If the random vector (τ1, . . . , τd)′ defined in (1.2) is extendible to an infinite ex-
changeable sequence, then necessarily the distribution of all subvectors have to
depend only on their lengths—by definition of exchangeability. Making this more
precise, the following lemma clarifies which Marshall–Olkin distributions are ex-
changeable.

Lemma 2.1 (Exchangeable Marshall–Olkin distribution). On a probability
space (�, F ,P) let (τ1, . . . , τd)′ be a random vector with Marshall–Olkin dis-
tribution, that is, with survival function (1.1) for parameters λI ≥ 0, ∅ �= I ⊂
{1, . . . , d}, such that

∑
I :k∈I λI > 0, k = 1, . . . , d . Then (τ1, . . . , τd)′ is exchange-

able if and only if the parameters satisfy the following condition:

|I | = |Ĩ | ⇒ λI = λ
Ĩ
. (2.1)

Proof. First suppose that (2.1) is valid. Without loss of generality, assume that
(�, F ,P) is the probability space from the original construction of Marshall and
Olkin (1967), on which (τ1, . . . , τd)′ is constructed by (1.2). Rewriting this defini-
tion, observe that

τk := min
i=1,...,d

{
min{EI |I ⊂ {1, . . . , d}, k ∈ I, |I | = i}}, k = 1, . . . , d.
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For all i, k = 1, . . . , d there are precisely d −1 choose i −1 subsets I of {1, . . . , d}
with i elements containing k. By assumption, their associated parameters λI are
identical and, in particular, independent of k. It follows for {i, k} ⊂ {1, . . . , d} that
the distribution of

min
{
EI |I ⊂ {1, . . . , d}, k ∈ I, |I | = i

}
,

and, therefore, the distribution of τk is independent of k. This implies that
(τ1, . . . , τd)′ is exchangeable.

Conversely, assume that (τ1, . . . , τd)′ is exchangeable. This means that the sur-
vival function (1.1) is invariant with respect to its arguments. In order to sim-
plify notation, write F̄ (�t) instead of F̄ (t1, . . . , td), where �t := (t1, . . . , td)′. More-
over, the ith unit vector in Rd is denoted by �ei . Condition (2.1) is shown by
induction over the cardinality of subsets of {1, . . . , d}. To begin with, verify
λ{1} = λ{2} = · · · = λ{d}: for each k = 2, . . . , d , exchangeability implies that

∑
∅ �=I⊂{1,...,d}

I �={1}

λI = − log F̄

(
d∑

i=2

�ei

)
= − log F̄

(
d∑

i=1
i �=k

�ei

)
= ∑

∅ �=I⊂{1,...,d}
I �={k}

λI .

Subtracting the sum of all parameters on both sides, this in turn verifies λ{1} =
λ{2} = · · · = λ{d}. By the induction hypothesis, assume that all parameters λI cor-
responding to subsets I ⊂ {1, . . . , d} of cardinality |I | ≤ k are identical. Then,
prove that all parameters λI corresponding to subsets I ⊂ {1, . . . , d} of cardinality
|I | = k + 1 are identical. To this end, let I0 be an arbitrary subset of {1, . . . , d} of
cardinality |I0| = k + 1. Then

∑
∅ �=I⊂{1,...,d}

I�I0

λI = − log F̄

(
d∑

i=1
i /∈I0

�ei

)
= − log F̄

(
d∑

i=k+2

�ei

)
= ∑

∅ �=I⊂{1,...,d}
I�{1,...,k+1}

λI .

Subtracting the sum of all parameters on both sides, this implies

λI0 + ∑
∅ �=I⊂I0

|I |≤k

λI = λ{1,...,k+1} + ∑
∅ �=I⊂{1,...,k+1}

|I |≤k

λI .

Using the induction hypothesis, this verifies that λ{1,...,k+1} = λI0 . Since I0 was
arbitrary with cardinality k + 1, one may conjecture that all parameters λI with
|I | = k + 1 are identical. The claim is established. �

Lemma 2.1 implies that for exchangeable Marshall–Olkin distributions, a pa-
rameter λI is only allowed to depend on the cardinality |I | of I . In this case, denote
by λ|I |,d := λI , and a reduced set of only d parameters (λ1,d , . . . , λd,d) ∈ [0,∞)d \
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{(0, . . . ,0)} is obtained. It follows that the distribution of (τπ(1), . . . , τπ(d))
′ is in-

variant under permutations π on {1, . . . , d}. Furthermore, it follows from Theo-
rem 2.3 in Mai and Scherer (2011) that the survival function of such an exchange-
able Marshall–Olkin distribution can be simplified to

P(τ1 > t1, . . . , τd > td) = exp

(
−

d∑
k=1

t(d+1−k)

d−k∑
i=0

(
d − k

i

)
λi+1,d

)
, (2.2)

where 0 ≤ t(1) ≤ · · · ≤ t(d) denotes the ordered list of t1, . . . , td ≥ 0.
Given a nonzero row vector (λ1,d , . . . , λd,d) of d nonnegative numbers, it is

possible to compute the following triangular scheme:

λ1,1
λ1,2 λ2,2

... · · · . . .

λ1,d−1 λd−1,d−1
λ1,d λ2,d · · · λd−1,d λd,d ,

where the nth row is related to the row below via λk,n = λk,n+1 + λk+1,n+1, k =
1, . . . , n, n = 1, . . . , d − 1. Since this resembles the relation in Pascal’s classical
triangle, it is therefore called Pascal’s rule. With the given row (λ1,d , . . . , λd,d),
one can only compute the tip of the triangle, since Pascal’s rule is applied from
the bottom to the top. Therefore, such a triangular array of nonnegative numbers
is henceforth called an inverse Pascal triangle. Translated into the language of the
Marshall–Olkin distribution, it is easy to verify that the parameters (λ1,n, . . . , λn,n)

in the nth row of the triangle are precisely the parameters of the Marshall–Olkin
distribution of a subvector of (τ1, . . . , τd)′ of length n. For example,

λ1,1 = λ1,2 + λ2,2 = λ1,3 + 2λ2,3 + λ3,3 = · · · =
d−1∑
i=0

(
d − 1

i

)
λi+1,d

is precisely the exponential rate of the random variables τk , k = 1, . . . , d . Hence,
the extendibility of Marshall–Olkin distributions is equivalent to the extendibility
of such triangular schemes. The question whether a Marshall–Olkin distribution
can be extended (by one dimension) translates to whether a new row can be ap-
pended below a given triangle without violating Pascal’s rule. For example, the row
vector (λ1,3, λ2,3, λ3,3) = (1,3,1) does not allow any extension, since 1 + 1 < 3.
In contrast, the random vector (λ1,3, λ2,3, λ3,3) = (1,1,1) even allows for an infi-
nite extension via symmetric splitting:
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1
2

1
2

1
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1
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1
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1
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1
4

1
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1
8

1
8

1
8

1
8

1
8

...
...

. . .

The following lemma gives a necessary and sufficient condition whether it is pos-
sible to append one additional row below a given inverse Pascal’s triangle without
violating Pascal’s rule.

Lemma 2.2 (Extending the dimension by one). Given (λ1,d , . . . , λd,d) ∈ [0,

∞)d , it is possible to add (at least) one row at the bottom of the associated inverse
Pascal triangle without violating Pascal’s rule, if and only if [m,M] ∩ Rd �= ∅,
where

m := max
j=1,...,d

j odd

{
d∑

i=j

(−1)iλi,d

}
,

M := min
j=1,...,d

j even

{
d∑

i=j

(−1)iλi,d

}
,

Rd :=
{ [0,∞), d even,

(−∞,0], d odd.

Proof. The existence of an extension is equivalent to the existence of a vec-
tor (λ1,d+1, . . . , λd+1,d+1) ∈ [0,∞)d+1 such that λk,d = λk,d+1 + λk+1,d+1, k =
1, . . . , d . Solving this linear equation system for the d + 1 unknown parameters
λ1,d+1, . . . , λd+1,d+1, this is equivalent to the existence of a number κ ∈ R such
that ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)1
d∑

i=1

(−1)iλi,d

(−1)2
d∑

i=2

(−1)iλi,d

(−1)3
d∑

i=3

(−1)iλi,d

...

(−1)d
d∑

i=d

(−1)iλi,d

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ κ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1
...

(−1)d−1

(−1)d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ [0,∞)d+1.
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Hence, such a parameter κ has to be in the set [m,M]∩Rd as claimed, establishing
the claim. �

Unfortunately, Lemma 2.2 cannot easily be applied iteratively. It only provides
a useful criterion for a random vector (τ1, . . . , τd)′ to be 1-extendible, that is, to
find an exchangeable random vector (τ̃1, . . . , τ̃d+1)

′ with Marshall–Olkin distri-
bution such that all d-dimensional margins are identical in law with (τ1, . . . , τd)′.
However, it is not clear whether there is an infinite extension {τ̃k}k∈N. A useful
criterion for an infinite extension, and, hence, for an implicitly given conditional
i.i.d. structure, is provided by the following theorem, which is the major result of
this paper. The proof is based on a composition of the results in the authors’ refer-
ence Mai and Scherer (2011) and the solution to the so-called truncated Hausdorff
moment problem provided in Karlin and Shapley (1953).

Consider the finite inverse Pascal triangle associated with a given exchange-
able Marshall–Olkin distribution in dimension d . Instead of parameterizing the
Marshall–Olkin distribution by the numbers λ1,d , . . . , λd,d in the bottom line of
the triangle, the former reference suggests to parameterize it by the numbers
λ1,1, λ1,2, . . . , λ1,d—that is, by the left column of the triangle. It is shown in Mai
and Scherer (2011) that this sequence of real numbers satisfies a certain mono-
tonicity property. The extension of the triangle is equivalent to the extension of
this sequence to an infinite sequence {λ1,n}n∈N, without violating this monotonic-
ity property. More precisely, one has to show that the finite sequence λ1,1, . . . , λ1,d

can be extended to an infinite completely monotone sequence {λ1,n}. Hausdorff
(1921) showed that this is equivalent to the fact that there is a random variable X

on [0,1] such that λ1,n/λ1,1 = E[Xn−1], n ∈ N. Deciding whether a given finite se-
quence of numbers is the initial part of a completely monotone sequence is known
as the truncated Hausdorff moment problem. Its solution in terms of convenient,
necessary and sufficient conditions on the given finite sequence is provided in
Karlin and Shapley (1953). Summing up, one obtains the following Theorem 2.3.

Its formal proof uses the language of copula theory. Standard textbooks on cop-
ulas are Joe (1997), Nelsen (1999), McNeil, Frey and Embrechts (2005). In partic-
ular, recall that the survival function of a random vector (τ1, . . . , τd)′ with contin-
uous margins can always be written as

P(τ1 > t1, . . . , τd > td) = Ĉ
(
P(τ1 > t1), . . . ,P(τd > td)

)
for a unique distribution function Ĉ on [0,1]d with uniform marginals, called the
survival copula of (τ1, . . . , τd)′. Furthermore, recall that a Lévy subordinator is
a nondecreasing stochastic process with stationary and independent increments,
starting from zero; see Bertoin (1999) for further details on such processes.

Theorem 2.3 (Infinite extendibility). Fix d ≥ 2. Consider a row vector (λ1,d , . . . ,

λd,d) ∈ [0,∞)d \ {(0, . . . ,0)} and a random vector (τ1, . . . , τd)′ following the as-
sociated exchangeable Marshall–Olkin distribution, defined on a probability space
(�, F ,P). The following statements are equivalent:
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(a) There exists an infinite inverse Pascal triangle whose dth row equals (λ1,d , . . . ,

λd,d).
(b) (τ1, . . . , τd)′ is extendible to an infinite exchangeable sequence such that every

finite subvector has a Marshall–Olkin distribution.
(c) Defining bk := ∑d−k−1

i=0 (
d−k−1

i
)λi+1,d for k = 0, . . . , d − 1, the Hankel deter-

minants Ĥ1, Ȟ1, Ĥ2, Ȟ2, . . . , Ĥd−1, Ȟd−1 are all nonnegative, which for l ∈ N
with 2l ≤ d − 1 and for k ∈ N0 with 2k + 1 ≤ d − 1 are defined by

Ĥ2l :=
∣∣∣∣∣∣∣
b0 · · · bl
...

...

bl · · · b2l

∣∣∣∣∣∣∣ , Ȟ2l :=
∣∣∣∣∣∣∣

b1 − b2 · · · bl − bl+1
...

...

bl − bl+1 · · · b2l−1 − b2l

∣∣∣∣∣∣∣ ,

Ĥ2k+1 :=
∣∣∣∣∣∣∣

b1 · · · bk+1
...

...

bk+1 · · · b2k+1

∣∣∣∣∣∣∣ ,

Ȟ2k+1 :=
∣∣∣∣∣∣∣

b0 − b1 · · · bk − bk+1
...

...

bk − bk+1 · · · b2k − b2k+1

∣∣∣∣∣∣∣ .
(d) There exists a probability space (�̃, F̃ , P̃) supporting i.i.d. standard expo-

nential random variables Ẽ1, . . . , Ẽd and an independent Lévy subordinator

S̃ = {S̃t }t≥0, such that (τ1, . . . , τd)′ d= (τ̃1, . . . , τ̃d)′, where

τ̃k := inf{t > 0 : S̃t > Ẽk}, k = 1, . . . , d.

Proof. The subsequent proof strategy is (d) ⇒ (b) ⇒ (a) ⇒ (c) ⇒ (d).

• (d) ⇒ (b): On (�̃, F̃ , P̃), extend the sequence Ẽ1, . . . , Ẽd to an infinite i.i.d.
sequence {Ẽk}k∈N and define the associated exchangeable sequence {τ̃k}k∈N

of first passage times. Since (τ1, . . . , τd)′ d= (τ̃1, . . . , τ̃d)′, the extendibility of
(τ1, . . . , τd)′ is established. Moreover, it is shown in Mai and Scherer (2011)
that all finite subvectors of {τ̃k}k∈N, in particular, the n-margins for n > d , fol-
low a certain Marshall–Olkin distribution.

• (b) ⇒ (a): Given the exchangeable sequence {τ̃k}k∈N, one has for each n ∈ N
the associated parameters (λ1,n, . . . , λn,n) of the exchangeable Marshall–Olkin
distribution of (τ̃1, . . . , τ̃n)

′. Since the Marshall–Olkin distribution is automati-
cally consistent with Pascal’s rule, the claim is immediate.

• (a) ⇒ (c): By virtue of Pascal’s rule, the value b0 := ∑d−1
i=0 (

d−1
i

)λi+1,d is inde-
pendent of d ∈ N. This means that

b0 = λ1,1 = λ1,2 + λ2,2

= λ1,3 + 2λ2,3 + λ3,3 = · · · =
d−1∑
i=0

(
d − 1

i

)
λi+1,d .
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Moreover, again by Pascal’s rule, one observes that bk = λ1,k+1 for k =
0, . . . , d − 1, since

λ1,k+1 = λ1,k+2 + λ2,k+2

= λ1,k+3 + 2λ2,k+3 + λ3,k+3 = · · · =
d−k−1∑

i=0

(
d − k − 1

i

)
λi+1,d .

Hence, extending (b0, . . . , bd−1), one may define bk := λ1,k+1, k ∈ N0, to obtain
an infinite sequence {bk}k∈N0 . Note, in particular, that for all n ∈ N with n ≥
k + 1 Pascal’s rule implies that

bk−1 = λ1,k =
n−k∑
i=0

(
n − k

i

)
λi+1,n, k = 1, . . . , n.

Using (2.2), it follows that the function

(t1, . . . , tn) �→ exp

(
−

n∑
k=1

t(n+1−k)bk−1

)
, t1, . . . , tn ≥ 0,

is the survival function of a Marshall–Olkin distribution for all n ≥ 2. Since the
margins of this distribution are exponential with parameter b0, the correspond-
ing survival copula Ĉ is given by

Ĉ(u1, . . . , un) = u
a0
(1)u

a1
(2)u

a2
(3) · · ·uan−1

(n) , u1, . . . , un ∈ [0,1],
where ak := bk/b0, k ∈ N0. Corollary 3.4 in Mai and Scherer (2009) implies
that there exists a random variable X on the unit interval [0,1] such that
ak := E[Xk], k ∈ N0. Hence, the finite sequence (a0, . . . , an−1) is the initial
sequence of moments of a random variable. Then Theorem 1.4.3 in Dette and
Studden (1997) implies that the associated Hankel determinants Ĥ1, Ȟ1, Ĥ2,
Ȟ2, . . . , Ĥd−1, Ȟd−1 are all nonnegative, when the b’s are replaced by the a’s.
This is the so-called truncated Hausdorff moment problem and was originally
solved by Karlin and Shapley (1953). Since the a’s and b’s differ only via the
constant multiple factor b0, which does not affect the sign of the determinants,
the claim follows immediately.

• (c) ⇒ (d): Assume (c) holds. With b0 := ∑d−1
i=0 (

d−1
i

)λi+1,d , define ak := bk/b0

for k = 0, . . . , d − 1. By assumption (c), the Hankel determinants Ĥ1, Ȟ1, Ĥ2,
Ȟ2, . . . , Ĥd−1, Ȟd−1 are all nonnegative, when the b’s are replaced by the a’s.
It follows from Theorem 1.4.3 in Dette and Studden (1997) that there exists a
random variable X ∈ [0,1] with (E[X0], . . . ,E[Xd−1]) := (a0, . . . , ad−1). Due
to Hausdorff’s theorem [see Hausdorff (1921)], the sequence of moments of X

is completely monotone. An application of Theorem 3.3 in Mai and Scherer
(2009) implies the existence of a probability space (�̃, F̃ , P̃) supporting i.i.d.
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standard exponential random variables Ẽ1, . . . , Ẽd and an independent Lévy

subordinator Ŝ = {Ŝt }t≥0, such that (b0τ1, . . . , b0τd)′ d= (τ̂1, . . . , τ̂d)′, where

τ̂k := inf{t > 0 : Ŝt > Ẽk}, k = 1, . . . , d.

Defining S̃ := {Ŝb0t }t≥0 and

τ̃k := inf{t > 0 : S̃t > Ẽk}, k = 1, . . . , d,

yields the claim. �

The crucial innovation of Theorem 2.3 is statement (c). Given an exchangeable
Marshall–Olkin distribution, it gives an algorithm on how to decide whether the
distribution is extendible or not—based only on its parameters (λ1,d , . . . , λd,d).
If (and only if) it is extendible, part (d) says that an alternative stochastic latent
one-factor representation of this distribution via a Lévy subordinator is possible.

Example 2.4 (The trivariate case). Consider the simplest nontrivial case,
that is, d = 3. In the original probabilistic model (1.2) the random variables
τ1, τ2, τ3 are not i.i.d. conditioned on the shock E{1,2,3}, since the pairwise shocks
E{1,2},E{1,3},E{2,3} induce additional dependence. Similarly, conditioned on the
σ -algebra G := σ(E{1,2,3},E{1,2},E{1,3},E{2,3}), the random variables τ1, τ2, τ3,
although independent, are not identically distributed. Writing out the Hankel de-
terminants, Theorem 2.3(c) implies that (τ1, τ2, τ3)

′ is extendible if and only if its
parameters (λ1,3, λ2,3, λ3,3) ∈ [0,∞)3 \ {(0,0,0)} satisfy λ2

2,3 ≤ λ1,3λ3,3. How-
ever, it is not obvious how (and even if) a σ -algebra G can be found such that
τ1, τ2, τ3 are i.i.d. conditioned on G . Nevertheless, Theorem 2.3(d) explains how
a conditionally i.i.d. random vector (τ̃1, τ̃2, τ̃3)

′, which agrees in distribution with
(τ1, τ2, τ3)

′, can be constructed on a probability space (�̃, F̃ , P̃). On the latter
probability space, τ̃1, τ̃2, τ̃3 are i.i.d. conditioned on G̃ := σ(S̃t : t ≥ 0), using the
notation of Theorem 2.3(d).

Remark 2.5 (Link to regenerative composition structures). In the extendible
case, the construction via Lévy subordinators is closely related to so-called regen-
erative composition structures, as introduced in Gnedin and Pitman (2005). More
precisely, assume the notation of Theorem 2.3(d) above and apply the usual con-
vention τ̃(1) ≤ · · · ≤ τ̃(d) for the ordered list of τ̃1, . . . , τ̃d . Whereas the present
article studies the distribution of (τ̃1, . . . , τ̃d)′, the reference Gnedin and Pitman
(2005) studies the distribution of (P1, . . . ,PKd

)′, where Kd := |{τ̃1, . . . , τ̃d}| de-
notes the number of different first passage times, and

P1 := max
{
j ∈ N|τ̃(j) = τ̃(1)

}
,

P2 := max
{
j ∈ N|τ̃(P1+j) = τ̃(P1+1)

}
,

...

PKd
:= max

{
j ∈ N|τ̃(PKd−1+j) = τ̃(PKd−1+1)

}
.
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Notice that P1, . . . ,PKd
∈ N and P1+· · ·+PKd

= d , hence, (P1, . . . ,PKd
)′ defines

a so-called random partition of d , and vast literature can be found on the study of
such objects; see the references in Gnedin and Pitman (2005).

3 Conclusion

Necessary and sufficient conditions were derived on the parameters of a given d-
dimensional Marshall–Olkin distribution to be extendible to an infinite exchange-
able sequence. This constitutes an important and tractable subclass of multivariate
exponential distributions.
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