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Stationary infinitely divisible processes

Ole E. Barndorff-Nielsen
Aarhus University

Abstract. Several recent strands of work has led to the consideration of var-
ious types of continuous time stationary and infinitely divisible processes.
A review of these types, with some new results, is presented.

1 Introduction

Recent years have seen a revival of interest in continuous time strictly stationary
processes. Much of this interest have arisen out of problems in stochastic mod-
elling, coming in particular from the areas of turbulence and of finance. An im-
portant aspect is the fact that strictly stationary processes are mostly not of the
semimartingale type, so that the comprehensive and very powerful theory of semi-
martingales is generally not applicable, at least not in a direct fashion, and instead
new tools have to be developed, drawing among other things on Malliavin cal-
culus. Among the stationary processes those that have the additional property of
being infinitely divisible are of some special interest, both as regards their the-
oretical properties and their potential in modelling. For brevity we shall refer to
continuous time strictly stationary infinitely divisible processes as SID processes.

The present paper reviews these developments and adds some new results, in
particular introducing a concept of extended subordination and a new type of ambit
processes called trawling processes.

We shall primarily discuss one-dimensional processes Y = {Yt }t∈R that can be
represented on the mixed moving average form

Yt =
∫

R×R
d
G(t − s, ξ)M(ds dξ), (1.1)

where G is a deterministic function and M denotes a homogeneous random mea-
sure on R × R

d , whose values are infinitely divisible. In case the random measure
M is a homogeneous Lévy basis the formula (1.1) is said to constitute a spectral
representation or decomposition of the process Y . Multivariate versions of (1.1)
and extensions to tempo-spatial settings with stationarity in space and time simul-
taneously will also be considered.

More specifically, the focus will be on the cases where the function G has the
form

G(u, ξ) = 1A(u, ξ)g(u, ξ)
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for some subset A of (−∞,0] × R
d and a nonnegative damping function g, and

where M(ds dξ) is a subordinated homogeneous Lévy basis L(ds dξ � τ).1 Then
(1.1) can be written as

Yt =
∫
A+(t,0)

g(t − s, ξ)L(ds dξ � τ). (1.2)

The special case (1.2) offers both analytical tractability and modelling flexibility.
More generally one considers homogeneous tempo-spatial ambit fields

{Yt (x)}(t,x)∈R×R
d where

Yt (x) =
∫

R×R
d
G(t − s, x − ξ)L(ds dξ � τ)

and ambit processes embedded in such fields.
Section 2 provides various background material on infinite divisibility and Lévy

bases, and Section 3 introduces a generalisation of the concepts of subordination
and time change to Lévy bases and tempo-spatial settings. Section 4 briefly reviews
some basic ideas and results from ambit stochastics and draws connection to the
concept of extended subordination from Section 3. The question of spectral repre-
sentability is the subject of Section 5. Section 6 then discusses the null-spatial case,
that is, where there is no spatial component in (1.1) and (1.2) or, in other words,
where d = 0. Section 7 treats tempo-spatial settings, that is, where d > 0, and dis-
cusses OU related processes, volatility modulation using extended subordination,
and a new special type of tractable ambit processes termed trawlings.

2 Background

In terms of monographic accounts, the literature on general theory of strictly sta-
tionary continuous time processes is quite limited, the monograph by Cramér and
Leadbetter (1967) being still a standard reference; but infinite divisibility is not
a topic in that book. Another useful reference is Chapter XI of Doob (1990), but
again, infinite divisibility is not an issue there.

2.1 Infinite divisibility

The basic theory of infinitely divisible distributions and Lévy processes is treated
comprehensible and in detail in the already classic monograph by Ken-iti Sato
(1999). Maruyama (1970) was the first to give a systematic account of infinite
divisibility of processes. Some extensions and clarifications of his work are dis-
cussed in Barndorff-Nielsen, Maejima and Sato (2006b) and in Rosiński (2007).

1As defined in Barndorff-Nielsen (2010), Barndorff-Nielsen and Pedersen (2010) and discussed in
Section 3 below.
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By definition a process X = {Xt }t∈T, where T is an arbitrary set, is said to be in-
finitely divisible if any finite dimensional marginal law is infinitely divisible in the
classical sense. Rosiński (2007) proposes a definition of the Lévy measure of X

that is somewhat different from and seems more suitable than that of Maruyama
(1970), and in terms of this the corresponding Lévy–Khintchine and Lévy–Ito rep-
resentations are quite similar to those for the classical finite dimensional case.

Conditions for mixing of infinitely divisible processes, in particularly SID pro-
cesses, are discussed in Fuchs and Stelzer (2011).

We shall denote the class of m-dimensional infinitely divisible distributions by
ID(Rm). The subclass SD(Rm) of ID(Rm) consisting of the m-dimensional self-
decomposable laws is of some special interest in the present context. Recall that an
m-dimensional random variable X and its law μ are said to be self-decomposable
provided that, for all c ∈ (0,1), X can be represented in law as

X
law= cX + Xc, (2.1)

where the m-dimensional random variable Xc is independent of X. Any such X

is necessarily infinitely divisible, and the same is true of the associated Xc. The
property of self-decomposability can be simply characterised in terms of the Lévy
measure ν of μ. Thus, in the one-dimensional case the condition on ν for μ to be
self-decomposable is that ν is absolutely continuous with a density u having the
property that ū(x) = |x|u(x) is increasing on (−∞,0) and decreasing on (0,∞).

In the context of the present paper the main aspect of self-decomposability is
its relation to processes of Ornstein–Uhlenbeck type, or OU processes for short.
Such processes will be discussed in Sections 6.1 and 7.1. Suffice it here to mention
that the one-dimensional OU processes Y are continuous time analogues of AR(1)

time series, satisfying a stochastic differential equation

dYt = −λYt + dLt,

where L is a Lévy process and λ > 0. Such an SDE allows a stationary solution
if and only if the Lévy measure ν of L satisfies

∫
|x|>1 log(1 + |x|)ν(dx) < ∞.

And a one-dimensional SID process satisfies an SDE of this type if and only if the
marginal law of Yt is in SD(R).

2.2 Lévy bases

This section recalls basic definitions and properties of Lévy bases on R
k . For

proofs and mathematical details we refer to Rajput and Rosiński (1989) and
Pedersen (2003).2

Let B denote the family of Borel sets in R
k and let Bb be the subfamily con-

sisting of the bounded elements of B. An independently scattered random measure

2These authors present the theory of infinitely divisible random measures on spaces S more general

than R
k . We shall consider some instances of this in Sections 5 and 7.
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M on R
k is a collection {M(B) :B ∈ Bb} of random variables on some probability

space (�, A,P ) such that for every sequence {Bn} of mutually disjoint sets in Bb

with
⋃∞

n=1 Bn ∈ Bb the random variables M(Bn), n = 1,2, . . . , are independent
and

M

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

M(Bn) a.s.

Note that, in general, M may take both negative and positive values.

Definition. A Lévy basis L on R
k is an independently scattered random measure

on R
k such that for all B ∈ Bb the random variable L(B) is infinitely divisible.

If L is such a basis then it has a Lévy–Khintchine representation of the form3

C{ζ ‡ L(B)} = ia(B)ζ − 1

2
m(B)ζ 2

(2.2)
+

∫ ∞
−∞

(
eiζx − 1 − iζx1[−1,1](x)

)
n(dx;B),

where a and m are measures on R (a in general signed) and n(dx;B) is for fixed
B a Lévy measure on R and for fixed dx a Lévy measure on R

k . For the proof of
this fact, see Rajput and Rosiński (1989).

The associated measure

c(B) = ‖a‖(B) + m(B) +
∫ ∞
−∞

(1 ∧ x2)n(dx;B),

where ‖a‖ denotes the total variation of a, is called the control meaure of (2.2).
We introduce the Radon–Nikodym derivatives

a(s) = da

dc
(s),

m(s) = dm

dc
(s)

and

ν(dx; s) = n(dx; ·)
dc

(s).

Thus, in particular,

n(dx;ds) = ν(dx; s)c(ds).

3We denote the cumulant function of a random variable Y by C{ζ ‡ Y } and the cumulant function
of Y conditional on another random variable X by C{ζ ‡ Y |X}. Similarly, we write K{z ‡ Y } and
K{z ‡ Y |X} for the associated log Fourier–Laplace transforms, and φ(ζ ‡ Y ) and φ(ζ ‡ Y |X) for the
characteristic functions. Thus, for example, K{z ‡ Y } = log E{ezY } (where z = η + iζ ).
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There is no loss of generality in assuming that ν(dx; s) is a Lévy measure for each
fixed s and we do so.

In other words, any Lévy basis on R
k determines a quadruplet (a,m, ν(dx; ·),

c) = (a(s),m(s), ν(dx; s), c(ds))s∈Rk where a and m are functions on R
k , with m

nonnegative, ν(dx; s) denotes for fixed s a Lévy measure on R and is for fixed dx

a measurable function on R
k , and c is a measure on (Rk, Bb), such that the integral∫

B
a(s)c(ds)

determines a (possibly signed) measure on (Rk, Bb) and∫
B

ν(dx; s)c(ds)

is a Lévy measure on R for each fixed B ∈ Bb. Conversely, any such quadru-
plet determines, in law, a Lévy basis on R

k . We refer to (a,m, ν(dx; ·), c), or
(a(s),m(s), ν(dx; s), c(ds)), as the characteristic quadruplet of the Lévy basis.
Given such a quadruplet, we denote ν(dx; s)c(ds) by n(dx;ds) and we define
N(dx;ds) as the Poisson measure on R

k having compensator n. Generally, n with
or without a suffix will stand for a compensator of this type and N with the same
suffix denotes the corresponding Poisson measure.

As is the case for Lévy processes, any dispersive4 Lévy basis has a Lévy–Ito
representation

L(B) = a(B) + G(B) +
∫
|x|>1

xN(dx;B) +
∫
|x|≤1

x(N − n)(dx;B), (2.3)

where a is a, possibly signed measure, G(B) is a Gaussian independently scat-
tered random measure with G(B) ∼ N(0,m(B)), N is a Poisson measure, inde-
pendent of G and with compensator n(dx;ds) = E{N(dx;ds)}. This result is due
to Pedersen (2003). The notation used here is consistent with that of the Lévy–
Khintchine representation (2.2).

Remark 1. The representation (2.3) may conveniently be expressed in infinitesi-
mal form

L(ds) = a(ds) + G(ds) +
∫
|x|>1

xN(dx;ds) +
∫
|x|≤1

x(N − n)(dx;ds). (2.4)

Correspondingly we may write the Lévy–Khintchine representation (2.2) infinites-
imally as

C{ζ ‡ L(ds)} = ia(ds)ζ − 1

2
m(ds)ζ 2 +

∫ ∞
−∞

(
eiζx − 1 − iζx1[−1,1](x)

)
n(dx;ds)

= ia(ds)ζ − 1

2
m(ds)ζ 2 + C{ζ ‡ L′(s)}c(ds),

4A Lévy basis is said to be dispersive if its control measure c is such that c({s}) = 0 for all s ∈ R
k .
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where to each s ∈ R we have now associated an infinitely divisible random variable
L′(s) with Lévy–Khintchine representation

C{ζ ‡ L′(s)} =
∫ ∞
−∞

(
eiζx − 1 − iζx1[−1,1](x)

)
ν(dx; s).

We refer to L′(s) as the Lévy seed of L at s. By {L′
t (s)} we denote the Lévy process

generated by L′(s), that is, the Lévy process for which the law of L′
1(s) equals that

of L′(s). In case ν(dx; s) does not depend on s we identify the Lévy seeds, writing
L′ for L′(s).

When ν(dx; s) does not depend on s, the Lévy basis is said to be factorisable
and if, moreover, c is proportional to Lebesgue measure and a(s) and m(s) do not
depend on s then L is homogeneous. Note that to any infinitely divisible distribu-
tion there exists a homogeneous Lévy basis on R

k .

Example 1 (Inverse Gaussian basis). We recall that the inverse Gaussian law,
denoted IG(δ, γ ), is infinitely divisible with probability density function

δ√
2π

e−δγ x−3/2 exp
{
−1

2
(δ2x−1 + γ 2x)

}
, (2.5)

where x > 0 and the parameters satisfy δ > 0 and γ ≥ 0. This has Lévy density

1√
2π

x−3/2 exp
{
−1

2
γ 2x

}
(2.6)

and cumulant function

C{ζ } = −δγ + δ(γ 2 − 2iζ )1/2,

and a sum of independent observations from this law must consequently follow
the IG(nδ, γ ) distribution. Note also that, by the criterion for self-decomposa-
bility mentioned in Section 2.1, it is immediate that IG(δ, γ ) is, in fact, self-
decomposable.

An inverse Gaussian homogeneous Lévy basis L may now be specified by tak-
ing L(B) to have the IG(|B|δ, γ )law, where |B| is the Lebesgue measure of B .
More generally, a non-Gaussian Lévy basis whose seeds are of the form

ν(dx; s) = δ(s)√
2π

x−3/2 exp
{
−1

2
γ (s)2x

}
dx

will be referred to as an inverse Gaussian basis.

Example 2 (Normal inverse Gaussian basis). The normal inverse Gaussian dis-
tribution NIG(α,β,μ, δ) [Barndorff-Nielsen (1998)] equals the law at time 1 of
the process obtained by subordinating a Brownian motion of mean μ and drift β
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to the inverse Gaussian subordinator with law IG(δ, γ ) at time 1. It is the distribu-
tion on R having probability density function

p(x;α,β,μ, δ) = a(α,β,μ, δ)q

(
x − μ

δ

)−1

K1

{
δαq

(
x − μ

δ

)}
eβx (2.7)

where q(x) = √
1 + x2 and

a(α,β,μ, δ) = π−1α exp
{
δ

√
α2 − β2 − βμ

}
(2.8)

and where K1 is the modified Bessel function of the third kind and index 1. The
domain of variation of the parameters is given by μ ∈ R, δ ∈ R+, and 0 ≤ β < α.
The Lévy density is

δα

π
|x|−1K1(α|x|)eβx (2.9)

and the cumulant function has the form

C{ζ } = δ
{√

α2 − β2 −
√

α2 − (β + iζ )2
} + iμζ. (2.10)

A non-Gaussian Lévy basis is then determined by having L(B) ∼ NIG(α,β,

|B|μ, |B|δ). This is the homogeneous normal inverse Gaussian basis, the general
form of normal inverse Gaussian bases having Lévy seeds

ν(dx; s) = δ(s)α(s)

π
|x|−1K1(α(s)|x|)eβ(s)x dx. (2.11)

Integration of deterministic functions f with respect to an arbitrary Lévy basis
L is defined in Rajput and Rosiński (1989), where criteria for existence of the in-
tegral are also given. We denote such an integral by f • L. The resulting integral
is infinitely divisible with Lévy–Khintchine representation provided by Proposi-
tion 2.6 in Rajput and Rosiński (1989). In the above notation this can be written
as

C{ζ ‡ f • L} = −1

2

∫
Rd

f 2(s)m(s)c(ds) +
∫

Rd
C{ζf (s) ‡ a(s) + L′(s)}c(ds).

(2.12)

In the special case where a = m = 0 this reduces to

C{ζ ‡ f • L} =
∫

Rd
C{f (s)ζ ‡ L′(s)}c(ds) (2.13)

and the criteria for integrability of a (measurable) function f on R
k becomes∫

Rd

∫
R

min{1, |xf (s)|2}ν(dx; s)c(ds) < ∞ (2.14)

and ∫
Rd

∫
R

∣∣(1[−1,1](xf (s)) − 1[−1,1](x)
)
f (s)

∣∣ν(dx; s)c(ds) < ∞. (2.15)
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In particular, when

f (s) = 1B(s)

for some Borel subset B of R
k , condition (2.14) reduces to∫

R

min{1, |x|2}n(dx;B) < ∞ (2.16)

while condition (2.15) is vacuous. The domain of the Lévy basis can be extended
from Bb to the class Bext of Borel sets B in R

k for which (2.16) holds, by defining
L(B) for any B ∈ Bext\Bb through the Lévy–Ito representation (2.3). [The ex-
tended class of sets is generally not a σ -algebra; but both Bb and Bext are δ-rings.
Another possibility for extending the domain arises when L is square integrable,
see Barndorff-Nielsen, Benth and Veraart (2010a).]

The Rajput–Rosinski integration concept is restricted to deterministic func-
tions f , and it is desirable to have an integral that is more general and dynamic,
in the spirit of the Ito calculus and allowing integration of stochastic processes
with respect to random measures. An integration approach of this kind is under
development; see Basse-O’Connor, Graversen and Pedersen (2010) for a step in
this direction.

The Lévy basis L is said to be non-Gaussian if G = 0. In general we will treat
the Gaussian case, where L = G, and the non-Gaussian case separately, as these
two cases are somewhat different in nature.

In the non-Gaussian case

L(B) = a(B) +
∫
|x|>1

xN(dx;B) +
∫
|x|≤1

x(N − n)(dx;B), (2.17)

and so

C{ζ ‡ L(B)} = ia(B)ζ +
∫ ∞
−∞

(
eiζx − 1 − iζx1(−1,1)(x)

)
n(dx;B). (2.18)

When L is homogeneous this becomes

C{ζ ‡ L(B)} = ia(B)ζ + C{ζ ‡ L′}c(B) (2.19)

with

C{ζ ‡ L′} =
∫ ∞
−∞

(
eiζx − 1 − iζx1(−1,1)(x)

)
ν(dx).

For later reference we note that if, in (2.17),
∫ ∞
−∞(1 ∧ |x|)ν(dx) < ∞ and

a(B) =
∫ ∞
−∞

x1(−1,1)(x)n(dx;B)

then L can in fact be expressed more simply as

L(B) =
∫ ∞
−∞

xN(dx;B). (2.20)
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With probability 1, an arbitrary realisation of a Lévy basis of this type is in fact an
ordinary (in general signed) measure on R

k . (This property does not hold generally
for independently scattered random measures.)

Up till now we have implicitly assumed that the values L(B) of the Lévy basis
L are one-dimensional, belonging to ID(R). However the above theory extends
rather straightforwardly to m-dimensional Lévy bases L, that is where L takes
values in ID(Rm), the class of m-dimensional infinitely divisible distributions [cf.,
in particular, Pedersen (2003)].

3 Extended subordination and meta-times

Random time change of stochastic processes is a procedure of considerable in-
terest, both theoretically and in various applications; see Barndorff-Nielsen and
Shiryaev (2010). Of some special theoretical interest is the concept of subordina-
tion [Sato (1999), Bertoin (1999)]. As regards modelling and inference, mathe-
matical finance and financial econometrics provide important cases in point; see
Barndorff-Nielsen and Shiryaev (2010), Barndorff-Nielsen and Shephard (2011).

Let X be a d-dimensional Lévy process and let T be a subordinator, that is,
a nonnegative Lévy process on R+. The subordination of X by T , denoted Y =
X ◦ T , is obtained by timewise composition of X by T , that is Yt = XTt . This
concept can be extended to subordination of Lévy bases by positive Lévy bases,
and more generally to what may be called “meta-time change" of Lévy bases by
independent positive random measures. This type of construction is introduced
in Barndorff-Nielsen (2010) and Barndorff-Nielsen and Pedersen (2010), where
more detailed discussion can be found. Here we shall just indicate this approach.

So, again, let L be a Lévy basis on R
k with characteristic quadruplet (a,m,

ν(dx; ·), c) and Lévy–Ito representation (2.17). Let T be a nonnegative ran-
dom measure on (Rk, B) that is independent of L, and let L̂ be the random
measure that conditionally on T is a Lévy basis with characteristic quadruplet
(a,m, ν(dx; ·), T ). (Existence of L̂ requires a mild regularity assumption. Note
also that L̂ may take both positive and negative values.) Then, conditionally on T

the cumulant functional of L̂ is determined by

C{ζ ‡ f • L̂|T } =
∫

Rd

{
−1

2
f 2(s)m(s) + C{ζf (s) ‡ a(s) + L′(s)}

}
T (ds) (3.1)

while unconditionally

C{ζ ‡ f • L̂} = log E
{

exp
[
−1

2

∫
Rd

f 2(s)m(s)T (ds)

(3.2)

+
∫

Rd
C{ζf (s) ‡ a(s) + L′(s)}T (ds)

]}
.

Provided the random measure T is infinitely divisible the same is true of L̂, and if
T is homogeneous the same is true of L̂. We say that L̂ is the subordination the
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Lévy basis L by the meta-time T and, for explicitness, we also use the notation
L(ds � T ) for L̂(ds). This concept of meta-time change generalises, in particu-
lar, the usual concept of subordination of Lévy processes, as shown in Barndorff-
Nielsen (2010, Section 2.2).

We note that when a = m = 0 then, in terms of the log Fourier–Laplace trans-
form, formula (3.2) becomes

K{z ‡ f • L̂} = K
{
1 ‡ K{zf (·) ‡ L′(·)} • T

}
. (3.3)

This formula constitutes the generalisation to Lévy bases of the well-known com-
position relation [cf. for instance Bertoin (1999, Proposition 8.6)] of the Laplace
exponents for subordination of Lévy processes. Note also that the corresponding
conditional expression is

K{z ‡ f • L̂|T } = K{zf (·) ‡ L′(·)} • T =
∫

Rd
K{zf (·) ‡ L′(s)}T (ds). (3.4)

It follows, in particular, that if L is homogeneous then, for any B ∈ Bb(R
k), we

have

L̂(B)|T ∼ L′
T (B). (3.5)

Now suppose that T = L0 where L0 is a nonnegative and dispersive Lévy ba-
sis L0 on R

k+ with characteristic quadruplet (0,0, ν0(dx; s), c0(ds)). Then L0 has
Lévy–Ito representation

L0(ds) =
∫ ∞

0
xN0(dx;ds) (3.6)

with compensator

n0(dx;ds) = ν0(dx; s)c0(ds). (3.7)

The realisations of L0 are almost surely genuine measures on R
k+.

Theorem. Assume that L is purely non-Gaussian (i.e., a = m = 0) and that L0 is
as given by (3.6). Then the random measure L̂ is a Lévy basis with characteristic
quadruplet (ã,0, ν̂(dx; s), c0(ds)) where

ã(s) =
∫ ∞

0

∫ 1

−1
vP {L′

x(s) ∈ dv}ν0(dx; s),

ν̂(dv; s) =
∫ ∞

0
P {L′

x(s) ∈ dv}ν0(dx; s)

and {L′
x(s)}x∈R+denotes the Lévy process generated from the Lévy seed L′(s) of

L at s.
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Proof. By formula (3.3) we find

K{z ‡ f • L̂} = K
{
1 ‡ K{zf (·) ‡ L′(·)} • T

}
=

∫
Rd

K
{
K{zf (s) ‡ L′(s)} ‡ L′

0(s)
}
c0(ds)

=
∫

Rd
K

{
K{zf (s) ‡ L′(s)} ‡ L′

0(s)
}
c0(ds)

=
∫

Rd

∫ ∞
0

(
eK{zf (s)‡L′(s)}x − 1

)
ν0(dx; s)c0(ds)

=
∫

Rd

∫ ∞
0

(
M

(
zf (s) ‡ L′(s)

)x − 1
)
ν0(dx; s)c0(ds),

where M = eK denotes the Fourier–Laplace transform. It follows that

K{z ‡ f • L̂} =
∫

Rd

∫ ∞
0

(
M

(
zf (s) ‡ L′

x(s)
) − 1

)
ν0(dx; s)c0(ds)

=
∫

Rd

∫ ∞
0

∫ ∞
−∞

(
ezf (s)v − 1 − zf (s)v1[−1,1](v)

)
× P {L′

x(s) ∈ dv}ν0(dx; s)c0(ds)

+ z

∫
Rd

f (s)

∫ ∞
0

∫ 1

−1
vP {L′

x(s) ∈ dv}ν0(dx; s)c0(ds)

=
∫

Rd

∫ ∞
0

∫ ∞
0

(
eiζf (s)v − 1 − iζf (s)v1[0,1](v)

)
ν̂(dv; s)

+ z

∫
Rd

f (s)ã(s)c0(ds),

where

ã(s) =
∫ ∞

0

∫ 1

−1
vP {L′

x(s) ∈ dv}ν0(dx; s)
and

ν̂(dx; s) =
∫ ∞

0
P {L′

x(s) ∈ dx}ν0(dx; s),
thus verifying the theorem. �

Remark 2. It follows from formula (3.5) [or by comparing (3.8) to Huff (1969);
cf. also Theorem 30.1 of Sato (1999)] that the Lévy seeds of L, L0 and L̂ are
related by L̂′ = L′ ◦ L′

0 where the latter formula is to be understood as saying that
for (almost all) s ∈ R

k the Lévy process generated by L̂′(s) is equal (in law) to
the subordination of the Lévy process generated from L′(s) by the subordinator
generated by L′

0(s).
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Remark 3. Theorem 1 concerns the case of L being non-Gaussian. On the other
hand, if L is Gaussian white noise (i.e., a = 0, m = 1 and ν = 0), then L̂ is non-
Gaussian with compensator ν̂(dx; s)c0(ds) where

ν̂(dx; s) =
∫ ∞

0
ϕ(x;u)ν0(du; s)dx,

ϕ(x;u) denoting the density of the Gaussian law of mean 0 and variance u. As an
example, suppose that L0 is the homogeneous IG(δ, γ ) basis. Then L̂ is, in law,
equal to the homogeneous NIG(δ,0, γ,0) basis.

Now suppose that τ is an infinitely divisible nonnegative random field on R
k and

let T (B) = ∫
B τ(s)ds. If L is a Lévy basis on (Rk, Bb(R

k)) having characteristic
quadruplet (0,0, ν(dx; s),ds) then L(ds dξ � T ) is an infinitely divisible random
measure on (Rk, Bb(R

k)) provided

n̂(dx;B) =
∫
B

ν(dx; s)τ (s)ds (3.8)

is a Lévy measure for all B ∈ Bb(R
k).

Assume in particular that τ is of the form

τ(s) =
∫

Rq
J (u; s)�(du)

for some Lévy basis � on R
q with characteristic quadruplet (0,0, κ(dx;u),du).

Then

K{zf (·) ‡ L′(·)} • T =
∫

Rk
K{zf (s) ‡ L′(s)}

∫
Rq

J (u; s)�(du)ds

=
∫

Rq
Hf (u)�(du),

where

Hf (u) =
∫

Rk
K{zf (s) ‡ L′(s)}J (u; s)ds. (3.9)

Hence we have [cf. (3.4)]

K{z ‡ f • L̂} =
∫

Rq
K{Hf (u) ‡ �′(u)}du. (3.10)

We proceed to illustrate formula (3.10) by two further examples. More advanced
applications of extended subordination are discussed in Section 7.2.

Example 3. Let C ∈ B(Rk) and let

τ(s) = exp
(
G(C + s)

)
,

where G is the homogeneous Gaussian Lévy basis on R
k with mean and vari-

ance parameters κ1 and κ2. This type of intermittency/volatility field is of spe-
cial interest in the context of turbulence; cf. Barndorff-Nielsen and Schmiegel
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(2004), as—by suitable choice of B—it can be seen as an embodiment of the
vortex cascade picture of turbulence and because it allows explicit calculations
of tempo-spatial correlators. The field τ is not only infinitely divisible but in
fact self-decomposable, due to the fact that the log normal distribution is self-
decomposable, as proved by Thorin via the important introduction of the concept
of generalised gamma convolutions; see Bondesson (1992).

Example 4. Suppose q = k and

τ(s) = �(s − C),

where C is an arbitrary element of Bb(R
k). This corresponds to having J (u; s) =

1C(u − s) and hence

Hf (u) =
∫
u+C

K{zf (s) ‡ L′(s)}ds

and

K{z ‡ f • L̂} =
∫

Rk
K

{∫
u+C

K{zf (s) ‡ L′(s)}ds ‡ �′(u)

}
du.

In case both L and � are homogenous this reduces to

K{z ‡ f • L̂} =
∫

Rk
K

{∫
u+C

K{zf (s) ‡ L′}ds ‡ �′(u)

}
du.

Taking f (s) = 1B(s) for some B ∈ Bb(R
k) yields K{z ‡ f • L̂} = K{z ‡ L̂(B)} and∫

u+C
K{zf (s) ‡ L′}ds = K{z ‡ L′}|(u + C) ∩ B|

and hence

K{z ‡ L̂(B)} =
∫

Rk
K

{
K{z ‡ L′}|(u + C) ∩ B| ‡ �′(u)

}
du.

The above discussion is at the distributional level. A constructive procedure,
that introduces a concept of meta-time change and allows dynamic process formu-
lations is presented in Barndorff-Nielsen and Pedersen (2010). More specifically,
given a nonnegative Lévy basis T of the form (3.6) we define, constructively from
T , a mapping T from R

k+ to R
k in terms of which L̂ may be expressed as

L̂(B) = L(T(B)).

4 Ambit stochastics

This section first, in brief, reviews the ideas of ambit fields and processes, intro-
duced in Barndorff-Nielsen and Schmiegel (2004, 2007) and further discussed in
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Barndorff-Nielsen and Schmiegel (2009), Barndorff-Nielsen, Benth and Veraart
(2011, 2010b). This is followed by a discussion of the relevance of the concept
of extended subordination, from Section 3, to ambit stochastics. Connections to
modelling by stochastic partial differential equations (SPDEs) and to mixed mov-
ing averages are also indicated. Finally, questions of inference for ambit processes
are discussed briefly. Most of the processes considered in this paper can be viewed
as special ambit types.

The general background setting for the concept of ambit processes consists of
a stochastic field Y = {Yt (x)} in space–time R×X , a curve τ(θ) in R×X , and
the values Xθ of the field along a parametrised curve, the focus being on the dy-
namic properties of the stochastic process X = {Xθ }. Here the space X is often,
but not necessarily, taken as R

d for d = 1,2 or 3. The stochastic field is supposed
to be generated by innovations in space–time and the values Yt (x) are assumed
to depend only on innovations that occur prior to or at time t . More precisely,
at each point (t, x) only the innovations in some subset At(x) of Rt×X (where
Rt = (−∞, t]) are influencing the value of Yt (x), and we refer to At(x) as the am-
bit set, associated to (t, x), and to Y and X as an ambit field and an ambit process,
respectively.

Specifically, with X = R
d , an ambit field is defined, up to an additive constant,

by

Yt (x) =
∫
At (x)

g(ξ, s;x, t)σs(ξ)L(ds,dξ) +
∫
Dt(x)

q(ξ, s;x, t)τs(ξ)ds dξ, (4.1)

where the ambit sets At(x), and Dt(x) are subsets of (−∞, t]×R
d , g and q are de-

terministic damping functions, σ ≥ 0 is a stochastic field referred to as the volatil-
ity or intermittency, and L is a Lévy basis. Furthermore, τ is another stochastic
field, often chosen as τ = σ 2 when L is the Gaussian white noise.

An ambit process is then the realisation of Y along a curve γ (θ) = (t (θ), x(θ))

in R × R
d , with t (θ) increasing in θ, from minus infinity to plus infinity. Note

that, in general, ambit processes are not semimartingales [cf. Barndorff-Nielsen
and Schmiegel (2009)]. Many of the standard tools from semimartingale theory are
therefore not applicable in the study of ambit stochastics and alternative methods
are required.

At the present level of generality we take the integrals in (4.1) to be defined
in the sense of independently scattered random measures [cf. Rajput and Rosiński
(1989)], assuming that g, σ , q and τ are sufficiently regular for the integrals to
exist. However, in more concrete cases it is often of interest to establish whether
the definition of the integrals can be sharpened to a more dynamical version, for
instance in the spirit of Itô-type integrals, and allowing integrands that are not
necessarily independent of the random integrator measure (here L). The paper of
Basse-O’Connor, Graversen and Pedersen (2010) represents a step towards such
an integration theory.
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Of particular interest are ambit processes that are stationary in time and nonan-
ticipative. More specifically, they may be derived from ambit fields Y of the form

Yt (x) =
∫
At (x)

g(ξ, t − s;x)σs(ξ)L(ds,dξ) +
∫
Dt (x)

q(ξ, t − s;x)τs(ξ)ds dξ.

(4.2)
Here the ambit sets At(x), and Dt(x) are taken to be homogeneous and nonan-
ticipative, that is, At(x) is of the form At(x) = A + (x, t) where A only involves
nonpositive time coordinates, and similarly for Dt(x). Note that the field (4.2) will
also be stationary in the space variable x if the fields σ and τ are stationary and if
the kernel g is in fact of the form g(t − s, x − ξ) and the analogous holds for q.

The class of ambit processes also encompasses that of mixed moving averages
which are stationary processes of the form

Yt =
∫

X ×R

f (t − s, ξ)L(ds dξ). (4.3)

For a discussion of such processes see the following Sections 5–7.
Now, while the multiplicative position of σ to the basis L in (4.2) goes natu-

rally together with L when L is Gaussian or more generally stable, this is less so
in general, and there are advantages in interpretation and calculation in—instead
of having σL as the integrator—using L̂ obtained by subordinating L to a ran-
dom meta-time T , in the sense defined in Section 3 and such that T is absolutely
continuous with density τ = σ 2. In particular, the dependence structure in Y is
then relatively simple to describe. Note that in the Gaussian and stable cases the
result of the multiplicative approach σL can equally be achieved by the extended
subordination. We develop this aspect in Section 7.2.

Many prominent tempo-spatial models are constructed from an ordinary, partial
or fractional differential equation by adding a noise term, for instance in the form
of white noise, to the equation. The solution to the equation then being often rep-
resentable as an integral with respect to the noise of the Green’s function of the
original deterministic differential equation. Thus the solution is taking the form
of an ambit process. For some examples with discussion, see Barndorff-Nielsen,
Benth and Veraart (2011). Here is a further example.

Example 5. The stochastic heat equation

∂tu = 1

2
∂2
xu + Ẇ (x, t),

where Ẇ (x, t) is white noise, has a solution

u(t, x) =
∫
[0,t]×R

ϕ(x − ξ ; t − s)W(ds dξ),

where ϕ is the normal density of mean 0 and variance t and W is the white Lévy
basis on R × R.
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As discussed in Burdzy and Swanson (2010), for fixed x the stationary pro-
cess {u(t, x)}t∈[0,∞) has a nontrivial quartic variation and hence is not a semi-
martingale. Consequently a stochastic integral with respect to this process cannot
be defined in the classical Ito sense. However, the authors define another type of
stochastic integral for this case, which exists as a limit of a certain type of Riemann
sums and satisfies a change of variable formula with a correction term that is an
ordinary Ito integral with respect to a Brownian motion which is independent of
the process u itself.

Note that, in contrast to modelling by SPDEs, the ambit approach defines the
system dynamics directly. It also differs in specifically including the ideas of ambit
sets and stochastic volatility/intermittency fields. Such fields play a key role in
many areas of science, particularly in the contexts of turbulence and finance.

Let Y = {Yt (x)} be an ambit field as given by (4.2). Realisations of such a
field are rarely directly observable, but time series observations from one or more
ambit processes embedded in Y may be available. The question is then what
type of inference can be drawn on the elements in Y from observations of this
kind, in particular about the damping function g and the volatility/intermittency σ .
A key tool for this is the theory of realised quadratic and multipower variations,
as developed, from specific problems of finance and turbulence. As mentioned
earlier, ambit processes are generally not of the semimartingale type. The the-
ory of multipower variations provides probabilistic and distributional limit laws
in both semimartingale and nonsemimartingale settings, but the mathematical the-
ory is quite different in the two cases, in particular drawing heavily on recent re-
sults in Malliavin calculus under nonsemimartingale specifications. See Barndorff-
Nielsen and Shephard (2002, 2003, 2004), Barndorff-Nielsen et al. (2006a, 2006b),
Jacod (2008a, 2008b), Barndorff-Nielsen, Corcuera and Podolskij (2009, 2010),
Barndorff-Nielsen and Graversen (2010).

5 Spectral representability

In a variety of situations there are considerable gains in interpretability and
tractability if a given stochastic object—a probability distribution, a stochastic
process, etc.—can be expressed as some simple combination of more elemental
objects. One such type of reformulation consists in representing a stochastic pro-
cess as a random time change of a basic kind of process, for instance time change
of a compound Poisson process or a Brownian motion with drift [for a systematic
discussion of this, see Barndorff-Nielsen and Shiryaev (2010)]. Another is that of
representing important classes of infinitely divisible probability laws as stochastic
integrals with respect to Lévy processes; see Barndorff-Nielsen, Maejima and Sato
(2006a), Sato (2007), Maejima, Pérez-Abreu and Sato (2010) and references given
there.
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The simplest general example of a spectral representation result for continuous
time stationary processes is the continuous time Wold–Karhunen decomposition.
It says that any second-order stationary stochastic process Z, possibly complex
valued, of mean 0 and continuous in quadratic mean can be represented as

Zt =
∫ t

−∞
φ(t − s)d�s + Vt , (5.1)

where the deterministic function φ is an in general complex, deterministic square
integrable function, the process � has orthogonal increments with E{|d�t |2} =
� dt for some constant � > 0 and the process V is nonregular (i.e., its future
values can be predicted, in the L2 sense, by linear operations on past values without
error). Under the further condition that

⋂
t∈R sp{Zs : s ≤ t} = {0}, the function φ

is real and uniquely determined up to a real constant of proportionality; and the
same is therefore true of � (up to an additive constant). If the spectral measure
of the autocorrelation function of Z is absolutely continuous then V in the above
representation is 0 and we have a second-order spectral decomposition.

However, explicit expressions for the kernel φ are rarely available (but some
cases where such expressions have been determined are reviewed in Section 6.1).
Furthermore, the Wold–Karhunen representation is in the L2sense only and a fur-
ther important restriction is that it does not involve a spatial component in the
integral, such as is the case generally in (1.1) and (4.3). In fact, even in the case
of square integrability it is generally not possible to represent all properties of a
strictly stationary infinitely divisible process by the Wold–Karhunen formula.

The general question of spectral representations of infinitely divisible processes
is discussed in a basic and detailed way in the seminal paper by Rajput and
Rosiński (1989). These authors set up two criteria that such representations should
ideally meet and showed how in principle that may be achieved, establishing as
part of the discussion the integration approach outlined above in Section 2.2. In
general the representations are, formally written, of the type

Y =
∫

f dL (5.2)

with f deterministic and L a Lévy basis. The extent to which such representations
are valid not only in law but almost surely is also considered in Rajput and Rosiński
(1989). However, like in the case of the Wold–Karhunen representation, explicit
expressions of the ingredients f and L are rarely available. In Basse (2009) a
detailed study is given of necessary and sufficient conditions on the kernel f in
(5.2) for the process Y to be a semimartingale.

When Y is stationary the relevant type of spectral representation is in the form
of a mixed moving average

Yt =
∫

R×X
f (t − s, ξ)L(ds dξ), (5.3)
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where X is a nonempty set and L a Lévy basis on R×X . In general, to obtain a
representation of this type for a given SID process Y it is necessary to include the
X component in (5.3).

Using characterisation and properties of flows available from ergodic theory,
Rosiński (1995) has shown that not all symmetric α stable stationary processes
can be represented as in (5.3), with L being a symmetric α stable Lévy basis,
and he has given a criterion [Corollary 4.2 in Rosiński (1995)] for when such a
representation is possible.

Finally, in Rosiński (2007) the author shows, using the theory of Upsilon
transformations [cf. Barndorff-Nielsen, Rosinski and Thorbjørnsen (2008)], that
a broad range of non-Gaussian infinitely divisible stationary processes can be rep-
resented on the form

Yt =
∫

S
f (φt (s)){M(ds) − c(f (φt (s)))m(ds)},

where φt is a measure preserving flow on a Borel space (S, B(S),m), M is a Lévy
basis on S and c is a specified centering function. Classes of processes whose finite
dimensional laws are stable or tempered stable or self-decomposable are among
the cases covered by this formula.

Further links to mixed moving averages occur in Sections 6 and 7 below.

6 Null-spatial settings

The present section reviews, in brief, two important types of one-dimensional SID
processes, both of which are particular cases of the ambit class.

6.1 OU and closely related processes

SID processes that are also Markovian are clearly of special interest. The most
important of these are the OU processes.

A one-dimensional SID process Y is to said be an OU process if it is repre-
sentable in law as

Yt =
∫ t

−∞
e−λ(t−s) dLt, (6.1)

where L is a Lévy process on R. Recall that a random variable X is said to be self-
decomposable if and only if it is representable as in (2.1) or, equivalently, if and
only if the characteristic function φ of X is such that for every constant c ∈ (0,1)

there exists a characteristic function φcfor which φ(t) = φ(ct)φc(t).
The basic theory of OU processes is presented in detail in the monograph by

Sato (1999). For some of the later developments, including multivariate versions,
superpositions of OU processes and doubly stochastic (or generalised) OU pro-
cesses, see Barndorff-Nielsen and Pérez-Abreu (1999), Barndorff-Nielsen (2001),
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Rocha-Arteaga and Sato (2003), Barndorff-Nielsen, Maejima and Sato (2006a),
Barndorff-Nielsen and Stelzer (2011a), Behme, Lindner and Maller (2011) and
references given there. For applications to financial econometrics, see Barndorff-
Nielsen and Shephard (2001, 2011), Barndorff-Nielsen and Stelzer (2011b) and
Barndorff-Nielsen and Veraart (2011).

OU processes are the continuous time analogue of AR(1) time series. More
generally, continuous time versions of ARMA models, called CARMA processes,
and some ramifications of these, are introduced and discussed in Brockwell
(2001, 2004), Brockwell and Marquardt (2005), Marquardt and Stelzer (2007) and
Brockwell and Lindner (2007). Like the OU case, the CARMA processes are Lévy
driven, that is, they are representable as integrals of suitable deterministic kernels
with respect to a Lévy process.

A one-dimensional OU process (6.1) is the stationary solution to the stochastic
differential equation

dYt = −λYt dt + dLt, (6.2)

where L is a Lévy process. Positive stationary solutions to this SDE are obtained
when L is a subordinator, that is, a process with positive increments, and such
solutions are used in particular to model the random fluctuations of the latent vari-
ance, that is, the volatility, of financal assets, such as stock prices or exchange
rates, see Barndorff-Nielsen and Shephard (2001, 2011) and references there. In
recent years it has been realised that an additional layer of volatility, referred to as
volatility of volatility, is called for to explain the actual fluctuations of such assets.
A natural approach to model this is to introduce a further layer of variation through
volatility modulation in (6.2). The most tractable way to do this is by replacing the
background driving Lévy process by a time changed version of this where the time
change is the integral of another, independent, positive OU process. For a dis-
cussion of this and of alternative kinds of modulation see Barndorff-Nielsen and
Veraart (2011).

The SDE (6.2) for OU processes is a special case of the generalised Langevin
equation

dYt = −λYt dt + dNt, (6.3)

where N denotes a process with stationary, in general not independent, incre-
ments. When N is not a Lévy process we refer to stationary solutions of (6.3)
as quasi Ornstein–Uhlenbeck (QOU) processes. Existence and properties of QOU
processes is discussed in Barndorff-Nielsen and Basse-O’Connor (2009). In the
case of square integrability such a process can in principle be represented by the
Wold–Karhunen decomposition but this embodies the L2 aspects only and more-
over an explicit form of the kernel function φ in (5.1) is seldomly available; cf.
Section 5. A class of instances where an explicit expression can be given is pre-
sented in Barndorff-Nielsen and Basse-O’Connor (2009). More specifically, sup-
pose that the driving process N has a pseudo moving average representation in the



Stationary infinitely divisible processes 313

sense that

Nt =
∫

R

(
f (t − s) − f (s)

)
dZs (6.4)

for some deterministic function f and an integrable and centered Lévy process Z.

Then there exists a stationary solution Y to the generalised Langevin equation (6.3)
and Y has a moving average representation

Yt =
∫

R

ψf (t − s)dZs,

where the function ψ is given by

ψf (t) = f (t) − λe−λt
∫ t

−∞
eλsf (s)ds.

An example in point is where f (t) = cH tH−1/α , for some constants cH > 0 and
H ∈ (0,1), and where Z is an α-stable Lévy process. Then N is a linear fractional
α-stable motion and Y is a so-called fractional OU process.

It is clear from the very definition (2.1) of self-decomposability that no integer
valued infinitely divisible distribution can be self-decomposable. A concept of dis-
crete self-decomposability, somewhat analogous to ordinary self-decomposability,
that holds for certain types of discrete elements of ID(R), was introduced by Steu-
tel and van Harn and is discussed in considerable detail in Bondesson (1992) and
Steutel and van Harn (2004). This concept was generalised by Zhu and Joe (2003)
and applied to the construction of a discrete analogue of OU processes. These
discrete OU processes are Markovian and infinitely divisible and, like their contin-
uous counterparts, have negative exponential autocorrelation functions provided
they are square integrable. Examples include processes with negative binomial
marginal law, in particular a linear birth and death process. The discrete analogue
of the defining relation (2.1) of self-decomposability expresses the possibility of
representing an integer valued random variable X as

X
law=

X∑
j=0

Zj(c) + �c

for a continuum of values of the index c, say c ∈ (0,1), and where, given any such
value, the integer valued random variables Zj(c) are independent and identically
distributed and independent of the random variable �c. This idea is closely related
to binomial thinning.

6.2 Brownian and Lévy semistationary processes

Brownian semistationary processes, B S S processes for short, were defined
[Barndorff-Nielsen and Schmiegel (2009)] as processes Y = {Yt }t∈R that, up to
an additive constant, are representable as

Yt =
∫ t

−∞
g(t − s)σs dBs +

∫ t

−∞
q(t − s)as ds, (6.5)
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where B is Brownian motion, g and q are nonnegative deterministic functions
on R, with g(t) = q(t) = 0 for t ≤ 0, and ω and a are càdlàg processes. The
process Y is stationary provided σ and a are stationary, as we henceforth assume.
In Barndorff-Nielsen and Schmiegel (2009) this type of process was introduced in
the context of modelling turbulence in fluids.

Subject to a regularity condition, the B S S processes have conditional full sup-
port, a property of importance in mathematical finance; see Pakkanen (2010).

Substituting the Brownian motion in (6.5) by a general Lévy motion gives rise
to the class L S S of Lévy semistationary processes, that is, processes of the form

Yt =
∫ t

−∞
g(t − s)σs dLs +

∫ t

−∞
q(t − s)as ds (6.6)

or

Yt =
∫ t

−∞
g(t − s)dLτs +

∫ t

−∞
q(t − s)as ds, (6.7)

where τ denotes an increasing càdlàg process with stationary increments. Such
processes are used in Barndorff-Nielsen, Benth and Veraart (2010a) to model spot
prices in finance.

Note that (6.6) can be rewritten in the form (6.7) provided L is a stable motion,
in particular Brownian motion, but in general not otherwise.

L S S and in particular B S S processes are generally not of the semimartingale
type. Therefore new tools are being developed to handle them, in regard both
to their dynamic properties and questions of inference on the various elements
of their structure; see Barndorff-Nielsen, Corcuera and Podolskij (2009, 2010),
Basse-O’Connor, Graversen and Pedersen (2010), Barndorff-Nielsen and Gra-
versen (2010). [For a discussion of the canonical decomposition of stationary
Gaussian semimartingales, see Basse (2010).]

Here we briefly comment on the nonsemimartingale question. A classical
necesssary and sufficient condition, due to Knight (1992), for the process Y to
be a semimartingale, valid in the special simple situation where σ = 1, a = 0,
and L equals the Brownian motion B , says that (Yt )t≥0 is a semimartingale in the
Brownian filtration if and only if

g(t) = c +
∫ t

0
b(s)ds (6.8)

for some c ∈ R and a square integrable function b. More generally, one may ask
under what conditions quasi moving average processes of the form

Xt =
∫ ∞
−∞

(
g(t − s) − h(−s)

)
dBs

with g and h deterministic, are semimartingales; specifically, when is (Xt)t≥0
a (F X

t )t≥0-seminartingale, where F X
t is the σ -algebra generated by {Xs, s ≤ t}.
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Constructive necessary and sufficient conditions for this are given in a recent pa-
per by Basse; see Basse (2008). At a further level of generalisation, Basse and
Pedersen (2009), consider processes X of the general form

Xt =
∫ t

−∞
(
φ(t − s) − ψ(−s)

)
dLs,

where L is a (two-sided) nondeterministic Lévy process with characteristic triplet
(γ, σ 2, ν) and φ and ψ are deterministic functions. These authors establish various
necessary conditions on (γ, σ 2, ν) and φ, ψ in order for (Xt)t≥0 to be an (F L

t )t≥0-
semimartingale.

For the case where the driving Lévy process in (6.6) is the Brownian motion and
σ and a are stationary a set of sufficient conditions for Y to be a semimartingale
are [Barndorff-Nielsen and Schmiegel (2009)]: (i) g(0+) and q(0+) exist and are
finite; (ii) g is absolutely continuous with square integrable derivative ġ; (iii) the
process ġ(−·)σ· is square integrable; (iv) the process q̇(−·)a· is integrable. These
conditions must be close to necessary as well; cf. the above-mentioned results by
Knight and Basse.

7 Tempo-spatial settings

Having discussed the null-spatial case, we now turn to consider a few aspects of
genuinely tempo-spatial ambit settings. The section is divided into three subsec-
tions: on OU related processes, on volatility modulation, and on a new type of
ambit processes called trawlings.

7.1 OU and closely related processes

One-dimensional processes of OU and supOU type were discussed in Section 6.1.
Multivariate, in particular matrix valued, versions of these, using the concept of
matrix subordinators [Barndorff-Nielsen and Pérez-Abreu (2008)], are considered
in Barndorff-Nielsen and Stelzer (2011a, 2011b) and Moser and Stelzer (2010),
and those papers also discuss the application of such processes to stochastic volatil-
ity modelling, extending the OU-based modelling introduced in Barndorff-Nielsen
and Shephard (2001). Following the initial approach to the definition of one-
dimensional supOU [Barndorff-Nielsen (2001)] the multivariate supOU processes
are represented as mixed moving averages [cf. (5.3)]. Specifically, a d-dimensional
supOU process is defined as a process of the form

Yt =
∫
M−

d

∫ t

−∞
eA(t−s)L(ds,dA),

where M−
d denotes the set of d×d real matrices whose spectrum is contained in

the negative complex halfplane and L is an R
d -valued Lévy basis on R×M−

d with
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generating quadruplet (a,m, ν(dx),ds × π(d·)) such that π is a probability mea-
sure on M−

d and ∫
‖x‖>1

log(‖x‖)ν(dx) < ∞.

In Barndorff-Nielsen and Schmiegel (2004) the concept of OU processes (6.1)
[see also Barndorff-Nielsen and Schmiegel (2007)] is extended in a tempo-spatial
setting to processes denoted OU∧. These are defined through integration back-
wards in time over wedge shaped regions and with negative exponential weighing,
the integration being with respect to nonnegative homogeneous Lévy bases on
R × R

d . This type of extension is motivated in the aim to model the energy dis-
sipation (or intermittency/volatility) in homogeneous turbulent fluids. The OU∧
processes are Markovian in character and allow for explicit calculations.

A direct multiparameter extension of the one-dimensional OU process (6.1) to

Yt· =
∫
s·≤t·

e−(t+−s+)L(ds·),

where t· = (t1, . . . , tk), t+ = t1 + · · · + tk and L is a homogeneous Lévy basis on
R

k+ is introduced in Graversen and Pedersen (2010) and related to the Urbanik
subclasses of Lévy and OU processes.

7.2 Volatility modulation

In stochastic modelling it is often natural to start by specifying a relatively sim-
ple model where the stochastic input only consists of independent and identically
distributed innovations, afterwards making the model more realistic by volatility
modulation, that is, by introducing additional stochastic variation to reflect the
fact that the phenomenon modeled exhibits varying degrees of variation over time
and/or space. We have touched upon the role of volatility/intermittency above, par-
ticularly in Sections 3 and 4, and we now return to the possibility, indicated there,
of volatility modulation by extended subordination.

Consider first a general specification of a stochastic process without volatility
element

Xt =
∫

Rk
Kt (s)L(ds),

where K is a deterministic function and L a Lévy basis on R
k with characteris-

tic quadruplet (0,0, ν(dx; s),ds); such a process is referred to as a Lévy-driven
Volterra process. Then for a general measure μ on R we have

μ(X·) =
∫

Rk
μ(K·(s))L(ds) = μ(K·(·)) • L

and the kumulant functional of X (which determines the law of the process X

uniquely) is

K{z ‡ μ(X·)} =
∫

Rk
K{zK·(s) ‡ L′(s)}ds = K{z ‡ μ(K·(·)) • L}
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[where L′(s) is the seed of L at s as defined in Section 3].
Next we introduce stochastic volatility by changing X to X̂ defined by

X̂t =
∫

Rk
Kt (s)L̂(ds)

where L̂(ds) = L(ds �T ) for some meta-time T on R
k . Then, conditionally on T ,

K{z ‡ μ(X̂·)|T } =
∫

Rk
K{zK·(s) ‡ L′(s)}T (ds). (7.1)

Suppose in particular that T is absolutely continuous with density τ of the form

τ(s) =
∫

Rq
J (u; s)�(du) (7.2)

for a Lévy basis � on R
q with characteristic quadruplet (0,0, κ(dx;u),du). Then,

in view of (7.1), we find that the kumulant functional of X̂ can be written as

K{z ‡ μ(X̂·)} =
∫

Rq
K

{∫
Rk

K{zμ(K·(s)) ‡ L′(s)}J (u; s)ds ‡ �′(u)

}
du. (7.3)

In case L is homogeneous this reduces to

K{z ‡ μ(X̂·)} =
∫

Rq
K

{∫
Rk

K{zμ(K·(s)) ‡ L′}J (u; s)ds ‡ �′(u)

}
du (7.4)

and if further � is homogeneous we obtain the following expression for the kumu-
lant functional of the volatility modulation of X by τ :

K{z ‡ μ(X̂·)} =
∫

Rq
K

{∫
Rk

K{zμ(K·(s)) ‡ L′}J (u; s)ds ‡ �′
}

du. (7.5)

For illustration, we here apply this to the main element of the ambit setting, that
is, where the ambit field is

Yt (x) =
∫
At (x)

g(ξ, t − s;x)σs(ξ)L(dξ,ds). (7.6)

But, instead of having the volatility entering as the factor σs(ξ), we now introduce
it as the field

τ(s, ξ) = σ 2
s (ξ) (7.7)

in the above setup with R
k = R

q = R × R
d . Thus we modify the ambit field (7.6)

into

Ŷt (x) =
∫
At (x)

g(t − s, ξ ;x)L̂(ds dξ), (7.8)

where L̂(ds dξ) = L(ds dξ � T ) and T has density τ . More specifically, we take
At(x) = A + (t, x) with A ⊂ (−∞,0]×R

d , and τ of the form

τ(s, ξ) =
∫

R×R
d
H(s − u, ζ ; ξ)�(dudζ )
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for some deterministic kernel H and with � homogeneous. This, in particular,
ensures timewise stationarity of Ŷt (x)for any given x. Then, letting

Gt(s, ξ ;x) = 1At (x)(s, ξ)g(t − s, ξ ;x),

we have

K{z ‡ μ(Ŷ·(x))} =
∫

R×R
d

K
{∫

R×R
d

K{zμ(G·(s, ξ ;x)) ‡ L′}
(7.9)

× H(s − u, ζ ; ξ)ds dξ ‡ �′
}

dudζ,

the kumulant functional of the modulation of {Yt (x)}t∈R by τ .

7.3 Trawling

We now define and discuss what we propose to call trawling processes. These in-
clude particular types of ambit processes and are generally based on homogeneous
random fields.

Initially, consider the special case of homogeneous ambit fields Y = {Yt (x)} on
R × R

d for which both the kernel function g and the volatility field σ are constant
and equal to 1, and note that, with respect to the Lévy basis L of Y , we have that
Bext(R × R

d) = {A ∈ B(R × R
d) : |A| < ∞}. Then, for any set A ∈ Bext(R × R

d)

and letting At = A + (t,0), the specification

Yt =
∫

R×R
d

1A(t − s, ξ)L(ds dξ) = L(At),

where L is a homogeneous Lévy basis with values in ID(Rm), determines an m-
dimensional SID process Y . The condition |A| < ∞ ensures the existence of the
integral in the Rajput–Rosinski sense, and Y is an ambit process provided A ⊂
(−∞,0] × R

d . We shall say that Y is a trawling process with trawl A.

Proposition. To any infinitely divisible law q ∈ ID(Rk) there exist trawling SID
processes having one-dimensional marginal law q .

Proof. By formula (2.19), the law of Yt has cumulant function

C{ζ ‡ Yt } = |A|C{ζ ‡ L′}, (7.10)

from which the statement follows directly. �

The dependence structure of a one-dimensional trawling process Y with trawl
A is reflected in the autocorrelator function

r(u) = |A ∩ Au|.
Clearly, in case L′ has mean 0 and variance 1 then r is the autocorrelation function
of Y . A great variety of autocorrelators can be constructed by suitable choice of
the trawl A.
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Example 6. Suppose that

−A = {(s, ξ) : s > 0, ξ ∈ (−a(s), a(s))} (7.11)

where a is a positive strictly decreasing function on (0,∞) such that |A| < ∞.
For the inverse a−1 of a we have a−1(0) = ∞ and we let a−1(ξ) = 0 in case
ξ /∈ (−a(0), a(0)). Then

|A0 ∩ Au| = 2
∫ ∞
u

a(s)ds.

In particular, taking a(s) = λ
2e−λs we have r(u) = |A0 ∩ Au| = e−λu. Thus, in

this case, if L′ is square integrable with mean 0 then the trawling process has the
same autocorrelation function as an OU process. In contrast to OU processes, the
trawling processes are not Markovian; on the other hand, the assumption of self-
decomposability is not needed in the definition of trawling processes; cf. the above
proposition.

More generally, we may define multidimensional SID trawling processes Y =
(Y (1), . . . , Y (m)) by arbitrarily choosing points x1, . . . , xm from R

d and trawls
A(1), . . . ,A(m) and letting

Y
(j)
t =

∫
R×R

d
1A(i)(t − s, ξ − xj )L(ds dξ) = L

(
A

(j)
t

)
for i = 1, . . . ,m and where A

(j)
t = A(j) + (t, xj ). We define the autocorrelator

between Y (i) and Y (j) by

rij (u) = ∣∣A(i)
0 ∩ A(j)

u

∣∣,
where A

(j)
u = A(j) + (u,0).

Extending the above definition, by a trawling process we mean a process of the
form

Yt = M
(
A + (t,0)

)
for some A ∈ Bb(R × R

d) and where M is a homogeneous infinitely divisible
random measure on (R × R

d, Bb(R × R
d)).

This applies in particular to subordinated Lévy bases M(ds dξ) = L(ds dξ �
T ). Typically, see Section 7.2, such a basis is constructed from a homogeneous
Lévy basis L by introducing a stochastic volatility/intermittency in the model, via
extended subordination.
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