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ON DECONVOLUTION OF DISTRIBUTION FUNCTIONS

BY I. DATTNER1, A. GOLDENSHLUGER1 AND A. JUDITSKY

University of Haifa, University of Haifa and Université Grenoble I

The subject of this paper is the problem of nonparametric estimation of a
continuous distribution function from observations with measurement errors.
We study minimax complexity of this problem when unknown distribution
has a density belonging to the Sobolev class, and the error density is ordinary
smooth. We develop rate optimal estimators based on direct inversion of em-
pirical characteristic function. We also derive minimax affine estimators of
the distribution function which are given by an explicit convex optimization
problem. Adaptive versions of these estimators are proposed, and some nu-
merical results demonstrating good practical behavior of the developed pro-
cedures are presented.

1. Introduction. In this paper we study the problem of estimating a distribu-
tion function in the presence of measurement errors.

Let X1, . . . ,Xn be a sequence of independent, identically distributed random
variables with common distribution F . Suppose that we observe random variables
Y1, . . . , Yn given by

Yj = Xj + ζj , j = 1, . . . , n,(1)

where ζj are i.i.d. random variables, independent of Xj ’s with the density fζ w.r.t.
the Lebesgue measure on the real line. The objective is to estimate the value F(t0)

of the distribution function F of X at a given point t0 ∈ R from the observations
Yn = (Y1, . . . , Yn).

By an estimator we mean any measurable function F̃ = F̃ (Y n) of the observa-
tions Yn. We adopt the minimax approach for measuring estimation accuracy. Let
F be a given family of probability distributions on R. Given an estimator F̃ of
F(t0), we consider two types of maximal over F risks:

• quadratic risk,

Risk2[F̃ ; F ] := sup
F∈F

{E|F̃ − F(t0)|2}1/2.
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• ε-risk: given a tolerance level ε ∈ (0,1/2) we define

Riskε[F̃ ; F ] := min
{
δ : sup

F∈F
P[|F̃ − F(t0)| > δ] ≤ ε

}
.

An estimator F̃ ∗ is said to be rate optimal or optimal in order with respect to Risk
if

Risk[F̃ ∗; F ] ≤ C inf
F̃

Risk[F̃ ; F ],
where inf is taken over all possible estimators of F(t0), and C < ∞ is independent
of n. We will be particularly interested in the classes of distributions having density
with respect to the Lebesgue measure on the real line.

The outlined problem is closely related to the density deconvolution problem
that has been extensively studied in the literature; see, for example, [4, 5, 13, 18,
24, 27, 28] and references therein. In these works the minimax rates of convergence
have been derived under different assumptions on the error density and on the
smoothness of the density to be estimated. Depending on the tail behavior of the
characteristic function f̂ζ of ζ the following two cases are usually distinguished:

(i) ordinary smooth errors, when the tails of f̂ζ are polynomial, that is,

|f̂ζ (ω)| � |ω|−β, |ω| → ∞,

for some β > 0;
(ii) supersmooth errors, when the tails are exponential, that is,

|f̂ζ (ω)| � exp{−c|ω|β}, |ω| → ∞,

for some c > 0 and β > 0.

The afore cited papers derive minimax rates of convergence for different functional
classes under ordinary smooth and supersmooth errors.

In contrast to existence of the voluminous literature on density deconvolution,
the problem of deconvolution of the distribution function F has attracted much
less attention and has been studied in very few papers (see [24], Section 2.7.2,
for a recent review of corresponding contributions). A consistent estimator of a
distribution function from observations with additive Gaussian measurement errors
was developed by [14]. A “plug-in” estimator based on integration of the density
estimator in the density deconvolution problem has been studied under moment
conditions on F in [28]. The paper [13] also considered the estimator based on
integration of the density deconvolution estimator. It was shown there that under a
tail condition on F the estimator achieves optimal rates of convergence provided
that the errors are supersmooth. For the case of ordinary smooth errors there is a
gap between the upper and lower bounds reported in [13] which leaves open the
question of constructing optimal estimators. More recently, some minimax rates
of estimation of distribution functions in models with measurement errors were
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reported in [17]. Note also that [3] considered a general problem of optimal and
adaptive estimation of linear functionals �(f ) = ∫∞

−∞ φ(t)f (t)dt in the model (1).
However, their results hold only for representative φ ∈ L1(R) which is clearly not
the case in the problem of recovery of distribution function.

The objective of this paper is to develop optimal methods of minimax deconvo-
lution of distribution functions and to answer several questions raised by known
results on this problem: Is a smoothness assumption alone on F sufficient in order
to secure minimax rates of estimation of the sort O(n−γ ) for γ > 0 in the case of
ordinary smooth errors? Do we need tail or moment conditions on F ?

Our contribution is two-fold. First, we characterize the minimax rates of con-
vergence in the case when the unknown distribution belongs to a Sobolev ball, and
the observation errors are ordinary smooth. The rates of convergence depend cru-
cially on the relation between the smoothness index α of the Sobolev ball and the
parameter β [the rate at which the characteristic function of errors tends to zero;
see (i) above]. In contrast to the density deconvolution problem, it turns out that
there are different regions in the (α,β)-plane where different rates of convergence
are attained. We show that in some regions of the (α,β)-plane the minimax rates
of convergence are attained by a linear estimator, which is based on direct inver-
sion of the distribution function from the corresponding characteristic function;
cf. [17]. It is worth noting that we do not require any additional tail or moment
conditions on the unknown distribution. In the case when the parameters of the
regularity class of the distribution F are unknown, we also construct an adaptive
estimator based on Lepski’s adaptation scheme [23]. The ε-risk of this estimator
is within a ln lnn-factor of the minimax ε-risk.

Second, using recent results on estimating linear functionals developed in [19],
we propose minimax and adaptive affine estimators of the cumulative distribution
function for a discrete distribution deconvolution problem; see also [6, 9–12] for
the general theory of affine estimation. These estimators can be applied to the
original deconvolution problem provided that it can be efficiently discretized. By
efficient discretization we mean that:

(1) the support of the distributions of X (Y ) can be “compactified” [one can
point out a compact subset of R such that the probability of X (Y ) being outside
this set is “small”] and binned into small intervals;

(2) the class X of discrete distributions, obtained by the corresponding finite-
dimensional cross-section of the class F of continuous distributions is a computa-
tionally tractable convex closed set.2

Under these conditions one can efficiently implement the minimax affine estimator
for F based on the approach proposed in [19]. This estimator is rate minimax

2Roughly speaking, a computationally tractable set can be interpreted as a set given by a finite
system of inequalities pi(x) ≤ 0, i = 1, . . . ,m, where pi are convex polynomials; see, for example,
[2], Chapter 4.
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with respect to Riskε (within a factor ≈ 2 for small ε) whatever are the noise
distribution and a convex and closed class X .

We describe construction of the minimax affine estimator of F when the class
X is known and provide an adaptive version of the estimation procedure when the
available information allows us to construct an embedded family of classes.

The rest of the paper is structured as follows. We present our results on esti-
mation over the Sobolev classes in Section 2. Section 3 deals with minimax and
adaptive affine estimation. Section 4 presents a numerical study of proposed adap-
tive estimators and discusses their relative merits. Proofs of all results are given in
the supplementary article [8].

2. Estimation over Sobolev classes.

2.1. Notation. We denote by fY and fζ the densities of random variables Y

and ζ ; with certain abuse of notation we simply denote by f the density of un-
known distribution of X.

Let g be a function on R; we denote by ĝ the Fourier transform of g,

ĝ(ω) =
∫ ∞
−∞

g(x)eiωx dx, ω ∈ R.

We consider the classes of absolutely continuous distributions.

DEFINITION 2.1. Let α > −1/2, L > 0. We say that F belongs to the class
Fα(L) if it has a density f with respect to the Lebesgue measure on R, and

1

2π

∫ ∞
−∞

|f̂ (ω)|2(1 + ω2)α dω ≤ L2.

The set Fα(L) with α > −1/2 contains absolutely continuous distributions. If
α > 1/2, then the distributions F from Fα(L) have bounded continuous densities.
Usually Fα(L) is referred to as the Sobolev class.

We use extensively the following inversion formula: for a continuous distribu-
tion F one has

F(x) = 1

2
− 1

π

∫ ∞
0

ω−1	{e−iωxf̂ (ω)}dω, x ∈ R,(2)

where 	{·} stands for the imaginary part, and the above integral is interpreted as
an improper Riemann integral limT →∞

∫ T
1/T ω−1	{e−iωxf̂ (ω)}dω. For the proof

of (2) see [15, 16] and [20], Section 4.3.
Throughout this section we assume that the error characteristic function does

not vanish:

|f̂ζ (ω)| 
= 0 ∀ω ∈ R.

This is a standard assumption in deconvolution problems.
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2.2. Minimax rates of estimation. In model (1) we have f̂ (ω) = f̂Y (ω)/f̂ζ (ω),
and f̂Y (ω) can be easily estimated by the empirical characteristic function of the
observations Y . This motivates the following construction: for λ > 0 we define the
estimator F̃λ of F(t0) by

F̃λ = 1

2
− 1

n

n∑
j=1

1

π

∫ λ

0

1

ω
	
{
eiω(Yj−t0)

f̂ζ (ω)

}
dω.(3)

Here λ is the design parameter to be specified. Note that if the density fζ is sym-
metric around the origin, then f̂ζ is real, and the estimator F̃λ(t0) takes the form
(cf. [17])

F̃λ = 1

2
− 1

n

n∑
j=1

1

π

∫ λ

0

sin{ω(Yj − t0)}
f̂ζ (ω)ω

dω.

Note that F̃λ may be truncated to the interval [0,1]; obviously, the risk of such a
“projected” estimator is smaller than that of F̃λ.

Our current goal is to establish an upper bound on the risk of the estimator F̃λ

over the classes Fα(L). We need the following assumptions on the distribution of
the measurement errors ζi :

(E1) There exist real numbers β > 0, cζ > 0 and Cζ > 0 such that

cζ (1 + ω2)−β/2 ≤ |f̂ζ (ω)| ≤ Cζ (1 + ω2)−β/2 ∀ω ∈ R.

(E2) There exist positive real numbers ω0, bζ and τ such that

|f̂ζ (ω)| ≥ 1 − bζ |ω|τ ∀|ω| ≤ ω0.

Assumption (E1) characterizes the case of the ordinary smooth errors. Assump-
tion (E2) describes the local behavior of f̂ζ near the origin. It is well known that for
any distribution of a nondegenerate random variable there exist positive constants
b and δ such that |f̂ (ω)| ≤ 1 − b|ω|2 for all |ω| ≤ δ (see, e.g., [25], Lemma 1.5).
Thus in (E2) we have τ ∈ (0,2]. Typical examples of distributions satisfying (E1)
and (E2) are the Laplace and Gamma distributions. For example, for the Laplace
distribution (E1) holds with β = 2, and (E2) holds with τ = 2. The Gamma dis-
tribution provides an example of the distribution satisfying (E1) with β > 0 being
the shape parameter of the distribution.

As we will see in the sequel, the rates of convergence of the risks Risk2[F̃λ;
Fα(L)] and Riskε[F̃λ; Fα(L)] are mainly determined by the relationship between
parameters α and β . Consider the following two subsets of the parameter set � :=
{(α,β) :α > −1/2, β > 0} for the pair (α,β):

�r := {(α,β) ∈ � :α + β > 1/2}, �s := {(α,β) ∈ � :α + β < 1/2}.
If (α,β) ∈ �s, then necessarily f̂ζ /∈ L1(R); in addition, because α < 1/2, the
density f can be discontinuous. That is why we will refer to �s as the singular
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FIG. 1. Division of the parameter set for (α,β).

zone, while the subset �r will be called the regular zone. We denote by �b the
border zone between �r and �s:

�b := {(α,β) ∈ � :α + β = 1/2}.
Division of the parameter set � into zones �r, �s and �b is displayed in Figure 1.
The figure also shows the sub-regions �r,i and �s,i , i = 1,2, that are defined by
the following formulas:

�r,1 := {(α,β) ∈ �r :β > 1/2}, �r,2 := {(α,β) ∈ �r :β < 1/2},
�s,1 := {(α,β) ∈ �s :α + 3β ≥ 1/2}, �s,2 := {(α,β) ∈ �s :α + 3β < 1/2}.

The next two theorems present bounds on the risks in the regular zone: Theo-
rem 2.1 states upper bounds on the risks of F̃λ, while Theorem 2.2 contains the
corresponding lower bounds on the minimax risks.

For z ≥ 1 define

λ(z) = z1/[2α+(2β∨1)], ψ(z) =
⎧⎪⎨⎪⎩

z−(2α+1)/(4α+4β), β > 1/2,√
ln z/z, β = 1/2,

1/
√

z, β ∈ (0,1/2).

THEOREM 2.1. Let assumptions (E1) and (E2) hold, and suppose that
(α,β) ∈ �r. If F̃λ� is estimator (3) associated with λ� = C1(α,L)λ(n), then for
all t0 ∈ R and large enough n,

Risk2[F̃λ�; Fα(L)] ≤ ψn(α,L) := C2(α,L)ψ(n).

In addition, if λ� = C1(α,L)λ(n/ ln[2ε−1]), then for all t0 ∈ R and large
enough n,

Riskε[F̃λ�; Fα(L)] ≤ ψn,ε(α,L) := C3(α,L)ψ(n/ ln[2ε−1]),
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provided that ε ≥ 2 exp{−C4(α,L)n}. The constants Ci , i = 1, . . . ,4, are specified
in the proof of the theorem (see (A.15)–(A.22) in [8]).

Theorem 2.1 shows that if (α,β) is in the regular zone �r and β ∈ (0,1/2), then
the estimator F̃λ� attains the parametric rate of convergence. In the case β = 1/2
this rate is within a logarithmic factor of the parametric rate. The natural question
is if the estimator F̃λ� is rate optimal whenever β > 1/2, and (α,β) ∈ �r. The
answer is provided by Theorem 2.2.

We need the following assumption.

(E3) The characteristic function f̂ζ is twice differentiable, and there exist real
numbers β > 1/2, Cζ > 0 and ω∗ > 0 such that

(1 + ω2)β/2 max
j=0,1,2

{∣∣f̂ (j)
ζ (ω)

∣∣}≤ Cζ ∀|ω| ≥ ω∗.

Assumption (E3) is rather standard in derivations of lower bounds for deconvolu-
tion problems. This assumption should be compared to condition (G3) in [13]; it
is assumed there that for j = 0,1,2 one has |f̂ (j)

ζ (ω)||ω|β+j ≤ Cζ as |ω| → ∞.
Note that (E3) is a weaker assumption.

THEOREM 2.2. Let assumption (E3) hold. Suppose that the class Fα(L) is
such that L2 ≥ π−121+(α−1)+�(2α + 1) and α > 1/2. Then there exist constants
c1 and c2 depending on α, β and fζ only such that, for all n large enough,

inf
F̃

Risk2[F̃ ; Fα(L)] ≥ c1L
(2β−1)/(2α+2β)φn,

inf
F̃

Riskε[F̃ ; Fα(L)] ≥ c2L
(2β−1)/(2α+2β)φn,ε,

where φn := φ(n), φn,ε := φ(n/ ln ε−1), φ(z) := z−(2α+1)/(4α+4β), and inf is taken
over all possible estimators of F(t0).

The results of Theorems 2.1 and 2.2 deal with the regular zone. While we do
not present the lower bound for the case of α ≤ 1/2 we expect that the bounds of
Theorem 2.2 hold for the whole regular zone.

It is important to realize that the risks of F̃λ converge to zero for all (α,β) ∈ �,
and, in particular, for (α,β) ∈ �s and (α,β) ∈ �b. The next statement establishes
upper bounds on Risk2[F̃λ; Fα(L)] in the singular and border zones, �s and �b.

THEOREM 2.3. Let assumptions (E1) and (E2) hold. If F̃λ� is the estimator
(3) associated with λ� = C1(α,L)λ(n), then for all t0 ∈ R and large enough n

Risk2[F̃λ�; Fα(L)] ≤ C2(α,L)ϕ(n),

where the sequences λ(n) and ϕ(n) are given in Table 1, and constants C1
and C2 are specified in the proof (see (A.15)–(A.22) in [8]). In addition, if
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TABLE 1
The bandwidth order λ(n) and the convergence rate of the maximal risk ϕ(n) in the singular and

border zones

Border zone �b: α + β = 1/2 Singular zone �s: α + β < 1/2

β > 1/2 β = 1/2 β < 1/2 α + 3β ≥ 1/2 α + 3β < 1/2

λ(n) n√
lnn

n
(lnn)3/2 ( n√

lnn
)1/(2α+1) n2/(2α+3−2β) n1/(2α+2β+1)

ϕ(n) (
√

lnn
n )α+1/2 (lnn)3/4√

n

(lnn)1/4√
n

n−(2α+1)/(2α+3−2β) n−(2α+1)/(4α+4β+2)

λ� = C3(α,L)λ(n/ ln[2ε−1]), then for large enough n

Riskε[F̃λ�; Fα(L)] ≤ C4(α,L)ϕ(n/ ln[2ε−1]).
Several remarks on the results of Theorems 2.1–2.3 are in order.

Remarks. (1) Theorem 2.1 shows that the regular zone �r is decomposed into
three disjoint regions with respect to the upper bounds on the risks of F̃λ� . In the
zone �r,2 where β < 1/2, the rates of convergence are parametric; because of
roughness of the error density, here the estimation problem is essentially a para-
metric one. The region �r,1 is characterized by nonparametric rates, while in the
border zone between �r,1 and �r,2 (β = 1/2) the rate of convergence differs from
the parametric one by a lnn-factor.

(2) The condition on L stated in Theorem 2.2 is purely technical; it requires
that the family Fα(L) is rich enough. It follows from Theorems 2.1 and 2.2 that
the estimator F̃λ� is optimal in order in the regular zone if α > 1/2.

(3) The subdivision of the singular zone �s into two zones �s,1 = {(α,β) ∈
�s : 3β + α ≥ 1

2} and �s,2 = {(α,β) ∈ �s : 3β + α < 1
2} is a consequence of two

types of upper bounds that we have on the variance term; see (14) in [8]. In the
border zone �b the upper bounds on the risk differ from those in the regular zone
only by logarithmic in n factors. We do not know if the estimator F̃λ� is rate optimal
in the singular and border zones.

(4) Note that the results of Theorems 2.1 and 2.3, when put together, allow us to
establish risk bounds for any pair (α,β) from the parameter set � = {(α,β) :α >

−1/2, β > 0}. In particular, for any fixed α > −1/2, the rate of convergence of the
maximal risk approaches the parametric rate when β approaches zero. We would
like to stress the fact that no tails or moment conditions on F are required to obtain
these results; such conditions were systematically imposed in the previous work on
deconvolution of distribution functions.

2.3. Adaptive estimation. The choice of the smoothing parameter λ in (3)
is crucial in order to achieve the optimal estimation accuracy. As Theorems
2.1 and 2.2 show, if parameters α and L of the class Fα(L) are known, then one
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can choose λ in such a way that the resulting estimator is optimal in order. In prac-
tice the functional class Fα(L) is hardly known; in these situations the estimator of
Section 2 cannot be implemented. Note, however, that this does not pose a serious
problem in the regular zone when β ∈ (0,1/2). Indeed, here if we choose λ = √

n,
then the resulting estimator will be optimal in order for any functional class Fα(L)

satisfying λ� = λ�(α,L) ≤ √
n, where λ� is defined in Theorem 2.1.

The situation is completely different in the case β > 1/2. In this section we
develop an estimator that is nearly optimal for the ε-risk over a scale of classes
Fα(L). The construction of our adaptive estimator is based on the general scheme
by [23].

2.3.1. Estimator construction. Consider the family of estimators {F̃λ, λ ∈ �},
where F̃λ is defined in (3), � := {λj , j = 1, . . . ,N} with λmin := λ1, λmax := λN ,
and λj = 2jλmin, j = 2, . . . ,N . The adaptive estimator F̃ is obtained by selection
from the family {F̃λ, λ ∈ �} according to the following rule.

Let

ω1 := min{ω0, (4bζ )
−1/τ }, c∗ := 2π−2[2 + (1/τ)]2,(4)

where constants ω0, bζ and τ appear in assumption (E2). For any λ ∈ � we define

σ̃ 2
λ := c∗ + 2

π2n

n∑
j=1

∫ λ

ω1

∫ λ

ω1

1

ωμ
	
{
eiω(Yj−t0)

f̂ζ (ω)

}
	
{
eiμ(Yj−t0)

f̂ζ (μ)

}
dω dμ,

(5)
�̃2

λ := max
μ∈� : μ≤λ

σ̃ 2
μ.

Note that σ̃ 2
λ can be computed from the data (the parameters τ and ω1 are deter-

mined completely by f̂ζ ; hence they are known). In fact, σ̃ 2
λn−1 is a plug-in esti-

mator of an upper bound on the variance of F̃λ, while �̃2
λ is a “monotonization” of

σ̃ 2
λ with respect to λ.

Define

ṽ2
λ := �̃2

λ + 11m̄2λ2βn−1 ln(4N2ε−1), λ ∈ �,

where

m̄ :=√
2c∗ + (πcζ β)−121+(β/2−1)+[2 + β ln+(1/ω1)],(6)

and constant cζ appears in assumption (E1).
Let ϑ := √

2(
√

2 − 1)−1[1 + √
3 ln(4Nε−1)]; then with every estimator F̃λ,

λ ∈ � we associate the interval

Qλ := [F̃λ − ϑṽλn
−1/2, F̃λ + ϑṽλn

−1/2].(7)

Define

λ̃ := min
{
λ ∈ � :

⋂
μ≥λ,μ∈�

Qμ 
= ∅

}
,(8)
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and set finally

F̃ := F̃λ̃.(9)

Note that λ̃ is well defined: the intersection in (8) is nonempty for λ = λmax.

2.3.2. Oracle inequality. We will show that the estimator F̃ mimics the oracle
estimator F̃o which is defined as follows:

Let

σ 2
λ := c∗ + 2

π2 E
[∫ λ

ω1

1

ω
	
{
eiω(Yj−t0)

f̂ζ (ω)

}
dω

]2

,

�2
λ := max

μ∈� : μ≤λ
σ 2

μ, λ ∈ �.

It is shown in the proof of Lemma 5.2 (see Section A.1.2 in [8]) that σ 2
λn−1 is an

upper bound on the variance of the estimator F̃λ associated with parameter λ. Note
that σ̃ 2

λ defined in (5) is the empirical counterpart of the quantity σ 2
λ . Define

v2
λ := �2

λ + 11m̄2λ2βn−1 ln(4N2ε−1).

Given α > 0 and L > 0 let

λo = λo(α,L) := min
{
λ ∈ � :vλn

−1/2 ≥ 2
√

2π−1/2Lλ−α−1/2}
and define F̃o := F̃λo .

The oracle estimator F̃o has attractive minimax properties over classes Fα(L).
In particular, it is easily verified that for any class Fα(L) such that λo ≤
[11m̄2 ln(4Nε−1)]−1n one has

Riskε[F̃o; Fα(L)] ≤ 2vλon
−1/2 ≤ κ1ψn,ε(α,L) + κ2φn,ε.

Here ψn,ε is the upper bound of Theorem 2.1 on the risk of the estimator F̃λ� that
“knows” α and L, φn,ε is defined in Theorem 2.2, and κ1 and κ2 are constants
independent of α and L. Thus, the risk of the oracle estimator admits the same
upper bound as the risk of the estimator F̃λ� that is based on the knowledge of the
class parameters α and L.

Now we are in a position to state a bound on the risk of the estimator F̃λ̃.

THEOREM 2.4. Suppose that assumptions (E1), (E2) hold, β > 1/2 and let

λmax = [11m̄2 ln(4Nε−1)]−1n.

If F̃λ̃ is the estimator defined in (7)–(9) then for any class Fα(L) with α > 0 such
that λmin ≤ λo(α,L) ≤ λmax, one has

Riskε[F̃λ̃; Fα(L)] ≤ (
3 − 1/

√
2
)
ϑvλon

−1/2.

Estimator (7)–(9) attains the optimal rates of convergence with respect to ε-
risk within a ln(Nε−1)-factor over the collection of functional classes Fα(L).
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In particular, if λmin is chosen to be a constant, and λmax � nl for some l ≥ 1,
then N = ln(λmax/λmin)/ ln 2 � lnn, and the ε-risk of the adaptive estimator F̃λ̃

is within a ln lnn-factor of the minimax ε-risk for a scale of Sobolev classes. It
can be shown that this ln lnn-factor is unavoidable price for adaptation when the
accuracy is measured by the ε-risk; see, for example, [26].

3. Minimax and adaptive affine estimation in discrete deconvolution
model. The results of Section 2 imply that in the regular zone the minimax rates
of convergence on the Sobolev classes are attained by linear estimator (3). It seems
interesting to compare the performance of estimator (3) and its adaptive version in
Section 2.3 with that of the minimax linear estimator.

Consider the estimation problem as follows; cf. [19], Problem 2.2:

PROBLEM D. We observe n independent realizations η1, . . . , ηn of a random
variable η, taking values in S = {1, . . . ,m}. The distribution of η is identified with
a vector p from the m-dimensional simplex Pm = {y ∈ R

m :y ≥ 0,
∑

i yi = 1}
by setting pk = P{η = k}, 1 ≤ k ≤ m. Suppose that vector p is affinely pa-
rameterized by an M-dimensional “signal”-vector of unknown “parameters” x ∈
X ⊂ PM :p = Ax = [[Ax]1; . . . ; [Ax]m]. Here Ax is the linear mapping with
AX ⊂ Pm, and [a]j stands for the j th element of a. Our goal is to estimate a
given linear form g(x) = gT x at the point x underlying the observation ηn.

It is obvious that if distributions of X and ζ are compactly supported, or can be
“compactified” (i.e., for any ε > 0 one can point out bounded intervals of probabil-
ity 1 − ε for X and ζ ), then under very minor regularity conditions on fζ and F ,
the Problem D approximates the initial distribution deconvolution problem with
“arbitrary accuracy.” The latter means that given ε > 0 we can compile the dis-
cretized problem such that its δ-solution is the solution to the initial continuous
problem with the accuracy δ + ε with probability 1 − ε.

We consider the following discretization of the deconvolution problem:

(1) Let J = [a0, am] be the (finite) observation domain, and let a0 < a1 < a2 <

· · · < am−1 < am. We split J into m intervals J1 = [a0, a1], J2 = (a1, a2], . . . ,
Jm = (am−1, am]. We denote pk = P{Y ∈ Jk}, k = 1, . . . ,m.

(2) Suppose that the (finite) interval I = [b0, bM ] contains the support of
all F ∈ F . Let b0 < b1 < b2 < · · · < bM , we partition I into M intervals
I1 = [b0, b1], I2 = (b1, b2], . . . , IM = (bM−1, bM ]. We denote xk = P{X ∈ Ik},
k = 1, . . . ,M .

(3) Denote b̄k = (bk−1 + bk)/2. Define the m × M matrix A = (Ajk) with ele-
ments

Ajk = P{b̄k + ζ ∈ Jj }

=
{

P{a0 − b̄k ≤ ζ ≤ a1 − b̄k}, k = 1, . . . ,M, j = 1,
P{aj−1 − b̄k < ζ ≤ aj − b̄k}, k = 1, . . . ,M, j = 2, . . . ,m,
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and the vector g = g(t0) ∈ R
M , with gk = 1(b̄k ≤ t0), k = 1, . . . ,M . The elements

Ajk of A are the approximations of conditional probabilities P{Y ∈ Jj |X ∈ Ik},
and gT x is an approximation of F(t0).

(4) Consider discrete observations ηi ∈ {1, . . . ,m} as follows:

ηi = 1(a0 ≤ Yi ≤ a1) +
m∑

j=2

j · 1(aj−1 < Yi ≤ aj ), i = 1, . . . , n.

If the sets I and J are selected so that P{X ∈ I } ≥ 1 − ε, P{Y ∈ J } ≥ 1 − ε for
any F ∈ F , if F is the class of “regular distributions” and the noise distribution
possesses some regularity, and if the partitions of I and J are “fine enough,” then
solving Problem D with X being the corresponding M-dimensional cross-section
of F will provide us with an estimation g̃ of F(t0) in the continuous deconvolution
problem.

We now concentrate on solving the deconvolution problem in the discrete
model.

3.1. Minimax estimation in the discrete model. An estimate of g(x)—a candi-
date solution to our problem—is a measurable function g̃ = g̃(ηn) : Sn → R. Given
tolerance ε ∈ (0,1), we define the ε-risk of such an estimate on X as

Riskε(g̃; X ) = inf
{
δ : sup

x∈X
Px{|g̃(ηn) − gT x| > δ} < ε

}
,

where Px stands for the distribution of observations ηn associated with the “sig-
nal” x. The minimax optimal ε-risk is

Risk∗
ε (X ) = inf

g̃(·) Riskε(g̃; X ).

We are particularly interested in the family of estimators of the following struc-
ture:

g̃ϕ,c(η
n) = 1

n

n∑
i=1

ϕ(ηi) + c = 1

n

n∑
i=1

m∑
k=1

ϕk1(ηi = k) + c.

We refer to such estimators g̃ϕ as affine. In other words, g̃ϕ is an affine function of
empirical distribution: for some ϕ ∈ R

m and c ∈ R,

g̃ϕ,c(η
n) =

m∑
k=1

ϕkP̃n(k) + c,

where P̃n is the empirical distribution of the observation sample P̃n(k) =
1
n

∑n
i=1 1(ηi = k). An important property of the class of affine estimators, when

applied to Problem D with convex set X , is that one can choose an estimator from
the class such that its ε-risk attains (up to a moderate constant ≈ 2; see Theo-
rem 3.1 below) the minimax ε-risk Risk∗

ε (X ).
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From now on let us assume that X ⊂ R
M is a convex closed (and, being a subset

of an M-dimensional simplex, compact) set.
Let us consider the affine estimator g̃ε of gT x

g̃ε(η
n) ≡ g̃ϕ̄,c̄(η

n) =
m∑

k=1

ϕ̄kP̃n(k) + c̄,

in which the parameters ϕ̄ and c̄ of g̃ε are defined as follows.
Consider the optimization problem

S(ε) = max
x,y∈X

{
1

2
gT (y − x),

(10)

h(x, y; ε) ≡ n ln

(
m∑

j=1

√
[Ax]j [Ay]j

)
+ ln(2/ε) ≥ 0

}
.

Let (x̄, ȳ) be an optimal solution to (10), and let ν ≥ 0 be the Lagrange multiplier
of the constraint h(x, y; ε) ≥ 0. We set

c̄ = 1

2
gT [ȳ + x̄] and ϕ̄j = νn ln

[√ [Aȳ]j
[Ax̄]j

]
, j = 1, . . . ,m.

We have the following result.

THEOREM 3.1. Let ε ∈ (0,1/4]. Then the ε-risk of the estimator g̃ε satisfies

Riskε(g̃ε; X ) ≤ S(ε) ≤ ϑ(ε)Risk∗
ε (X ), ϑ(ε) = 2 ln(2/ε)

ln[1/(4ε)] .(11)

Note that ϑ(ε) → 2 as ε → 0; thus for small tolerance levels the ε-risk of the
estimator g̃ε is within factor ≈ 2 of the minimax ε-risk. It is important to empha-
size that g̃ε is readily given by a solution to the explicit convex program (10), and
as such, it can be found in a computationally efficient fashion, provided that X is
computationally tractable.

In the “historical perspective” the affine estimator g̃ε represents an alternative
to the binary search estimator g̃B , proposed in [10] for the case of “direct” ob-
servations. It can be shown that the ε-risk Riskε(g̃B; X ) of that estimator satisfies
Riskε(g̃B; X ) ≤ C Risk∗

ε (X ) for small ε (e.g., one can prove that C ≤ 26 whenever
ε ≤ 0.01). To the best of our knowledge, risk bound (11) in Theorem 3.1 for the
estimator g̃ε is much better than those available for the binary search estimator.

Note that the constraint h(x, y; ε) ≥ 0 of the problem (10) can be rewritten as
follows:

ρ(x, y) ≥ (ε/2)1/n,
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where

ρ(x, y) =
m∑

k=1

√[Ax]k[Ay]k

is the Hellinger affinity of distributions A(x) and A(y); cf. [21] and [22], Chap-
ter 4. Thus the optimal value S(ε) of the optimization problem (10) can be seen as
modulus of continuity of the linear functional g(·) over the class X of distributions
“with respect to Hellinger affinity.” If 1

n
ln[1/ε] = o(1) we have ρ(x, y) ≈ 1 and

H 2(x, y) = 1 − ρ(x, y) ≈ − lnρ(x, y),

where H(x,y) is the Hellinger distance between x and y. In this limit we have

S(ε) ≈ 1

2
ω

(√
ln[2/ε]

2N

)
≡ max

x,y∈X

{
1

2
gT (y − x),H(x, y) ≤

√
ln[2/ε]

2n

}
.

Here ω(·) is the “modulus of continuity of g over X with respect to Hellinger
distance,” introduced in [10]. Therefore, bound (11) can be seen as a finite-
dimensional nonasymptotic counterpart of [10], Theorem 3.1.

3.2. Adaptive version of the estimate. Consider a modification of our estima-
tion problem where the set X , instead of being given in advance, is known to be one
of the sets from the collection of nonempty convex compact sets X 1, X 2, . . . , X N

in R
M . We aim to construct an adaptive estimator of the linear form gT x, given

that x is an element of some Xi in the collection. Here we consider the simple
case where the sets are nested. X 1 ⊂ X 2 ⊂ · · · ⊂ X N . Note that in the case of
nonnested sets an adaptive estimator can be constructed following the ideas of [7].

Given a linear form gT z on R
M , let Riskk(g̃) and Riskk∗ be, respectively, the

ε-risk of an estimate g̃ on X k , and the minimax optimal ε-risk of recovering gT x

on X k . Let also Sk(·) be the function S(·) in (10) associated with X = X k . As it
is immediately seen, the functions Sk(·) grow with k. Our goal is to modify the
estimate g̃ we have built in such a way that the ε-risk of the modified estimate
on X k will be “nearly” Riskk∗ for every k ≤ N . This goal can be achieved by a
straightforward application of Lepski’s adaptation scheme as follows.

Given ε > 0, let g̃k(·) be the affine estimate with the (ε/N)-risk on X k not
exceeding Sk(ε/N) as provided by Theorem 3.1 which is applied with ε/N sub-
stituted for ε and X k substituted for X . Then

sup
x∈X k

Px{|g̃k(ηn) − gT x| > Sk(ε/N)} ≤ ε/N ∀k ≤ N.

Given observation ηn, let us say that the index k ≤ N is ηn-good, if for all k′
satisfying k ≤ k′ ≤ N one has

|g̃k′
(ηn) − g̃k(ηn)| ≤ Sk(ε/N) + Sk′(ε/N).

Note that ηn-good indices do exist (e.g., k = N ). Given ηn, we can find the smallest
ηn-good index k = k(ηn); our estimate is nothing but g̃(ηn) = g̃k(ηn)(ηn).



ON DECONVOLUTION OF DISTRIBUTION FUNCTIONS 2491

PROPOSITION 3.1. Assume that ε ∈ (0,1/4), and let

ϑ = 3
ln(2N/ε)

ln(2/ε)
.

Then

sup
x∈X k

Px{|g̃(ηn) − gT x| > ϑSk(ε)} < ε ∀(k,1 ≤ k ≤ N);

whence also

Riskk(g̃) ≤ 6 ln(2N/ε)

ln[1/(4ε)] Riskk∗ ∀(k,1 ≤ k ≤ N).

The proof of the proposition follows exactly same steps as that of Proposi-
tion 5.1 of [19], and it is omitted.

4. Numerical examples. To illustrate our results we present here examples of
implementation of the adaptive estimation procedures of Sections 2.3 and 3.2.

We consider three measurement error distributions scenarios:

(i) Gamma distribution �(0,2,1/(2
√

2)) with the shape parameter 2 and the
scale 1

2
√

2
(the standard deviation of the error is equal to 0.5). Here �(μ,α, θ)

stands for the Gamma distribution with location μ, shape parameter α and scale θ ,
such that its density is [�(α)θα]−1(x − μ)α−1 exp{−(x − μ)/θ}1(x ≥ μ).

(ii) Mixture of Laplace distributions 1
2 L(−1, 1

2) + 1
2 L(1, 1

2); here L(μ, a)

stands for the Laplace distribution with the density (2a)−1e−|x−μ|/a .
(iii) Normal mixture 1

2 N (0, 1
4) + 1

2 N (2, 1
4).

We consider three distributions of X:

(1) mixture of “shifted” Gamma distributions: 0.3�(0,0.5,2)+0.7�(5,0.5,2);
(2) mixture of Laplace distributions 0.3L(−1.5,0.5) + 0.7L(1.7,0.25);
(3) normal mixture 0.6N (0.15827,1) + 0.4N (1,0.0150).

Note that in the case (i) of �(0,2, θ) error distribution the estimator (3) can be
computed explicitly: we have F̃λ = 1

2 − 1
πn

∑n
i=1 Iλ(Yi − t0), where

Iλ(y) = Si(λy) + y−1[θ2λ cos(λy) − 2θ sin(λy)] − y−2θ2 sin(λy),

and Si(x) = ∫ x
0 ω−1 sinω dω is the sine integral function. Then the adaptive es-

timation algorithm of Section 2.3 is implemented for the grid � = {λ ∈ [0.01 :
0.05 : 10]}.

Estimation procedures, described in Section 3.1, were implemented using
Mosek optimization software [1]. The observation space and the signal space
were split into m = M = 200 bins. The adaptation procedure was implemented
over 17 linear estimators corresponding to the classes X 1, . . . , X 17 of “Lipschitz-
continuous” discrete distributions with Lipschitz constants on the geometric grid,
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scaled from 0.001 to 1 [if reduced to continuous densities, it corresponds to the
approximate range of Lipschitz constant from O(0.1) to O(100)].

The simulation has been repeated for 100 observation samples of size n =
2,000. On Figure 2 we present simulation results for the scenario (i) when the

FIG. 2. Simulation results for the Gamma error scenario. On the left: true cdf (solid line), adaptive
estimator g̃(ηn) of Section 3.2 (dashed line), adaptive estimator F̃λ̃ of Section 2.3 (dotted line) and
the edf of the observations (dash–dot line). On the right: the boxplots of the maximal estimation error
of g̃(ηn) (a) and F̃λ̃ (b).
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error distribution follows the �(0,2,1/(2
√

2)) law. The left column displays “typ-
ical” results of estimation corresponding to three signal distributions. We present
the true distribution (solid line), the estimate F̃λ̃ of Section 2.3 (dotted line), the
estimate g̃(ηn) of Section 3.2 (dashed line) and the empirical distribution of the
observations (dash–dot line). The boxplots on the right display resume the corre-
sponding empirical distributions of the maximal estimation error over 50 points of
the regular grid on the support of f for two estimators: (a) for g̃(ηn) of Section 3.2
and (b) for the F̃λ̃ of Section 2.3. On Figure 3 we present “typical” results for adap-
tive estimator g̃(ηn) of Section 3.2 under the error scenarios (ii) (on the left) and
(iii) (on the right). Similarly to Figure 2 we plot true cdf (solid line), adaptive esti-
mator g̃(ηn) of Section 3.2 (dashed line) and the observation edf (dash–dot line).
The results of this simulation are summarized on Figure 4. The first boxplot (the
left column plots) represents the distribution of the maximal estimation error over
50 points of the regular grid on the support of f . Next, for each point in the grid
we compute the maximal estimation error over 100 simulations, the distribution of
maximal errors “over the points of the grid” is represented on the second boxplot
(plots on the right column).

Remarks. The numerical examples in this section illustrate strong and weak
points of the proposed estimators related to practical implementation. They can be
summarized as follows.

The adaptive estimator of Section 2.3 is based on the choice of the unique
smoothing parameter λ. This imposes a “natural” family of nested classes and
facilitates implementation of the adaptation scheme. Yet, this estimator should be
“explicitly tuned” for a specific distribution of the errors. In particular, the integral
computation in (3) for a given distribution of ζ may become very tedious. Even
though our theoretical results are proved under the condition that |f̂ζ (ω)| 
= 0 for
all ω ∈ R, in practical implementation the estimator (3) could be modified in or-
der to allow characteristic functions f̂ζ vanishing at finite number of points on R.
In this case the integration domain in (3) should exclude some properly specified
vicinities of the points where f̂ζ vanishes.

In contrast to this, the adaptive estimator in Section 3.2 can be easily tuned to
any noise distribution and convex target distribution class. For instance, the char-
acteristic function of noise in the Laplace scenario (ii) vanishes at some points,
what precludes the possibility of utilizing the estimator of Section 2.3 without
proper modifications. Note that one can easily incorporate any additional available
information on the unknown distribution that can be expressed as a convex con-
straint in the corresponding optimization problem. The typical examples of such
constraints are unimodality, symmetry, monotonicity and moment bounds. How-
ever, this freedom comes at a price: the family X 1 ⊂ · · · ⊂ X N of the embedded
classes for the adaptive estimator in Section 3.2 should be constructed “by hand.”
The computation of the adaptive affine estimator of Section 3.2 is also a heavy
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FIG. 3. Simulation results: true cdf (solid line), adaptive estimator (dashed line) and empirical
distribution function of the observation (dash–dot line). On the left, (ii) are the results for mixed
Laplace noise; on the right, (iii) are the results for the mixed normal noise.

numerical task. In particular, in our setting it involves solving 17 conic quadratic
optimization problems with 1,006 variables, 809 linear and 202 conic constraints.

It is well known that the normal noise in the deconvolution problem results
in a very poor quality of estimation [13]. In particular, the minimax rate of con-
vergence in this case is O((lnn)−γ ) with γ > 0 depending on the exponent α



ON DECONVOLUTION OF DISTRIBUTION FUNCTIONS 2495

FIG. 4. Estimation error distribution. Left column: empirical distribution of the maximal error
of estimation over a regular grid; right column: distribution of the maximal over 100 simulations
estimation error over the points of the grid. On each plot the left boxplot (a) corresponds to the
mixed Laplace noise, while the right boxplot (b) corresponds to the mixed normal noise.

of the regularity class Fα(L). Fortunately, these pessimistic results are concerned
with the asymptotic as n → ∞ behavior of the estimators. We observed that the
estimation procedures exhibit much better performance for small or moderately
sized observation samples. On the other hand, this performance does not improve
when the sample size grows up: in our experiments, for instance, the estimation
accuracy, measured by �∞-error over a regular grid in the distribution domain, im-
proved only by the factor ≈ 2 when we increased the sample size from n = 2,000
to n = 100,000.
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5. Proofs. This section is organized as follows. In Section 5.1 we state main
results that are used in the proof of Theorems 2.1 and 2.3 and briefly discuss the
proof outline. Then in Section 5.2 we prove Theorem 2.4. Full proofs of all aux-
iliary results and additional technical details are given in the supplementary pa-
per [8].

5.1. Proofs of Theorems 2.1 and 2.3. Proofs of Theorems 2.1 and 2.3 go
along the same lines and exploits three basic statements presented here. Lemmas
5.1 and 5.2 given below establish upper bounds on the bias and variance of the
estimator F̃λ. Then we present Lemma 5.3 that states an exponential inequality on
the stochastic error of F̃λ. This result is used for derivation bounds on the ε-risk.
Finally we briefly explain how the stated results are combined in order to complete
the proof of Theorems 2.1 and 2.3.

We start with the standard decomposition of the error of estimator (3).

|F̃λ − F(t0)| ≤ |EF̃λ − F(t0)| + |F̃λ − EF̃λ| = Bλ(t0;F) + |Vλ|,
E|F̃λ − F(t0)|2 = B2

λ(t0;F) + E|Vλ|2,
where we have denoted

Bλ(t0,F ) :=
∣∣∣∣ 1

π

∫ ∞
λ

1

ω
	(e−iωt0 f̂ (ω))dω

∣∣∣∣, Vλ := 1

n

n∑
j=1

[ξj (λ) − Eξj (λ)]

and

ξj (λ) := 1

π

∫ λ

0

1

ω
	
{
eiω(Yj−t0)

f̂ζ (ω)

}
dω, j = 1, . . . , n.

5.1.1. Bounds on bias and variance. First we bound the bias of F̃λ.

LEMMA 5.1. Let F̃λ be the estimator defined in (3); then for every class
Fα(L) with α > −1

2 , L > 0 and for any λ ≥ 1 one has

sup
F∈Fα(L)

Bλ(F ; t0) ≤ K0Lλ−α−1/2, K0 :=
√

2/π [1 + (2α + 1)−1/2].(12)

Now we establish an upper bound on the variance of F̃λ. Recall that ω1 and c∗
are given in (4) and depend on the constants ω0, bζ and τ appearing in assump-
tion (E2). Define

w(λ) :=
⎧⎨⎩λ2β−1, β > 1/2,

1 ∨ ln(λ/ω1), β = 1/2,
1, β ∈ (0,1/2).

(13)
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LEMMA 5.2. Let assumptions (E1), (E2) hold and F̃λ be the estimator defined
in (3). Then there exist constants K1 = K1(α,β,ω1) and K2 = K2(β,ω1) such that
for every λ ≥ 1 ∨ ω1 the following statements hold:

(i) If α + β > 1/2, then

var{F̃λ} ≤ K1LCζ c
−2
ζ w(λ)n−1 + c∗n−1.

If β > 1, then the upper bound can be made independent of α and L

var{F̃λ} ≤ K2Cζ c
−2
ζ λ2β−1n−1 + c∗n−1.

(ii) If α + β = 1/2, then

var{F̃λ} ≤ K1LCζ c
−2
ζ w(λ)

√
ln(λ/ω1)n

−1 + c∗n−1.

(iii) If α + β < 1/2, then

var{F̃λ} ≤ K1c
−2
ζ min[LCζλ

1/2−β−α, ln2(λ/ω1) + λ2β]n−1 + c∗n−1.(14)

Explicit expressions for K1 and K2 are given in the proof; see (A.12) in [8].

It is worth noting that if β > 1, then the upper bound on the variance of F̃λ stated
in part (i) does not depend on paramaters α and L. This is particularly important
when the problem of adaptive estimation of F(t0) is considered.

5.1.2. An exponential inequality. First we recall some notation.

σ 2
λ := c∗ + 2

π2 E
(∫ λ

ω1

1

ω
	
{
eiω(Yj−t0)

f̂ζ (ω)

}
dω

)2

,

where ω1 = min{ω0, (2bζ )
−1/τ }, c∗ = 2π−2[2 + (1/τ)]2 and constants ω0, bζ and

τ appear in assumption (E2). Define

mλ :=√
2c∗ + 21+(β/2−1)+(πcζ )

−1[ln(λ/ω1) + β−1λβ].
It is easily seen that mλ ≤ m̄λβ , ∀λ ≥ 1, where m̄ is defined in (6). We also put

σ̄ 2 := c∗ + Cζ c
−2
ζ {K1L1(β ≤ 1) + [(K1L) ∨ K2]1(β > 1)},

where constants K1 and K2 are given in (A.12) in [8].

LEMMA 5.3. Suppose that assumptions (E1) and (E2) hold; then for any λ >

0 and z > 0 one has

P{|Vλ| ≥ z} ≤ 2 exp
{
− nz2

2σ 2
λ + (2/3)mλz

}
.(15)

In particular, if α + β > 1/2, then for any λ ≥ 1 ∨ ω1 and z > 0 one has

P{|Vλ| ≥ z} ≤ 2 exp
{
− nz2

2σ̄ 2w(λ) + (2/3)m̄λβz

}
,(16)

where w(λ) is given in (13).
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5.1.3. Outline of the proofs of Theorems 2.1 and 2.3. The upper bounds on
the quadratic risk stated in Theorems 2.1 and 2.3 are immediate consequence of
Lemmas 5.1 and 5.2. Balancing the upper bounds on the bias and variance with re-
spect to the smoothing parameter λ, we come to the announced results. Lemma 5.3
along with Lemma 5.1 are used in order to derive upper bounds on the ε-risk. Full
technical details are provided in the supplementary paper [8].

5.2. Proof of Theorem 2.4. The next preparatory lemma establishes an expo-
nential probability inequality on deviation of �̃2

λ from �2
λ.

LEMMA 5.4. Suppose that assumptions (E1) and (E2) hold.

(i) For every λ ∈ �

P{|�̃2
λ − �2

λ| ≥ v2
λ/2} ≤ ε

2N
.

(ii) Let q(ε) :=√
3 ln(4Nε−1); then for every λ ∈ �

P{|Vλ| ≥ q(ε)vλn
−1/2} ≤ ε

2N
.

Proof of Lemma 5.4 is given in [8].

5.2.1. Proof of Theorem 2.4. Define the following events:

A(λ) := {|Vλ| ≤ q(ε)vλn
−1/2} ∩ {|�̃2

λ − �2
λ| ≤ v2

λ/2},
A(�) := ⋂

λ∈�

A(λ).

It follows from Lemma 5.4 and #(�) = N that P{A(�)} ≥ 1 − ε. By the triangle
inequality,

|F̃λ̃ − F(t0)| ≤ |F̃λo − F(t0)| + |F̃λ̃ − F̃λo |.(17)

By definition of λo and by the fact that vλ is monotone increasing with
λ we have that vλn

−1/2 ≥ B̄λ for all λ ≥ λo, where we have denoted B̄λ :=
2(2/π)1/2Lλ−α−1/2. Therefore, on the event A(�)

|F̃λo − F(t0)| ≤ B̄λo + |Vλo | ≤ [1 + q(ε)]vλon
−1/2.(18)

Furthermore, if A(�) holds, then for any pair λ,μ ∈ � satisfying λ ≥ λo and
μ ≥ λo one has Qλ ∩ Qμ 
= ∅. Indeed, by definition of λo for any λ ≥ λo one has
B̄λ ≤ vλ/

√
n; therefore

|F̃λ − F(t0)| ≤ B̄λ + q(ε)vλn
−1/2 ≤ [1 + q(ε)]vλn

−1/2.

In addition, on the set A(�) we have

|ṽλ − vλ| ≤ |ṽ2
λ − v2

λ|1/2 = |�̃2
λ − �2

λ|1/2 ≤ vλ/
√

2.
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This yields

|F̃λ − F(t0)| ≤
√

2√
2 − 1

[1 + q(ε)]ṽλn
−1/2

= ϑṽλn
−1/2 ∀λ ≥ λo.

Thus one has F(t0) ∈ Qλ and F(t0) ∈ Qμ for all λ ≥ λo and μ ≥ λo; hence Qμ ∩
Qλ 
= ∅. Then by the procedure definition, λ̃ ≤ λo and Qλ̃ ∩Qλo 
= ∅ on the event
A(�). Therefore

|F̃λ̃ − F̃λo | ≤ ϑn−1/2[ṽλ̃ + ṽλo]
≤ 2ϑn−1/2ṽλo(19)

≤ √
2
(
1 + √

2
)
ϑn−1/2vλo.

Here the second line follows from ṽλ̃ ≤ ṽλo , and the fact that ṽλo ≤ (1 + 2−1/2)vλo

on the event A(�). Combining (19), (18) and (17) we obtain that on the set A(�)

|F̃λ̃ − F(t0)| ≤
(

3
√

2 − 1√
2 − 1

)
[1 + q(ε)]vλon

−1/2.

This completes the proof.

Acknowledgments. The authors are grateful to the Associate Editor and two
anonymous referees for careful reading and useful remarks that led to improve-
ments in the presentation.

SUPPLEMENTARY MATERIAL

Supplement to “On deconvolution of distribution functions” (DOI: 10.
1214/11-AOS907SUPP; .pdf). In the supplementary paper [8] we prove results
stated here and provide additional details for the proofs appearing in Section 5.
In particular, [8] is partitioned in two Appendices, A and B. Appendix A con-
tains proofs for Section 2: full technical details for Theorems 2.1, 2.3 and 2.4 are
presented, and the proof of Theorem 2.2 is given. In Appendix B we prove Theo-
rem 3.1 from Section 3.
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