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MINIMAX ESTIMATION FOR MIXTURES OF
WISHART DISTRIBUTIONS
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The space of positive definite symmetric matrices has been studied ex-
tensively as a means of understanding dependence in multivariate data along
with the accompanying problems in statistical inference. Many books and
papers have been written on this subject, and more recently there has been
considerable interest in high-dimensional random matrices with particular
emphasis on the distribution of certain eigenvalues. With the availability of
modern data acquisition capabilities, smoothing or nonparametric techniques
are required that go beyond those applicable only to data arising in Euclidean
spaces. Accordingly, we present a Fourier method of minimax Wishart mix-
ture density estimation on the space of positive definite symmetric matrices.

1. Introduction. The space of positive definite symmetric matrices has been
studied extensively in statistics as a means of understanding dependence in multi-
variate data along with the accompanying problems in statistical inference. Many
books and papers, for example, [7–9, 17, 19, 22] and [23], have been written on
this subject, and there has been considerable interest recently in high-dimensional
random matrices with particular emphasis on the distribution of certain eigenval-
ues [11] and on graphical models [15].

In this paper we consider the problem of estimating the mixing density of a
continuous mixture of Wishart distributions. We construct a nonparametric esti-
mator of that density and obtain minimax rates of convergence for the estimator.
Throughout this work, we adopt, as a guide, results developed for the classical
problem of deconvolution density estimation on Euclidean spaces; see, for exam-
ple, [2, 4, 5, 14, 18] and [26]. Much of the difficulty with the space of positive def-
inite symmetric matrices is due to the fact that mathematical analysis on the space
is technically demanding. Helgason [10] and Terras [25] provide much insight and
technical innovation, however, and we make extensive use of these methods.
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We summarize the paper as follows. In Section 2 we discuss and set up the
notation for Wishart mixtures. In Section 3 we begin by reviewing the necessary
Fourier methods which allow us to construct a nonparametric estimator of the mix-
ing density, and then we provide the estimator. The minimax property of our non-
parametric estimator is stated in Section 4 along with supporting results. Section 5
presents simulation results as well as an application to finance examining real fi-
nancial data. Finally, Sections 6 and 7 present the proofs.

2. Wishart mixtures. Throughout the paper, for any square matrix y, we de-
note the trace and determinant of y by try and |y|, respectively; further, we denote
by Im the m×m identity matrix. We will denote by Pm the space of m×m positive
definite symmetric matrices.

For s = (s1, . . . , sm) ∈ C
m with Re(sj + · · · + sm) > (j − 1)/2, j = 1, . . . ,m,

the multivariate gamma function is defined as

�m(s1, . . . , sm) = πm(m−1)/4
m∏

j=1

�

(
sj + · · · + sm − 1

2
(j − 1)

)
,(2.1)

where �(·) denotes the classical gamma function.
We denote by G the general linear group GL(m,R) of all m × m nonsingular

real matrices, by K the group O(m) of m × m orthogonal matrices and by A the
group of diagonal positive definite matrices. The group G acts transitively on Pm

by the action

G × Pm → Pm, (g, y) �→ g′yg,(2.2)

g ∈ G, y ∈ Pm, where g′ denotes the transpose of g. Under this group action, the
isotropy group of the identity in G is K ; hence the homogeneous space K \ G

can be identified with Pm by the natural mapping from K \ G → Pm that sends
Kg �→ g′g. In distinguishing between left and right cosets, we place the quotient
operation on the left and right of the group, respectively.

For y = (yij ) ∈ Pm, define the measure

d∗y = |y|−(m+1)/2
∏

1≤i≤j≤m

dyij .

It is well known that the measure d∗y is invariant under action (2.2). Relative to the
dominating measure d∗y, the probability density function of the standard Wishart
distribution with N degrees of freedom is

w(y) = 1

2Nm/2�m(0, . . . ,0,N/2)
|y|N/2 exp

(
−1

2
try

)
,(2.3)

y ∈ Pm. Consequently, for σ ∈ Pm, we note that tr(σ−1/2yσ−1/2) = tr(σ−1y)

and |σ−1/2yσ−1/2| = |σ−1y|. It then follows that, relative to the dominating mea-
sure d∗y, the density of the general Wishart distribution, with covariance parame-
ter σ , is w(σ−1y), y ∈ Pm.



MINIMAX ESTIMATION FOR WISHART MIXTURES 3419

Suppose next that σ is a random matrix and, relative to the dominating mea-
sure d∗σ , has a continuous mixing density, f , that is invariant under the ac-
tion (2.2). By integration with respect to σ , the continuous Wishart mixture density
is given by

r(y) =
∫

Pm

f (σ )w(σ−1y)d∗σ,(2.4)

y ∈ Pm. For the case in which m = 1, the standard Wishart density is essentially
a chi-square density, in which case (2.4) is a continuous mixture of chi-square
densities.

In general, (2.4) is a convolution operation for functions on Pm. We denote
by x1/2 any matrix with xt/2x1/2 = x, where xt/2 = (x1/2)′ and denote x−t/2 =
(x−1/2)t . Define X ◦ Z, the convolution of two random matrices X and Z which
are distributed on Pm by

X ◦ Z = Xt/2ZX1/2

and f1 ∗ f2, the convolution of f1 ∈ L1(Pm) and f2 ∈ L1(Pm) by

(f1 ∗ f2)(y) =
∫

Pm

f1(x)f2(x
−t/2yx−1/2)d∗x for y ∈ Pm,

where Lq(Pm) is the space of integrable functions raised to the qth power on Pm

for q ≥ 1. If X and Z with densities f and w, respectively, are independent, then
Y = X ◦ Z has the density r = f ∗ w since w(σ−t/2yσ−1/2) = w(σ−1y). Finally,
(2.4) can be transformed into a scalar multiplication; see Section 3.2.

3. Fourier analysis on Pm and estimation of the mixing density. In this
section we review the Fourier methods needed to transform the convolution prod-
uct (2.4) and to construct a nonparametric estimator of the mixing density f .

3.1. The Helgason–Fourier transform. For y ∈ Pm, denote by |yj | the princi-
pal minor of order j , j = 1, . . . ,m. For s ∈ C

m, the power function ps : Pm → C

is

ps(y) =
m∏

j=1

|yj |sj ,(3.1)

y ∈ Pm. Let d∗k denote the Haar measure on K , normalized to have total volume
equal to one; then

hs(y) =
∫
K

ps(k
′yk)d∗k,(3.2)

y ∈ Pm, is the zonal spherical function on Pm. It is well known that the func-
tions hs are fundamental to harmonic analysis on symmetric spaces [10, 25]. If



3420 HAFF, KIM, KOO AND RICHARDS

s1, . . . , sm are nonnegative integers then, up to a constant factor, (3.2) is an inte-
gral formula for the zonal polynomials which arise in many aspects of multivariate
statistical analysis [19], pages 231 and 232.

Let C∞
c (Pm) denote the space of infinitely differentiable, compactly supported,

complex-valued functions f on Pm; also, let

C∞
c (Pm/K) = {f ∈ C∞

c (Pm) :f (k′yk) = f (y) for all k ∈ K,y ∈ Pm}.
For s ∈ C

m and k ∈ K , the Helgason–Fourier transform ([25], page 87) of a func-
tion f ∈ C∞

c (Pm) is

Hf (s, k) =
∫

Pm

f (y)ps(k′yk)d∗y,(3.3)

where ps(k′yk) denotes complex conjugation.
For the case in which f ∈ C∞

c (Pm/K), we make the change of variables
y �→ k′

1yk1 in (3.3), k1 ∈ K , and integrate with respect to the Haar measure d∗k1.
Applying the invariance of f and formula (3.2), we deduce that Hf (s, k) does not
depend on k. Specifically, Hf (s, k) = f̂ (s) where

f̂ (s) =
∫

Pm

f (y)hs(y)d∗y,(3.4)

s ∈ C
m, is the zonal spherical transform of f .

In the case of the standard Wishart density (2.3), which is a K-invariant func-
tion, the zonal spherical transform is well known (Muirhead [19], page 248; Ter-
ras [25], pages 85 and 86):

ŵ(s) = �m(sm−1, . . . , s1,−(s1 + · · · + sm) + N/2)

�m(0, . . . ,0,N/2)
hs

(
1

2
Im

)
.

3.2. The convolution property of the Helgason–Fourier transform. The fol-
lowing result shows that the convolution operation can be transformed into a scalar
multiplication.

PROPOSITION 3.1. Suppose X and Z with densities fX and fZ , respectively,
are independent, and Z is K-invariant. Let fY be the density of Y = X ◦ Z. Then

HfY (s, k) = HfX(s, k)f̂Z(s) for s ∈ C
m and k ∈ K.

PROOF. Note

HfY (s, k) = Eps̄(k
′Yk) = Eps̄(k

′Xt/2ZX1/2k).

Using the KAN -Iwasawa decomposition of Xt/2k (Terras [25], page 20), we have
X1/2k = HU for H ∈ K and U , an upper triangular matrix. Observe

Eps̄(k
′Xt/2ZX1/2k) = EX{ps̄(U

′U)EZ|Xps̄(H
′ZH)}

= f̂Z(s)EX{ps̄(U
′U)}

= HfX(s, k)f̂Z(s),
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where Proposition 1 of Terras [25], page 39, is used for the first equality. �

3.3. The inversion formula for the Helgason–Fourier transform. For a1, a2 ∈
C with Re(a1),Re(a2) > 0, let

B(a1, a2) = �(a1)�(a2)

�(a1 + a2)

denote the classical beta function. For s ∈ C
m such that Re(si +· · ·+sj ) > −1

2(j −
i + 1) for all 1 ≤ i < j ≤ m − 1, the Harish–Chandra c-function is

cm(s) = ∏
1≤i<j≤m−1

B(1/2, si + · · · + sj + (j − i + 1)/2)

B(1/2, (j − i + 1)/2)
.(3.5)

Let ρ ≡ (1
2 , . . . , 1

2 , 1
4(1 − m)), and set

ωm =
∏m

j=1 �(j/2)

(2πi)mπm(m+1)/4m! ,(3.6)

C
m(ρ) = {s ∈ C

m : Re(s) = −ρ}(3.7)

and

d∗s = ωm|cm(s)|−2 d∗s1 · · ·d∗sm.

Let M = {diag(±1, . . . ,±1)} be the set of m×m diagonal matrices with entries
±1 on the diagonal; then M is a subgroup of K and is of order 2m. By factorizing
the Haar measure d∗k on K , it may be shown ([25], page 88) that there exists an
invariant measure d∗k̄ on the coset space K/M such that∫

k̄∈K/M
d∗k̄ = 1.

The inversion formula for the Helgason–Fourier transform H in (3.4) is that if
f ∈ C∞

c (Pm), then [10, 25]

f (y) =
∫

Cm(ρ)

∫
k̄∈K/M

Hf (s, k)ps(k
′yk)d∗k̄ d∗s,(3.8)

y ∈ Pm. In particular, if f ∈ C∞
c (Pm/K), then

f (y) =
∫

Cm(ρ)
f̂ (s)hs(y)d∗s,

y ∈ Pm, and there also holds the Plancherel formula,∫
Pm

|f (y)|2 d∗y =
∫

Cm(ρ)

∫
K/M

|Hf (s, k)|2 d∗k̄ d∗s.(3.9)

We refer to Terras [25], page 87 ff., for full details of the inversion formula and for
references to the literature.
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3.4. Eigenvalues, the Laplacian and Sobolev spaces. For y = (yij ) ∈ Pm, we
define the m × m matrix of partial derivatives,

∂

∂y
=

(
1

2
(1 + δij )

∂

∂yij

)
,

where δij denotes Kronecker’s delta. The Laplacian, 	, on Pm can be written
([25], page 106) in terms of the local coordinates yij as

	 = − tr
((

y
∂

∂y

)2)
.

The power function ps in (3.1) is an eigenfunction of 	 (see [19], page 229,
[21], page 283, [25], page 49). Indeed, let rj = sj + sj+1 +· · ·+ sm + 1

4(m− 2j +
1), j = 1, . . . ,m, and define

λs = −(r2
1 + · · · + r2

m) + 1
48m(m2 − 1);(3.10)

then 	ps(Y ) = λsps(Y ). Since Re(s) = −ρ then each rj , j = 1, . . . ,m, is purely
imaginary; hence, λs > 0, s ∈ Cm(ρ).

The operator H changes the effect of invariant differential operators on func-
tions to pointwise multiplication: if f ∈ C∞

c (Pm), then

H(	f )(s, k) = λs Hf (s, k),

s ∈ C
m, k ∈ K ([25], page 88). For ϕ > 0, we therefore define the fractional power,

	ϕ/2, of 	, as the operator such that

H(	ϕ/2f )(s, k) = λϕ/2
s Hf (s, k),

f ∈ C∞
c (Pm). Having constructed 	ϕ/2, we define the Sobolev class,

Fϕ = {f ∈ C∞(Pm) :‖	ϕ/2f ‖2 < ∞},
where for f ∈ C∞(Pm),

‖f ‖ =
(∫

Pm

|f (y)|2 d∗y
)1/2

denotes the L2(Pm)-norm with respect to the measure d∗y. For Q > 0, we also
define the bounded Sobolev class,

Fϕ(Q) = {f ∈ C∞(Pm) :‖	ϕ/2f ‖2 < Q}.
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4. Main result. In this section we will present the main result. We do so by
applying the Helgason–Fourier transform to the mixture density (2.4) so that

Hr(s, k) = Hf (s, k)ŵ(s),(4.1)

s ∈ C
m, k ∈ K ; see Proposition 3.1. Having observed a random sample Y1, . . . , Yn

from the mixture density, r , in (2.4), we estimate Hr(s, k) by its empirical
Helgason–Fourier transform,

Hnr(s, k) = 1

n

n∑
�=1

ps(k′Y�k).(4.2)

On substituting (4.2) in (4.1), together with the assumption that ŵ(s) = 0, s ∈ C
m,

we obtain

Hnf (s, k) = Hnr(s, k)

ŵ(s)
,

s ∈ C
m, k ∈ K .

Analogous with classical Euclidean deconvolution, we introduce a smoothing
parameter T = T (n) where T (n) → ∞ as n → ∞, and then we apply the inversion
formula (3.8) using a spectral cut-off based on the eigenvalues of 	. First, we
introduce the notation

C
m(ρ,T ) = {s ∈ C

m(ρ) :λs < T },
where C

m(ρ) is defined in (3.7). We now define

fn(y) =
∫

Cm(ρ,T )

∫
k̄∈K/M

Hnr(s, k̄)

ŵ(s)
ps(k̄

′yk̄)d∗k̄ d∗s,(4.3)

y ∈ Pm, and take this as our nonparametric estimator of f .
We now state the minimax result for the estimator (4.3). Let C denote a

generic positive constant independent of n. For two sequences of real numbers
{an} and {bn}, we use the notations an � bn and an � bn to mean an < Cbn and
an > Cbn, respectively, as n → ∞. Moreover, an � bn means that an � bn and
an � bn.

THEOREM 4.1. Suppose f is a density on Pm and N > (m − 1)/2. Then, for
the Wishart mixture (2.4),

sup
f ∈Fϕ(Q)

E‖fn − f ‖2 � (logn)−2ϕ(4.4)

and for any estimator gn of f ,

inf
gn

sup
f ∈Fϕ(Q)

E‖gn − f ‖2 � (logn)−2ϕ.(4.5)
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We now provide some comments about this result. In the situation where (2.4)
is a finite sum, so that

r(y) =
q∑

�=1

f�w(σ−1
� y) and

q∑
�=1

f� = 1,

we have the finite mixture model. Methods for recovering the mixing coefficients
can be covered by the techniques employed in [3]. We note that the continuous
mixture model is a generalization of this approach.

It is noted that the condition f is a density and seems to be mild. The upper
bound property of (4.4) is established in [13], Theorem 3.3, with β = 1/2. In the
latter, the moment condition∫

Pm

|y1|−1 · · · |ym−1|−1|y|(m−1)/2r(y)d∗y < ∞,(4.6)

on the principal minors |y1|, . . . , |ym| of y ∈ Pm is assumed. In our theorem, we
did not impose this moment condition as condition (4.6) is automatically satisfied.
This is pointed out and commented upon below in the proof.

To derive the lower bound for estimating f in the L2(Pm)-norm, we shall follow
the standard Euclidean approach. Thus we choose a pair of functions f 0, f n ∈
Fϕ(Q), and, with w denoting the Wishart density (2.3), we shall show that, for
some constants C1,C2 > 0,

‖f n − f 0‖2 ≥ C1(logn)−2ϕ

and

χ2(f 0 ∗ w,f n ∗ w) ≤ C2

n
,(4.7)

where

χ2(g1, g2) =
∫

Pm

(g1(y) − g2(y))2

g1(y)
d∗y.

Precisely, let us suppose we can choose f 0 ∈ Fϕ(Q) and a perturbation ψ ∈
Fϕ(Q), and, for δ = δn > 0, let ψδ be a scaling of ψ such that ‖ψδ‖ � δ−1/2‖ψ‖.
Define

f n = f 0 + Cψδ−ϕ+1/2ψδ.

If δ can be chosen so that

χ2(f 0 ∗ w,f n ∗ w) ≤ Cn−1,

then the lower bound rate of convergence is determined by δ−2ϕ . We shall develop
such a construction and, moreover, do so in a way such that δ � logn as n → ∞.
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REMARK 4.2. The profound influence of Charles Stein on covariance estima-
tion originates largely from his Rietz lecture; see [22]. The idea is that for certain
loss functions over Pm, the usual estimator of the covariance matrix parameter is
inadmissible. Through an unbiased estimation of the risk function over covariance
matrices, Stein was able to improve upon the usual estimator by pooling the ob-
served eigenvalues of the sample covariance matrix. Subsequent to this, through a
series of papers, improvements were obtained in Haff [7–9]. Other related works
include Takemura [24], Lin and Perlman [16] and Loh [17], to name a few.

In this paper, we contribute to the case in which one observes data from a con-
tinuous mixture of Wishart distributions, not merely a sample from a single distri-
bution. Therefore, the parameter of interest would be the mixing density of the co-
variance parameters. And the nonparametric estimator of the mixing density (4.3)
is an attractive candidate because of its minimax property. Based on this procedure,
one could consider the moment, or mode, of fn, as a possible estimator of the cor-
responding population parameters. Alternatively, one could take a nonparametric
empirical Bayes approach as in Pensky [20].

5. Numerical aspects and an application to finance. This section presents
numerical aspects for the m = 2 case with an application to finance.

5.1. Computation of estimators. Suppose X and Z are independent with Z

having a Wishart distribution. Let Y = Xt/2ZX1/2 where X1/2 is upper triangular.
For visualization, we display estimators of the marginal density for D where X =
H ′DH with H ∈ K and D ∈ A. Let

r̂n(s) = 1

n

n∑
j=1

hs(Ej ) and f̂n(s) = r̂n(s)

ŵ(s)
,

where Ej ∈ A+ denotes the diagonal matrix of eigenvalues of Yj , j = 1, . . . , n.
Denote by f D the density of eigenvalues of X. Then, the estimator for f D is
given by

f D
n (a) =

∫
C2(ρ,T )

Re{f̂n(s)hs(a)}d∗s for a = diag(a1, a2) ∈ A.(5.1)

Consider the computation of hs(a) when

s = −ρ + ib = (−1/2 + ib1,1/4 + ib2)

so that Re(s) = −ρ. From pages 90 and 91 of [25], the spherical function is given
by

hs(a) = (a1a2)
i(b2+b1/2)P−1/2+ib1

(
cosh

(
log

(√
a1/a2

)))
,

where Legendre function P−1/2+it (x) can be computed using conicalP_0(t,
x) in the gsl library in R.
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The mean integrated squared error (MISE) of f D
n is defined by

MISE(fn) = E

∫
A

(
f D

n (a) − f D(a)
)2 d∗a.

It is reasonable to choose T which minimizes MISE(f D
n ) or equivalently

M(T ) = E

∫
A
(f D

n (a))2 d∗a − 2E

∫
A

f D
n (a)f D(x)d∗a.

One can find an unbiased estimator M0(T ) of M(T ); see [12]. We choose T̂ by

arg min
T

M0(T ).

Monte Carlo approximation is used for integration of (5.1) and M0(T ).

5.2. Simulation. Denote by WN(σ) the Wishart density with degrees of free-
dom N and covariance matrix σ . We generate data as follows. For j = 1, . . . , n:

• generate Zj ∼ W20(I2);
• generate Xj ∼ f ;
• do a Cholesky decomposition of Xj = (Xj )

t/2(Xj )
1/2, and calculate Yj =

(Xj )
t/2Zj(Xj )

1/2.

As examples, we consider a unimodal mixing density W15(2I2) and a bimodal
density 0.5W15(2I2) + 0.5W15(6I2). Figure 1 show the results for the unimodal
case whereas Figure 2 show the results for the bimodal case. In each of these plots
the domain consists of the two eigenvalues starting with the largest. One can see
that the general shapes of the estimators become closer to that of the true density
as n increases.

5.3. Application to stochastic volatility. Stochastic volatility using the Wishart
distribution is of much interest in finance; see, for example, [1] and [6]. In partic-
ular, this entails a situation precisely of the form (2.4). Let us apply this to the
situation where we are interested in estimating the mixing density.

Although our methods can be applied to a portfolio of many assets, let us re-
strict ourselves to two assets since this would be the smallest multivariate example.
Indeed, let S1

j and S2
j denote the daily closing stock prices of Samsung Electron-

ics (005930.KS) and LG-display (034220.KS), respectively, traded on the Korea
Stock Exchange (KSC) for 2010, where the data can be easily accessed on pub-
lic financial websites. We will assume as usual that Qk

j = log(Sk
j+1/S

k
j ) follows a

bi-variate normal distribution for k = 1,2. We transform the daily data to weekly
data and compute the weekly 2 × 2 covariance matrix Yi for i = 1, . . . ,52. In case
a week has a holiday, we repeat the last previous observation. Under the usual as-
sumptions this would constitute observations from a mixture model (2.4) with a
standard Wishart distribution with four degrees of freedom.

Figure 3 plots the mixing density estimator corresponding to the two eigenval-
ues. One can see that there are two peaks, suggesting a possible bimodal stochastic
volatility mixing density in the eigenvalues.
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FIG. 1. Unimodal case: upper left displays the true density of W15(2I2), upper right shows an
estimate with n = 500, lower left with n = 1,000 and lower right with n = 2,000.

6. Proof of upper bound. The strategy here is, first, to decompose the inte-
grated mean-squared error into its variance and bias components,

E‖fn − f ‖2 = E‖(fn − Efn) + (Efn − f )‖2

(6.1)
= E‖fn − Efn‖2 + ‖Efn − f ‖2,

and, last, to estimate each component separately using estimates based on the
Plancherel formula and the inversion formula for the Helgason–Fourier transform.

6.1. The integrated bias.

LEMMA 6.1. Suppose that f ∈ Fϕ(Q) and ϕ > dim Pm/2. Then

‖Efn − f ‖2 � T −ϕ.
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FIG. 2. Bimodal case: upper left displays the true density 0.5W15(2I2)+0.5W15(6I2), upper right
shows an estimate with n = 500, lower left with n = 1,000 and lower right with n = 2,000.

PROOF. We have for x ∈ Pm

Efn(x) − f (x) =
∫

Cm(ρ,T )

∫
k̄∈K/M

Hf (s, k̄)ps(k̄
′xk̄)d∗k̄ d∗s

−
∫

Cm(ρ)

∫
k̄∈K/M

Hf (s, k̄)ps(k̄
′xk̄)d∗k̄ d∗s(6.2)

= −
∫
λs>T,Re(s)=−ρ

∫
k̄∈K/M

Hf (s, k̄)ps(k̄
′xk̄)d∗k̄ d∗s.

Applying the Plancherel formula, we obtain

‖Efn − f ‖2 =
∫
λs>T,Re(s)=−ρ

∫
K/M

|Hf (s, k̄)|2 d∗k̄ d∗s.



MINIMAX ESTIMATION FOR WISHART MIXTURES 3429

FIG. 3. A density estimator for the weekly covariance matrix of stock prices.

Consequently,

‖Efn − f ‖2 =
∫
λs≥T ,Re(s)=−ρ

∫
K/M

|Hf (s, k̄)|2 d∗k̄ d∗s

≤ T −ϕ
∫
λs≥T ,Re(s)=−ρ

∫
K/M

λϕ
s |Hf (s, k̄)|2 d∗k̄ d∗s(6.3)

≤ T −ϕ
∫

Cm(ρ)

∫
K/M

λϕ
s |Hf (s, k̄)|2 d∗k̄ d∗s,

where we use the fact that

λϕ
s |Hf (s, k)|2 ≡ |λϕ/2

s Hf (s, k)|2 = |H(	ϕ/2f )(s, k)|2.
Therefore

‖Efn − f ‖2 ≤ T −ϕ
∫

Cm(ρ)

∫
k̄∈K/M

|H(	ϕ/2f )(s, k)|2 d∗k̄ d∗s

= T −ϕ
∫

Pm

|	ϕ/2f (w)|2 d∗w,

where the equality follows from the Plancherel formula. By assumption, f ∈
Fϕ(Q), the latter integral is bounded above by Q, so we obtain

‖Efn − f ‖2 ≤ QT −ϕ,

and the proof is complete. �
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6.2. The integrated variance. To obtain bounds for the integrated variance,
several preliminary calculations are needed. In particular, we begin with the vari-
ance calculation of the empirical Helgason–Fourier transform, which has similari-
ties to the usual empirical characteristic function.

LEMMA 6.2. For s ∈ C
m(ρ) and k ∈ K/M ,

E|Hnr(s, k) − EHnr(s, k)|2 = 1

n

(|Hr(−2ρ, k)|2 − |Hr(s, k)|2)
.

PROOF. By (4.2),

|Hnr(s, k)|2 = Hnr(s, k)Hnr(s, k)

= 1

n2

n∑
j,�=1

ps(k′Yjk)ps(kY�k)(6.4)

= 1

n2

{
n∑

j=1

|ps(k
′Yjk)|2 + ∑

j =�

ps(k′Yjk)ps(k
′Y�k)

}
.

Observe also that

ps(w)ps(w) = |w1|s1 · · · |wm|sm |w1|s1 · · · |wm|sm
= |w1|2 Re(s1) · · · |wm|2 Re(sm)

= p−2ρ(w)

since Re(s) = −ρ. Applying this result to (6.4) and taking expectations, we obtain

E|Hnr(s, k)|2 = 1

n2 E

{
n∑

j=1

|ps(k
′Yjk)|2 + ∑

j =�

ps(k′Yjk)ps(k
′Y�k)

}

= 1

n2

{
n∑

j=1

Ep−2ρ(k′Yjk) + ∑
j =�

Eps(k′Yjk)Eps(k
′Y�k)

}

= 1

n
Hr(−2ρ, k) + n − 1

n
|Hr(s, k)|2,

where the last equality follows from the fact that Y1, . . . , Yn are independent and
identically distributed as Y , and because Eps(k

′Yk) = Hr(s, k). �

Following Terras [25], pages 34 and 35, let

A+ = {a = diag(a1, . . . , am) ∈ A :a1 > · · · > am}
denote the positive Weyl chamber in A. For a = diag(a1, . . . , am) ∈ A, let da =∏m

j=1 a−1
j daj and set

γ (a) =
m∏

j=1

a
−(m−1)/2
j

∏
1≤i<j≤m

|ai − aj |,
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and define the normalizing constant bm by b−1
m = π−(m2+m)/4 ∏m

j=1 j�(j/2). De-
note d∗a = bmγ (a)da.

LEMMA 6.3. As T → ∞,

E‖fn − Efn‖2 � sup
s∈Cm(ρ)

|ŵZ(s)|−2 T dim Pm/2

n
.

PROOF. By the Plancherel formula,

E‖fn − Efn‖2

=
∫

Cm(ρ,T )

∫
K/M

E|Hnf (s, k) − EHnf (s, k)|2 dk̄ d∗s

=
∫

Cm(ρ,T )

∫
K/M

E|Hnr(s, k) − EHnr(s, k)|2 dk̄|ŵZ(s)|−2 d∗s

≤ 1

n
sup

λs<T,Re(s)=−ρ

|ŵZ(s)|−2
∫
K/M

|Hr(−2ρ, k̄)|2 dk̄

∫
Cm(ρ,T )

d∗s

� sup
λs<T,Re(s)=−ρ

|ŵZ(s)|−2 T dim Pm/2

n

as T → ∞.
Choose a ∈ A+. Observe that

p−2ρ(a) = a
−(m−1)+(m−1)/2
1 · · ·a−1+(m−1)/2

m−1 a(m−1)/2
m ≤ 1.(6.5)

Since p−2ρ(k′ak) is a continuous function of k on a compact set K , p−2ρ(k′ak)

is uniformly bounded on K such |p−2ρ(k′ak)| ≤ C on K . Since f is a density so
that r is also a density, we have

|Hr(−2ρ, Im)| =
∣∣∣∣
∫

Pm

r(y)p−2ρ(y)d∗y
∣∣∣∣

=
∫
A+

∫
K

r(k′ak)p−2ρ(k′ak)d∗a d∗k

≤
∫
A+

∫
K

r(k′ak)|p−2ρ(k′ak)|d∗a d∗k

≤ C

∫
A+

∫
K

r(k′ak)d∗a d∗k

= C

∫
Pm

r(y)d∗y

= C.
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Hence, it follows from continuity and the compactness of K/M∫
K/M

|Hr(−2ρ, k̄)|2 dk̄ < ∞,

which has been used in the above calculation.
In addition, we use the fact that, as T → ∞,

sup
Cm(ρ,T )

|cm(s)|−2 � T m(m−1)/4,

a result which follows from Proposition 7.2 of Helgason [10], page 450. �

The proof of the upper bound can now be obtained by applying Lemmas 6.1
and 6.3 to (6.1) and setting T � (logn)2.

7. Proof of lower bound. We need to provide some detailed calculations, and
the essence of the proof is contained for the case m = 2; hence we will keep this
assumption for the remainder of this paper. The generalization to m > 2 may be
obtained by using higher order hyperbolic spherical coordinates. In this section,
we assume that ψ is a K-invariant function defined on P2.

7.1. Convolution and Helagson–Fourier transform in polar coordinate. For
y ∈ P2, let y = k′ak with a = diag(a1, a2) ∈ A+, k ∈ K so that ψ(y) = ψ(a). Let

a = Du1e
u2

with Dz = diag(ez, e−z) for z ∈ R, and write

ψ(u) = ψ(Du1e
u2).

By a change of variables, ∫
P2

ψ(y)d∗y =
∫

D
ψ(u)d∗u,(7.1)

where

D = {u :u1 ∈ R
+ and u2 ∈ R}

and

d∗u = 4π sinhu1 du1 du2.

Denote kθ = [ cos θ
sin θ

− sin θ
cos θ

]
. The next lemma is straightforward so we shall omit

the proof.

LEMMA 7.1. For u1 ∈ R
+, v1 ∈ R

+ and θ ∈ [0,2π ], the matrix equation

kξDRk′
ξ = D−u1/2kθDv1k

′
θD−u1/2

has a solution R∗ = R∗(u1, v1, θ) and ξ∗ = ξ∗(u1, v1, θ). Further, coshR∗ has
minimum and maximum values cosh(u1 − v1) and cosh(u1 + v1), respectively, and
R∗ and ξ∗ can be defined uniquely.
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In general, if both f and g are K-invariant functions on Pm, then f ∗ g is also
K-invariant and f ∗ g = g ∗ f . Hence, ψ ∗ w is K-invariant and ψ ∗ w = w ∗ ψ

due to K-invariance of ψ and w. From this and Lemma 7.1, we can define

�u1v1(z) = 1

2π

∫ 2π

0
ψ(R∗(θ, u1, v1), z)dθ

for z ∈ R, u1 ∈ R
+, v1 ∈ R

+. Denoting by W the distribution function correspond-
ing to the standard Wishart density w(u) with respect to the measure d∗u, we have
that for v ∈ D,

(ψ ∗ w)(v) =
∫

D
�u1v1(v2 − u2)dW(u).(7.2)

The Laplacian for K-invariant functions in polar coordinate is given by 	 =
	u1 + 	u2 , where

	u1 = − coth(u1)
∂

∂u1
− ∂2

∂u2
1

, 	u2 = − ∂2

∂u2
2

,

and the spherical function is given by

hs(u) = Ps1(coshu1)e
(s1+2s2)u2 for u ∈ D(7.3)

with Ps , the Legendre function; see Terras [25]. It can be seen that

	u1hs = −1
2s(s + 1)hs, 	u2hs = −1

2(s1 + 2s2)
2hs,

so that 	hs = λshs with λs = −1
2{(s1 + 2s2)

2 + s(s + 1)}.
The Helgason–Fourier transform of ψ is given by

ψ̂(s) =
∫

D
ψ(u)Ps̄1(coshu1)e

(s1+2s2)u2 d∗u(7.4)

from (7.1) and (7.3). Suppose ψ is separable so that ψ(u) = ψ1(u1)ψ2(u2). Then,
(7.4) implies

ψ̂(s) = Mψ1(s̄1)Lψ2(s1 + 2s2),(7.5)

where L and M denote, respectively, the Laplace transform and the Mehler–Fock
transform; see Terras [25].

7.2. χ2-divergence. Choose ψ1 as the perturbation function as in Fan [5].
Then, one can construct ψ(u) satisfying the following conditions:

(P1) ψ is K-invariant and separable with ψ(u) = ψ1(u1)ψ2(u2) for u ∈ D.
(P2) Lψ2(it) = 0 for t /∈ [1,2].
(P3) ψ ∈ Fϕ(Q).
(P4) ψ1(u1) = O(cosh−m0 u1) and ψ2(u2) = O(e−m0|u2|), where 0 < ξ < 1

and m0ξ > (N − 1)(1 − ξ)/2.
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(P5)
∫

D ψ(u)d∗u = 0.

Let pb be a density on R such that pb is sufficiently smooth and satisfies
pb(u2) = cb exp(−b|u2|), |u2| ≥ c0, where cb is a normalizing constant. Define
the function

f 0(u) = Cb(coshu1)
−bpb(u2),

where Cb = cb(b − 1)/(2π) for b > 1.
For a function g : P2 → R and δ > 0, define

gδ(y) = g
(|y|(δ−1)/2y

)
for y ∈ P2

so that

ψ(u) = ψ(u1, δu2) for u ∈ D.

PROPOSITION 7.2. Suppose (P1)–(P5) hold. For a pair of densities

f 0 and f n = f 0 + Cψδ−ϕ+1/2ψδ,

the χ2-divergence between g0 = f 0 ∗ w and gn = f n ∗ w satisfies

χ2(g0, gn) ≤ C/n

provided that b < 1
2 min(3π, (N − 1)(1 − ξ) − 1).

The fact that (logn)−2ϕ is a lower bound follows from Proposition 7.2 whose
proof follows from a sequence of lemmas below.

7.3. Perturbing function. Denote (q1, q2) = (s1, s1 + 2s2) and βj = Im(qj )

for j = 1,2. Note that q2 = iβ2 for s ∈ C2(ρ).

LEMMA 7.3. Suppose (P1) holds. Then ‖ψδ‖ = δ−1‖ψ‖.

PROOF. By (7.5) and the change of variable u2 �→ δu2, we obtain

ψ̂δ(s) = Mψ1(q̄1){δ−1Lψ2(q̄2/δ)}.
The desired result follows from the Plancherel formula (3.9) and change of variable
s �→ q . �

LEMMA 7.4. Suppose (P1), (P2) and (P3) hold. Then there exists a positive
constant Cψ such that Cψδ−ϕ+1/2ψδ ∈ Fϕ(Q).

PROOF. Suppose s ∈ C2(ρ) ∩ S . Observe that

λs = −1
2{s1(s1 + 1) + (s1 + 2s2)

2} = 1
2

(
β2

1 + β2
2 + 1

4

)
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and that for δ ≥ 1,

1
2

(
β2

1 + (δβ2)
2 + 1

4

) ≤ δ2λs.

Now, the Plancherel formula (3.9) and change of variable s �→ q gives

‖	ϕ/2ψδ‖2 ≤ Cδ2ϕ−1‖	ϕ/2ψ‖2.

A suitable choice of Cψ gives the desired result. �

LEMMA 7.5. Under (P1) and (P2), ‖ψδ ∗ w‖2 ≤ Cδe−3πδ‖ψ‖2.

PROOF. For s ∈ C2(ρ) ∩ S ,

|ŵ(s)|2 ≤ Ce−π(α1+2α2) = Ce−2πβ2 ≤ Ce−3π .

The desired result follows from the inequality e−π(s1+2s2)δ ≤ Ce−3πδ , the
Plancherel formula (3.9) and change of variable s �→ q . �

7.4. Tail behavior.

LEMMA 7.6. For c1 ≥ 0 and c2, c3 ∈ R,∫
{u1>c1,c2<u2<c3}

dW(u) = 4π

∫
{c2<u2<c3}

exp{(N − 1)u2 − eu2 cosh c1}du2.

PROOF. Change of variable gives the desired result. �

If U has the distribution function W , then (U1, δU2) has the distribution func-
tion Wδ with density δ−1w(u1, u2/δ). By (7.2) and a change of variables,

(ψδ ∗ w)(v) =
∫

D
�u1v1(δv2 − u2)dWδ(u).(7.6)

LEMMA 7.7. We have g0 = f 0 ∗ w is K-invariant, and as v1 → ∞ and
|v2| → ∞

g0(v) ≥ Ce−b(v1+|v2|).

PROOF. Choose a constant C1/2 such that∫
{0≤u1<C1/2,|u2|<C1/2}

dW(u) ≥ 1/2

and pb(u2) = cb exp(−b|u2|) for |u2| ≥ C1/2. The desired result follows from (7.2)
and Lemma 7.1. �
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LEMMA 7.8. Define

ηδ(v) =
∫

D
cosh−m0(u1 − v1)e

−m0|v2−u2| dWδ(u).

Then, there exist M and a constant C such that when v1 ≥ M and |v2|/δ ≥ M ,

ηδ(v) ≤ C exp
{−1

2(N − 1)(1 − ξ)(v1 + |v2|/δ)}
for all δ ≥ 1 provided that 0 < ξ < 1 and m0ξ > (N − 1)(1 − ξ)/2.

PROOF. Denote

J11 = {u : |u1 − v1| ≤ ξv1, |v2 − δu2| ≤ ξ |v2|},
J12 = {u : |u1 − v1| ≤ ξv1, |v2 − δu2| > ξ |v2|},
J21 = {u : |u1 − v1| > ξv1, |v2 − δu2| ≤ ξ |v2|},
J22 = {u : |u1 − v1| > ξv1, |v2 − δu2| > ξ |v2|}

and for i, j = 1,2,

Iij =
∫
Jij

cosh−m0(u1 − v1)e
−m0|v2−u2| dWδ(u).

Consider I11. Suppose v2 < 0. If |u1 − v1| ≤ ξv1 and |v2 − δu2| ≤ ξ |v2|, then

(1 − ξ)(v1 + |v2|/δ) ≤ u1 − u2 ≤ (1 + ξ)(v1 + |v2|/δ).
Let ζ = (1 − ξ)(v1 + |v2|/δ) and λ = eζ . Note that

I11 ≤ C

(∫
{u1≥0,u2<−ζ }

dW(u) +
∫
{u1≥u2+ζ,−ζ≤u2<0}

dW(u)

)
:= I−

1 + I−
2 .

Since eu2 cosh(u2 + ζ ) = 1
2(λe2u2 + λ−1), then we have

I−
1 = 4π

∫
{0≤t<1/λ}

tN−2e−t dt = O
(
λ−(N−1))

and by Lemma 7.6 with c1 = u2 + ζ , c2 = −ζ and c3 = 0

I−
2 = C

∫
{−ζ≤u2<0}

e(N−1)u2 exp
(−eu2 cosh(u2 + ζ )

)
du2 = O

(
λ−(N−1)/2)

.

Hence, if v2 < 0, then I11 = O(λ−(N−1)/2) as v1 + |v2|/δ → ∞. Suppose v2 ≥ 0.
If |v2 − δu2| ≤ ξ |v2| and |u1 − v1| ≤ ξv1, then

(1 − ξ)(v1 + |v2|/δ) ≤ u1 + u2 ≤ (1 + ξ)(v1 + |v2|/δ).
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Observe that

I11 ≤ C

(∫
{u1≥0,u2≥ζ }

dW(u) +
∫
{u1≥ζ−u2,0≤u2<ζ }

dW(u)

)
:= I+

1 + I+
2 .

Since eu2/2 cosh(ζ − u2) = 1
2(λ + λ−1e2u2), then we have

I+
1 = 4π

∫
{t≥λ}

tN−2e−t dt = O(e−λ)

and by Lemma 7.6, with c1 = u2 − ζ , c2 = 0 and c3 = ζ ,

I+
2 = C

∫
{0≤u2<ζ }

e(N−1)u2 exp
(−eu2 cosh(ζ − u2)

)
du2 = O(e−λ).

Hence, for v2 ∈ R,

I11 = O
(
λ−(N−1)/2) = O

(
exp

{−1
2(N − 1)(1 − ξ)(v1 + |v2|/δ)})

as v1 + |v2|/δ → ∞.
Consider I21. Let ζ = (1 − ξ)|v2|/δ and λ = eζ . Suppose v2 < 0. On J21,

u2 ≤ −(1 − ξ)|v2|/δ = −ζ on J21. Note that cosh(ξv1)
−m0 ≤ (1

2eξv1)−m0 ≤
2−m0e−(1/2)(N−1)(1−ξ)v1 . If follows from these and Lemma 7.6 that

I21 = O
(
exp

{−1
2(N − 1)(1 − ξ)(v1 + |v2|/δ)}),

and if v2 ≥ 0,

I21 = O
(
exp

{−1
2(N − 1)(1 − ξ)(v1 + |v2|/δ)}).

Observe that m0ξ |v2| ≥ m0ξ |v2|/δ ≥ 1
2(N − 1)(1 − ξ)|v2|/δ. It follows from

this and Lemma 7.6 that

I12 ≤ Ce−m0ξ |v2|
∫
u2∈R

∫
u1>(1−ξ)v1

dW(u)

= O

(
exp

{
−1

2
(N − 1)(1 − ξ)(v1 + |v2|/δ)

})

and

I22 ≤ Ce−m0ξ |v2|(cosh(ξv1))
−m0

∫
D

dW(u)

= O

(
exp

{
−1

2
(N − 1)(1 − ξ)(v1 + |v2|/δ)

})
.

This completes the proof of Lemma 7.8. �
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7.5. Proof of Proposition 7.2. From (P5), one can choose Cψ sufficiently
small such that f n is a density. By (7.1) and (7.6),

χ2(g0, gn) = C2
ψδ−2ϕ+1

∫
D

{(ψδ ∗ w)(v)}2

g0(v)
d∗v

= C2
ψδ−2ϕ

∫
D

{∫D �u1v1(v2 − u2)dWδ(u)}2

g0(v1, v2/δ)
d∗v.

Let

J11 = {v : 0 ≤ v1 ≤ δ, |v2|/δ ≤ δ}, J12 = {v : 0 ≤ v1 ≤ δ, |v2|/δ > δ},
J21 = {v :v1 > δ, |v2|/δ ≤ δ}, J22 = {v :v1 > δ, |v2|/δ > δ},

and for i, j = 1,2,

Iij =
∫
Jij

{∫D �u1v1(v2 − u2)dWδ(u)}2

g0(v1, v2/δ)
d∗v.

By (7.6), Lemmas 7.5, 7.7 and the Plancherel formula (3.9), we obtain

I11 ≤ Ce2bδ
∫

D

{∫
D

�u1v1(v2 − u2)dWδ(u)

}2

d∗v

= Ce2bδδ‖ψδ ∗ w‖2

≤ Cδ2e(2b−3π)δ.

Lemma 7.1 and (P4) imply∫
D

�u1v1(v2 − u2)dWδ(u) ≤ Cηδ(v).(7.7)

Let c1 = (N − 1)(1 − ξ) − b. It follows from (7.7), Lemmas 7.7 and 7.8 that

I12 = O
(
δe−(c1−b)δ), I21 = O

(
e−(c1−b−1)δ), I22 = O

(
δe−(2c1−1)δ).

Now letting ε = min(3π −2b, (N −1)(1− ξ)−2b−1) > 0 and combining the
above bounds, we obtain

χ2(g0, gn) ≤ C2
ψδ−2ϕ(I11 + I12 + I21 + I22) ≤ Cδ−2ϕ+2e−εδ.

Choosing δ = ε/ logn, we have the desired result.
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