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On some fundamental aspects of polyominoes
on random Voronoi tilings

Leandro P. R. Pimentel
Federal University of Rio de Janeiro

Abstract. Consider a Voronoi tiling of R
d based on a realization of an in-

homogeneous Poisson random set. A Voronoi polyomino is a finite and con-
nected union of Voronoi tiles. In this paper we provide tail bounds for the
number of boxes that are intersected by a Voronoi polyomino, and vice-versa.
These results will be crucial to analyze self-avoiding paths, greedy polyomi-
noes and first-passage percolation models on Voronoi tilings and on the dual
graph, named the Delaunay triangulation [Asymptotics for first-passage times
on Delaunay triangulations (2011) Preprint, Greedy Polyominoes and first-
passage times on random Voronoi tilings (2012) Preprint].

1 Introduction

To any locally finite subset N of R
d one can associate a partition of the plane

as follows. To each point v ∈ N corresponds a polygonal region Cv, the Voronoi
tile at v, consisting of the set of points of R

d which are closer to v than to any
other v′ ∈ N . Closer is understood here in the euclidean sense, and the partition
is not a real one, but the set of points which belong to more than one Voronoi tile
has Lebesgue measure 0. From now on, N is understood to be distributed like a
Poisson random set on R

d with intensity measure μ. We shall always assume that
μ is comparable to Lebesgue’s measure on R

d , λd , in the sense that there exists a
positive constant cμ such that for every Lebesgue-measurable subset A of R

d ,

c−1
μ λd(A) ≤ μ(A) ≤ cμλd(A). (1.1)

Notice that, with probability one, when two Voronoi tiles are connected, they share
a (d − 1)-dimensional face. The collection V = V(N ) := {Cv}v∈N is called the
Voronoi tiling (or tessellation) of the plane based on N .

The study of Voronoi tilings has a very long history. The terminology is in hon-
our of Voronoi (1908), who used these tilings to study quadratic forms. Our aim
is to study some fundamental aspects of a finite and connected union of Voronoi
tiles. These objects are called Voronoi polyominoes (Figure 1). Polyominoes were
first introduced in periodic tilings of the plane. The Voronoi setting is rather dif-
ferent from the periodic one since we are now considering a random environment
induced by the underlying Poisson random set.
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Figure 1 A two-dimensional Voronoi tiling and a (gray colored) Voronoi polyomino of size n = 9.

The main results of this article, that will be stated in Section 2, will provide tail
bounds for the maximum and minimum number of square boxes intersected by
a Voronoi polyomino that contains the origin 0 and has size r . They will be im-
portant tools to analyze self-avoiding paths, greedy polyominoes and first-passage
percolation models on the Voronoi random setting (Pimentel, 2011, Pimentel and
Rossignol, 2012). The idea to prove them is to combine block arguments with
standard results for greedy lattice animal and site percolation models. The block
argument is to consider a large box in R

d so that it contains with “high probability”
some configuration of points which prevent a Voronoi tile to cross it completely.
The “high probability” alluded to is some percolation probability: we need the
“bad boxes” (those who can be crossed) to not percolate. In Section 3 we will
prove some technical lemmas concerning greedy lattice animals and site percola-
tion models that will be combined with the block argument to prove the theorems
in Section 4. In Section 5 a slightly different random setup is introduced and we
will draw an outline of how the results can be extended to this new setup.

2 Polyominoes on Voronoi tilings

Let #S denote the usual cardinality of a set S, and for each subset A of R
d let

#N A := #(A ∩ N ). For each natural number r ≥ 1 a Voronoi polyomino P of
size r is a connected union of r Voronoi tiles. Let �≥r denote the collection of
all polyominoes P such that the origin 0 ∈ P and #N P ≥ r , and let �≤r be the
collection of all polyominoes P such that 0 ∈ P and #N P ≤ r . Let Z

d denote the
d-dimensional integer lattice. For each z ∈ Z

d let

Bz := z + [−1/2,1/2)d,

and for each connected set C ⊆ R
d let

A(C) := {z ∈ Z
d :Bz ∩ C �= ∅}.
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Theorem 1. There exists a constant b1 ∈ (0,∞) such that if r ≥ b1s, then

P

(
min

P∈�≥r

#A(P) ≤ s
)

≤ e−r/2. (2.1)

Further, there exist constants b2, b3 ∈ (0,∞) such that if s ≥ b2r , then

P

(
max

P∈�≤r

#A(P) ≥ s
)

≤ e−b3s . (2.2)

In the same polyomino model one could consider max and min of #A(P) over
all polyominoes P of size r touching B0 (P ∩B0 �= ∅). The same method to prove
Theorem 1 can be extended to this situation, yielding to similar large deviations
bounds (2.1) and (2.2).

2.1 Self-avoiding paths on the Delaunay triangulation

An important graph for the study of a Voronoi tiling is its facial dual, the Delaunay
graph based on N . This graph, denoted by D = D(N ) is an unoriented graph
embedded in R

d which has vertex set N and edges {u,v} every time Cu and Cv
share a (d − 1)-dimensional face. We remark that, for our Poisson random set,
a.s. no d + 1 points are on the same hyperplane and no d + 2 points are on the
same hypersphere and that makes the Delaunay graph a well-defined triangulation
(Figure 2). This triangulation divides R

d into bounded simplexes called Delaunay
cells. For each Delaunay cell � no point in N is inside the circum-hypersphere
of �. Polyominoes on the Voronoi tiling correspond to connected (in the graph
topology) subsets of the Delaunay graph.

Figure 2 The Voronoi tiling V (dotted lines) and the Delaunay triangulation D (solid lines) in the
two-dimensional model.
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Let vx be the nearest point v ∈ N to x ∈ R
d , and let �≥r (resp., �≤r ) be the

collection of all self-avoiding paths γ starting at v0 and of size (number of vertices)
#γ ≥ r (resp., #γ ≤ r). Recall that polyominoes on the Voronoi tiling correspond
to connected (in the graph topology) subsets of the Delaunay graph. Therefore, for
each γ ∈ �≥r corresponds a unique polyomino Pγ ∈ �≥r and, analogously, for
each γ ∈ �≤r corresponds a unique polyomino Pγ ∈ �≤r . Let A(γ ) := A(Pγ ).
Thus, the following corollary is a straightforward consequence of Theorem 1.

Corollary 2. There exists a constant b1 ∈ (0,∞) such that if r ≥ b1s, then

P

(
min

γ∈�≥r

#A(γ ) ≤ s
)

≤ e−r/2. (2.3)

Further, there exist constants b2, b3 ∈ (0,∞) such that if s ≥ b2r , then

P

(
max

γ∈�≤r

#A(γ ) ≥ s
)

≤ e−b3s . (2.4)

2.2 The inverse problem

Until now we have been concerned with the size of a lattice covering of a Voronoi
polyomino of size r . It is also natural to consider the inverse problem, that is, the
number of Voronoi tiles that one needs to cover a connected set composed by s

lattice boxes. Precisely, for each connected set A ⊆ Z
d (in the l1-nearest-neighbor

sense) let

BA := ⋃
z∈A

Bz.

A connected subset of Z
d is also called a lattice animal. We denote �≤s the col-

lection of all lattice animals such that 0 ∈ A and #A ≤ s. A Voronoi covering is
defined by taking

P(A) := {x ∈ R
d : x ∈ Cv and Cv ∩ BA �= ∅}.

Theorem 3. There exist constants b7, b8 ∈ (0,∞) such that if r ≥ b7s, then

P

(
max

A∈�≤s

#N P(A) ≥ r
)

≤ 2e−b8r . (2.5)

One important consequence of Theorem 3 concerns the following construction:
Let x,y ∈ R

d and consider the Polyomino P([x,y]) generated by all Voronoi tiles
that intersect the line segment [x,y]. Then one can always find a self-avoiding path
γ (x,y) with vertices in P([x,y]) and that connects vx to vy. Clearly,

#γ (x,y) ≤ #N P([x,y]),
and, hence, by Theorem 3, we have the following corollary:
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Corollary 4. There exist constants b7, b8 ∈ (0,∞) such that if r ≥ b7s, then

P

(
max

x:‖x‖2≤s
#γ (0,x) ≥ r

)
≤ 2e−b8r , (2.6)

where ‖ · ‖2 denotes the Euclidean norm.

3 Technical lemmas

3.1 A greedy lattice animal model with Poisson weights

Let

Nz = #N Bz.

Then {Nz : z ∈ Z
d} is a collection of independent Poisson random variables. By

(1.1),

sup
z∈Zd

E(eNz) ≤ ecμ(e−1). (3.1)

It is a standard result in combinatorics1 that

#�≤s ≤ αs, (3.2)

for a finite α = α(d).

Lemma 5. If r ≥ 2(logα + cμ(e − 1))s, then

P

(
max

A∈�≤s

∑
z∈A

Nz ≥ r

)
≤ e−r/2.

Proof. Combining (3.1) and (3.2) together with Markov’s inequality, one has that

P

(
max

A∈�≤s

∑
z∈A

Nz ≥ r

)
≤ ∑

A∈�≤s

P

(∑
z∈A

Nz ≥ r

)

≤ αs
[

sup
z∈Zd

E(eNz)
]s

e−r

≤ exp{[logα + cμ(e − 1)]s − r} ≤ e−r/2,

whenever r ≥ 2(logα + cμ(e − 1))s. �

1To see this, notice that for each lattice animal A ∈ �≤s one can (injectively) associate an “explo-
ration” nearest neighbor path (0, z1, . . . , zl ) such that zi ∈ A and #{zi : zi = z} ≤ 2d for each z ∈ A.
Thus, l ≤ 2ds and α := (2d)2d will do.
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3.2 Site percolation schemes

Throughout this section Y := {Yz : z ∈ Z
d} will denote an i.i.d. site percolation

scheme (or random field) with parameter ρ ∈ (0,1). If Yz = 1, we say that z is
open. Otherwise, we say that it is closed.

Lemma 6. If 2α
√

1 − ρ < e−1 and s ≥ 2r , then

P

(
min

A∈�≥s

∑
z∈A

Yz ≤ r

)
≤ e−s,

where �≥s denotes the set of all connected sets A ⊆ Z
d such that #A ≥ s and

0 ∈ A.

Proof. Let
(s
r

)
denote the binomial coefficient. If A ∈ �≥s and

∑
z∈A Yz ≤ r , by

taking a connected subset of A of size s we may assume that A has size exactly s.
Then there exists some subset of exactly s − r sites of A with Yz = 0. By (3.2),
this shows that

P

(
min

A∈�≥s

∑
z∈A

Yz ≤ r

)
≤ αs

(
s

r

)
(1 − ρ)s−r

≤ αs2s(1 − ρ)s−r (3.3)

≤ (
2α

√
1 − ρ

)s ≤ e−s,

whenever 2α
√

1 − ρ < e−1 and s ≥ 2r . �

A closed cluster is a maximal connected set of closed vertices of Z
d . Let Clz

denote the closed cluster that contains z (it is empty if z is open). For a finite subset
A of Z

d let CY (A) denote the collection of all closed clusters (with respect to Y )
intersecting A.

Lemma 7. If f is an increasing function from N to [1,+∞[, then

E

( ∏
Cl∈CY (A)

f (#Cl)
)

≤ {Ef (#Cl0)}#A.

Proof. The proof of Lemma 7 is due to Raphaël Rossignol and the author is
grateful for his help. This inequality is also a crucial tool for proving the re-
sults in Pimentel and Rossignol (2012). Let us recall Reimer’s inequality (see
Grimmett’s book (Grimmett, 1999), page 39). Let n be a positive integer, let
B(n) = Z

d ∩ [−n,n]d and define 
n = {0,1}B(n). For ω ∈ 
n and K ⊂ B(n),
define the cylinder event C(ω,K) generated by ω on K by

C(ω,K) = {ω′ ∈ 
n s.t. ω′
i = ωi ∀i ∈ K}.
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If A and B are two subsets of 
n, define their disjoint intersection A�B as fol-
lows:

A�B = {ω ∈ 
n : ∃K ⊂ B(n),C(ω,K) ⊂ A and C(ω,Kc) ⊂ B}.
Reimer’s inequality states that

P(A�B) ≤ P(A)P(B).

Remark that � is a commutative and associative operation, and that, for any l

subsets A1, . . . ,Al of 
n,

A1� · · ·�Al =
{
ω ∈ 
n :∃K1, . . . ,Kl disjoint subsets of B(n),

l⋃
i=1

Ki = B(n) and C(ω,Ki) ⊂ Ai ∀i = 1, . . . , l

}
.

Now take n large enough so that A ⊂ B(n). Let l = #A, and order the elements
of A = {x1,x2, . . . ,xl}. For any x in B(n), and any ω ∈ 
n, let Cln(x,ω) be the
closed cluster (for the configuration ω) in B(n) containing x, which is empty if
ω(x) = 1. Define

∀i, Cli (ω) =
⎧⎪⎨⎪⎩ Cln(xi ,ω) if xi /∈

i−1⋃
k=1

Cln(xk,ω),

∅ else.

Let k1, . . . , kl be non-negative integers and

Ai = {ω : #Cli (ω) ≥ ki} ∀1 ≤ i ≤ l,

Ãi = {ω : #Cln(xi ,ω) ≥ ki} ∀1 ≤ i ≤ l.

Then, we claim that

l⋂
i=1

Ai ⊂ Ã1� · · ·�Ãl.

Indeed, let ω ∈ ⋂l
i=1 Ai . Then, for every i = 1, . . . , l − 1, C(ω,Cli (ω)) ⊂ Ai .

Furthermore, C(ω,B(n) \ ⋃l−1
i=1 Cli (ω)) ⊂ Al . This shows that ω ∈ Ã1� · · ·�Ãl ,

and proves the claim above. Therefore, using Reimer’s inequality,

P

(
l⋂

i=1

Ai

)
≤

l∏
i=1

P(Ãi). (3.4)

Now, let f be an increasing function from N to [1,∞). Define f1 as follows:

f1(0) = 1 and ∀k ≥ 1, f1(k) = f (k).
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Denote by {β0 = 1 < β1 < · · · < βj < · · ·} the range of f1. Define

kj = inf{k :f (k) ≥ βj } ∀j ∈ N,

Ai,j = {ω : #Cli(ω) ≥ kj } = {ω :f1(#Cli (ω)) ≥ βj },
and

Ãi,j = {ω : #Cln(xi ,ω) ≥ kj } = {ω :f1(#Cln(xi ,ω)) ≥ βj }.
By convention, set β−1 = 0 and define aj = βj − βj−1. We can write

f1(#Cli (ω)) = ∑
j∈N

(βj − βj−1)1Ai,j
= ∑

j∈N

aj1Ai,j
.

Define Cn(A) as the set of nonempty components Cln(xi ,ω), for i ∈ {1, . . . , l}.
Since f1(0) = 1, we can write

E

( ∏
Cl∈Cn(A)

f (#Cl)

)
= E

( ∏
Cl∈Cn(A)

f1(#Cl)

)

= E

(
l∏

i=1

f1(#Cli (ω))

)

= E

(
l∏

i=1

∑
j∈N

aj1Ai,j

)

= ∑
j1,...,jl

aj1 · · ·ajl
E

(
l∏

i=1

1Ai,ji

)

≤ ∑
j1,...,jl

aj1 · · ·ajl

l∏
i=1

P(Ãi,ji
)

=
l∏

i=1

∑
j∈N

ajP(Ãi,j )

=
l∏

i=1

E(f1(#Cln(xi , ω))) ≤
l∏

i=1

E(f (#Cln(xi , ω))),

where the first inequality follows from (3.4). Finally, we may let n tend to infinity,
and then use the Lebesgue’s monotone convergence theorem for the right-hand
side and Fatou’s lemma for the left-hand side. �

Let ∂∞A denote the lattice boundary of A with respect to the l∞-norm, and
define

Ā := A ∪ ∂∞A and ClY (A) := Ā ∪
{ ⋃

Cl∈CY (A)

C̄l
}
.
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Lemma 8. If ξ = ξ(ρ) := Ee#Cl0 < ∞ and r ≥ 2(logα + 3d + log ξ)s, then

P

(
max

A∈�≤s

#ClY (A) ≥ r
)

≤ e−r/2.

Proof. Notice that

#ClY (A) ≤ #Ā + ∑
Cl∈CY (A)

#Cl ≤ 3d#A + ∑
Cl∈CY (A)

#Cl.

By Markov’s inequality and Lemma 7, if A ∈ �≤s , then

P

( ∑
Cl∈CY (A)

#Cl ≥ y

)
≤ e−y

E
(
e

∑
Cl∈CY (A) #Cl) ≤ e−y(Ee#Cl0)s = e−yξ s.

Hence,

P

(
max

A∈�≤s

#ClY (A) ≥ r
)

≤ P

(
max

A∈�≤s

∑
Cl∈CY (A)

#Cl ≥ (r − 3ds)

)

≤ αse−(r−3d s)ξ s

= exp{−r + s(logα + 3d + log ξ)}
≤ e−r/2,

whenever r ≥ 2(logα + 3d + log ξ)s. �

3.3 Domination by product measures

Let X = {Xz : z ∈ Z
d} be a collection of random variables that take values 0 and 1

and which satisfy the following conditions: (i) for each pair A,B ∈ Z
d such that all

sites in A are at distance greater than k from all sites in B (in the sup-norm sense),
the collections of random variables {Xz : z ∈ A} and {Xz : z ∈ B} are independent;
(ii) infz∈Zd P(Xz = 1) ≥ p. In this case we say that X is a k-dependent random
field whose marginals are at least p, and denote C(d, k,p) the class of all such
fields.

Let Y and X be two random fields. We say that Y dominates X from below if
there is a coupling (joint realization) between Y and X such that Yz ≤ Xz for all
z ∈ Z

d . We refer to Liggett’s book (Liggett, 1985) for more details in stochastic
domination and couplings. Theorem 0.0 of Liggett, Schonmann and Stacey (1997)
states that when p is close to 1, the random fields in C(d, k,p) are dominated
from below by an i.i.d. random field Y with density ρ = ρ(d, k,p). Further, one
can make ρ arbitrarily close to 1 by taking p close enough to 1.

Lemma 9. Let X ∈ C(d, k,p). There exists p̄ ∈ (0,1) such that for all p ∈ [p̄,1]
if s ≥ 2r , then

P

(
min

A∈�≥s

∑
z∈A

Xz ≤ r

)
≤ e−s .
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Further, there exists a constant c0 > 0 such that if r ≥ c0s, then

P

(
max

A∈�≤s

#ClX (A) ≥ r

)
≤ e−r/2.

Proof. We note that if Y dominates X from below, then∑
z∈A

Yz ≤ ∑
z∈A

Xz and #ClX (A) ≤ #ClY (A)

for any lattice animal A. Hence, Lemma 9 follows by combining Theorem 0.0 in
Ligget, Schonmann and Stacey (1997) together with Lemma 6 and Lemma 8. �

The proof of the first part of Lemma 9 (in the k-dependent setup) could be done
directly without using Ligget, Schonmann and Stacey (1997). One needs to notice
that given any set of s − r boxes, we can pick a subset of independent boxes of
size (s − r)/kd , and then use the same argument as before. However, the proof of
the second part is more delicate and it is not clear (for the author) that it could be
easily adapted to the k-dependent situation.

3.4 The block argument

For each z ∈ Z
d , L > 0 and s ∈ {j/2 : j ∈ N} let

Bs,L
z := Lz + [−sL, sL]d .

Given a locally finite set N ⊆ R
d , we say that a (square) box B is a N -full box if

cutting it regularly into (4�√d�+ 1)d sub-boxes, each one of these boxes contains
at least one point of the set N . Let

B(A) := ⋃
z∈A

B1/2,L
z and

B̃(A) = {x ∈ R
d :∃y ∈ B(A) s.t. ‖x − y‖2 ≤ L/2}.

Lemma 10. Let A be a finite and connected subset of Z
d and assume that B

1/2,L
z

is a N -full box for all z ∈ ∂∞A. If Cv ∈ V and Cv ∩ B(A) �= ∅, then Cv ⊆ B̃(A).

Proof. Assume that Cv ∩B(A) �= ∅ but Cv �⊆ B̃(A). Then there will exist x1,x2 ∈
Cv such that

‖x1 − x2‖2 ≥ L/2.

On the other hand, B
1/2,L
z is a full box for all z ∈ ∂∞A. By picking x1 and x2 in

the (euclidean) boundary of B(A) and B̃(A), respectively, this implies that there
exist v1,v2 ∈ N such that

‖v1 − x1‖2 ≤
√

d

4�√d� + 1
L and ‖v2 − x2‖2 ≤

√
d

4�√d� + 1
L
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(the right-hand side of the inequality is the length of the diagonal of a subsquare).
However,

‖v − x1‖2 ≤ ‖v1 − x1‖2 and ‖v − x2‖2 ≤ ‖v2 − x2‖2,

and, hence,

1

2
L ≤ ‖x1 − x2‖2

≤ ‖x1 − v‖2 + ‖x2 − v‖2

≤ ‖x1 − v1‖2 + ‖x2 − v2‖2 ≤ 2
√

d

4�√d� + 1
L,

which yields to a contradiction since 4�√d� + 1 > 4
√

d . �

Lemma 11. Under (1.1),

sup
z∈Zd

P(B
1/2,L
z is not a N -full box) ≤ (

4
⌈√

d
⌉ + 1

)d exp
{
−c−1

μ

(
L

4�√d� + 1

)d}
.

Proof. Cut B
1/2,L
z regularly into (4�√d� + 1)d sub-boxes, so that

B1/2,L
z =

(4�√d�+1)d⋃
i=1

Bz,i and P(#N Bz,i = 0) ≤ exp
{
−c−1

μ

(
L

4�√d� + 1

)d}
.

Hence,

P(B
1/2,L
z is not a N -full box) ≤

(4�√d�+1)d∑
i=1

P(#N Bz,i = 0)

≤ (
4
⌈√

d
⌉ + 1

)d exp
{
−c−1

μ

(
L

4�√d� + 1

)d}
. �

4 Proof of the theorems

Proof of (2.1). For any connected set C ⊆ R
d ,

C ⊆ ⋃
z∈A(C)

Bz,

and, thus,

r ≤ #N P ≤ ∑
z∈A(P)

#N Bz = ∑
z∈A(P)

Nz,
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if P ∈ �≥r . Therefore, by Lemma 5,

P

(
min

P∈�≥r

#A(P) ≤ s
)

≤ P

(
max

A∈�≤s

∑
z∈A

Nz ≥ r

)
≤ e−r/2, (4.1)

whenever r ≥ b1s and b1 := 2(logα + cμ(e − 1)). �

Proof of (2.2). For each L ≥ 1 let

AL(P) := {z ∈ Z
d :B1/2,L

z ∩ P �= ∅},
and recall that A(P) = A1(C). Then, for any L ≥ 1,

#AL(P) ≤ #A1(P) ≤ Ld#AL(P). (4.2)

Consider the nonhomogeneous 3-dependent percolation scheme X L in Z
d defined

by

XL
z := 1{B1/2,L

z′ is a full box ∀z′ s.t. ‖z′ − z‖∞ ≤ 1}.
(1 denotes the indicator function of an event.) If XL

z = 1, we say that B1/2,L
z is a

good box. By Lemma 11, X L ∈ C(d,3,pL), where

1 − pL := sup
z∈Zd

P(XL
z = 0) ≤ 3d(

4
⌈√

d
⌉ + 1

)d exp
{
−c−1

μ

(
L

4�√d� + 1

)d}
.

By Lemma 9, if we pick L0 such that

3d(
4
⌈√

d
⌉ + 1

)d exp
{
−c−1

μ

(
L0

4�√d� + 1

)d}
≤ 1 − p̄,

then pL0 ∈ [p̄,1] and

P

(
min

A∈�≥s

∑
z∈A

XL0
z ≤ r

)
≤ e−s, (4.3)

whenever s ≥ 2r . Now, let

S X L(P) := {z ∈ AL(P) :XL
z = 1}.

Notice that there exists at least one set S ′
X ⊆ S X such that |z − z′|∞ ≥ 2 for all

z, z′ ∈ S ′
X and k = #S ′

X ≥ #S X /3d . Now, write S ′
X = {z1, . . . , zk}. By Lemma 10,

if zi , zj ∈ S ′ and Cvi
∩ B

1/2,L0
zi

�= ∅ and Cvj
∩ B

1/2,L0
zj

�= ∅, then vi �= vj , and,
thus,

#N P ≥ k ≥ #S X
3d

≥
∑

z∈A(P) X
L
z

3d
.
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By (4.2), this shows that

P

(
max

P∈�≤r

#A(P) ≥ s
)

≤ P

(
max

P∈�≤r

#AL0(P) ≥ s/L0

)
≤ P

(
min

A∈�≥s/L0

∑
z∈A

XL0
z ≤ 3dr

)
≤ e−s/L0,

whenever s ≥ 2(L03d)r . �

Proof of (2.5). By Lemma 10 (recall the definition of Cl· in Lemma 8),

P(A) ⊆ B(ClX L(A))

and

#N P(A) ≤ #N B(ClX L(A)) = ∑
z∈ClX L(A)

Nz,

which yields to

P

(
max

A∈�≤s

#N P(A) ≥ r
)

≤ P

(
max

A∈�≤cr

∑
z∈A

Nz ≥ r

)
+ P

(
max

A∈�≤s

#ClX L(A) ≥ cr
)

for any c > 0. By Lemma 5 and Lemma 8,

P

(
max

A∈�cr

∑
z∈A

Nz ≥ r

)
≤ e−r/2 and P

(
max

A∈�≤s

#ClX L(A) ≥ cr
)

≤ e−cr/2

for c = [2(logα + cμ(e − 1))]−1 and r ≥ (c0/c)s [notice that r ≥ (logα + cμ(e −
1))cr = r/2], which shows that

P

(
max

A∈�≤s

#N P(A) ≥ r
)

≤ e−r/2 + e−cr/2,

and finishes the proof of (2.5). �

5 A two-dimensional modified Poisson model

In Pimentel (2011) a random set is constructed from a realization of a two-
dimensional homogeneous Poisson random set N as follows. Order the points of
Z

2 in some arbitrary fashion, say, Z
2 := {u1,u2, . . .}. Fix δ ∈ (0,1) and n ≥ 1. For

each k ≥ 1 let

Bn
k := B1/2,nδ

uk
.

Divide Bn
k into 36 sub-boxes (as before) of the same length nδ/6, say, Bn

k,1, . . . ,

Bn
k,36. Now we construct the modified random set N (n) := N (n, N ) (whose dis-

tribution will also depend on n and δ) by changing the original Poisson random set
N inside each Bn

k,j , as follows:
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(1) If 1 ≤ #N Bn
k,j ≤ n2δ , then set Bn

k,j ∩ N (n) := Bn
k,j ∩ N .

(2) If #N Bn
k,j > n2δ , then set N (n) by uniformly selecting n2δ points from

Bn
k,j ∩ N .

(3) If #N Bn
k,j = 0, then set Bn

k ∩ N (n) by adding an extra point uniformly dis-
tributed on Bn

k,j .

In a few words, we tile the plane into boxes Bn
k of size nδ and we insist that each

tile is a full box, and that no tile contains more than 36n2δ Poisson points. We
make the convention N (∞) = N and denote by D(n) the Delaunay triangulation
based on N (n). It is clear that method can be applied in this setup for each fixed n.
However, we want to emphasize that it allows us to do so simultaneously for all n

sufficiently large.

Theorem 12. Theorems 1 and 3, as well as Corollaries 2 and 4, hold in the mod-
ified model N (n), where the constant bj does not depend on n ≥ 1.

Proof (outline). The proof of (2.1), in the N (n) context, uses that

#N (n)Bz ≤ #N Bz + 2d,

(the small box could intersect at most 2d boxes Bn
k,j ) and, hence [see (4.1)]

P

(
min

P∈�≥r

#A(P) ≤ s
)

≤ P

(
max

A∈�≤s

∑
z∈A

Nz ≥ r − 2ds

)
,

which implies (2.1) (by Lemma 5).
The proof of (2.2) and (2.5) were essentially based on the fact that we can

compare the original problem to a site percolation scheme with minimal marginal
density pL → 1 as L → ∞. The same comparison method works here as soon as
we prove that

inf
n

pL(n) → 1 as L → ∞,

or, equivalently,

lim
L→∞ sup

n≥1
P

(
B

1/2,L
z is not a N (n)-full box

) = 0.

Notice that, if L ≥ 2nδ , then a box B of size L/6 must contain at least one box Bn
k,j

of length nδ/6 (for some k and j ) which means that B is a N (n)-full box. On the
other hand, if L ≤ 2nδ , then the probability of the event that B

1/2,L
z is not a N (n)-

full box is bounded by the probability of the event that B
1/2,L
z is not a N -full box

plus the probability of the event that N ∩ B
1/2,L
z �= N (n) ∩ B

1/2,L
z , which decays

to 0 as max{e−L2
, e−n2δ } ≤ e−L2

. The rest of the proof follows mutatis-mutandis
the method applied to prove (2.2) and (2.5). �
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The techniques developed in this paper also fit to study the minimal density of
open edges among all self-avoiding paths γ ∈ �≥r , in the two-dimensional bond
percolation model in the Delaunay triangulation. This model is constructed by
attaching i.i.d. Bernoulli random variables τe with parameter p ∈ [0,1] to edges
e ∈ D. Let p∗

c ∈ (0,1) be the critical probability for the bond percolation model
in the N -Voronoi tessellation (Pimentel, 2006). We denote by (N (n), τ ) the the
bond percolation model associated to the modified random set N (n).

Theorem 13. If P(τe = 0) < 1 − p∗
c , then there exists n0 ≥ 0 and b9, b10 > 0 such

that, for all n ≥ n0, if r ≥ b9s, then

P

(
min

γ∈�≥r

∑
e∈γ

τe ≤ s

)
≤ 3e−b10r . (5.1)

Proof (outline). Let �L
z be the collection of all self-avoiding paths γ = (v0,v1,

. . . ,vl) in D such that Cv0 ∩ ∂B
1/2,L
z �= ∅, Cvl

∩ ∂B
3/2,L
z �= ∅ and vj ∈ B

3/2,L
z \

B
1/2,L
z for j = 1, . . . , l − 1. We say that B

1/2,L
z is a (N , τ )-good box if the follow-

ing holds:

(1) B
1/2,L

z′ is a N -full box for all z′ ∈ Z
2 s.t. |z′ − z|∞ ≤ 2;

(2)
∑

e∈γ τe ≥ 1 for all γ ∈ �L
z .

We have seen that the probability of the event (1) is uniformly bounded for all
n ≥ 1. For n = ∞ (we are in classical Poisson model), Lemma 1 in Pimentel
(2006) implies that the probability of the event (2) goes to 0 as L → ∞, if P(τe =
0) < 1 − p∗

c . For a finite n ≥ 1 the probability that N �= N (n) inside B
1/2,L
z is of

order L2e−2nδ
. Thus,

P((2)|(1)) ≤ P
(
(2) for n = ∞|(1)

) + cL2e−2c′nδ

≤ P
(
(2) for n = ∞|(1)

) + cL2e−2c′Lδ

for L ≤ n (c and c′ are constants). This means that, given any p ∈ (0,1) there
exists L0 > 0 such that for all n,L ≥ L0,

P
(
B1/2,L

z is a (N (n), τ )-good box
) ≥ p. (5.2)

Consider the homogeneous percolation scheme Z L defined by

ZL
z := 1{B1/2,L

z is a (N (n), τ )-good box}.
By Lemma 3 in Pimentel (2006), it is a 5-dependent percolation scheme. Together
with (5.2), this implies that Z L0 ∈ C(d,5,p) for all n ≥ L0, if P(τe = 0) < 1 −p∗

c .
Now, let

S Z L(γ ) := {z ∈ AL(γ ) :ZL
z = 1}.
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Notice that there exists at least one set S ′ ⊆ S such that |z− z′|∞ ≥ 4 for all z, z′ ∈
S ′ and k = |S ′| ≥ |S|/4d . Now, write S ′ = {z1, . . . , zk}. By Lemma 10, one can
find disjoint pieces of γ , say, γ1, . . . , γk , such that, for i = 1, . . . , k,

∑
e∈γi

τe ≥ 1.
Hence,

∑
e∈γ

τe ≥
k∑

i=1

(∑
e∈γi

τe

)
≥ k = |S ′| ≥ |S|

4d
=

∑
z∈A(γ ) Z

L
z

4d
,

which shows that

P

(
min

γ∈�≥r

∑
e∈γ

τe ≤ s

)
≤ P

(
min

γ∈�≥r

|AL0(γ )| ≤ r

b1

)
+ P

(
min

A∈�≥r/b1

∑
z∈A

ZL0
z ≤ 4ds

)
≤ e−r/2 + 2e−r/b1,

whenever r ≥ 2b1(4d)s. In the last line, we have used (2.1) (in the modified con-
text) and Lemma 9 (by choosing L0 large enough). �
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