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Comment on Article by Polson and Scott

Chris Hans∗

1 Overview

What at first may appear to be “just” a clever bit of calculus turns out to cast a new
light on the support vector machine (SVM). I would like to congratulate Nicholas Polson
and Steven Scott on an interesting paper that opens a door to many new applications of
the SVM. The representation of the SVM pseudo-likelihood as a mean-variance mixture
of normals is by no means obvious (to most of us!). Placing the SVM in this framework
provides an easy mechanism for developing principled Bayesian models around the core
SVM structure. This may well lead to interesting new methods for high-dimensional
classification; the spike-and-slab prior extensions in Section 4.2 and the application
thereof in Section 5 are a promising start down this path.

A potential criticism of the paper (that you won’t hear from me) is: Why use EM
or MCMC when convex optimization is so fast? Criticisms along this line, that focus
solely on computational efficiency, miss the importance of the work. Anticipating such
criticisms, Polson and Scott remark in the introduction that “these algorithms replace
the conventional convex optimization algorithm for SVM’s, which is fast but unfamiliar
to many statisticians, with what is essentially a version of iteratively re-weighted least
squares...the latent variable representation brings all of conditional linear model theory
to SVM’s.” While a better understanding of convex optimization would certainly be
beneficial for many of us, the point is that casting an estimation procedure in a model-
based context instantaneously provides new insight into the approach. The fact that
the model-based context in this particular case happens to be conditional linear model
theory — perhaps the most widely studied area of statistics — is remarkable. Polson
and Scott provide several new insights right away, including the reinterpretation of
a support vector in the context of weighted least squares. New insights are sure to
follow, not least among them modeling of dependence structures across features and
the construction of prior distributions that incorporate context-specific information.

Polson and Scott choose to work with the unnormalized SVM criterion, which corre-
sponds to a pseudo-likelihood and hence generates a pseudo-posterior. They note that
this could be avoided by working with L̃i, a normalized version of the SVM criterion,
but that this would break the direct connection to the traditional SVM estimate. The
lack of a proper likelihood function seems to hinder formal Bayesian prediction, as this
causes the posterior predictive distribution to be not well defined. In the absence of a
formal likelihood, and hence Bayes-optimal prediction, the “plug-in” approach of pre-
dicting future observations based on the sign of E(β | y)T x, where the expectation is
taken with respect to the pseudo posterior, may still provide good prediction. Building
a fully Bayes model, where the regularization parameters ν and α are learned and av-
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eraged over (a smooth process that should be insensitive to small changes in the data),
may provide a better estimate of β than in the classical analysis where the amount
of penalization must be chosen via a heuristic such as cross validation (a less-smooth
process that can depend heavily on local features of the data). Regardless, future study
of prediction in this Bayesian model-based version of the SVM may provide even more
insight into the structure of the classifier.

In Section 2 below I offer a different application of the same mean-variance mix-
ture results of Andrews and Mallows (1974) that are used to prove Polson and Scott
Theorem 1. The proof of their theorem, and the form of the mean-variance mixture
of normals, reminded me of the form of a particular regularization prior with which I
have worked. The mean-variance mixture I describe below provides what was at first
glance an unexpected result and emphasizes the importance of performing Bayesian
regularization based on principles rather than convenience.

2 Mean-Variance Mixtures of Normals

Scale-mixtures of normal distributions have recently received special attention in the
area of Bayesian regularization. The use of a mean-variance mixture of normals in Polson
and Scott Theorem 1, while not employed there for prior regularization, is nonetheless
notable as such mixtures have been discussed less frequently during the recent resur-
gence of this framework. Interestingly, the mean-variance mixture of normal results
of Andrews and Mallows (1974) and Polson and Scott Theorem 1 can be applied to a
Bayesian formulation of elastic net regression.

The elastic net (Zou and Hastie 2005) is a penalized optimization procedure that
estimates the regression coefficients β in a linear model by

β̂ = arg min
β

1
2σ2

(y −Xβ)T (y −Xβ) +
λ1

2σ2
|β|1 +

λ2

2σ2
|β|2,

where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters, |β|1 and |β|2 are the L1- and
L2-norms of β, respectively, and the entire expression is scaled by 2σ2 here to make
a connection to the normal likelihood. Other scalings are also possible, and perhaps
preferable, however scaling the entire quantity by 2σ2 preserves the direct interpretation
of the symbols λ1 and λ2 as the elastic net penalty parameters. Notice that if λ2 = 0,
β̂ is the usual lasso estimate. The L2-norm piece of the penalization was added by Zou
and Hastie (2005) to address perceived deficiencies with the lasso penalty.

Zou and Hastie (2005) remark that the estimate β̂ corresponds to the mode of a
Bayesian posterior distribution under a particular prior. When λ2 = 0, the prior is
DE(λ1/(2σ2)), the double exponential distribution with variance 8σ4/λ2

1 (Park and
Casella 2008; Hans 2009). When λ2 is not restricted to be zero, Hans (2008) shows
that this prior is in the “orthant-normal” family of distributions. Focusing on a single
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regression coefficient β, this distribution has density function

p(β | λ1, λ2, σ
2) =
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(1)

where φ(β | ·, ·) is the normal density function and Φ(·) is the standard normal cu-
mulative distribution function. The only difference between the positive and negative
components of (1) is that the location parameters have opposite signs. While this dis-
tribution happens to have a scale-mixture-of-normals representation (Hans 2008; Li and
Lin 2010; Kyung et al. 2010), here I work with (1) directly to demonstrate an application
of mean-variance mixtures in the context of regularization.

The regularization parameters λ1 and λ2 play a role that is similar to that of ν in
Polson and Scott. As noted in Section 3.3, learning ν by assuming a prior distribution
p(ν) is desirable as it allows the amount of shrinkage to adapt to the data and obviates
the need to resort to cross-validation to select a value of the regularization parame-
ter. Perhaps more importantly, estimation of ν using fully Bayes methods incorporates
information about ν contained in the pseudo-posterior normalization constant Cα(ν),
which, as Polson and Scott point out, is absent in the classical analysis (see also the
discussion of Polson and Scott 2010b).

In the context of the regularized SVM, Polson and Scott choose an inverse gamma
prior for ν as it is conditionally conjugate to the exponential power prior that is used for
regularization. For elastic net regression, we desire a prior distribution p(λ1, λ2 | σ2),
which may depend on σ2, that ideally (i) submits readily to analysis (e.g. providing
a closed-form conditional posterior distribution or allowing for simple calculation of
a marginal likelihood for model comparison) and (ii) yields, upon marginalization, a
prior distribution p(β) that has desirable properties (e.g. behavior in the tails and near
the origin that allows the prior to handle sparse signals effectively). Ignoring, for the
moment, the more important of these two considerations, the term Φ(−λ1/(2σ

√
λ2)) in

(1) would appear to preclude any hope of finding a prior to satisfy (i): under “standard”
hyperpriors (e.g. placing independent gamma distributions on λ1 and λ2, the approach
taken in Hans 2008), the Φ(·) term in the posterior normalizing constant leads to non-
standard full conditional distributions and complicates analytical marginalization. We
can, however, use results on mean-variance normal mixtures to analytically marginalize
λ2 under a particular choice of hyperprior to yield a surprising (although ultimately
disappointing) result.

Theorem 3. Under the orthant-normal prior for β given by (1) and the (conditional)
hyperprior distribution for λ2 with density function

p(λ2 | λ1, σ
2) =

λ2
1

2σ2λ2
2

Φ
(
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)
, λ2 > 0, (2)
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the marginal prior distribution of β (given λ1 and σ2) is

p(β | λ1, σ
2) =

∫ ∞

0

p(β | λ1, λ2, σ
2)p(λ2 | λ1, σ

2)dλ2

=
λ1

2σ2
e−λ1|β|/σ2

, −∞ < β < ∞,

i.e., β | λ1, σ
2 ∼ DE(λ1/σ2). In other words, the double exponential distribution can be

represented as a mean-variance mixture of orthant-normal distributions.

The proof follows directly from the results of Andrews and Mallows (1974) and
Polson and Scott Theorem 1. Under the change of variables λ = λ−1

2 , the integrand in
the marginalization is

p(β | λ1, λ, σ2)p(λ | λ1, σ
2) =





λ2
1

4σ2 φ(β | (λ1/2)λ, σ2λ), β < 0

λ2
1

4σ2 φ(β | −(λ1/2)λ, σ2λ), β ≥ 0,

where the awkward term involving Φ(·) is no longer present due to the careful choice
of the hyperprior. The double exponential density function appears after applying the
identity φ(b | au, cu) = φ(−b | −au, cu) to the negative piece and then using the result∫∞
0

φ(b | −au, cu)du = a−1 exp{−2max(ab/c, 0)} for a > 0 and c > 0.

While the particular choice of hyperprior (2) satisfies consideration (i) above —
marginalization of the prior is easy and yields a well-known prior for β — the choice
fails consideration (ii). The Gaussian (λ2 6= 0) component in the penalty (prior) was
included specifically to allow for more flexible penalization than would be provided by
the DE(λ1/(2σ2)) prior alone. Oddly, including λ2 in the prior and then marginalizing
it via mixing distribution (2) results in a prior with identical behavior to the prior
obtained with the trivial mixing distribution of a point mass at λ2 = 0 (although the
variances of the two distributions differ by a factor of 4).

The point of this particular application of mean-variance mixtures to regularized
regression was not to suggest a constructive approach for choosing regularization hy-
perpriors. The approach clearly failed here. Rather, we learn that suggestive, obvious
or default choices that are made on the basis of analytic or computational ease may
have undesirable properties. Careful study and further development of the existing nor-
mal mixture literature, as exemplified by Polson and Scott Theorem 1, is essential to
the future development of Bayesian regularization methods, particularly in high dimen-
sional problems. Fortunately such work is currently underway. Recent work by Polson
and Scott (2010a,b) describes new mechanisms for generating regularization priors that
include normal scale-mixtures, while other recent papers (e.g., Carvalho et al. 2010;
Griffin and Brown 2010) have examined particular classes of normal mixtures and de-
veloped criteria for evaluating the properties of these priors. While there is surely more
work to come, the future for Bayesian regularization is bright.
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