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Precise asymptotics for products of sums and U-statistics

Zhongquan Tan
Zunyi Normal College and Soochow University

Abstract. Let {X,Xi, i ≥ 1} be a sequence of independent and identically
distributed positive random variables with E(X) = μ > 0, Var(X) < ∞. Put
Sn = ∑n

i=1 Xi and let g(x) be a positive and differentiable function defined
on (0,+∞) satisfying some mild conditions. We prove that, for any s > 1,

lim
ε→0

ε1/s
∞∑

n=1

g′(n)P

{∣∣∣∣∣log

(
n∏

j=1

Sj

jμ

)∣∣∣∣∣ ≥ ε
√

ngs(n)

}
= E|N |1/s ,

where N is a standard normal random variable. This result was also extended
to product of U-statistics.

1 Introduction

Let {X,Xi, i ≥ 1} be a sequence of independent and identically distributed (i.i.d.)
random variables (r.v.), Sn = ∑n

i=1 Xi,n ≥ 1. Many authors discussed the precise
rate and limit value of

∑∞
n=1 ϕ(n, ε)P {|Sn| ≥ εg(n)} as ε ↓ a, a ≥ 0, where ϕ(n, ε)

and g(n) are positive functions defined on [0,∞). We call ϕ(·, ·) and g(·) weight
function and boundary function, respectively. The first result was due to Heyde
(1975), who proved that

lim
ε↓0

ε2
∞∑

n=1

P {|Sn| ≥ εn} = EX2,

if EX = 0 and EX2 < ∞. Later, Gut and Spăataru (2000a, 2000b) studied this
type of asymptotic result in the Baum–Katz (1965) and Davis (1968) law of large
numbers and in the law of the iterated logarithm and called it precise asymptotics.
The following precise asymptotics in the Davis (1968) law of large numbers are
cited from Gut and Spătaru (2000a). During the entire text, N denotes a standard
normal random variable.

Theorem A. Suppose that EX = 0 and EX2 = σ 2 < ∞, then for 1 ≤ p < δ < 2
we have

lim
ε↓0

ε2(δ−p)/(2−p)
∑
n≥1

nδ/p−2P {|Sn| ≥ εn1/p} = pσ 2(δ−p)/(2−p)

δ − p
E|N |2(δ−p)/(2−p).
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Theorem B. Suppose that EX = 0 and EX2 = σ 2 < ∞, then for 0 ≤ δ ≤ 1 we
have

lim
ε↓0

ε2δ+2
∑
n≥1

n(logn)2/nP
{|Sn| ≥ ε

√
n logn

} = σ 2δ+2

δ + 1
E|N |(2δ+2).

Recently, Cheng and Wang (2005) extended Theorems A and B to the more
general case when the underling distribution is in the domain of attraction of a
stable law with index in (0, 2]. They also discussed the general weight functions
and boundary functions. Based on the result of Gut (2002), Wang and Yang (2003)
studied more general weight functions and boundary functions of this type of pre-
cise asymptotics for record times (cf. Gut (2002) for the definition).

In this paper, the aim is to extend the above theorems to product of partial sums
and U-statistics, and to get the corresponding results for more general weight func-
tions and boundary functions. As direct conclusions, several similar results to The-
orems A and B were obtained. Before providing the main results, let us review the
history of the product of partial sums and U-statistics.

While considering limiting properties of sums of records (cf. Arnold and Vil-
lasenor (1998) for the definition), Arnold and Villasenr (1998) obtained the fol-
lowing version of the central limit theorem (CLT) for a sequence {X,Xi, i ≥ 1} of
i.i.d. exponential random variables with the mean equal to 1:(∏n

k=1 Sk

n!
)1/

√
n

d→ e
√

2N. (1.1)

Later Rempala and Wesoaowski (2002) extended such a CLT to general i.i.d. pos-
itive r.v. and obtained the following result.

Theorem C. Let {X,Xi, i ≥ 1} be i.i.d. positive random variables with E(X1) =
μ > 0 and Var(X1) = σ 2 < ∞. Denote by Sn = ∑n

i=1 Xi and γ = σ/μ the coeffi-
cient of variation. Then (∏n

k=1 Sk

n!μn

)1/(γ
√

n)
d→ e

√
2N. (1.2)

This result was extended by Qi (2003), Lu and Qi (2004) to a general case when
the underling distribution is in the domain of attraction of a stable law with index in
Arnold and Villasenor (1998) and Baum and Katz (1965). For more general result,
we refer to Rempala and Wesolowski (2005), Zhang and Huang (2007), Matula
and Ste.pien (2008, 2009).

However, this type of CLT also can be extended to U-statistics. Corresponding
to a symmetric kernel function h (cf. Serfling (1980) for the definition), the U-
statistic is defined as follows

Un = 1(n
m

) ∑
1≤i1<···<im≤n

h(Xi1,Xi2, . . . ,Xim), (1.3)
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where the summation is over all distinct combination of m elements from
{1, . . . , n}, the (Xi) are i.i.d. positive random variables.

Denote h1(x1) = Eh(x1,X2, . . . ,Xm) and ς1 = Var(h1(X1)). It is a known
result (see, e.g., Serfling (1980), p. 192) that if Eh2(X1,X2, . . . ,Xm) < ∞ and
ς1 > 0, then

n1/2(Un − μ′) d→ N,

where μ′ = E(h(X1,X2, . . . ,Xm)).
Rempala and Wesoaowski (2002) extended Theorem C to U-statistics and ob-

tained the following theorem.

Theorem D. Let Un be a statistics given by (1.3) and denote by γ ′ = √
ς1/μ

′ the
coefficient of variation. Assume that P(h(X1, . . . ,Xm) > 0) = 1, ς1 > 0. Then(

n∏
k=m

Uk

μ′

)1/(mγ ′√n)
d→ e

√
2N.

In this paper, based on Theorems C and D, the precise asymptotics for products
of sums and U-statistics will be considered. The paper is organized as follows.
Section 2 displays the two main results, Sections 3 and 4 prove the two main
results, respectively.

2 Main results

The main results read as follows.

Theorem 2.1. Let {X,Xi, i ≥ 1} be a sequence of i.i.d. positive random variables
with E(X) = μ > 0, Var(X) = σ 2 < ∞. Put Sn = ∑n

i=1 Xi and let g(x) be a
positive and differentiable function defined on (0,+∞). Suppose that the following
conditions are satisfied:

(A1) g(x) ↑ ∞, as x → ∞;
(A2) g′(x) is monotone on [1,+∞);
(A3) if is g′(x) is monotone nondecreasing, we assume that limx→∞ g′(x+1)

g′(x)
=

1. Then for any s > 1, we have

lim
ε→0

ε1/s
∞∑

n=1

g′(n)P

{∣∣∣∣∣log

(
n∏

j=1

Sj

jμ

)∣∣∣∣∣ ≥ ε
√

ngs(n)

}
= E|N |1/s . (2.1)

Remark 2.1. The conditions on g(x) were first introduced by Cheng and Wang
(2004). More general conditions on weighted function and boundary function, one
can find in Wang and Yang (2003).

In Theorem 2.1, let g(x) = x(δ−p)/(2p), s = 2−p
δ−p

, where 0 < p < δ < 2, we have
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Corollary 2.1. For 0 < p < δ < 2, then

lim
ε→0

ε(δ−p)/(2−p)
∞∑

n=1

n(δ−3p)/(2p)P

{∣∣∣∣∣log

(
n∏

j=1

Sj

jμ

)∣∣∣∣∣ ≥ εn1/p

}
= E|N |(δ−p)/(2−p).

In Theorem 2.1, let g(x) = (logx)δ+1, s = 1
2(δ+1)

, where −1 < δ < −1
2 , we

have

Corollary 2.2. For −1 < δ < −1
2 , then

lim
ε→0

ε2δ+2
∞∑

n=1

(logn)δ

n
P

{∣∣∣∣∣log

(
n∏

j=1

Sj

jμ

)∣∣∣∣∣ ≥ ε
√

n logn

}
= E|N |2δ+2

δ + 1
.

In Theorem 2.1, let g(x) = (log logx)δ+1, s = 1
2(δ+1)

, where −1 < δ < −1
2 , we

have

Corollary 2.3. For −1 < δ < −1
2 , then

lim
ε→0

ε2δ+2
∞∑

n=1

(log logn)δ

n logn
P

{∣∣∣∣∣log

(
n∏

j=1

Sj

jμ

)∣∣∣∣∣ ≥ ε
√

n log logn

}
= E|N |2δ+2

δ + 1
.

The result of Theorem 2.1 can be extended to U-statistics as follows.

Theorem 2.2. Let Un be a statistics given by (1.3). Assume that P(h(X1, . . . ,

Xm) > 0) = 1, ς1 > 0. Let g(x) be a positive and differentiable function defined
on (0,+∞). Suppose that the conditions (A1), (A2) and (A3) are satisfied. Then
for any s > 1, we have

lim
ε→0

ε1/s
∞∑

n=1

g′(n)P

{∣∣∣∣∣log

(
n∏

j=m

Uj

μ′

)∣∣∣∣∣ ≥ εm
√

2ngs(n)

}
= E|N |1/s . (2.2)

3 Proof of Theorem 2.1

In this section, the following notations will be used.
Let bk,n = ∑n

i=k 1/i and sk,n = (
∑k

i=1 b2
i,n)

1/2 for k ≤ n with bk,n = 0

if k > n. Furthermore, let Zi = Xi−μ
σ

, i = 1,2, . . . . Define a triangular array
Y1,n, Y2,n, . . . , Yn,n as Yk,n = bk,nZk and set Sk,n = ∑k

i=1 Yi,n for 1 ≤ k ≤ n. From
Gonechigdanzan and Rempala (2006), we have

s2
n,n = 2n − b1,n, Sn,n/sn,n

d→ N, as n → ∞. (3.1)
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Setting Tn = 1
γ

log(
∏n

j=1
Sj

μj
) and notice that log(1 + x) = x + θ

2x2 as |x| < 1,
where θ ∈ (−1,0), then

Tn = 1

γ

n∑
j=1

log
Sj

μj

= 1

γ

n∑
j=1

(
Sj

μj
− 1

)
+ 1

γ

n∑
j=1

θj

2

(
Sj

μj
− 1

)2

= Sn,n + 1

γ

n∑
j=1

θj

2

(
Sj

μj
− 1

)2

=: Sn,n + Rn.

In order to prove the theorem, we need to know the convergence rate of the
remainder term Rn. As usual, an � bn means lim supn→∞ |an/bn| < +∞.

Lemma 3.1. Under the conditions of Theorem 2.1, we have E|Rn| � logn.

Proof.

E|Rn| = E

∣∣∣∣∣ 1

γ

n∑
j=1

θj

2

(
Sj

μj
− 1

)2
∣∣∣∣∣

�
n∑

j=1

E

(
Sj

μj
− 1

)2

(3.2)

�
n∑

j=1

1

j
� logn.

�

The proof of Theorem 2.1 is via the following four propositions. Let C denote
positive constants whose values may vary from place to place.

Proposition 3.1. For any s > 1, we have

lim
ε→0

ε1/s
∞∑

n=1

g′(n)P {|N | ≥ εgs(n)} = E|N |1/s . (3.3)

Proof. Let y = εgs(x), for any constant C ∈ (0,∞) we have

lim
ε→0

ε1/s
∫ ∞
C

g′(x)P {|N | ≥ εgs(x)}dx

= lim
ε→0

1

s

∫ ∞
εgs(C)

y1/s−1P {|N | ≥ y}dy (3.4)
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= 1

s

∫ ∞
0

y1/s−1P {|N | ≥ y}dy

= E|N |1/s .

Using (A2) and (A3), we can prove that

lim
ε→0

ε1/s
∫ ∞

1
g′(x)P {|N | ≥ εgs(x)}dx

≤ lim
ε→0

ε1/s
∞∑

n=1

g′(n)P {|N | ≥ εgs(n)} (3.5)

≤ lim
ε→0

ε1/s
∫ ∞

0
g′(x)P {|N | ≥ εgs(x)}dx.

In fact, if g′(x) is monotone nonincreasing, (3.5) holds obviously; if g′(x) is mono-
tone nondecreasing, by limx→∞ g(x+1)

g(x)
= 1, for any δ > 0 there exists a positive

integer N0 such that x > N0, we have g′(x) < (1 + δ)g′(x − 1), therefore

lim
ε→0

ε1/s
∞∑

n=1

g′(n)P {|N | ≥ εgs(n)}

= lim
ε→0

ε1/s
∞∑

n=N0+1

g′(n)P {|N | ≥ εgs(n)}

≤ (1 + δ) lim
ε→0

ε1/s
∞∑

n=N0+1

g′(n − 1)P {|N | ≥ εgs(n)}

≤ (1 + δ) lim
ε→0

ε1/s
∫ ∞
N0

g′(x)P {|N | ≥ εgs(x)}dx.

Let δ ↓ 0, we get the right inequality in (3.5), similarly, the left one in (3.5) is valid.
And (3.3) follows by (3.4) and (3.5). �

In the following propositions, we will denote a(ε) = g−1(Mε−1/s),M > 0, and
g−1(x) is the inverse function of g(x).

Proposition 3.2. For any M > 0, we have

lim
ε→0

ε1/s
∑

n≤a(ε)

g′(n)
∣∣P {|Tn| ≥ ε

√
2ngs(n)

} − P {|N | ≥ εgs(n)}∣∣ = 0. (3.6)

Proof. Let

	n = sup
x

∣∣P (|Tn| ≥
√

2nx
) − P(|N | ≥ x)

∣∣.
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By (1.2), we have

Tn√
2n

d−→ N,

then
|Tn|√

2n

d−→ |N |.
By the continuity of 
(x) = P(|N | ≥ x), we have limn→∞ 	n = 0. Note that∑

n≤a(ε)

g′(n) ≈
∫ a(ε)

1
g′(x) dx ≈ g(a(ε)) = Mε−1/s,

where A(x) ≈ B(x) means that there exist positive constants C1 < C2 such that
C1A(x) ≤ B(x) ≤ C2A(x). Thus, we have

lim
ε→0

ε1/s
∑

n≤a(ε)

g′(n)
∣∣P {|Tn| ≥ ε

√
2ngs(n)

} − P {|N | ≥ εgs(n)}∣∣
≤ lim

ε→0
ε1/s

∑
n≤a(ε)

g′(n)	n = 0.
�

Proposition 3.3. For any s > 1, we have

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P {|N | ≥ εgs(n)} = 0. (3.7)

Proof. At first, by a similar argument as in that of Proposition 3.1, we have the
following relations between the integral and the series.

lim
ε→0

ε1/s
∑

n≥a(ε)+1

g′(n)P {|N | ≥ εgs(n)}
(3.8)

≤ lim
ε→0

Cε1/s
∫ ∞
a(ε)

g′(x)P {|N | ≥ εgs(x)}dx.

By (3.8) and Markov inequality, we have

lim
ε↓0

ε1/s
∑

n>a(ε)

g′(n)P {|N | ≥ εgs(n)} ≤ lim
ε↓0

Cε1/s
∫ ∞
a(ε)

g′(x)P {|N | ≥ εgs(x)}dx

≤ lim
ε↓0

Cε1/s
∫ ∞
a(ε)

g′(x)ε−2g−2s(x) dx

= lim
ε↓0

Cε1/s−2g−2s+1(a(ε))

= CM−2s+1.

The result follows by letting M → ∞. �
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Proposition 3.4. For any s > 1, we have

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Tn| ≥ ε

√
2ngs(n)

} = 0. (3.9)

Proof. Note that Tn = Sn,n + Rn, we have

P
{|Tn| ≥ ε

√
2ngs(n)

} ≤ P

{
|Sn,n| ≥ ε

2

√
2ngs(n)

}
+ P

{
|Rn| ≥ ε

2

√
2ngs(n)

}
.

Therefore in order to show (3.9), it suffices to show that

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Sn,n| ≥ ε

√
2ngs(n)

} = 0 (3.10)

and

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Rn| ≥ ε

√
2ngs(n)

} = 0. (3.11)

By (3.8), (3.1) and Markov inequality, we have

lim
ε↓0

ε1/s
∑

n>a(ε)

g′(n)P
{|Sn,n| ≥ ε

√
2ngs(n)

}
≤ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)
2n − b1

ε22ng2s(n)

≤ lim
ε↓0

Cε1/s
∫ ∞
a(ε)

g′(x)ε−2g−2s(x) dx

= lim
ε↓0

Cε1/s−2g−2s+1(a(ε))

= CM−2s+1,

and (3.10) follows by letting M → ∞. Similarly, by (3.8), (3.2) and Markov in-
equality, we have

lim
ε↓0

ε1/s
∑

n>a(ε)

g′(n)P
{|Rn| ≥ ε

√
2ngs(n)

}
≤ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)
logn

ε
√

2ngs(n)

≤ lim
ε↓0

Cε1/s
∫ ∞
a(ε)

g′(x)ε−1x−1/2g−s(x) logx dx

≤ lim
ε↓0

Cε1/s−1g−s+1(a(ε))

= CM−s+1,

and (3.11) follows by letting M → ∞. �
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4 Proof of Theorem 2.2

Define the projection of the U-statistic Un as

Ûn = m

n

n∑
i=1

h1(Xi) − (m − 1)μ′.

Note that it is exactly a sum of an i.i.d. random variables. Put Jn = Un − Ûn. It is
known (Serfling (1980), p. 189) that if Eh2(X1, . . . ,Xm) < ∞,

EJ 2
n = O(n−2) as n → ∞. (4.1)

In this section, we will use the notations defined in the beginning of Section 3.
We only change the definition of Zi to Zi = h1(Xi)−μ′√

ς1
, i = 1,2, . . . . Similar to

Section 3, we also can obtain (3.1).
Now, setting Wn = 1

γ ′
∑n

j=m log Uj

μ′ . Similarly,

Wn = 1

γ ′
n∑

j=m

log
Uj

μ′

= 1

γ ′
n∑

j=m

(
Uj

μ′ − 1
)

+ 1

γ ′
n∑

j=m

θj

2

(
Uj

μ′ − 1
)2

= 1

γ ′
n∑

j=m

(
Ûj

μ′ − 1
)

+ 1

γ ′
n∑

j=m

Jj

μ′ + 1

γ ′
n∑

j=m

θj

2

(
Uj

μ′ − 1
)2

= 1

γ ′
n∑

j=1

(∑j
k=1 h1(Xk)

μ′j
− 1

)
− 1

γ ′
m−1∑
j=1

(∑j
k=1 h1(Xk)

μ′j
− 1

)

+ 1

γ ′
n∑

j=m

Jj

μ′ + 1

γ ′
n∑

j=m

θj

2

(
Uj

μ′ − 1
)2

=: Sn,n − Qn,1 + Qn,2 + Qn,3.

For Qn,1,

E|Qn,1|2 = O(1). (4.2)

For Qn,2, By (4.1), we have

E|Qn,2| �
n∑

j=m

E|Jj | ≤
n∑

j=m

(E|Jj |2)1/2 �
n∑

j=m

(j−2)1/2 ≤ logn. (4.3)

For Qn,3, by Lemma A in Serfling (1980), p. 185, we have

E|Qn,3| �
n∑

j=m

E(Uj − μ′)2 �
n∑

j=m

1

j
� logn. (4.4)
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The proof of Theorem 2.2 is via Propositions 3.1, 3.3 and the following two propo-
sitions.

Proposition 4.1. For any M > 0, we have

lim
ε→0

ε1/s
∑

n≤a(ε)

g′(n)
∣∣P {|Wn| ≥ εm

√
2ngs(n)

} − P {|N | ≥ εgs(n)}∣∣ = 0. (4.5)

Proof. Similar to Proposition 3.2. �

Proposition 4.2. For any s > 1, we have

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Wn| ≥ εm

√
2ngs(n)

} = 0. (4.6)

Proof. Note that Wn = Sn,n − Qn,1 + Qn,2 + Qn,3, we have

P
{|Wn| ≥ εm

√
2ngs(n)

}
≤ P

{
Sn,n ≥ ε

4
m

√
2ngs(n)

}
+ P

{
Qn,1 ≥ ε

4
m

√
2ngs(n)

}
+ P

{
Qn,2 ≥ ε

4
m

√
2ngs(n)

}
+ P

{
Qn,3 ≥ ε

4
m

√
2ngs(n)

}
.

Therefore in order to show (4.6), it suffices to show that

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Sn,n| ≥ εm

√
2ngs(n)

} = 0, (4.7)

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Qn,1| ≥ εm

√
2ngs(n)

} = 0, (4.8)

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Qn,2| ≥ εm

√
2ngs(n)

} = 0 (4.9)

and

lim
M→∞ lim

ε↓0
ε1/s

∑
n>a(ε)

g′(n)P
{|Qn,3| ≥ εm

√
2ngs(n)

} = 0. (4.10)

Then, along the same lines as those of the proofs of Proposition 3.4, these results
can be obtained by using (3.1), (4.2), (4.3) and (4.4). �
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