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CONVERGENCE OF THE LARGEST SINGULAR VALUE OF
A POLYNOMIAL IN INDEPENDENT WIGNER MATRICES

BY GREG W. ANDERSON

University of Minnesota

For polynomials in independent Wigner matrices, we prove convergence
of the largest singular value to the operator norm of the corresponding poly-
nomial in free semicircular variables, under fourth moment hypotheses. We
actually prove a more general result of the form “no eigenvalues outside
the support of the limiting eigenvalue distribution.” We build on ideas of
Haagerup–Schultz–Thorbjørnsen on the one hand and Bai–Silverstein on the
other. We refine the linearization trick so as to preserve self-adjointness and
we develop a secondary trick bearing on the calculation of correction terms.
Instead of Poincaré-type inequalities, we use a variety of matrix identities and
Lp estimates. The Schwinger–Dyson equation controls much of the analysis.
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1. Introduction and statement of the main result.

1.1. Background and general remarks. As part of a larger operator-theoretic
investigation, it was shown in [9] (refining earlier work of [10]) that there are for
large N almost surely no eigenvalues outside the ε-neighborhood of the support
of the limiting spectral distribution of a self-adjoint polynomial in independent
GUE matrices. (See [1], Chapter 5, Section 5, for another account of that result.)
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It is natural to ask if the same is true for Wigner matrices. We answer that ques-
tion here in the affirmative. To a large extent, this is a matter of learning to get
by without the Poincaré inequality. Now the template for results of the form “no
eigenvalues outside the support. . . ” was established a number of years earlier in
the pioneering work of [3], and moreover the authors of that paper got along with-
out the Poincaré inequality quite well—erasure of rows and columns, classical Lp

estimates and truncation arguments sufficed. Moreover, they got their results un-
der stringent fourth moment hypotheses. In this paper, we channel the separately
flowing streams of ideas of [3] and [9] into one river, encountering a few perhaps
unexpected bends.

Any discussion of largest eigenvalues of Wigner matrices must mention the
classical work [4]. In that paper, convergence of the largest eigenvalue of a Wigner
matrix to the spectrum edge was established under fourth moment hypotheses and
it was furthermore established that in a certain sense fourth moments are optimal.

Our main result (see Theorem 2 immediately below) is both a “polynomializa-
tion” of the main result of [4] and a generalization of the random matrix result
of [9]. Roughly speaking, to prove our main result, we let the results of [4] do the
hard work of attracting the eigenvalues to a compact neighborhood of the spectrum
and then we draw them the rest of the way in by using refinements of tools from
both [3] and [9], among them matrix identities, Lp estimates for quadratic forms
in independent random variables, and the Schwinger–Dyson equation.

Generalizations of the “no eigenvalues outside the support. . . ” result of [9] were
quick to appear and continue to do so. In [19], following up on the earlier results
of [10], results in the GOE and GSE cases were obtained, and they revealed a key
role for “correction terms” of the sort we expend much effort in this paper to con-
trol. In [5], a generalization to non-Gaussian distributions satisfying Poincaré-type
inequalities was obtained. In [15], a generalization was given involving polynomi-
als in GUE matrices and deterministic matrices with convergent joint law which,
in particular, established various rectangular analogues.

All the works following upon [9] including this one build on two extraordinarily
powerful ideas from that paper: (i) a counterintuitively “backwards” way of esti-
mating the error of approximate solutions of the Schwinger–Dyson equation and
(ii) the famous linearization trick. We refine both ideas in this paper. The refine-
ments are closely intertwined and involve a gadget we call a SALT block design.

We have been significantly influenced by the paper [13] which explored geom-
etry and numerical analysis of the Schwinger–Dyson equation, and which could
serve uninitiated readers as an introduction to the use of matricial semicircular el-
ements. We were influenced also by [11] and [12] which developed and applied
Girko’s notion of deterministic equivalent. The notion of deterministic equivalent
is in effect exploited here as well, but, more or less following [9], we simply har-
vest the needed solutions of the Schwinger–Dyson equation from Boltzmann–Fock
space fully formed, thus avoiding iterative schemes for producing solutions.
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There has been a lot of progress recently on universality in the bulk and
at the edge for single Wigner matrices and sample covariance matrices. Edge-
universality results in the single matrix case greatly refine and indeed render ob-
solete results of “no eigenvalues outside the support. . . ” type, albeit usually under
more generous moment assumptions. We mention for example [7] which proves
convergence of the law of the suitably rescaled smallest eigenvalue of a sample
covariance matrix with nonunity aspect ratio to the Tracy–Widom distribution. Of
course, many other papers could be mentioned—the area is profoundly active at
the moment. It seems likely that similar edge-universality results are true in the
polynomial case. From this aspirational point of view, our results are crude. But
we hope they could serve as a point of departure.

1.2. The main result. We now formulate our main result, which at once gener-
alizes the main result of [4] and the random matrix result of [9]. Notation cursorily
introduced here is explained in greater detail in Section 2.1 below.

1.2.1. Matrices with noncommutative polynomial entries. Let C〈X〉 be the
noncommutative polynomial algebra generated over C by a sequence X= {X�}∞�=1
of independent noncommuting algebraic variables. We equip C〈X〉 with an in-
volution by declaring all the variables X� to be self-adjoint. Given a sequence
a = {a�}∞�=1 in an algebra A and f ∈Matn(C〈X〉), we define f (a) ∈Matn(A) by
evaluating each entry of f at X� = a� for all �.

1.2.2. Free semicircular variables. Let � = {��}∞�=1 be a sequence of free
semicircular noncommutative random variables in a faithful C∗-probability space.
Given self-adjoint f ∈Matn(C〈X〉), let the law of the noncommutative random
variable f (�) be denoted by μf . The latter is a compactly supported probability
measure on the real line which depends only on the joint law of �. See Section 3.3
below for a quick review of C∗-probability spaces and laws of single operators. See
Section 3.4 for the Boltzmann–Fock space construction which yields a sequence �

of the required type embedded in an algebraic setup with further structures useful
to us. For extensive discussion of noncommutative probability laws, including joint
laws, and background on free probability, see [1], Chapter 5.

1.2.3. Random matrices. Let

{{x�(i, j)}1≤i≤j<∞}∞�=1

be an array of independent C-valued random variables. We assume the following
for all i, j and �:

The law of x�(i, j) depends only on � and 1i<j ,(1)

E|x�(1,1)|4 <∞ and E|x�(1,2)|4 <∞,(2)
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Ex�(1,1)= Ex�(1,2)= 0 and E|x�(1,2)|2 = 1,(3)

x�(1,1) is real-valued,(4)

the real and imaginary parts of x�(1,2) are independent.(5)

For positive integers N and �, we then construct an N -by-N random hermitian
matrix XN

� with entries

XN
� (i, j)=

⎧⎪⎨⎪⎩
x�(i, j), if i < j ,
x�(i, i), if i = j ,
x�(j, i)

∗, if i > j

and for each fixed N , we assemble these matrices into a sequence XN = {XN
� }∞�=1.

In turn, given self-adjoint f ∈Matn(C〈X〉), let νN
f be the empirical distribution of

eigenvalues of the random hermitian matrix f ( XN√
N

). We use the notation νN
f rather

than, say, μN
f because we are saving the latter for use in our main technical result,

namely Theorem 4 below.
The next result is essentially well known and provides context for our main

result.

THEOREM 1. For all self-adjoint f ∈Matn(C〈X〉), the empirical distribution
νN
f converges weakly to μf as N→∞, almost surely.

See [21] or [1], Chapter 5, for background, similar results, and many references.
See [16] for an interesting recent approach to the proof of a similar result. For the
reader’s convenience we give in Section 2.5.2 below a quick derivation of Theo-
rem 1 from our main technical result.

Now we can state our main result.

THEOREM 2. For every self-adjoint f ∈Matn(C〈X〉) and ε > 0, suppνN
f is

contained in the ε-neighborhood of suppμf for N 
 0, almost surely.

See Section 2.5.3 below for the derivation of this result from our main technical
result.

The next corollary justifies the title of this paper.

COROLLARY 1. For every f ∈Matn(C〈X〉),

lim
N→∞

[[
f

(
XN

√
N

)]]
= [[f (�)]] a.s.

PROOF. After replacing f by ff ∗, we may assume that f is self-adjoint, and
furthermore that f ( XN√

N
) and f (�) are positive. We then need only show that the
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largest eigenvalue of f ( XN√
N

) converges as N →∞ to the largest element of the
spectrum of f (�), almost surely. In any case, Spec(f (�))= suppμf by the very
important Lemma 7 below and thus

[[f (�)]] = sup Spec(f (�))= sup suppμf .

Finally, we have

[[f (�)]] ≤ lim inf
N→∞

[[
f

(
XN

√
N

)]]
≤ lim sup

N→∞

[[
f

(
XN

√
N

)]]
≤ [[f (�)]] a.s.

by Theorem 1 on the left and Theorem 2 on the right. �

1.3. Outline of the paper and plan of proof.

1.3.1. Truncation and reduction steps. In Section 2, after introducing general
notation and terminology, we make the truncation step common to the proofs of
Theorems 1 and 2. Then we formulate our main technical result, namely Theo-
rem 4 below, which concerns Lp-norms of “randomized and corrected” Stieltjes
transforms, and from it we derive Theorems 1 and 2. The proof of the main tech-
nical result then takes up the remainder of the paper.

1.3.2. The self-adjoint linearization trick. To launch the “blocky” approach
taken in the rest of the paper, at the end of Section 2 we present a very simple
self-adjointness-preserving variant of the linearization trick. In Remark 11 below,
we explain how the trick gives access to the Stieltjes transforms considered in
Theorem 4.

1.3.3. General tools. In Section 3, we review elementary topics concerning
C∗-algebras and in particular we recall the Boltzmann–Fock space construction.
We also consider an ad hoc version of the notion of Schur complement in a C∗-
algebra and use it to solve an abstract version of the Schwinger–Dyson equation.
In Section 4, after introducing tensor products and norming rules, we write down
an ensemble of mostly familiar estimates that we will use in place of the Poincaré
inequality.

1.3.4. S -(bi)linear machinery. In Section 5, we introduce a collection of alge-
braic tools needed to take advantage of the fine structure possessed by the random
matrices and operators described in Remark 11. In particular, we introduce the
notion of SALT block design to streamline the self-adjoint linearization trick and
we develop a secondary trick for making new SALT block designs from old. The
secondary trick is a “bootstrapping” technique indispensable to our study of cor-
rections.
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1.3.5. Study of the Schwinger–Dyson equation. In Section 6, we recall the
Schwinger–Dyson (SD) equation and we construct solutions of it by using the ap-
paratus of Section 3. Following [9], we use certain of these solutions to represent
the Stieltjes transform Sμf

(z) figuring in Theorems 1, 2 and 4. See Remark 34 be-
low. We next introduce a secondary version of the SD equation involving notions
introduced in Section 5 and we show how a solution of it can be extracted from
the “upper right corner” of a solution of a suitably chosen (larger and more com-
plicated) instance of the SD equation itself. We then construct our candidate for
the correction biasN

f (z) figuring in Theorem 4. See Remark 39 below. In Section 7,
working in a relatively simple geometry, we refine the idea of [9] for controlling
errors of approximate solutions to the SD equation. By means of the secondary
trick, we will be able to use the estimates of Section 7 not only to study the con-
vergence of empirical distributions of eigenvalues to their limits, but also to study
the limiting behavior of corrections.

1.3.6. Matrix identities and Lp estimates. In Section 8, we present a carefully
edited catalog of identities satisfied by objects built out of finite-sized chunks of
an infinite matrix with entries which are themselves matrices of some fixed finite
size. One among these objects via the self-adjoint linearization trick specializes to
the randomized Stieltjes transform SμN

f
(z) figuring in Theorem 4. See Remark 45

below. We note also that identity (140) of Section 8.5 is the ultimate source of
all the correction terms studied here. In Section 9, we introduce the block Wigner
model and work through a long series of Lp estimates culminating in Theorem 5
below which converts identity (140) to a crucial approximation. We emphasize
that all the arguments and calculations presented in Sections 8 and 9 make sense
for Wigner matrices when specialized to the case in which the constituent blocks
are copies of C. In many cases, the calculations so specialized then run along
familiar lines. A reader who has already developed some intuition about Wigner
matrices should, we hope, be able to build on that base in order to understand our
work.

1.3.7. Concluding arguments. Finally, in Section 10, we combine the tools
collected above to complete the proof of Theorem 4 in relatively short order.

2. The truncation step and the main technical result. In Section 2.1, we
introduce general notation in force throughout the paper. In Section 2.2, we carry
out the truncation step for proving Theorems 1 and 2. In Section 2.3, we recall
a method for reconstructing a probability measure from its Stieltjes transform. In
Section 2.4, we formulate our main technical result, namely Theorem 4 below,
and we explain how to check its most important hypotheses efficiently using the
classical estimate of [8]. In Section 2.5, we recover both Theorems 1 and 2 from
Theorem 4. The proof of the latter result will then take up the rest of the paper.
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Finally, in Section 2.6, we introduce a simple self-adjointness-preserving variant of
the famous linearization trick of [9], thereby banishing nonlinear noncommutative
polynomials from further consideration in the main body of the paper.

2.1. Notation and terminology.

2.1.1. General notation. We use ∨ and ∧ for maximum and minimum, re-
spectively. Given a complex number z ∈ C, let z = z+z∗

2 and �z = z−z∗
2i , and

put h= {z ∈ C|�z > 0}, which is the classical upper half-plane. Let E denote ex-
pectation and let Pr denote probability. (We save the letters E and P for other
purposes.) We write 1A for the indicator of an event A. Let suppν denote the sup-
port of a probability measure ν, and similarly, let suppϕ denote the support of a
function ϕ. (Recall that supports are always closed sets.) For any C-valued random
variable Z and exponent p ∈ [1,∞], let ‖Z‖p denote the Lp-norm of Z, that is, let
‖Z‖p = (E|Z|p)1/p for p ∈ [1,∞) and otherwise let ‖Z‖∞ denote the essential
supremum of |Z|. For a matrix A with complex entries, let A∗ denote the transpose
conjugate, AT the transpose and [[A]] the largest singular value of A. More gener-
ally, we use [[·]] to denote the norm on a C∗-algebra. We denote the spectrum of an
element x of a C∗-algebra A by Spec(x); Proposition 5 below justifies omission
of reference to A in this notation.

REMARK 1. We use the not-so-standard notation [[·]] for C∗-norms in order
not to collide with the notation ‖ · ‖p for Lp-norms of random variables. We will
in fact have to consider expressions of the form ‖[[A]]‖p rather frequently.

2.1.2. Algebras and matrices. An algebra A always has C as scalar field,
is associative, and possesses a unit denoted by 1A. (Other notation for the unit
may also be used, e.g., simply 1.) Let Matn(A) denote the algebra of n-by-n
matrices with entries in A. More generally, let Matk×�(A) denote the space of
k-by-� matrices with entries in A. The (i, j)-entry of a matrix A is invariably
denoted A(i, j) (never Aij ). Let A× denote the group of invertible elements of
an algebra A, put GLn(A) = Matn(A)× (GL for general linear group) and for
A ∈ Matn(A), let trA A = ∑n

i=1 A(i, i). In the special case A = C, we write
tr= trC. Let In ∈Matn(C) denote the n-by-n identity matrix and more generally,
given an element a ∈A, let In⊗ a ∈Matn(A) denote the diagonal matrix with en-
tries a on the diagonal. Given a ∗-algebra A, that is, an algebra endowed with an
involution denoted ∗, and an element a ∈A, we say that a is self-adjoint if a∗ = a

and we denote the set of such elements by Asa. Given a matrix A ∈Matk×�(A)

with entries in a ∗-algebra A, we define A∗ ∈Mat�×k(A) by A∗(i, j)= A(j, i)∗.
In particular, by this rule Matn(A) becomes a ∗-algebra whenever A is.
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2.1.3. The noncommutative polynomial ring C〈X〉. Let C〈X〉 be the noncom-
mutative polynomial ring generated over C by a sequence X = {X�}∞�=1 of inde-
pendent noncommuting variables. By definition, the family of all monomials

∞⋃
m=0

{Xi1 · · ·Xim |i1, . . . , im = 1,2,3, . . .}

(including the empty monomial, which is identified to 1C〈X〉) forms a Hamel basis
for the vector space underlying C〈X〉. In particular, C〈X〉 =⋃∞

m=1 C〈X1, . . . ,Xm〉.
We equip C〈X〉 with ∗-algebra structure by the rule X∗� = X� for all �. Let S∞
denote the space of sequences in a set S. Given an algebra A, a sequence a ∈A∞
and matrix f ∈Matn(C〈X〉), let f (a) ∈Matn(A) denote the matrix obtained by
evaluating each entry at X = a (and evaluating 1C〈X〉 to 1A). Note that if A is a
∗-algebra and a ∈A∞sa , then f (a)∗ = f ∗(a), that is, the evaluation map f �→ f (a)

is a ∗-algebra homomorphism. If A=MatN(C), then we view f (a) as an n-by-n
array of N -by-N blocks, thus identifying it with an element of MatnN(C).

2.1.4. Empirical distributions of eigenvalues. Given an N -by-N hermitian
matrix A, the empirical distribution of its eigenvalues λ1 ≤ · · · ≤ λN is by defi-
nition the probability measure 1

N

∑N
i=1 δλi

on the real line.

2.2. The truncation step. We begin the proofs of Theorems 1 and 2 by proving
the following proposition. In doing this, we are imitating the initial truncation step
taken in [3].

PROPOSITION 1. To prove Theorems 1 and 2, we may augment assump-
tions (1)–(5) without loss of generality by the following assumptions holding for
every index �:

i−�x�(1,2) is real-valued,(6)

x�(1,1)= 0 for odd �,(7)

‖x�(1,1)‖∞ <∞ and ‖x�(1,2)‖∞ <∞.(8)

We collect several tools before completing the proof in Section 2.2.3 below. The
first tool is simply a couple of standard eigenvalue inequalities.

LEMMA 1. For A,B ∈MatN(C)sa let λi(A) and λi(B) denote the ith largest
eigenvalue, respectively. Then we have (i)

∨N
i=1 |λi(A)− λi(B)| ≤ [[A− B]] and

(ii) the corresponding empirical distributions are within distance [[A−B]] as mea-
sured in the Lipschitz bounded metric.

Recall that the distance of probability measures μ and ν on the real line in the
Lipschitz bounded metric is the supremum of | ∫ ϕ dμ− ∫

ϕ dν| where ϕ : R→R
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ranges over functions with supremum norm and Lipschitz constant both ≤ 1. Re-
call also that the Lipschitz-bounded metric is compatible with weak convergence.

PROOF OF LEMMA 1. (i) This is well-known. See [14] or [20]. (ii) For any
test function ϕ : R→ R with sup norm and Lipschitz constant both ≤ 1, since
|ϕ(x)− ϕ(y)| ≤ |x − y|, we have | ∫ ϕ dμA − ∫

ϕ dμB | ≤ [[A− B]] by part (i) of
the lemma. �

2.2.1. The Bai–Yin model. Let

{w(i, j)}1≤i≤j<∞
be an independent family of real random variables such that the law of w(i, j)

depends only on 1i<j . Assume furthermore that w(1,1) and w(1,2) have finite
fourth moments and zero means. Let σ = ‖w(1,2)‖2. Given a positive integer N ,
let WN be the N -by-N random real symmetric matrix with entries

WN(i, j)=
{

w(i, j), if i ≤ j ,
w(j, i), if i > j .

To have a convenient catchphrase, let us call

{WN }∞N=1

the Bai–Yin model for Wigner matrices. We have the following fundamental result.

THEOREM 3 ([4], Theorem C). In the Bai–Yin model {WN }∞N=1, the largest

eigenvalue of WN√
N

converges to 2σ as N→∞, almost surely.

REMARK 2. By [4], Theorem A, the fourth moment hypothesis in Theorem 3
cannot be improved while maintaining strong overall assumptions concerning the
form of the joint law of the family {WN } and in particular enforcing the identifi-
cation of WN with the upper left N -by-N block of WN+1.

REMARK 3. It is trivial but useful to observe that Theorem 3 continues to hold
in the case σ = 0, that is, in the case in which WN is diagonal. In this case, the
proof is just an exercise in applying the Borel–Cantelli lemma.

REMARK 4. Only real symmetric matrices were treated in [4] but all the argu-
ments carry over to the hermitian case. In particular, Theorem 3 continues to hold
if we replace {WN }∞N=1 by the slightly altered family

{{(i1i<j − i1i>j )W
N(i, j)}Ni,j=1}∞N=1.

Just to have a convenient catchphrase (and to avoid introducing yet more notation)
let us call the latter the twisted Bai–Yin model.
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2.2.2. C-truncation. Given a C-valued random variable Z such that ‖Z‖2 = 1
and EZ = 0, along with a constant C > 0, put

ρC(Z)= ∥∥Z1|Z|≤C −EZ1|Z|≤C

∥∥
2, θC(Z)= ∥∥Z1|Z|>C −EZ1|Z|>C

∥∥
2,

and if ρC(Z) > 0 put

truncC(Z)= (
Z1|Z|≤C −EZ1|Z|≤C

)
/ρC(Z).

Note that

ρC(Z)→C→∞ 1 and θC(Z)→C→∞ 0(9)

by dominated convergence.

LEMMA 2. Consider again the Bai–Yin model {WN }∞N=1. But now assume
that σ = 1. Let C > 0 be large enough so that ρC(w(1,2)) > 0. Let ŴN be the
result of applying the truncation procedure truncC to the off-diagonal entries of
WN and putting the diagonal entries of WN to 0. (i) We have

lim sup
N→∞

[[
WN − ŴN

√
N

]]
≤ 2(θ + 1− ρ) a.s.,(10)

where θ = θC(w(1,2)) and ρ = ρC(w(1,2)). (ii) The analogous statement holds
for the twisted Bai–Yin model.

PROOF. Let DN be the result of putting the off-diagonal entries of WN to
zero. We have in any case a bound[[

WN − ŴN

√
N

]]
≤

[[
DN

√
N

]]
+

[[
WN −DN − ρŴN

√
N

]]
+

[[
(1− ρ)ŴN

√
N

]]
a.s.

The terms on the right-hand side almost surely tend as N→∞ to 0, 2θ and 2(1−
ρ), respectively, by Theorem 3. Thus, (i) is proved and (ii) is proved similarly.

�

2.2.3. Proof of Proposition 1. The permissibility of assuming (6) and (7) is
clear—one has only to break the originally given system of matrices into sym-
metric and antisymmetric pieces, rescale and relabel. We may assume (6) and (7)
henceforth. Now fix f ∈Matn(C〈X〉)sa and ε > 0 arbitrarily. With a large constant
C� > 0 depending on �, to be aptly chosen presently, let X̂N

� be the result of apply-
ing the truncation operation truncC�

to the off-diagonal entries of XN
� and putting

the diagonal entries to 0. Let ν̂N
f denote the empirical distribution of eigenvalues

of f ( X̂N√
N

). By Theorem 3, Remark 4, Lemma 2 and (9) we can choose constants
C� large enough, depending on f , so that

lim sup
N→∞

[[
f

(
XN

√
N

)
− f

(
X̂N

√
N

)]]
<

ε

2
a.s.
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By Lemma 1(i), almost surely for N 
 0, we have that suppνN
f is contained in

the ε
2 -neighborhood of supp ν̂N

f , and in turn, by Theorem 2 applied under the ad-

ditional assumptions of Proposition 1, almost surely for N 
 0, we have that ν̂N
f

is contained in the ε
2 -neighborhood of suppμf . Thus, Theorem 2 in the general

case follows from the special case considered in Proposition 1. A similar argu-
ment using Lemma 1(ii) derives Theorem 1 in the general case from the special
case considered in Proposition 1.

2.3. Stieltjes transforms and reconstruction of probability measures. We re-
call an important tool and motivate the introduction of the auxiliary upper-half-
plane-valued random variable z.

2.3.1. Stieltjes transforms. In general, given a probability measure μ on the
real line, recall that the Stieltjes transform is defined by the formula

Sμ(z)=
∫

μ(dt)

t − z
for z ∈C \ suppμ.

We use here the same sign convention as (say) in [3] so that �z > 0⇒�Sμ(z) > 0.
Recall also that

Sμ(z∗)≡ Sμ(z)∗ and |Sμ(z)�z| ≤ 1.(11)

In particular, Sμ is real-valued on R \ suppμ.

2.3.2. The auxiliary random variable z. Let m be an even positive integer.
Let z be an h-valued random variable the law of which is specified by the integra-
tion formula

Eϕ(z)=
∫ ∞

0

∫ ∞
−∞

ϕ(x + iy)
e−(x2+y2)/2ym

(m− 1)!!π dx dy.

Note that z= x+ iy where x and y are independent, x is standard Gaussian, and y
has density that vanishes to order m at 0. We call m the strength of the repulsion
of z from the real axis. For simplicity, we assume that �z > 0 holds without excep-
tion. In general, we allow m to vary from one appearance of z to the next. Results
below involving z are often stated with hypotheses to the effect that m be suffi-
ciently large. As we will see, the exact distribution of z is not too important. But
it is quite important that ‖1/�z‖p <∞ for p ∈ [1,m+ 1). Thus, by choosing the
strength of the repulsion of z from the real axis large enough, the random variable
1/�z can be made to possess as many finite moments as we like.

The method we will use for reconstructing probability measures from their
Stieltjes transforms is codified by the following lemma in which the auxiliary ran-
dom variable z enters as a convenience for bookkeeping.
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LEMMA 3. Let ϕ : R→ R be infinitely differentiable and compactly sup-
ported. Then there exists a function ϒ : C→C depending on the strength of repul-
sion of z from the real axis with the following properties:

(I) ϒ is infinitely differentiable and compactly supported. Furthermore,
ϒ satisfies suppϒ ∩R= suppϕ and has the symmetry ϒ(z∗)≡ϒ(z)∗.

(II) For any open set D ⊂C such that D∗ =D ⊃ suppϒ and analytic function
b :D→C such that b(z∗)≡ b(z)∗, we have Eϒ(z)b(z)= 0.

(III) For probability measures μ on R, we have Eϒ(z)Sμ(z)= ∫
ϕ dμ.

The lemma mildly refines a procedure buried in the proof of [1], Lemma 5.5.5.

PROOF OF LEMMA 3. We identify C with R
2 in the customary way. We

switch back and forth between writing x+ iy and (x, y) as it suits us. To begin the
construction, let θ : R→ [0,1] be an even infinitely differentiable function sup-
ported in the interval [−1,1] and identically equal to 1 on the subinterval [−1

2 , 1
2 ].

Let m denote the strength of the repulsion of z from the real axis. Put

�(x, y)= 1

2π
θ(y)

m∑
j=0

(iy)j

j ! ϕ(j)(x),

noting that � is supported in suppϕ × [−1,1]. Put �′(x, y)= ( ∂
∂x
+ i ∂

∂y
)�(x, y),

noting that �′(z∗)≡ �′(z)∗. The significance of the differential operator ∂
∂x
+ i ∂

∂y

is that it kills all analytic functions, that is, it encodes the Cauchy–Riemann equa-
tions. The sum defining �(x, y) is contrived so that

�′(x, y)= 1

2π

(iy)m

m! ϕ(m+1)(x) for (x, y) ∈R×
(
−1

2
,

1

2

)
.

Let ρ(x, y) = yme−(x2+y2)/2

(m−1)!!π . Then we have 2�′(x, y) = ϒ(x, y)ρ(x, y) for some
function ϒ satisfying (I). For any Borel measurable function h : C→C satisfying
h(z)∗ ≡ h(z∗) almost everywhere with respect to Lebesgue measure we have

Eϒ(z)h(z)=
∫ ∞
−∞

∫ ∞
−∞

�′(x, y)h(x, y) dx dy(12)

provided that the integral on the right is absolutely convergent, as follows directly
from the definition of ϒ . Furthermore, for any compact set T ⊂ R

2 with a polyg-
onal boundary and analytic function h defined in a neighborhood of T we have∫

T
�′hdx dy =−i

∫
∂T

�h(dx + idy)(13)

by Green’s theorem and the fact that h is killed by ∂
∂x
+ i ∂

∂y
. To prove (II), take T

such that supp� ⊂ T \ ∂T ⊂ T ⊂D and take h= b. Then formulas (12) and (13)
yield the result. To prove (III), assume at first that μ = δt for some real t and
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hence Sμ(z)= 1
t−z

. Take T to be an annulus centered at t and take h= 1
t−z

. In the
limit as the inner radius tends to 0 and the outer radius tends to∞, formulas (12)
and (13) yield the result. Finally, to get (III) in general, use Fubini’s theorem—the
hypotheses of the latter hold by (11) and the fact that m≥ 1. �

2.4. The main technical result. Now we introduce a new model, the one we
actually study through most of the paper, and we formulate a general statement
about it, namely Theorem 4 below. All the hypotheses for this model are ones we
deserve to make after performing the truncation step in the proofs of Theorems 1
and 2. Furthermore, in certain respects, hypotheses are actually weakened in com-
parison to those for Theorems 1 and 2.

2.4.1. Data. For integers �,N ≥ 1, fix a random element �N
� of MatN(C)sa.

Fix also an independent family {F (i, j)}1≤i≤j<∞ of σ -fields. Let F denote the
σ -field generated by all the F (i, j).

2.4.2. Assumptions. We assume for each p ∈ [1,∞) and index � the follow-
ing:

sup
N

N∨
i,j=1

‖�N
� (i, j)‖p <∞,(14)

sup
N

∥∥∥∥[[ �N
�√
N

]]∥∥∥∥
p

<∞.(15)

Furthermore, we assume for all indices � and N the following:

�N
� is the upper left N -by-N block of �N+1

� ,(16)

(�N
� )T = (−1)��N

� ,(17)

�N
� (i, j) is F (i ∧ j, i ∨ j)-measurable and E�N

� (i, j)= 0
(18)

for i, j = 1, . . . ,N.

‖�N
� (i, j)‖2 = 1 for 1≤ i < j ≤N.(19)

Finally, we assume that

E�N
� (i, j)�N

m(i, j)= 0 for 1≤ i < j ≤N and 1≤ � < m <∞(20)

for all positive integers i, j , N , � and m subject to the indicated constraints.

REMARK 5. While moment assumptions here are extremely generous in com-
parison to those of Theorem 2, in certain other respects we have significantly weak-
ened assumptions. Firstly, we do not require the entries �N

� (i, j) to have law de-
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pending only on � and the sign of i − j . Secondly, we assume somewhat less than
strict independence of the matrices �N

� for fixed N and varying �.

2.4.3. Random matrices and empirical distributions of eigenvalues. For each
fixed N , we form a sequence �N = {�N

� }∞�=1 ∈MatN(C)∞sa of random hermitian
matrices. Given any self-adjoint f ∈Matn(C〈X〉)sa, let μN

f denote the empirical

distribution of eigenvalues of the random hermitian matrix f ( �N√
N

) ∈MatnN(C)sa.

2.4.4. The auxiliary random variable z. We adjoin the auxiliary random vari-
able z figuring in Lemma 3 to our model. We assume that z is independent of F .

THEOREM 4. Fix f ∈Matn(C〈X〉)sa arbitrarily and let μf be defined as in
Theorem 2. Then there exists a sequence

{biasN
f : C \ suppμf →C}∞N=1

of deterministic analytic functions with the symmetry

biasN
f (z∗)≡ biasN

f (z)∗(21)

such that for every p ∈ [1,∞) we have

sup
N

N1/2‖SμN
f
(z)− Sμf

(z)‖
p

<∞,(22)

sup
N

N3/2‖S
μN+1

f
(z)− SμN

f
(z)‖

p
<∞,(23)

sup
N

‖biasN
f (z)‖

p
<∞(24)

and

sup
N

N2
∥∥∥∥E(SμN

f
(z)|z)− Sμf

(z)− biasN
f (z)

N

∥∥∥∥
p

<∞,(25)

provided the strength of the repulsion of z from the real axis is sufficiently great,
depending on p.

Once we have deduced Theorems 1 and 2 from Theorem 4 in Section 2.5 below,
the proof of Theorem 4 will take up the rest of the paper.

REMARK 6. The theorem if true for some sequence � of free semicircular
noncommutative random variables in a faithful C∗-probability space is true for all;
only the joint law of � is important. Taking advantage of this freedom, we will
make a special choice of � below in Section 3.4 which is adapted to the symmetry
present in our model by virtue of assumption (17).
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REMARK 7. Fix a point z0 ∈ h arbitrarily. For any analytic function g :h→C,
we can recover the value g(z0) as the average of g(z) over the disc |z−z0| ≤ 1

2�z0.
Thus statement (22) for, say, p = 4 implies that SμN

f
(z0)→N→∞ Sμf

(z0), almost

surely, by Jensen’s inequality in conditional form and the Borel–Cantelli lemma.
In short, the averaged result stated in Theorem 4 easily yields pointwise results.

REMARK 8. An explicit if rather complicated description of biasN
f (z) in

operator-theoretic terms will be developed below. See Remark 39 below and the
discussion of the Schwinger–Dyson equation which immediately precedes that re-
mark. The role played by biasN

f (z) below, justified by Lemma 3 and relation (25),
is to make possible an estimate of

∫
ϕ d(μN

f − μf ) accurate to an order in 1/N

sufficiently high so that we can achieve sensitivity to the movement of individual
eigenvalues.

REMARK 9. Suppose that in the setup for Theorem 4, we discard assump-
tions (14) and (15) and make in their place for every index � the assumption

∞
sup
N=1

N∨
i,j=1

‖�N
� (i, j)‖∞ <∞.(26)

Then of course assumption (14) holds trivially, but furthermore and importantly,
assumption (15) and the bound∥∥∥∥lim sup

N→∞

[[
�N

�√
N

]]∥∥∥∥
∞

<∞(27)

hold by the classical result of [8] recalled immediately below in a convenient form.

PROPOSITION 2. For each N ≥ 1, let YN be a random N -by-N hermitian
matrix whose entries on or above the diagonal are independent. Assume further-
more that the entries of the matrices YN are essentially bounded uniformly in
N and have mean zero. Fix any sequence {kN }∞N=1 of positive integers such that

kN

logN
→∞ but kN

N1/6 → 0. Then
∑

N E[[ YN

c
√

N
]]2kN <∞ for some (finite) constant

c > 0.

Here and elsewhere throughout the paper constants in estimates are denoted
mostly by c, C or K . The numerical values of these constants may of course vary
from context to context and even from line to line.

PROOF OF PROPOSITION 2. We will use the result of Füredi–Komlós as cast
in the form of the combinatorial estimate [1], Lemma 2.1.23. By the cited lemma,
for any constants

c

2
> K ≥ sup

N

N∨
i,j=1

‖YN(i, j)‖∞,
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we deduce via “opening of the brackets” and counting of nonzero terms that

E

[[
YN

c
√

N

]]2kN

≤ E tr
(

YN

c
√

N

)2kN

≤ 1

c2kN

kN+1∑
t=1

22kN (2kN)3(2kN−2t+2)Nt K
2kN

NkN

=N

(
2K

c

)2kN kN+1∑
t=1

(
2kN

N1/6

)6(kN−t+1)

,

whence the result, since the last expression summed on N is finite. �

REMARK 10. The argument presented immediately after [1], Lemma 2.1.23
gives the analogous result for Wigner-like random matrices whose entries have
Lp-norms uniformly under a bound polynomial in p. We do not need the stronger
result here for any of our proofs, but we mention it because it easily produces many
natural examples of data satisfying the assumptions of Theorem 4 and furthermore
satisfying (27).

2.5. Deduction of Theorems 1 and 2 from Theorem 4.

2.5.1. Common setup for the proofs. In order to deduce Theorems 1 and 2
from Theorem 4, we may and we do make the additional assumptions stated in
Proposition 1. In turn, in order to apply Theorem 4, we now take

�N
� =XN

�

for all N and � and we put

F (i, j)= σ({x�(i, j)}∞�=1).

Then—hypothesis (15) excepted—the data

{�N
� } ∪ {F (i, j)}

trivially satisfy all hypotheses of Theorem 4, for example, the algebraic assump-
tions (6) and (7) imply the (anti)symmetry (17). And hypothesis (15) is fulfilled—
not so trivially—by Remark 9. So Theorem 4 is indeed applicable in the present
case. Note that (27) holds as well, either by yet another application of Theorem 3
or by Remark 9.

2.5.2. Proof of Theorem 1 with Theorem 4 granted. By (27), there exists a
constant A > 0 such that suppμN

f ⊂ [−A,A] for N 
 0, almost surely, so we
have tightness. By Remark 7, we have SμN

f
(i+1/k)→N→∞ Sμf

(i+1/k), almost
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surely, for every integer k > 0. The latter statement by standard subsequencing ar-
guments (which we omit) implies that μN

f indeed converges weakly to μf , almost
surely.

To derive Theorem 2 from Theorem 4, we need a final lemma variants of which
have long been in use.

LEMMA 4. Let {YN }∞N=1 be a sequence of nonnegative random variables. As-
sume that

sup
N

NEYN <∞ and sup
N

N1/2‖YN+1 − YN‖4 <∞.

Then YN →N→∞ 0, almost surely.

PROOF. We have Y�k5/4� →k→∞ 0, almost surely, by the Chebyshev inequal-
ity and the Borel–Cantelli lemma. Here, �x� denotes the greatest integer not ex-
ceeding x. Put [N ] = ∨∞

k=1�k5/4�1k5/4<N . Clearly, we have Y[N] →N→∞ 0, al-
most surely. Since N − [N ] =O(N1/5), we have ‖YN − Y[N]‖4 =O(N−3/10) by
the Minkowski inequality. Thus YN−Y[N] →N→∞ 0, almost surely, by the Cheby-
shev inequality and the Borel–Cantelli lemma. The result follows. �

2.5.3. Proof of Theorem 2 with Theorem 4 granted. Take z to have a strength
of repulsion from the real axis large enough so that all statements of Theorem 4
hold for the given matrix f ∈Matn(C〈X〉)sa in the case p = 4. As in the proof of
Theorem 1, fix A > 0 such that suppμN

f ⊂ [−A,A] for N 
 0, almost surely. Fix
ε > 0 arbitrarily. Fix an infinitely differentiable function ϕ : R→ [0,1] with the
following support properties:

• ϕ is identically equal to 1 on [−A,A] minus the ε-neighborhood of suppμf .
• ϕ is supported in some compact set disjoint from suppμf .

For N > 0 consider the nonnegative random variable YN = nN
∫

ϕ dμN
f the value

of which for N 
 0 bounds the number of eigenvalues of the random hermitian
matrix f ( �N√

N
) straying outside the ε-neighborhood of suppμf , almost surely. It

will be enough to show that YN →N→∞ 0, almost surely. Now by Lemma 3 and
Fubini’s theorem, for some compactly supported infinitely differentiable function
ϒ : C→ C with support disjoint from suppμf , we have for each N > 0 the rep-
resentation YN = nNE(ϒ(z)SμN

f
(z)|F ), almost surely. Furthermore, by similar

reasoning, for any analytic function b : C \ suppμf →C satisfying b(z∗)≡ b(z)∗,
we have E(ϒ(z)b(z)|F )= 0, almost surely. From statements (22) and (23) with
p = 4 we deduce that supN N1/2‖YN+1 − YN‖4 <∞ via Jensen’s inequality in
conditional form. From statements (24) and (25), we deduce that supN NEYN <

∞. Thus YN →N→∞ 0, almost surely, by Lemma 4, which finishes the proof.
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2.6. The self-adjoint linearization trick. We now present a simple self-adjoint-
ness-preserving variant of the celebrated linearization trick of [10] and [9], and we
explain how the trick gives access to the Stieltjes transforms SμN

f
(z) and Sμf

(z)

figuring in Theorem 4. This will motivate our focus on block-decomposed matrices
and operators in the sequel.

2.6.1. Schur complements. Recall the familiar formula[
a b

c d

]−1

=
[

0 0
0 d−1

]
+

[
1

−d−1c

]
(a − bd−1c)−1 [ 1 −bd−1 ](28)

for inverting a block-decomposed matrix. Formula (28) holds whenever d is in-
vertible and at least one of

[a b
c d

]
and the so-called Schur complement a − bd−1c

are invertible, in which case both of the latter two matrices are invertible.

PROPOSITION 3. Fix f ∈ Matn(C〈X〉)sa arbitrarily. Then for some integer
s > n there exists f̃ ∈Mats(C〈X〉)sa all entries of which are of degree ≤ 1 in the
variables X� and which furthermore admits a block decomposition f̃ = [ 0 b

b∗ d

]
such that d ∈Mats−n(C〈X〉)sa is invertible and f =−bd−1b∗.

We call f̃ a self-adjoint linearization of f . Later we will upgrade this definition
to a slightly more sophisticated form. See Definition 12 below.

PROOF OF PROPOSITION 3. Let degf be the maximum of the degrees of the
noncommutative polynomials appearing in f . We proceed by induction on degf .
There is no difficulty to find matrices f1, f2 ∈Matn×N(C〈X〉) for some N such
that f = f1f

∗
2 + f2f

∗
1 and degf1 ∨ degf2 ≤ 1∨ 2 degf

3 . Put b= [
f1 f2

]
and d =

−[ 0
IN

IN
0

]
. Note that d = d−1 and f = −bdb∗. If degf ≤ 1, then g = [ 0

b∗
b
d

]
is

already a self-adjoint linearization of f and we are done. Otherwise, by induction

on degf , the matrix g has a self-adjoint linearization g̃ =
[

0 0 x

0 0 b1

x∗ b∗1 d1

]
where the

zero block in the upper left is n-by-n, the central zero block is 2N -by-2N and the
other blocks are of appropriate sizes. By (28) and the definitions, we then have[

0 b

b∗ d

]
=−

[
x

b1

]
d−1

1 [x∗ b∗1 ] ,

− [ 0 x ]
[

0 b1

b∗1 d1

]−1 [ 0
x∗

]
=−xd−1

1 x∗ + xd−1
1 b∗1(b1d

−1
1 b∗1)−1b1d

−1x∗ = −bd−1b∗ = f.

Thus g̃ is a self-adjoint linearization of f as well as of g. �
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PROPOSITION 4. Let f ∈Matn(C〈X〉) and f̃ = [ 0 b
b∗ d

] ∈Mats(C〈X〉) be as
in Proposition 3. Let A be any algebra, let a = {a�}∞�=1 be any sequence, fix � ∈
Matn(A) and let �̃= [�

0
0
0

] ∈Mats(A). Then f (a)−� is invertible if and only if

f̃ (a)− �̃ is invertible and under these equivalent conditions the upper left n-by-n
block of (f̃ (a)− �̃)−1 equals (f (a)−�)−1.

PROOF. This follows immediately from (28) and the definitions. �

REMARK 11. (In this remark, we take for granted the notation and construc-
tions of Section 3.4 and Section 4.1 below. There is no danger of circularity since
we will not pick up the discussion thread initiated here again until Section 5.)
Proposition 4 says in the context of Theorem 4 that

SμN
f
(z)= 1

Nn

Nn∑
i=1

(
f̃

(
�N

√
N

)
−

[
zINn 0

0 0

])−1

(i, i)(29)

for z ∈ h and combined with Proposition 7 below says furthermore that

suppμf = Spec(f (�))=
{
z ∈C

∣∣∣f̃ (�)−
[(

zIn 0
0 0

)]
not invertible

}
,(30)

Sμf
(z)= ϕBF

(
1

n

n∑
i=1

(
f̃ (�)−

[(
zIn 0
0 0

)])−1

(i, i)

)
(31)

for z ∈C \ suppμf . Now for m
 0 and suitable a0, . . . , am ∈Mats(C)sa we have

f̃ = a0 ⊗ 1C〈X〉 +
m∑

�=1

a� ⊗X�.(32)

In order to gain control of the Stieltjes transforms SμN
f
(z) and Sμf

(z), all our

efforts hereafter will be directed toward understanding the special properties of
block-decomposed random matrices of the form

f̃

(
�N

√
N

)
= a0 ⊗ IN +

m∑
�=1

a� ⊗ �N
�√
N
∈MatsN(C)sa(33)

and of block-decomposed operators of the form

f̃ (�)= a0 ⊗ 1B(H) +
m∑

�=1

a� ⊗�� ∈Mats(B(H))sa.(34)

Many tools from analysis and algebra will come into play.

3. Tools from operator theory. We review some topics in elementary C∗-
algebra theory. We emphasize the viewpoint of noncommutative probability. We
recall noncommutative laws, relations between laws and spectra, the construction
of Boltzmann–Fock space, and Schur complements in the C∗-algebra context. Fi-
nally, we solve an abstract algebraic version of the Schwinger–Dyson equation.
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3.1. Warmup exercises. We record without proof some very elementary facts
frequently used below. Recall that we only use algebras A possessing a unit 1A.

LEMMA 5. Let x and y be elements of a Banach algebra with x invertible and
2[[x−1]][[y]] ≤ 1. Then x − y is invertible and [[(x − y)−1]] ≤ 2[[x−1]].

Here and below we invariably use [[·]] to denote the norm on a Banach algebra.

3.1.1. The resolvent identity. We note the resolvent identity

x−1 − y−1 = y−1(y − x)x−1 = x−1(y − x)y−1 (x, y ∈A×)(35)

holding in any algebra A and its infinitesimal variant d
dt

x−1 = −x−1 dx
dt

x−1. We
also need the iterated version

x−1 − y−1 = y−1(y − x)y−1 + y−1(y − x)y−1(y − x)x−1

(36)
(x, y ∈A×).

3.2. Positivity. We recall basic facts about positive elements of C∗-algebras.

3.2.1. Positive elements and their square roots. If an element x of a C∗-
algebra A is self-adjoint with nonnegative spectrum, we write x ≥ 0; and if fur-
thermore x is invertible, then we write x > 0. Elements satisfying x ≥ 0 are called
positive. Elements of the form xx∗ are automatically positive. For x ∈A such that
x ≥ 0, there exists unique y ∈ A such that y ≥ 0 and y2 = x (see [17], Theo-
rem 2.2.1), in which case we write x1/2 = y.

3.2.2. C∗-subalgebras and GNS. Let A be a C∗-algebra. We say that a closed
subspace A0 ⊂A is a C∗-subalgebra if A0 is stable under ∗, closed under multi-
plication and furthermore 1A ∈ A0, in which case A0 is a C∗-algebra in its own
right for which 1A0 = 1A. Each C∗-algebra is isomorphic to a C∗-subalgebra of
B(H) for some Hilbert space H via the GNS construction (see [17], Section 3.4).

PROPOSITION 5. For any C∗-algebra A and C∗-subalgebra A0 ⊂A we have
A0 ∩A× =A×0 .

(See [17], Theorem 2.1.11.) Thus, the spectrum of x ∈A0 is the same whether
viewed in A0 or A. In particular, x is positive in A0 if and only if positive in A.

PROPOSITION 6. For every element x of a C∗-algebra A, if x is normal, and
in particular, if x is self-adjoint, then [[x]] equals the spectral radius of x. Conse-
quently, [[x]]2 equals the spectral radius of xx∗ and x∗x.

(See [17], Theorem 2.1.1 and Corollary 2.1.2.) It follows that a ∗-algebra can
be normed as C∗-algebra in at most one way. We always use that norm when it
exists.
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3.2.3. Real and imaginary parts. Given any ∗-algebra and Z ∈ A we write
Z = Z+Z∗

2 and �Z = Z−Z∗
2i . (This generalizes the notation we already have for

real and imaginary parts of a complex number.)
The next elementary result plays an vitally important role in the paper.

LEMMA 6. Let A be a C∗-algebra. Let A ∈A satisfy �A ≥ 0 and let z ∈ h.
Then A+ z1A ∈A× and [[(A+ z1A)−1]] ≤ 1/�z.

PROOF. To abbreviate, we write 1= 1A, z= z1A, and so on. After replacing
A by (A + z)/�z, we may assume without loss of generality that z = i. Write
A=X+ iY with X =A and Y =�A. Since Y ≥ 0, we have 1+Y > 0, and hence
we can write A+ i= (1+Y)1/2(W + i)(1+Y)1/2 where W = (1+Y)−1/2X(1+
Y)−1/2 ∈Asa. Since both (1+Y)1/2 and W+ i are normal and have spectra disjoint
from the open unit disc centered at the origin, both are invertible with inverse of
norm ≤ 1 by Proposition 6. Thus, A + i is invertible with inverse of norm ≤ 1.

�

3.3. States and spectral theory. We recall some basic definitions and results
pertaining to C∗-probability spaces. Much of this background is covered in [17].
The rest of it is more or less implicit in [17] and [21] but hard to extract. Some of
this material is also covered in [1], Chapter 1, but unfortunately Lemma 9 below is
not. For the reader’s convenience, we supply short proofs of some key statements
which are part of standard “C∗-know-how” but hard to pin down in the literature.

3.3.1. States. Let A be a C∗-algebra. Let φ : A→ C be any linear functional
(perhaps not bounded). One calls φ positive if for every A ∈ A, if A ≥ 0, then
φ(A)≥ 0, in which case φ is automatically bounded and satisfies φ(x∗)= φ(x)∗.
One calls φ a state if φ is positive and φ(1A) = 1, in which case [[φ]] = 1. One
calls a state φ faithful if for every A ∈ A, if A ≥ 0 and A �= 0, then φ(A) > 0.
Note that by Proposition 5, for any C∗-subalgebra A0 ⊂A and state φ on A the
restriction of φ to A0 is again a state. (All of this is covered in [17], Chapter 3.)

DEFINITION 1. A pair (A, φ) consisting of a C∗-algebra A and a state φ is
called a C∗-probability space. We call (A, φ) faithful if φ is so.

3.3.2. Laws of noncommutative random variables. Given a C∗-probability
space (A, φ) and self-adjoint A ∈A, there exists a unique Borel probability mea-
sure μA on the spectrum of A, called the law of A, such that φ(f (A))= ∫

f dμA

for every continuous C-valued function f on the spectrum of A, where f (A) is
defined by means of the functional calculus at A, that is, the inverse Gelfand trans-
form, and μA is provided by the Riesz representation theorem. For convenience,
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we always extend the law μA to a Borel probability measure on the real line sup-
ported on Spec(A). (See [1], Chapter 5, for background on laws.) We note the
important formula

SμA
(z)= φ

(
(A− z1A)−1)(37)

for the Stieltjes transform of the law μA which holds for every z ∈ C belonging
neither to the support of μA nor to the spectrum of A. A simple and useful criterion
for equality of the latter two sets is provided by the next result.

LEMMA 7. Let (A, φ) be a faithful C∗-probability space. Then, for every A ∈
Asa, suppμA = Spec(A).

PROOF. Let K = Spec(A)⊂R, noting that K is compact. Let A0 ⊂A be the
C∗-subalgebra generated by A and put φ0 = φ|A0 , which is a faithful state on A0.
By the theory of the Gelfand transform, A0 can be identified with the C∗-algebra
of continuous complex-valued functions defined on K . Under this identification,
the operator A becomes the identity function Spec(A)→ R and φ0 becomes the
linear functional represented by μA. By Urysohn’s lemma, φ0 cannot be faithful
unless suppμA =K . �

LEMMA 8. If (A, φ) is a faithful C∗-probability space, then so is
(Matn(A), φn), where φn(A)= 1

n

∑n
i=1 φ(A(i, i)).

We always follow the procedure of this lemma to equip Matn(A) with a state
when given a state on A.

PROOF OF LEMMA 8. There is exactly one way to norm the ∗-algebra
Matn(A) as a C∗-algebra. (See [17], Theorem 3.4.2 and also Section 4.1.6 below.)
Following our convention to norm every ∗-algebra as a C∗-algebra when possible,
we thus regard Matn(A) as a C∗-algebra. For 0 �=A ∈Matn(A) such that A≥ 0,

φn(A)= φn(A
1/2A1/2)= 1

n

n∑
i,j=1

φ(A1/2(i, j)A1/2(i, j)∗).

This formula first of all make it clear that φn is a state and hence that (Matn(A), φn)

is a C∗-probability space. But furthermore, at least one term on the right is > 0
since φ is faithful and A1/2 �= 0. Thus, φn is faithful. �

LEMMA 9. Let H be a Hilbert space, let v ∈H be a unit vector, and consider
the vectorial state φ = (A �→ (v,Av)) :B(H)→C associated with v. Let A, Â⊂
B(H) be C∗-subalgebras such that AÂ= ÂA for all A ∈A and Â ∈ Â. Assume
furthermore that the vector v is cyclic for Â, that is, that the set {Âv|Â ∈ Â} is
dense in H . Then φ|A is faithful.
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PROOF. Fix A ∈ A such that A ≥ 0 and A �= 0. Clearly, there exists h ∈ H

such that (h,A1/2h) > 0. Thus by hypothesis, there exists Â ∈ Â such that

0 < (Âv,A1/2Âv)= (v, Â∗A1/2Âv)= φ(Â∗A1/2Â)= φ(Â∗ÂA1/2).

Making further use of the hypothesis that operators in A commute with operators
in Â, we have

0≤ φ
((√

tÂ∗Â−A1/2/
√

t
)2)= tφ((Â∗Â)2)+ φ(A)/t − 2φ(Â∗ÂA1/2)

for t > 0. The last inequality forces φ(A) > 0. Thus, φ|A is indeed faithful. �

3.4. Boltzmann–Fock space. We now recall the standard construction of free
semicircular variables laying stress on some properties of the construction which
are not often exploited in practice, but which will be important here. We are es-
sentially just summarizing (using somewhat different notation) enough material
from [21] to take advantage of [21], Remark 2.6.7.

3.4.1. Definition of H and the C∗-probability space (B(H), φ). Let H be a
Hilbert space canonically equipped with an orthonormal basis {v(i1 · · · ik)} in-
dexed by all finite sequences of positive integers, including the empty sequence.
We write 1H = v(∅) ∈H. We equip B(H) with the vectorial state φBF defined by

φBF(A)= (1H,A1H),

thus making it into a noncommutative probability space. (Note that we take Hilbert
space inner products to be linear on the right, antilinear on the left.) Context per-
mitting, we drop the superscript and write φ = φBF.

3.4.2. Raising and lowering operators. Let �i ∈ B(H) act by the rule

�iv(i1 · · · ik)= v(ii1 · · · ik).
Let pH ∈ B(H) denote orthogonal projection to the linear span of 1H. It is easy to
verify the following relations, where i and j are any positive integers:

pH�i = 0=�∗i pH, �∗i �j = δij 1B(H), [[�i]] = [[�∗i ]] = 1,(38)

φ(�i)= φ(�∗i )= 0, φ(�i�j )= φ(�i�
∗
j )= φ(�∗i �∗j )= 0,

(39)
φ(�∗i �j )= δij .

3.4.3. The semicircular variables ��. We now make the special choice of se-
quence � mentioned in Remark 6 above. Put

�� = i��� + i−��∗�
for all � and put �= {��}∞�=1 ∈ B(H)∞. It is well known that the joint law of the
sequence {�� +�∗� }∞�=1 is free semicircular. See [21] or [1], Chapter 5. It is easy
to see that the sequences � and {��+�∗� }∞�=1 have the same joint law. Indeed, the
former is conjugate to the latter by a unitary transformation preserving φBF. We
work exclusively with the choice of � made in this paragraph for the rest of the
paper.
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3.4.4. Right raising and lowering operators. For each integer i > 0, let �̂i ∈
B(H) act on H by the rule

�̂iv(i1 · · · ik)= v(i1 · · · iki).
In direct analogy to (38), we have

pH�̂i = 0= �̂∗i pH, �̂∗i �̂j = δij 1B(H), [[�̂i]] = [[�̂∗i ]] = 1.(40)

We also have right analogues of the relations (39) but we will not need them. It is
easy to verify the following relations, where i and j are any positive integers:

�̂i�j =�j�̂i, �̂∗j �i =�i�̂
∗
j + δijpH, �ipH = �̂ipH.(41)

It is trivial but important to note that every relation above implies another by taking
adjoints on both sides.

PROPOSITION 7. For all f ∈Matn(C〈X〉)sa, suppμf = Spec(f (�)).

PROOF. Let A ⊂ B(H) be the C∗-subalgebra generated by the sequence �.
By Lemmas 7 and 8, it is enough to show that φ|A is faithful. Let

�̂� = i��̂� + i−��̂∗� ∈ B(H)sa

for positive integers � and let Â⊂ B(H) be the C∗-subalgebra of B(H) generated
by the sequence {�̂�}. Using (41), one verifies that

���̂m = �̂m��

for all � and m. Here, we are using the powerful insight of [21], Remark 2.6.7.
Thus, every element of A commutes with every element of Â. It is also easy to see
that 1H is cyclic for Â. Therefore, φ|A is faithful by Lemma 9. �

We conclude our discussion of Boltzmann–Fock space by recording the follow-
ing “hypothesis-checking” result for use in Section 6.

LEMMA 10. Fix a positive integer m. Let

x ∈ {
1B(H)

}∪ {�j,�
∗
j |j = 1, . . . ,m}.

The following hold:

• �̂∗i x�̂j = δij x for all i and j .
• pHx�̂i = pHx�̂ipH and pH�̂∗i xpH = �̂∗i xpH for all i.
• x commutes with �̂i and �̂∗i for all i > m.
• x commutes with pH +∑m

i=1 �̂i�̂
∗
i .
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PROOF. The first three statements follow straightforwardly from (38), (40)
and (41), so we just supply a proof for the last statement. We write [A,B] =AB−
BA. Note that [A,BC] = [A,B]C +B[A,C]. Fix j ∈ {1, . . . ,m}. We then have[

�j,pH +
m∑

i=1

�̂i�̂
∗
i

]
= [�j,pH] +

m∑
i=1

([�j, �̂i]�̂∗i + �̂i[�j, �̂
∗
i ])

=�jpH + �̂j [�j, �̂
∗
j ] =�jpH − �̂jpH = 0.

The analogous relation with �∗j in place of �j follows by taking adjoints. �

3.5. Projections, inverses and Schur complements. We make an ad hoc exten-
sion of the Schur complement concept to the context of C∗-algebras.

3.5.1. Projections and π -inverses. Let A be a C∗-algebra. A projection π ∈A
by definition satisfies π = π∗ = π2. A family {πi} of projections is called or-
thonormal if πi �= 0 and πiπj = δijπi for all i and j . Given x ∈A and a projection
0 �= π ∈ A, we denote by x−1

π the inverse of πxπ in the C∗-algebra π Aπ , if it
exists, in which case it is uniquely defined. We call x−1

π the π -inverse of x. Note
that x−1

π = (πxπ)−1
π .

PROPOSITION 8. Let A be a C∗-algebra. Let {π,π⊥} be an orthonormal
system of projections in A and put σ = π + π⊥. Let x ∈ A satisfy π⊥xπ⊥ ∈
(π⊥Aπ⊥)×. Then we have

σxσ ∈ (σ Aσ)× ⇔ π(x − xx−1
π⊥x)π ∈ (π Aπ)×(42)

and under these equivalent conditions we have

πx−1
σ π = (x − xx−1

π⊥x)−1
π ,(43)

x−1
σ − x−1

π⊥ = (π − x−1
π⊥xπ)x−1

σ (π − πxx−1
π⊥).(44)

Thus, the expression π(x−xx−1
π⊥x)π is a sort of generalized Schur complement.

PROOF OF PROPOSITION 8. By exploiting the GNS construction, one can
interpret the proposition as an instance of (28). We omit the details. �

3.6. Cuntz frames and quasi-circularity. We elaborate upon a suggestion
made in the last exercise of [1], Chapter 5. We fix a C∗-algebra A.

DEFINITION 2. Suppose we are given a collection {π} ∪ {ρi}∞i=1 of elements
of A satisfying the following conditions:

π is a nonzero projection, πρi = 0 and ρ∗i ρj = δij 1A for all i and j .(45)

We call {π} ∪ {ρi}∞i=1 a Cuntz frame in A. Note that {π} ∪ {ρiρ
∗
i }∞i=1 is automati-

cally an orthonormal system of projections.
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REMARK 12. The relations ρ∗i ρj = δij 1A are those defining the Cuntz alge-
bra [6], hence our choice of terminology.

3.6.1. Quasi-circular operators. Suppose we are given a Cuntz frame {π} ∪
{ρi}∞i=1 in A. We say that an operator A ∈A is quasi-circular (with respect to the
given Cuntz frame) if the following statements hold:

ρ∗i Aρj = δijA for all i and j ,(46)

πAρiπ = πAρi and πρ∗i Aπ = ρ∗i Aπ for all i,(47)

There exists an integer kA ≥ 0 such that A commutes
with π +∑kA

i=1 ρiρ
∗
i and also with ρi and ρ∗i for all i > kA.

(48)

PROPOSITION 9. Let {π} ∪ {ρi}∞i=1 be a Cuntz frame in A. Let A ∈ A× be
quasi-circular with respect to the given frame. Choose any integer k ≥ kA. Then

πA−1π =
(
πAπ −

k∑
i=1

πAρiπA−1πρ∗i Aπ

)−1

π

.(49)

In particular, one automatically has πA−1π ∈ (π Aπ)×.

Identity (49) is an abstract algebraic version of the Schwinger–Dyson equation.
See the proof of Proposition 16 below for the application.

PROOF OF PROPOSITION 9. Consider the projections σ = π+∑k
i=1 ρiρ

∗
i and

π⊥ = σ − π . We claim that

A−1
π⊥ =

k∑
i=1

ρiA
−1ρ∗i .(50)

In any case, we have π⊥Aπ⊥ =∑k
i=1 ρiAρ∗i by (46). Furthermore, we have(

k∑
i=1

ρiAρ∗i

)(
k∑

j=1

ρjA
−1ρ∗j

)
= π⊥ =

(
k∑

i=1

ρiA
−1ρ∗i

)(
k∑

j=1

ρjAρ∗j

)

by (45). Thus, claim (50) holds. To prove (49), we calculate as follows:

πA−1π = πσA−1σπ = πA−1
σ π = (A−AA−1

π⊥A)−1
π

= (πAπ − πAA−1
π⊥Aπ)−1

π =
(
πAπ −

k∑
i=1

πAρiA
−1ρ∗i Aπ

)−1

π

=
(
πAπ −

k∑
i=1

πAρiπA−1πρ∗i Aπ

)−1

π

.
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The first step is simply an exploitation of orthonormality of {π,π⊥}. Since A com-
mutes with σ by (48), we have σA−1σA= σ = 1σAσ =AσA−1σ , which justifies
the second step. The third step is an application of (43) and the fourth step is a
trivial consequence of the definition of π -inverse. The fifth step is an application
of (50) and the last step is an application of (47). The proof of (49) is complete.

�

REMARK 13. The preceding calculation will obviate consideration of combi-
natorics of free semicircular variables in the sequel. We present this approach as
counterpoint to the nowadays standard combinatorial approach discussed briefly
in [1], Chapter 5 and developed at length in [18].

4. Tools for concentration. In this section, we introduce an ensemble of tools
we use to (partially) replace the Poincaré-type inequalities used in [5, 9, 10, 15]
and [19]. We speak of an ensemble because no one tool seems to contribute more
than incrementally.

4.1. Tensor products and norming rules. We rehearse the most basic rules of
calculation and estimation used in the paper.

4.1.1. Tensor products of vector spaces and algebras. Given vector spaces A
and B over C, let A⊗ B denote the tensor product of A and B formed over C.
If A and B are both algebras, we invariably endow A⊗ B with algebra structure
by the rule (a1 ⊗ b1)(a2 ⊗ b2)= a1a2 ⊗ b1b2. If A and B are both ∗-algebras, we
invariably endow A⊗B with ∗-algebra structure by the rule (a⊗ b)∗ = a∗ ⊗ b∗.

4.1.2. Tensor notation for building matrices. Let A be an algebra. We identify
the algebra Matn(C)⊗A with Matn(A) by the rule (X ⊗ a)(i, j)= x(i, j)a and
more generally use the same rule to identify the space Matk×�(C)⊗A with the
space of rectangular matrices Matk×�(A). Furthermore, in the case A=Mats(C),
we identify X⊗ a with an element of Matks×�s(C) by viewing X⊗ a as a k-by-�
arrangement of s-by-s blocks X(i, j)a. In other words, we identify X⊗a with the
usual Kronecker product of X and a.

4.1.3. Banach spaces. Banach spaces always have C as scalar field, and
bounded (multi)linear maps between Banach spaces are always C-(multi)linear,
unless explicitly noted otherwise. To avoid collision with the notation ‖ · ‖p , we
let [[·]]V denote the norm of a Banach space V and context permitting (nearly al-
ways), we drop the subscript.
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4.1.4. (Multi)linear maps between Banach spaces. Given Banach spaces V
and W , let B(V, W) denote the space of bounded linear maps V → W . Let
B(V) = B(V, V) and let V � denote the linear dual of V . Given T ∈ B(V, W),
let [[T ]] = [[T ]]B(V,W) be the best constant such that [[T v]] ≤ [[T ]][[v]]. We al-
ways use the norm on B(V, W ) so defined. More generally, let B(V1, . . . , Vr;W)

denote the space of bounded r-linear maps V1 × · · · × Vr → W and given
T ∈ B(V1, . . . , Vr;W), let [[T ]] = [[T ]]B(V1,...,Vr ;W) be the best constant such that
[[T (v1, . . . , vr)]] ≤ [[T ]][[v1]] · · · [[vr ]]. We always use the norm on B(V1, . . . , Vr;
W) so defined.

4.1.5. Matrix spaces over C∗-algebras. Let A be any C∗-algebra. We have
already noted in the proof of Lemma 8 that there is a unique way to norm the ∗-
algebra Matn(A) as a C∗-algebra. In turn, we always norm the space of rectangular
matrices Matk×�(A) by the formula [[A]] = [[AA∗]]1/2. Note that

k∨
i=1

�∨
j=1

[[A(i, j)]] ≤ [[A]] ≤
∞∑

m=−∞

k∨
i=1

�∨
j=1

[[A(i, j)]]1i−j=m.(51)

Moreover, given B ∈Mat�×m(A), we have [[AB]] ≤ [[A]][[B]]. In particular, for
every square or rectangular matrix A with complex number entries, [[A]] is the
largest singular value of A.

4.1.6. Tensor products of C∗-algebras. Given C∗-algebras A and B with at
least one of them finite-dimensional, the ∗-algebra A ⊗ B has exactly one C∗-
algebra norm. To see this, only existence requires comment since uniqueness
we have already noted after Proposition 6. We proceed as follows. Firstly, we
observe that since A ⊗ B and B ⊗ A are isomorphic ∗-algebras, we may as-
sume that A is finite-dimensional. Then, after reducing to the case A=Matn(C)

and B = B(H) by using the GNS construction, we can make identifications
A ⊗ B = Matn(B(H)) = B(Hn) yielding the desired norm. Thus, existence is
settled. The preceding argument shows that for all a ∈ A and b ∈ B we have
[[a ⊗ b]] = [[a]][[b]]. In a similar vein, we have the following useful general ob-
servation.

LEMMA 11. Let S be a finite-dimensional C∗-algebra. Let {ei}ni=1 be any
linearly independent family of elements of S . Then for all C∗-algebras A and
families {ai}ni=1 of elements of A we have

1

C

n∨
i=1

[[ai]] ≤
[[

n∑
i=1

ei ⊗ ai

]]
=

[[
n∑

i=1

ai ⊗ ei

]]
≤ C

n∑
i=1

[[ai]]

for a constant C ≥ 1 depending only on S and {ei}.
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PROOF. We may assume that S =Mats(C). Furthermore, there is no loss of
generality to assume that n = s2 and thus that {ei}s2

i=1 is a basis for Mats(C). Fi-
nally, there is no loss of generality to assume that {ei}s2

i=1 consists of elementary
matrices, in which case the lemma at hand reduces to (51). �

4.1.7. Block algebras. We define a block algebra to be a C∗-algebra isomor-
phic to Mats(C) for some positive integer s. The point of the definition is merely
to compress notation and to put some psychological distance between us and the
too-familiar algebra Mats(C). (Later we will refine the notion of block algebra by
keeping track not only of the transpose conjugate operation but also of the trans-
pose. See Section 5.2 below.)

4.2. Quadratic forms in independent random vectors. Variants of the next re-
sult are in common use in RMT. (See, e.g., [3], Lemma 2.7.)

PROPOSITION 10. Let Y1, . . . , Yn and Z1, . . . ,Zn be C-valued random vari-
ables which for some p ∈ [2,∞) all belong to L2p and have mean zero. Let
A ∈Matn(C) be a (deterministic) matrix. Assume furthermore that the family of
σ -fields {σ(Yi,Zi)}ni=1 is independent. Then we have∥∥∥∥∥

n∑
i,j=1

A(i, j)(YiZj −EYiZj )

∥∥∥∥∥
p

≤ c

(
n∑

i,j=1

|A(i, j)|2‖Yi‖2
2p‖Zj‖22p

)1/2

for a constant c depending only on p.

Results of this type are well-known. The earliest reference we know is [22]. In
that reference, the result above is proved in the special case in which Yi = Zi =
Y ∗i = Z∗i and A has real entries. From that special case, the general case of the
proposition above can be deduced easily by algebraic manipulation.

We now generalize in an innocuous if superficially complicated way.

PROPOSITION 11. Fix constants p ∈ [2,∞) and K ∈ (0,∞). Let V be a
finite-dimensional Banach space, let S be a block algebra and let G be a σ -field.
Let Y ∈Mat1×n(S) and Z ∈Matn×1(S) be random such that(∨‖[[Y(1, j)]]‖2p

)
∨

(∨‖[[Z(i,1)]]‖2p

)
≤K and EY = 0= EZ.

Assume also that the family G∪{σ(Y (1, i),Z(i,1))}ni=1 of σ -fields is independent.
Then for any G -measurable random bilinear map

R ∈ B(Mat1×n(S),Matn×1(S);V)

such that ‖[[R]]‖p <∞ we have

‖[[R(Y,Z)−E(R(Y,Z)|G)]]‖p ≤ CK2‖[[R]]‖p
√

n,

where the constant C depends only on p, S and V .
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We need two lemmas, the first of which actually proves more than we immedi-
ately need but has several further uses in the paper.

LEMMA 12. Let S be a block algebra of dimension s2. (i) For X ∈Matk×�(S),
we have

1

s
[[X]]2 ≤

k∑
i=1

�∑
j=1

[[X(i, j)]]2 ≤ s(k ∧ �)[[X]]2.

(ii) For X ∈Matk×�(S) and Y ∈Mat�×k(S), we have

[[trS (XY)]] ≤ s�[[X]][[Y ]].
(iii) For X ∈Matn(S), we have[[

n∑
i,j=1

X(i, j)⊗2

]]
≤ sn[[X]]2.

PROOF. Statement (i) is an assertion concerning the Hilbert–Schmidt norm
which is easy to verify. Statements (ii) and (iii) follow from statement (i) via the
Cauchy–Schwarz inequality. �

LEMMA 13. Let S be a block algebra and let {ei}�i=1 be a basis of the
underlying vector space. Let V be a finite-dimensional Banach space and let
{vk}mk=1 be a basis of the underlying vector space. Fix matrices Rk

ij ∈ Matn(C)

for i, j = 1, . . . , � and k = 1, . . . ,m. Define R ∈ B(Mat1×n(S),Matn×1(S);V) by
requiring that

R(x ⊗ ei, y ⊗ ej )=
∑
k

(xRk
ij y)vk

for i, j = 1, . . . , �, x ∈Mat1×n(C) and y ∈Matn×1(C). Then

1

C

∨
i,j,k

[[Rk
ij ]] ≤ [[R]] ≤ C

∑
i,j,k

[[Rk
ij ]]

for a constant C ≥ 1 which depends only on the data (S, {ei}, V, {vk}) and in
particular is independent of n.

PROOF. By Lemma 11 and the fact that the map(
A �→ (

(x, y) �→ xAy
))

: Matn(C)→ B(Mat1×n(C),Matn×1(C);C)

is an isometric isomorphism, the proof of the lemma at hand reduces to a straight-
forward calculation the remaining details of which we can safely omit. �
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4.2.1. Proof of Proposition 11. After using standard properties of conditional
expectation, we may assume that R is deterministic. We may also assume that S is
isomorphic to Mats(C) for some s and in turn Lemma 13 permits us to assume that
S =C. Finally, by Lemma 12, the proposition at hand reduces to Proposition 10.

REMARK 14. In applications of Proposition 11, we will only use two special
types of bilinear map R. We describe these types and estimate [[R]] for each. (They
conform to the patterns set by the objects QN

I,J,j1,j2
and P N

I,J,j1,j2
defined in Sec-

tion 8 below, resp.) (i) In the “Q-type” first case of interest, we have V = S and for
some A ∈Matn(S) we have R(y, z)= yAz, in which case [[R]] ≤ [[A]]. (ii) In the
“P -type” second case of interest, we have V = B(S), and for some A ∈Matn(S)

we have R(y, z)= (B �→ trS (AzByA)), in which case [[R]] ≤ s[[A]]2 for s equal
to the square root of the dimension of S over the complex numbers by Lemma 12.

4.3. A conditional variance bound. We present a result which harmlessly gen-
eralizes the well-known subadditivity of variance to a situation involving vector-
valued random variables and some mild dependence.

4.3.1. Setup for the result. Let V be a finite-dimensional Banach space (ei-
ther real or complex scalars). Let {E} ∪ {G(i, j)}1≤i≤j≤N be a family of inde-
pendent σ -fields and let G be the σ -field generated by this family. Let Z ∈ V
be a G -measurable random vector such that ‖[[Z]]‖p <∞ for p ∈ [1,∞). For
k = 1, . . . ,N , let Ĝk be the σ -field generated by the subfamily {E} ∪ {G(i, j)|k /∈
{i, j}} and let Zk ∈ V be a Ĝk-measurable random vector such that ‖[[Zk]]‖p <∞
for p ∈ [1,∞).

PROPOSITION 12. Notation and assumptions are as above. For every constant
p ∈ [1,∞), we have

∥∥E([[Z−E(Z|E )]]2|E
)∥∥

p ≤ c

N∑
k=1

‖[[Z−Zk]]‖22p(52)

for a constant c depending only on V and in particular independent of p.

PROOF. We may assume that V is a (finite-dimensional) real Hilbert space,
and in this case we will prove the claim with a constant c = 1. After a routine
application of Minkowski and Jensen inequalities, it is enough to prove

E
([[Z−E(Z|E )]]2|E

)≤ N∑
k=1

E([[Z−Zk]]2|E ),(53)

almost surely. There is also no harm in assuming that V =R. For k = 0, . . . ,N , let
Gk be the σ -field generated by the subfamily {E} ∪ {G(i, j)|1≤ i ≤ j ≤ k}. In any
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case, by orthogonality of martingale increments, we have

E
([[Z−E(Z|E )]]2|E

)= N∑
i=1

E
([[E(Z|Gk)−E(Z|Gk−1)]]2|E

)
,

almost surely. Furthermore, we have

E(E(Z|Ĝk)|Gk)= E(Z|Gk−1),

almost surely. Finally, we have

E
([[E(Z|Gk)−E(Z|Gk−1)]]2|E

)= E
([[

E
(
Z−E(Z|Ĝk)|Gk

)]]2∣∣E
)

≤ E
([[Z−E(Z|Ĝk)]]2|E

)≤ E([[Z−Zk]]2|E ),

almost surely, whence (53). �

DEFINITION 3. The random variable E([[Z − E(Z|E )]]2|E ) appearing on the
left-hand side of (52) will be denoted by VarV (Z|E ) in the sequel.

4.4. Estimates for tensor-cubic forms. We work out a specialized estimate in-
volving three-fold tensor products and partitions of a set of cardinality six. The
combinatorial apparatus introduced here will have further uses.

4.4.1. Set partitions and related apparatus. A set partition of k is a disjoint
family � of nonempty subsets of the set {1, . . . , k} whose union is {1, . . . , k}. Each
member of a set partition is called a part. Let Part(k) be the family of set partitions
of k. Let Part∗(2k) be the subset of Part(2k) consisting of set partitions having
no singleton as a part, nor having any of the sets {2i − 1,2i} for i = 1, . . . , k as
a part. Let Part∗2(2k) ⊂ Part∗(2k) be the subfamily consisting of partitions all of
whose parts have cardinality 2. For each positive integer k let Sk be the group
of permutations of {1, . . . , k}. Let �k ⊂ S2k be the subgroup centralizing the in-
volutive permutation (12) · · · (2k − 1,2k). Then �k acts on the set Part∗(2k). For
�1,�2 ∈ Part∗(2k) belonging to the same �k-orbit we write �1 ∼�2.

4.4.2. Explicit descriptions of Part∗(4) and Part∗(6). To describe Part∗(4), we
can easily enumerate it, thus:

{{1,2,3,4}}, {{1,3}, {2,4}}, {{1,4}, {2,3}}.(54)

It can be shown (we omit the tedious details) that for every � ∈ Part∗(6) there
exists exactly one set partition on the list

{{1,2,3,4,5,6}}, {{1,6}, {2,3,4,5}}, {{1,3,5}, {2,4,6}},
(55)

{{1,6}, {2,3}, {4,5}}, {{1,2,3}, {4,5,6}}
belonging to the �3-orbit of �.
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4.4.3. Sequences and associated partitions. For any finite set I , we write

Seq(k, I )= {
i : {1, . . . , k}→ I

}
.

Given i ∈ Seq(k, I ), let �(i) ∈ Part(k) be the set partition generated by i, that is,
the coarsest set partition on the parts of which i is constant. If I = {1, . . . , n}, we
write Seq(k, I ) = Seq(k, n) by abuse of notation. Sometimes we represent ele-
ments of Seq(k, I ) as “words” i1 · · · ik spelled with “letters” i1, . . . , ik ∈ I .

4.4.4. Setup for the main result. Let S be a block algebra. Let a set partition
� ∈ Part∗(6) and matrices M1,M2,M3 ∈Matn(S) be given. Put

M� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[ ∑
i=i1···i6
∈Seq(6,n)

s.t. �(i)=�

M1(i1, i2)⊗M2(i3, i4)⊗M3(i5, i6)

]]
, if � ∈ Part∗2(6),

∑
i=i1···i6
∈Seq(6,n)

s.t. �(i)=�

[[M1(i1, i2)]][[M2(i3, i4)]][[M3(i5, i6)]], if � /∈ Part∗2(6).

PROPOSITION 13. Notation and assumptions are as above. For � ∈ Part∗(6),
unless � ∼ {{1,2,3}, {4,5,6}}, we have M� ≤ cn[[M1]][[M2]][[M3]] for a con-
stant c depending only on S .

PROOF. We may assume that S is isomorphic to Mats(C) and thus by
Lemma 11 that S = C. After replacing (M1,M2,M3) by (MTν1

σ(1),M
Tν2
σ(2),M

Tν3
σ(3))

for suitably chosen σ ∈ S3 and ν1, ν2, ν3 ∈ {0,1}, we may assume that � appears
on the list (55). We may also assume that each matrix Mα is either diagonal or
else vanishes identically on the diagonal. Finally, we may assume that M� > 0.
Let d be the number of matrices Mα which are diagonal. Consider the following
mutually exclusive and exhaustive collection of cases:

(i) �= {{1,6}, {2,3}, {4,5}} and hence d = 0.
(ii) �= {{1,3,5}, {2,4,6}} and hence d = 0.

(iii) �= {{1,6}, {2,3,4,5}} and hence d = 1.
(iv) �= {{1,2,3,4,5,6}} and hence d = 3.

In case (i) we have M� = | trM1M2M3| ≤ n[[M1M2M3]] ≤ n[[M1]][[M2]][[M3]].
In case (ii) we have

M� ≤ [[M1]]
n∑

i,j=1

|M2(i, j)M3(i, j)|

≤ [[M1]]
∏

α∈{2,3}

(
n∑

i,j=1

|Mα(i, j)|2
)1/2

≤ n[[M1]][[M2]][[M3]].
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In case (iii), similarly, we have

M� ≤ [[M2]]
n∑

i,j=1

|M1(i, j)M3(j, i)| ≤ n[[M1]][[M2]][[M3]].

Finally, in case (iv) we have M� ≤ n[[M1]][[M2]][[M3]] simply by counting. �

5. Transpositions, SALT block designs and the secondary trick. We intro-
duce algebraic tools for exploiting the symmetry which the random matrices (33)
possess as a consequence of assumption (17) and which the operators (34) also
possess by virtue of the special choice of � made in Section 3.4. We introduce
SALT block designs, we show how the self-adjoint linearization trick generates
examples of such, and we use SALT block designs to put the crucial equations (29)
and (30) into streamlined form. See Remark 29 below. We introduce the secondary
trick which produces new SALT block designs from old and in particular produces
some SALT block designs which do not come from the self-adjoint linearization
trick.

5.1. Transpositions.

DEFINITION 4. Let A be a ∗-algebra. A transposition a �→ aT of A is a C-
linear map such that (aT)T = a, (a∗)T = (aT)∗ and (ab)T = bTaT for all a, b ∈A.
Necessarily 1T

A = 1A. A ∗-algebra (resp., C∗-algebra) equipped with a transposi-
tion T will be called a (∗,T)-algebra (resp., C∗,T-algebra).

REMARK 15. Of course Matn(C) is a C∗,T-algebra. More generally, for any
Hilbert space H equipped with an orthonormal basis {hi}, there exists a unique
structure of C∗,T-algebra for B(H) such that (hi,Ahj ) = (hj ,A

Thi) for all op-
erators A ∈ B(H) and indices i and j . The concept of C∗,T-algebra is essentially
equivalent to that of a real C∗-algebra.

5.1.1. Transpositions, tensor products and matrices. Given (∗,T)-algebras A
and B, we invariably equip A ⊗ B with a transposition by the rule (a ⊗ b)T =
aT ⊗ bT, thus equipping A⊗ B with the structure of (∗,T)-algebra. Note that if
A and B are C∗,T-algebras at least one of which is finite-dimensional, then A⊗B
is again a C∗,T-algebra. For any (∗,T)-algebra A and matrix A ∈Matk×�(A), we
define AT ∈Mat�×k(A) by AT(i, j) = A(j, i)T. Thus, in particular, Matn(A) is
automatically a (∗,T)-algebra (resp., C∗,T-algebra) whenever A is.

5.1.2. Transpositions on C〈X〉 and B(H). We equip the noncommutative
polynomial algebra C〈X〉 with a transposition by the rule XT

� = (−1)�X� for ev-
ery �. Note that the C∗-algebra B(H) is canonically equipped with a transposition
because Boltzmann–Fock space H is canonically equipped with an orthonormal
basis.
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REMARK 16. We claim that the evaluation maps(
f �→ f

(
�N

√
N

))
: Matn(C〈X〉)→MatnN(C),(

f �→ f (�)
)

: Matn(C〈X〉)→Matn(B(H))

figuring in Theorems 1, 2 and 4 are (∗,T)-algebra homomorphisms. In any case, it
is clear that each homomorphism is a ∗-algebra homomorphism, so we have only
to verify that each map commutes with the transposition. The former commutes
with T by assumption (17) which (recall) says that (�N

� )T = (−1)��N
� for all �.

The latter commutes with T because (recall from Section 3.4) by definition �� =
i��� + i−��∗� , clearly �T

� =�∗� , and hence �T
� = (−1)��� for all �. The claim is

proved.

LEMMA 14. If x is an element of a C∗,T-algebra A, then (x−1)T = (xT)−1,
x ∈Asa⇒ xT ∈Asa, Spec(x)= Spec(xT), x ≥ 0⇒ xT ≥ 0 and [[xT]] = [[x]].

PROOF. The first two claims are obvious. The third claim follows from the
first. The second and third claims imply the fourth. The fifth holds for self-adjoint x

by Proposition 6 along with the second and third claims. The fifth claim holds in
general because [[xT]]2 = [[(xT)∗xT]] = [[(xx∗)T]] = [[xx∗]] = [[x]]2. �

DEFINITION 5. Given a C∗,T-algebra A and a state φ ∈ A�, we say that φ

is T-stable if φ(AT) = φ(A) for all A ∈ A. A pair (A, φ) consisting of a C∗,T-
algebra and a T-stable state φ will be called a C∗,T-probability space.

REMARK 17. It is easy to see that both (MatN(C), 1
N

tr) and (B(H), φBF) are
in fact C∗,T-probability spaces.

5.2. Block algebras (enhanced version). We re-introduce the notion of block
algebra, this time with structure enriched by a transposition. We also introduce
the notion of S -linear form in terms of which we will handle much bookkeeping
below.

DEFINITION 6. A block algebra is a C∗,T-algebra isomorphic to the ma-
trix algebra Mats(C) for some integer s > 0. A basis {eij }si,j=1 for S such that

eij ei′j ′ = δji′eij ′ and e∗ij = eji = eT
ij will be called standard.

REMARK 18. A choice of standard basis of a block algebra is the same thing
as a choice of a C∗,T-algebra isomorphism with Mats(C).

REMARK 19. The tensor product of block algebras is again a block alge-
bra. Furthermore, for every block algebra S , the tensor product algebra C〈X〉 ⊗ S
[resp., B(H)⊗ S ] is a (∗,T)-algebra (resp., C∗,T-algebra).
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DEFINITION 7. Let S be any block algebra. An S -linear form L is an element
of the tensor product algebra C〈X〉 ⊗ S of the form L=∑∞

�=1 X� ⊗ a� for some
elements a� ∈ S vanishing for �
 0. We refer to the sum

∑
� X�⊗a� as the Hamel

expansion of L and to the elements a� ∈ S as the Hamel coefficients of L. Given
a sequence ξ = {ξ�}∞�=1 ∈ A∞ in an algebra A, we define L(ξ) =∑

� ξ� ⊗ a� ∈
A ⊗ S , calling this the evaluation of L at ξ . It is especially important to notice
that if A =MatN(C), then L(ξ) ∈MatN(C)⊗ S =MatN(S). This is the reason
for putting the tensor factors in C〈X〉 ⊗ S in the “wrong” order.

DEFINITION 8. Let S be a block algebra and let L be an S -linear form
with Hamel expansion L = ∑

X� ⊗ a�. We define �L ∈ B(S) by the formula
�L(ζ ) =∑

a�ζa� for ζ ∈ S and we define �L =∑
(−1)�a⊗2

� ∈ S⊗2. We call
�L the covariance map attached to L. We call �L the covariance tensor attached
to L.

DEFINITION 9. Each block algebra S is equipped with a unique state τS sat-
isfying τS (eij ) = (dim S)−1/2δij for any standard basis {eij }. Necessarily τS is
T-stable. More generally, for each projection e ∈ S , there exists a unique state
τS,e ∈ S � such that τS,e|eSe = τeSe.

REMARK 20. If S = Mats(C) and e = [ In
0

0
0

]
, then τS,e(A) =

1
n

∑n
i=1 A(i, i).

5.2.1. The bullet map. Given a block algebra S , we define a linear isomor-
phism (A �→ A•) : S⊗2→ B(S) by the formula (x ⊗ y)• = (z �→ xzy). That the
bullet map is indeed a linear isomorphism one can check by calculating with a stan-
dard basis. The bullet map in general neither preserves norms nor algebra struc-
ture.

5.2.2. The half-transpose map. Given a block algebra S , we define a lin-
ear isomorphism (A �→ A1⊗T) ∈ B(S⊗2) by the formula (x ⊗ y)1⊗T = x ⊗ yT.
The half-transpose map in general neither preserves norms nor algebra struc-
ture.

REMARK 21. Strangely enough, the composite map(
(x ⊗ y) �→ (

(x ⊗ y)1⊗T)•) : S⊗2→ B(S)

is an isomorphism of algebras, as one verifies by calculating with a standard basis.
(But this map still does not in general preserve norms.)
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5.3. S -(bi)linear constructions.

5.3.1. S -linear extension of states. Given any C∗-probability space (A, φ)

and block algebra S , we define the S -linear extension φS : A⊗ S → S of φ by
the formula

φS (x ⊗ y)= φ(x)y.

Note that since φ commutes with the involution, the same is true for φS , that is,

φS (A∗)= φS (A)∗(56)

for A ∈ A ⊗ S . Suppose now that (A, φ) is a C∗,T-probability space. Note that
since φ is T-stable, φS commutes with T, that is,

φS (AT)= φS (A)T(57)

for A ∈A⊗ S .

REMARK 22. Objects like φS are the stock-in-trade of operator-valued free
probability theory. See [13] for a useful introduction to this point of view and
see [18] for in-depth treatment.

REMARK 23. Consider the case (A, φ)= (MatN(C), 1
N

tr). We have

φS =
(
A �→ 1

N
trS A=

N∑
i=1

A(i, i)

)
: MatN(S)→ S.

Thus the ad hoc construction trS fits into a more general conceptual framework.

REMARK 24. The S -linear extension φBF
S of the state φBF with which B(H)

is canonically equipped satisfies

(pH ⊗ 1S )A(pH ⊗ 1S )= pH ⊗ φBF
S (A) hence [[φBF

S (A)]] ≤ [[A]](58)

for all A ∈ B(H)⊗ S and hence [[φBF
S ]] = 1. In fact, in full generality, we have

[[φS]] = 1 by a similar argument using the GNS construction, which we omit.

DEFINITION 10. For any (∗,T)-algebra A, let A∞alt denote the space of se-
quences ξ = {ξ�}∞�=1 in A such that ξT

� = (−1)�ξ� for all �. Also put A∞salt =
A∞sa ∩A∞alt.

REMARK 25. Let A be a (∗,T)-algebra, ξ = {ξ�}∞�=1 ∈A∞salt a sequence and
L an S -linear form. Then we have LT(ξ)= L(ξ)T and L∗(ξ)= L(ξ)∗. In particu-
lar, this observation applies to the sequences �N ∈MatN(C)∞salt and � ∈ B(H)∞salt
figuring in Theorem 4.
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5.3.2. S -bilinear extension of states. Let S be a block algebra and let (A, φ)

be a C∗-probability space. We define the S -bilinear extension

φS,S : A⊗ S ×A⊗ S → S⊗2

of φ by the formula

φS,S (x1 ⊗ y1, x2⊗ y2)= φ(x1x2)y1 ⊗ y2.

REMARK 26. Let S be a block algebra and consider the C∗-probability space
(MatN(C), 1

N
tr). For R1,R2 ∈MatN(S), we have

φS,S (R1,R2)= 1

N

N∑
i,j=1

R1(i, j)⊗R2(j, i) ∈ S⊗2.

REMARK 27. Consider the C∗-algebra embeddings

ι(1) = (x ⊗ y �→ x ⊗ y ⊗ 1S )

ι(2) = (x ⊗ y �→ x ⊗ 1S ⊗ y)

}
: A⊗ S →A⊗ S⊗2.

One has

φS,S (A,B)= φS⊗2
(
ι(1)(A)ι(2)(B)

)
(59)

and thus [[φS,S]] = 1 since [[φS⊗2]] = 1. In a similar vein, we have the formula

φS,S (A,B)•(ζ )= φS
(
A(1A ⊗ ζ )B

)
(60)

which we will use below in Section 6 to study the secondary Schwinger–Dyson
equation.

REMARK 28. Consider the C∗,T-probability space (A, φ) = (MatN(C),
1
N

tr). Let S be any block algebra. Let R ∈MatN(S) be any matrix. We have

φS,S (R,R)• =
(
ζ �→ 1

N

N∑
i,j=1

R(i, j)ζR(j, i)

)
∈ B(S),(61)

φS,S (R,RT)1⊗T = 1

N

N∑
i,j=1

R(i, j)⊗2 ∈ S⊗2.(62)

We will study the expressions of the form on the left in Section 6 below. We will
study expressions of the form on the right in Section 8 and Section 9 below.
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5.4. An upgrade of the self-adjoint linearization trick.

DEFINITION 11. A SALT block design is a quadruple (S,L,�, e) consisting
of

• a block algebra S ,
• a self-adjoint S -linear form L,
• an element � ∈ S (perhaps not self-adjoint) and
• a projection e ∈ S
such that for every C∗,T-algebra A, sequence ξ ∈A∞salt, point z ∈ h and parameter
t ≥ 0 we have

L(ξ)− 1A ⊗ (�+ ze+ it1S ) ∈ (A⊗ S)×(63)

and [[(
L(ξ)− 1A ⊗ (�+ ze+ it1S )

)−1]]≤ c0

2

(
1+ [[L(ξ)]])c1(1+ 1/�z)c2(64)

for some constants c0, c1, c2 ≥ 1 depending only on (S,L,�, e) and thus inde-
pendent of A, ξ , z and t . We declare any finite constant T≥ [[��]]+4(1+[[�L]])
to be a cutoff for the design, where �L ∈ B(S) is as in Definition 8.

PROPOSITION 14. Fix f ∈ Matn(C〈X〉)sa arbitrarily. Either let f̃ ∈
Mats(C〈X〉)sa be a self-adjoint linearization of f as provided by Proposition 3
or else let f̃ = f if all entries of f are already of degree ≤ 1 in the variables X�.
Write

f̃ = a0⊗ 1C〈X〉 +
m∑

�=1

a� ⊗X�

for m
 0 and a0, . . . , am ∈Mats(C)sa. Let

S =Mats(C), L=
m∑

�=1

X�⊗ a�, �=−a0, e=
[

In 0
0 0

]
.

Then (S,L,�, e) is a SALT block design for which �=�∗ and c2 = 1.

PROOF. The case s = n is easy to check using Lemma 6. We leave the de-
tails to the reader. We assume s > n for the rest of the proof. Then property (63)
holds by Proposition 4 and Lemma 6. The latter lemma, the inversion formula (28),
Lemma 11 and the definitions yield an estimate[[(

L(ξ)− 1A⊗ (�+ ze)
)−1]]≤ c0

4

(
1+ [[L(ξ)]])c1(1+ 1/�z)

for A, ξ and z as in (64). Estimate (64) for general t ≥ 0 (but still with c2 = 1) then
follows via Lemma 5 if c0

2 (1+ [[L(ξ)]])c1(1+ 1/�z)t ≤ 1 and otherwise follows
via Lemma 6. �
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DEFINITION 12. For each f ∈ Matn(C〈X〉)sa, any SALT block design
(S,L,�, e) arising via Proposition 14 will be called a self-adjoint linearization
of f . (Self-adjoint linearizations in the relatively naive sense defined immediately
after Proposition 3 will hereafter no longer be used.)

REMARK 29. (This is a continuation of Remark 11.) In the sequel, we will
prefer to write formulas (29) and (30) above in the following form. Fix f ∈
Matn(C〈X〉)sa and let (S,L,�, e) be any self-adjoint linearization of f . Then,
with τS,e as in Definition 9, we have

SμN
f
(z)= τS,e

(
1

N
trS

((
L

(
�N

√
N

)
− IN ⊗ (�+ ze)

)−1))
,(65)

Sμf
(z)= τS,e ◦ φBF

S
((

L(�)− 1B(H) ⊗ (�+ ze)
)−1)(66)

for z ∈ h (resp., for z ∈ C \ suppμf ). Furthermore, for distinct indices i, j =
1, . . . ,N and arbitrary A ∈ S , with the covariance map �L ∈ B(S) as in Defi-
nition 8, we have

�L(A)= E((L(�N)(i, j))A(L(�N)(j, i)))
(67)

= φS
(
L(�)

(
1B(H)⊗A

)
L(�)

)
.

[Formula (67) is actually valid for any self-adjoint S -linear form L whether or not
it is part of a self-adjoint linearization.] One verifies the first equality of (67) by
applying assumptions (17), (18), (19) and (20) which fix the covariance structure
of the sequence �N . One verifies the second equality of (67) by applying the rela-
tions (39) which analogously fix the (noncommutative) covariance structure of the
sequence �. We also have for distinct indices i, j = 1, . . . ,N the formula

�L = E((L(�N)(i, j))⊗2)= φS,S (L(�),L(�))(68)

which is proved more or less the same way as formula (67). [Formula (68) is
actually valid for any S -linear form L.]

REMARK 30. We return to the setting of Definition 11. We provide some am-
plification of relations (63) and (64). Firstly, we have for ζ ∈ S that

2
[[(

L(ξ)− 1A ⊗ (�+ ze+ it1S )
)−1]][[ζ ]] ≤ 1

⇒ L(ξ)− 1A ⊗ (�+ ze+ it1S + ζ ) ∈ (A⊗ S)× and
(69) [[(

L(ξ)− 1A⊗ (�+ ze+ it1S + ζ )
)−1]]

≤ 2
[[(

L(ξ)− 1A⊗ (�+ ze+ it1S )
)−1]]

via Lemma 5. Secondly, we have[[(
L(ξ)− 1A ⊗ (�+ ze+ it1S )

)−1]]≤ 1

t − [[��]] for t > [[��]](70)
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via Lemma 6. The bound latter helps to explain the meaning of the cutoff T.

REMARK 31. Let (S,L,�, e) be a SALT block design and let c0, c1, c2 and T

be the constants from Definition 11. Let Y ∈MatN(S)sa be of the form Y = L(η)

for some η ∈MatN(C)∞salt. Then for every z ∈ h and t ∈ [0,∞) we have

Y − IN ⊗ (�+ ze+ it1S ) ∈GLN(S) and[[(
Y − IN ⊗ (�+ ze+ it1S )

)−1]](71)

≤
⎧⎨⎩

c0(1+ [[Y ]])c1(1+ 1/�z)c2, in general and
1

2
, for t ≥ T

by definition of a SALT block design along with Remark 30. By the resolvent
identity (35), the following important (if trivial) observation also holds:

For each fixed z ∈ h, the Lipschitz constant of the map
(t �→ (Y − IN ⊗ (�+ ze+ it1S ))−1) : [0,∞)→MatN(S)

does not exceed c2
0(1+ [[Y ]])2c1(1+ 1/�z)2c2 .

(72)

5.5. The secondary trick. We first present the underline construction and then
the secondary trick itself. As a byproduct, we will find natural examples of SALT
block designs beyond those produced by Proposition 14. See Remark 32 below.

5.5.1. The underline construction for a block algebra. Let M3 denote a block
algebra equipped with a standard basis {eij }3i,j=1. Let S be any block algebra. We
define

S = S⊗2 ⊗M3, ♦S = 1⊗2
S ⊗ (e12 + e13) ∈ S.

Furthermore, given � ∈ S we define

�1 =�⊗ 1S ∈ S⊗2, �2 = 1S ⊗� ∈ S⊗2,

�=�1 ⊗ e11 +�2⊗ e22 +�T
2 ⊗ e33 ∈ S.

We also define linear maps

∂1 ∈ B(S,B(S)) and ∂2 ∈ B(S, S⊗2)

by the formulas

∂1(A⊗ eij )=A•δ1iδ2j , ∂2(A⊗ eij )=A1⊗Tδ1iδ3j

for A ∈ S⊗2 and i, j = 1, . . . ,3.
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5.5.2. The underline construction for S -linear forms. Let S be a block algebra
and let S be the corresponding “underlined” block algebra as defined in the preced-
ing paragraph. Given an S -linear form L with Hamel expansion L=∑

X� ⊗ a�,
we define S⊗2-linear forms L1 and L2 by the formulas

L1 =
∑
�

X�⊗ a� ⊗ 1S , L2 =
∑
�

X�⊗ 1S ⊗ a�

and in turn we define an S -linear form L by the formula

L= L1 ⊗ e11 +L2⊗ e22 +LT
2 ⊗ e33.

5.5.3. The trick itself. Let S be a block algebra, let � ∈ S be an element and
let L be an S -linear form. Let S , �1, �2, �, L1, L2 and L be as defined in
the preceding two paragraphs. Let (A, φ) be a C∗,T-probability space and fix a
sequence ξ ∈ A∞salt. For the rest of this paragraph, we abuse notation by writing
x = 1A ⊗ x for x ∈ S , x ∈ S⊗2 or x ∈ S . We assume that L(ξ)−� ∈ (A⊗ S)×,
in which case L(ξ)−� ∈ (A⊗ S)× via Lemma 14. In turn, one can verify that

L(ξ)−�−♦S ∈ (A⊗ S)×

and more precisely(
L(ξ)−�−♦S

)−1

= (
L1(ξ)−�1

)−1⊗ e11 + (
L2(ξ)−�2

)−1 ⊗ e22

+ ((
L2(ξ)−�2

)−1)T ⊗ e33

+ ((
L1(ξ)−�1

)−1(
L2(ξ)−�2

)−1)⊗ e12

+ ((
L1(ξ)−�1

)−1((
L2(ξ)−�2

)−1)T)⊗ e13,

by direct calculation. It follows that

[[L(ξ)]] = [[L(ξ)]],
(73) [[(

L(ξ)−�−♦S
)−1]]≤ 3

(
1∨ [[(

L(ξ)−�
)−1]])2

,

∂1 ◦ φS
((

L(ξ)−�−♦S
)−1)

(74)
= φS,S

((
L(ξ)−�

)−1
,
(
L(ξ)−�

)−1)•
,

∂2 ◦ φS
((

L(ξ)−�−♦S
)−1)

(75)
= φS,S

((
L(ξ)−�

)−1
,
((

L(ξ)−�
)−1)T)1⊗T

,

where to get the last two identities we use the trivial formula (59).
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LEMMA 15. For any SALT block design (S,L,�, e), again (S,L,�+♦S , e)

is a SALT block design. More precisely, if c0, c1 and c2 are constants rendering the
estimate (64) valid for (S,L,�, e), then one can take the corresponding constants
c0, c1 and c2 for (S,L,�+♦S , e) to be c0 = 3c2

0, c1 = 2c1 and c2 = 2c2.

PROOF. One can read off the necessary estimates from (73). �

REMARK 32. Note that �+ ♦S ∈ S is in general not self-adjoint and (more
significantly) c2 = 2c2. Thus, the extra generality in Definition 11 not used by
Proposition 14 is forced on us in order to make Lemma 15 hold.

6. Construction of solutions of the Schwinger–Dyson equation. We con-
struct solutions of the Schwinger–Dyson equation by using the Boltzmann–Fock
apparatus reviewed in Section 3 above along with the S -linear machinery intro-
duced in Section 5 above. See Proposition 16 below. Following [9], we then ex-
press the Stieltjes transform Sμf

(z) figuring in Theorem 4 in terms of one of the
solutions so constructed. See Remark 34 below. We also construct solutions of a
secondary version of the Schwinger–Dyson equation by using the S -bilinear ma-
chinery of Section 5. See Proposition 17 below. We then define our candidate for
the correction biasN

f (z) figuring in Theorem 4. See Remark 39 below.

6.1. The Schwinger–Dyson equation and its differentiated form.

DEFINITION 13. Let S be a block algebra. Let D ⊂ S be a (nonempty) open
subset. Let � ∈ B(S) be a linear map. We say that an analytic function G : D→ S
satisfies the Schwinger–Dyson (SD) equation with covariance map � if

1S + (
�+�(G(�))

)
G(�)= 0

for all � ∈D. Necessarily one has G(�) ∈ S× for all � ∈D.

See [18, 21] or [1] for background.

6.1.1. Notation for derivatives. Given an analytic function G : D→ S defined
on an open subset D of a block algebra S and � ∈D, we define

D[G](�)=
(
ζ �→ d

dt
G(�+ tζ )

∣∣∣∣
t=0

)
∈ B(S).

For ζ ∈ S we write D[G](�; ζ )=D[G](�)(ζ ) to compress notation.

PROPOSITION 15. Let S be a block algebra and let D ⊂ S be an open set.
Let G : D→ S be a solution of the SD equation with covariance map � ∈ B(S).
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Then for every � ∈D and ζ ∈ S we have

ζ =G(�)−1D[G](�; ζ )G(�)−1 −�(D[G](�; ζ ))
(76)

= D[G](�;G(�)−1ζG(�)−1 −�(ζ)
)
,

0=G(�)+D[G](�;�)+ 2D[G](�;�(G(�))).(77)

Relation (77) plays a key role in proving the bound (23) asserted in Theorem 4.

PROOF. To compress notation further, we write G = G(�) and G′ =
D[G](�). By differentiation of the SD equation we obtain (ζ + �(G′(ζ )))G +
(� + �(G))G′(ζ ) = 0 and hence ζ = G−1G′(ζ )G−1 − �(G′(ζ )). Thus, the
first equality in (76) holds. Now for any linear operators A and B on a finite-
dimensional vector space we have AB = 1⇒ BA= 1. Thus ζ =G′(G−1ζG−1−
�(ζ)), and hence the second equality in (76) holds. Finally, (77) follows by taking
ζ =G(�) in (76). �

6.2. The solution of the SD equation attached to an S -linear form.

6.2.1. Definition of GL(�). Fix a block algebra S and an S -linear form L

with Hamel expansion L=∑
X�⊗ a�. We define the set

DL = {
� ∈ S|L(�)− 1B(H) ⊗� ∈ (

B(H)⊗ S
)×}⊂ S.

It is clear that DL is nonempty and Lemma 5 implies that DL is open. For � ∈DL,
we put

GL(�)= φBF
S

((
L(�)− 1B(H)⊗�

)−1) ∈ S,

where φBF
S is the S -linear extension of φBF ∈ B(H)�. By direct manipulation of

series expansions one can verify that GL : DL→ S is an analytic function. Recall
that by Definition 8, we have �L = (ζ �→∑

a�ζa�) ∈ B(S).

PROPOSITION 16. The function GL : DL→ S is a solution of the SD equation
with covariance map �L.

PROOF. We specialize Proposition 9 by taking

A= B(H)⊗ S, π = pH ⊗ 1S , ρ� = �̂�⊗ 1S and

A= L(�)− 1B(H) ⊗�=−1B(H) ⊗�+∑
�

(i��� ⊗ a� + i−��∗� ⊗ a�).

To verify that the family, {π} ∪ {ρi}∞�=1 is a Cuntz frame in A we use (40). To
verify that A is quasi-circular, we use Lemma 10. Now in view of (58), the left
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side of (49) specializes to pH ⊗GL(�) and moreover necessarily GL(�) ∈ S×.
But we also have

πAπ =−pH ⊗�, πAρ�π = i�pH ⊗ a�, πρ∗�Aπ = i−�pH ⊗ a�

as one verifies by using (38) and (41). Thus, the inverse in the algebra π Aπ of the
right side of (49) specializes to −pH ⊗ (�+�L(GL(�))). �

REMARK 33. Proposition 16 is essentially well-known apart from one small
detail. For comparison with a typical proof, see [1], Chapter 5, Sections 4 and 5
(main text, not the exercises), and in particular [1], Chapter 5, Lemma 5.5.10. That
proof falls a bit short of proving Proposition 16 as stated because it relies on an
analytic continuation argument to extend a generating function identity proved by
combinatorics throughout a connected open set. But we do not know a priori that
DL is connected. (It would be a surprise if it were not but we leave the question
aside.) Thus, we have presented the operator-theoretic proof of Proposition 16 sug-
gested by the last exercise in [1] (which does not otherwise seem to be present in
the literature in detail) because it makes connectedness of DL a nonissue.

REMARK 34. (This is a continuation of the thread of remarks includ-
ing Remarks 11 and 29.) If (S,L,�, e) is a self-adjoint linearization of f ∈
Matn(C〈X〉)sa, then we have the simple formula

Sμf
(z)= τS,e

(
GL(�+ ze)

)
(78)

for z ∈ C \ suppμf , which is just a rewrite of (66). This is one way—but not the
only way—in which solutions of the SD equation enter the proof of Theorem 4.

6.3. Derivatives, symmetries and estimates. We record some immediate con-
sequences of the construction of GL(�) for later use.

6.3.1. Operator-theoretic representation of the derivative. By means of the
resolvent identity (35) in infinitesimal form, one verifies that

D[GL](�; ζ )
(79)

= φBF
S

((
L(�)− 1B(H) ⊗�

)−1
(1⊗ ζ )

(
L(�)− 1B(H) ⊗�

)−1)
,

for all ζ ∈ S .

6.3.2. Symmetries. Note that

� ∈DL ⇔ �∗ ∈DL∗ ⇒ GL(�)∗ =GL∗(�
∗),(80)

� ∈DL ⇔ �T ∈DLT ⇒ GL(�)T =GLT(�T).(81)

Relation (80) holds by the symmetry (56) along with the observation that ∗ com-
mutes with inversion. Relation (81) can be verified by a straightforward calculation
exploiting Lemma 14 and relation (57).
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6.3.3. Estimates. For any S -linear form L and points �,�1,�2 ∈ DL, we
have estimates

[[GL(�)]] ≤ [[(
L(�)− 1B(H)⊗�

)−1]]
,(82)

[[GL(�1)−GL(�2)]]
≤ [[�1 −�2]][[(L(�)− 1B(H) ⊗�1

)−1]](83)

× [[(
L(�)− 1B(H) ⊗�2

)−1]]
,

[[D[GL](�)]] ≤ [[(L(�)− 1B(H)⊗�)−1]]2,(84)

[[GL(�1)−GL(�2)−D[GL](�2;�1 −�2)]]
≤ [[�1 −�2]]2[[(L(�)− 1B(H) ⊗�1

)−1]](85)

× [[(
L(�)− 1B(H) ⊗�2

)−1]]2

which follow directly from the resolvent identity (35), the iterated resolvent iden-
tity (36), the estimate (58) and the definitions.

6.4. The secondary SD equation. We construct solutions of a secondary form
of the Schwinger–Dyson equation by using a variant of the secondary trick. See
Proposition 17 below and its proof.

6.4.1. The special function GL1,L2(�1,�2). Let S be a block algebra. For
j = 1,2, let Lj be an S -linear form and let �j ∈DLj

be a point. We define

GL1,L2(�1,�2)= φBF
S,S

((
L1(�)− 1B(H) ⊗�1

)−1
,
(
L2(�)− 1B(H) ⊗�2

)−1)
,

where φBF
S,S is the S -bilinear extension of φBF. It is easy to see that GL1,L2(�1,�2)

depends analytically on (�1,�2). By Remark 27, we have

[[GL1,L2(�1,�2)]]
(86)

≤ [[(
L1(�)− 1B(H)⊗�1

)−1]][[(
L2(�)− 1B(H) ⊗�2

)−1]]
,

which is an estimate analogous to (82).

PROPOSITION 17. Let S be a block algebra. For j = 1,2, let Lj =∑
X� ⊗

a�j be an S -linear form and let �j ∈ DLj
be a point. Then the secondary SD

equation

GL1,L2(�1,�2)
(87)

=
(((

GL1(�1)
−1 ⊗GL2(�2)

−1 −∑
a�1⊗ a�2

)1⊗T)−1)1⊗T

holds. In particular, the expression on the right side is well-defined.
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It is worth noting as a consistency check that the expression on the right side
remains invariant if we replace the transposition T by any other transposition of S .

PROOF. By Remark 21 it suffices to prove that

ζ =GL1(�1)
−1GL1,L2(�1,�2)

•(ζ )GL2(�2)
−1

(88)
−∑

a�1GL1,L2(�1,�2)
•(ζ )a�2

holds for all ζ ∈ S . Let M2 be a block algebra equipped with a standard basis
{eij }2i,j=1. Fix ζ ∈ S arbitrarily and put

�=�1⊗ e11 +�2⊗ e22 + ζ ⊗ e12 ∈ S ⊗M2.

Consider also the S ⊗M2-linear form

L= L1⊗ e11 +L2 ⊗ e22.

To compress notation put

Aj =Lj(�)− 1B(H)⊗�j ∈ (A⊗ S)×

for j = 1,2 and put

A=L(�)− 1B(H) ⊗� ∈A⊗ S ⊗M2.

In fact A ∈ (A⊗ S ⊗M2)
×, and more precisely

A−1 =A−1
1 ⊗ e11 +A−1

2 ⊗ e22 + (
A−1

1 (1A ⊗ ζ )A−1
2

)⊗ e12

as one immediately verifies. Thus by the trivial identity (60), we have

GL(�)=GL1(�1)⊗ e11 +GL2(�2)⊗ e22 +GL1,L2(�1,�2)
•(ζ )⊗ e12.

By Proposition 16, the SD equation

0= 1S ⊗ 1M2 +
(
�+�L(GL(�))

)
GL(�)

is satisfied. By expanding the right side in the form . . .+ b⊗ e12+ . . . we find that

0= (
�1 +�L1(GL1(�1))

)
GL1,L2(�1,�2)

•(ζ )

+
(
ζ +∑

a�1GL1,L2(�1,�2)
•(ζ )a�2

)
GL2(�2),

which yields (88) after some further manipulation which we omit. �

REMARK 35. Fix an S -linear form L and a point � ∈DL. Then we have

D[GL](�)=GL,L(�,�)•(89)

as one verifies by exploiting the infinitesimal form of the resolvent identity (35).
Note that the equation (88) in the case (L1,L2,�1,�2) = (L,L,�,�) special-
izes to the equation (76) obtained through differentiation.



2150 G. W. ANDERSON

REMARK 36. Fix an S -linear form L and a point � ∈ DL. Let �L be as
in Definition 8. Recall that if L =∑

X� ⊗ a� is the Hamel expansion of L then
�L =∑

(−1)�a⊗2
� . Then we have(

(GL(�)−1)⊗2 −�L

)−1 =GL,LT(�,�T)1⊗T(90)

by the secondary SD equation (87) in the case (L1,L2,�1,�2)= (L,LT,�,�T)

along with the symmetry (81). In turn, we have[[(
(GL(�)−1)⊗2 −�L

)−1]]≤ [[1⊗ T]][[(L(�)− 1B(H)⊗�
)−1]]2(91)

by Remark 27, (86), and Lemma 14.

REMARK 37. Fix a SALT block design (S,L,�, e) and a point � ∈DL. We
automatically have �+♦S ∈DL and

∂1GL(�+♦S )= D[GL](�) and
(92)

∂2GL(�+♦S )= (
(GL(�)−1)⊗2 −�L

)−1

by (74) and (75) along with (89) and (90).

6.5. The universal correction BiasN
L . We first present a general construction

needed for the proof of Theorem 4 which involves solutions of both the “primary”
and secondary SD equations. Then in Remark 39 we specialize the construction to
produce our candidate for the correction biasN

f (z) figuring in Theorem 4. Through-
out, S denotes a fixed block algebra.

6.5.1. A tensor generalization of fourth cumulants. Let Y be any S -valued
random variable such that ‖[[Y ]]‖4 <∞ and EY = 0. Let Z be an independent
copy of Y . We define

C(4)(Y )= E(Y ∗ ⊗ Y ⊗ Y ∗ ⊗ Y)−E(Y ∗ ⊗ Y ⊗Z∗ ⊗Z)

−E(Y ∗ ⊗Z⊗Z∗ ⊗ Y)−E(Y ∗ ⊗Z⊗ Y ∗ ⊗Z) ∈ S⊗4.

6.5.2. Shuffle notation. For positive integers k, we define bilinear maps

[·, ·]k : S⊗k × S⊗k→ S⊗2k,

[x1 ⊗ · · · ⊗ xk, y1⊗ · · · ⊗ yk]k = x1 ⊗ y1 ⊗ · · · ⊗ xk ⊗ yk,

〈·, ·〉k : S⊗k × S⊗k→ S,

〈x1 ⊗ · · · ⊗ xk, y1⊗ · · · ⊗ yk〉k = x1y1 · · ·xkyk.
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6.5.3. Definition of BiasN
L . Let L =∑

X� ⊗ a� be any self-adjoint S -linear
form. Let � ∈DL be a point. To abbreviate notation, we write

�=�L ∈ B(S), � =�L ∈ S⊗2,

XN = L(�N)=∑
�N

� ⊗ a� ∈MatN(S)sa,

G=GL(�) ∈ S×, G′ =D[GL](�) ∈ B(S),

Ǧ= (
(G−1)⊗2 −�L

)−1 ∈ (S⊗2)×.

By Remark 36, the object Ǧ above is well-defined. We now define

B̂ias
N
L (�)= 〈[�,�]2, [Ǧ,G⊗2]2〉4 −�(G)G

+ 1

N

N∑
i=1

〈EXN(i, i)⊗2,G⊗2〉2
(93)

− 1

N3/2

N∑
i=1

〈EXN(i, i)⊗3,G⊗3〉3

+ 1

N2

N∑
i,j=1
i �=j

〈C(4)(XN(i, j)),G⊗4〉4,

BiasN
L (�)=G′(B̂ias

N
L G−1).(94)

The analytic functions

B̂ias
N
L ,BiasN

L : DL→ S

thus defined we call the unwrapped universal correction and universal correction
indexed by L and N , respectively. We only define the former function to expe-
dite certain calculations—the latter function is the theoretically important one with
good symmetry properties. It is a straightforward if tedious matter to verify that
BiasN

L commutes with the C∗-algebra involution just as GL does. For a constant c

independent of N , L and �, we have

sup
N

[[BiasN
L (�)]] ≤ c

[[(
L(�)− 1B(H) ⊗�

)−1]]5(95)

by estimates (82), (84) and (91) along with assumption (14).

REMARK 38. Since we are long done with the discussion of Theorems 1 and 2
and are focused now on proving Theorem 4, we feel free to repurpose the letter X

in various ways as, for example, in the construction above of BiasL
N , and later in

our discussion of the block Wigner model. This should not cause confusion.
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REMARK 39. (This is a continuation of the thread of remarks includ-
ing Remarks 11 and 34.) If (S,L,�, e) is a self-adjoint linearization of f ∈
Matn(C〈X〉)sa, then our candidate for the correction figuring in Theorem 4 is de-
fined by the formula

biasN
f (z)= τS,e

(
BiasN

L (�+ ze)
)

(96)

for z ∈C \ suppμf . This is another distinct way that solutions of the SD equation
enter the proof of Theorem 4.

7. Approximation of solutions of the Schwinger–Dyson equation. We re-
fine a powerful idea from [9] concerning the approximation of solutions of the
Schwinger–Dyson equation. See Lemma 16 below for a short paraphrase of that
idea in a simplified geometry. See Proposition 18 below for the main result of this
section, which is an estimate tailored to the proof of Theorem 4.

7.1. SD tunnels.

DEFINITION 14. Suppose we are given

• a solution G : D→ S of the SD equation with covariance map � ∈ B(S),
• a point �0 ∈D and
• (finite) constants T > 0 and G≥ 1.

Put

T = {�0 + it1S + ζ |t ∈ [0,∞) and ζ ∈ S s.t. [[ζ ]] ≤ 1/G}.
Suppose that the following conditions hold:

T ⊂D,(97)

sup
�∈T
[[G(�)]] ≤G,(98)

sup
�∈T
[[D[G](�)]] ≤G2,(99)

sup
�,�′∈T

s.t. ��=�′

[[G(�)−G(�′)]]
[[�−�′]] ≤G2,(100)

sup
�,�′∈T

s.t. ��=�′

[[G(�)−G(�′)−D[G](�′;�−�′)]]
[[�−�′]]2 ≤G3,(101)

sup
�∈T
[[G(�+ iT1S )]] ≤ 1

2(1+ [[�]]) .(102)

In this situation we say that the collection (G : D → S,�,�0,T,G) is a
Schwinger–Dyson (SD) tunnel.
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REMARK 40. If (G : D → S,�,�0,T,G) is an SD tunnel, then for every
t ∈ [0,∞), so is (G : D→ S,�,�0 + it1S ,T,G).

REMARK 41. All examples of SD tunnels needed for the proof of Theorem 4
arise as follows. Let (S,L,�, e) be a SALT block design. Let c0, c1, c2 and T be
be the constants from Definition 11. Put

G(z)= c0
(
1+ [[L(�)]])c1(1+ 1/�z)c2(103)

for z ∈ h. We claim that the collection(
GL : DL→ S,�L,�+ ze,T,G(z)

)
(104)

is an SD tunnel for each fixed z ∈ h. To prove the claim, arbitrarily fix z ∈ h,
t ∈ [0,∞) and ζ ∈ S such that [[ζ ]] ≤ 1/G(z), and put

�=�+ ze+ it1S + ζ.

We then have

� ∈DL and
[[(

L(�)− 1B(H)⊗�
)−1]]≤

⎧⎨⎩
G(z), in general,

1

2(1+ [[�]]) , for t ≥ T,

by Definition 11 and Remark 30. In particular, (104) satisfies (97) for each fixed
z ∈ h. In turn, it follows by (82) that (104) satisfies (98) and (102) for each fixed
z ∈ h. Given also �′ ∈DL with “primed” variables, we have

[[GL(�)−GL(�′)]] ≤ [[�−�′]]G(z)G(z′),
[[D[GL](�)]] ≤G(z)2,

[[GL(�)−GL(�′)−D[GL](�′;�−�′)]] ≤ [[�−�′]]2G(z)G(z′)2

by (83), (84) and (85), respectively. It follows that (104) also satisfies (98), (99)
and (100) for each fixed z ∈ h. The claim is proved. We note also that we have a
bound

[[BiasN
L (�)]] ≤ cG(z)5(105)

for a constant c independent of L, N and z by (95). This last estimate turns out to
be the crucial point for proving the bound (24) asserted in Theorem 4.

REMARK 42. Definition 14 is not particularly delicate or economical. In-
deed, conditions (97), (98) and (102) alone imply that (G : D → S,�,�0,

T, cG) is an SD tunnel, where c > 1 is an absolute constant. However, for the
present purpose, no advantage is gained by reformulating Definition 14 in more
economical fashion since all the properties (97)–(102) are needed to prove Propo-
sition 18 below.
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7.2. The key lemma. Before working out our main estimate, we first prove a
simple lemma to explain the mechanism by which SD tunnels control errors. The
lemma captures a key idea of [9] but works with a simpler geometry. The lemma
uses only the first and last of the defining conditions of an SD tunnel.

7.2.1. Setup for the key lemma.

• Let (G : D→ S,�,�0,T,G) satisfy conditions (97) and (102) of the definition
of an SD tunnel.
• Let F = (t �→ Ft) : [0,T]→ S be a continuous function.

For t ∈ [0,T] we put

�t =�0 + it1S , Gt =G(�t), Et = 1S + (
�t +�(Ft)

)
Ft .

Note that we have �t ∈ D by definition of an SD tunnel and hence Gt is well-
defined. In turn we define constants

C0 = 2(1+ [[�]]), F= 1∨ sup
t∈[0,T]

[[Ft ]], A= sup
t∈[0,T]

[[Et ]].

The quantity A is a natural measure of the failure of F to satisfy the SD equation.
We emphasize that we assume nothing of the function F beyond continuity.

LEMMA 16. If

C0GFA < 1 and(106)

[[FT]]< 1,(107)

then for every t ∈ [0,T], the inverse Ht =−(�t +�(Ft))
−1 exists,

[[Ht ]] ≤ 2[[Ft ]],(108)

[[�(HtEt)]] ≤ 1/G, (hence) �t −�(HtEt) ∈D and(109)

Ht −HtEt = Ft =G
(
�t −�(HtEt)

)−HtEt .(110)

PROOF. Fix t ∈ [0,T] arbitrarily. Hypothesis (106) implies that [[Et ]] ≤ 1/2.
By Lemma 5 it follows that Ht is well-defined and satisfies (108). Then claim (109)
holds by (97), (106) and (108). It remains only to prove claim (110), and since
the first equality in (110) holds by definition of Ht , we have only to prove the
second equality. By the Weierstrass Approximation theorem, we may assume that
F depends polynomially and a fortiori analytically on t . Put

Ĥt =G
(
�t −�(HtEt )

)
and F̂t = Ĥt −HtEt .

Note that F̂t depends analytically on t . It is enough to prove Ft ≡ F̂t . In any case,
since G satisfies the SD equation with covariance map �, we have

1S + (
�t −�(HtEt)+�(Ĥt )

)
Ĥt = 1S + (

�t +�(F̂t )
)
Ĥt = 0
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and hence Ĥt =−(�t +�(F̂t ))
−1. We thus have

Ft − F̂t =Ht − Ĥt =Ht�(Ft − F̂t )Ĥt =Ht�(Ft − F̂t )G
(
�t −�(HtEt )

)
,

where at the second step we use the resolvent identity (35). Finally, by (102), (107),
(108) and (109) we have

[[HT]][[�]][[G(
�T −�(HTET)

)]]
< 1,

hence the difference Ft − F̂t vanishes identically for t near T and hence Ft ≡ F̂t

by analytic continuation. �

REMARK 43. We work out the simplest concrete example of the phenomenon
described by the lemma. Let σ : C \ [−2,2] → C be the Stieltjes transform of the
semicircle law. As is well-known, σ(z) is the unique bounded analytic solution of
the equation 1 + (z + σ(z))σ (z) = 0 in the domain C \ [−2,2]. Now fix z0 ∈ h

arbitrarily. It is easy to see that

(G : D→ S,�,�0,T,G)=
(
σ : C \ [−2,2]→C,1, z0,4,1∨ 2

�z0

)
satisfies conditions (97) and (102) of the definition of an SD tunnel. Now fix a
continuous function (t �→ Ft) : [0,4] → C and put F= 1 ∨ supt∈[0,4] |Ft |. In turn
put Et = 1+ (z0 + it + Ft)Ft for t ∈ [0,4] and A = supt∈[0,4] |Et |. Assume that

|F4|< 1 and FA < 1
4(1∧ �z0

2 ). Then by Lemma 16 we have H0 =−(z0+F0)
−1 �=

∞, |H0| ≤ 2|F0|, |H0E0| ≤ 1∧ �z0
2 and finally F0 = σ(z0−H0E0)−H0E0. This

last equation is at first glance a bit strange but in fact the strategy of writing ρ(z)=
σ(z− δ)− δ to estimate ρ(z)− σ(z) has long been in use. See, for example, [2],
equation 4.11.

REMARK 44. Equation (110) is not an obvious target to shoot for! But
once (110) is written down, it is clear that it offers excellent opportunities for
systematically estimating the difference [[F0 −G(�0)]]. This surprising and pow-
erful idea we learned from [9]. The importance and utility of this idea cannot be
overestimated.

7.3. The tunnel estimates. We now use Lemma 16 to obtain an estimate in
terms of parameters over which we will be able to gain good control. In particular,
the estimate is designed to take advantage of Remark 31 above.

7.3.1. Setup for the tunnel estimates.

• Let (G : D→ S,�,�0,T,G) be an SD tunnel.
• Let L ∈ [1,∞) be a constant.
• Let F = (t �→ Ft) : [0,∞)→ S be a Lipschitz continuous function with Lips-

chitz constant bounded by L and satisfying supt∈[T,∞)[[Ft ]] ≤ 1/2.
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For t ∈ [0,∞), we put

�t =�0 + it1S , Et = 1S + (
�t +�(Ft)

)
Ft ,

and we define constants

C= 99e2T(1+ [[�0]] + [[�]]), E= 1

2
[[E0]] + 1

2

∫ ∞
0
[[Et ]]e−t dt.

The integral converges since [[Et ]] has at worst linear growth as t→∞.

PROPOSITION 18. Data, notation and assumptions are as above. We have

[[F0 −G(�0)]] ≤ (CGL)6(E+E2),(111)

[[F0 +D[G](�0;E0G(�0)
−1)−G(�0)]] ≤ (CGL)12(E2 +E4).(112)

The exponents of C, G and L are of no importance in the sequel. They could be
replaced by any larger absolute constants without disturbing later arguments. Only
the exponents of E will be important.

PROOF OF PROPOSITION 18. In anticipation of applying Lemma 16, we put

F= 1∨ sup
t∈[0,T]

[[Ft ]] = 1∨ sup
t∈[0,∞)

[[Ft ]] ≤
√

CL,(113)

A= sup
t∈[0,T]

[[Et ]] ≤ CF2.(114)

We have also noted here some crude bounds needed later. Now write

G0 =G(�0), G′0 =D[G](�0),

V0 =G′0(E0G
−1
0 )=G′0(�(G0E0))+G0E0

in order to abbreviate notation. The last equality above is an instance of (76).
We now claim that

[[F0 −G0]] ≤ CG2F([[E0]] + 1CGFA≥1),(115)

[[F0 + V0 −G0]] ≤ C2G5F2([[E0]]2 + 1CGFA≥1).(116)

If CGFA≥ 1, then crude estimates based on the definition of an SD tunnel along
with the bound (114) suffice. We may therefore assume without loss of generality
that CGFA < 1, in which case the hypotheses of Lemma 16 are fulfilled. Thus it
follows via (100), (108), (109) and (110) that

[[F0 −G0]] ≤ [[H0 −G0]] + [[H0E0]] ≤G2(2[[�]]F[[E0]])+ 2F[[E0]].
Thus, the claim (115) is proved. To prove (116), we begin by noting the identity

F0 + V0 −G0 =G
(
�0 −�(H0E0)

)−G0 +G′0(�(H0E0))

+ (G0 −H0)E0 +G′0
(
�
(
(G0 −H0)E0

))
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derived from (110). Then, reasoning as in the proof of (115), but now also us-
ing (101) and (102), we find that

[[F0 + V0 −G0]]
≤G3(2[[�]]F[[E0]])2 +G2(2[[�]]F[[E0]])[[E0]]
+G3[[�]](G2(2[[�]]F[[E0]]))[[E0]].

Thus, the claim (116) is proved.
We next claim that

A≤√
CFL

(√
E+E

)
.(117)

To prove the claim, consider the function b(t)= e−t [[Et ]] defined for t ∈ [0,∞).
Since b is continuous and tends to 0 at infinity, b achieves its maximum at some
point t0 ∈ [0,∞). Clearly, we have

b(t0)e
T ≥A,2E≥

∫ ∞
0

b(t) dt.

Now fix t > t0 arbitrarily. We have

|b(t0)− b(t)| ≤ e−t0[[Et0]](1− et0−t )+ e−t [[Et0 −Et ]]
≤ (

b(t0)+ (1+ [[�]]L)F+ ([[�0]] + e−t t + [[�]]F)L
)|t0 − t |

≤
(
b(t0)+ CFL

8e2T

)
|t0 − t |.

Thus, there exists a right triangle with altitude b(t0) and base of length
b(t0)

b(t0)+CFL/(8e2T)
under the graph of b. Now in general for K1, x ≥ 0 and K2 > 0

we have

4K1 ≥ x2

x +K2
⇒ x ≤√

8K1K2 + 8K1.

The claim (117) now follows after some further trivial manipulations which we
omit.

Finally, by combining (113), (115), (116) and (117) we obtain bounds

[[F0 −G0]] ≤ C3/2G2L
(
2E+ 1

C2G3/2L3/2(
√

E+E)≥1

)
,

[[F0 + V0 −G0]] ≤ C3G5L2(4E2 + 1
C2G3/2L3/2(

√
E+E)≥1

)
,

whence the result after using Chebyshev bounds and simplifying brutally. �

8. Matrix identities. Throughout this section, we fix a block algebra S .
Working in a purely algebraic setting, we build up a catalog of identities satisfied
by finite chunks of an infinite matrix with entries in S . The identities are chosen to
illuminate the structure of random matrices of the form (33) and are a further con-
tribution to our stock of tools for concentration. All the identities derived here are
meaningful in the case S = C, in which case many of these identities are familiar
from the study of resolvents of Wigner matrices.
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8.1. An ad hoc infinite matrix formalism. When we write Matk×�(S), we now
allow k or � or both to be infinite, in which case we mean for the correspond-
ing matrix indices to range over all positive integers. Addition, multiplication and
adjoints of (possibly) infinite matrices are defined as before, although we never at-
tempt to multiply such matrices unless one of them has only finitely many nonzero
entries. For each integer N > 0, let IN denote the family of nonempty subsets
of the set {1, . . . ,N}. Given a finite nonempty set I = {i1 < · · · < ik} of positive
integers, let fI ∈Matk×∞(S) and eI ∈Mat∞(S) be defined by

fI (i, j)=
k∑

α=1

1(i,j)=(α,iα)1S and eI (i, j)=
k∑

α=1

1(i,j)=(iα,iα)1S ,

respectively. Note that fI f∗I = I|I | ⊗ 1S and f∗I fI = eI , where |I | denotes the car-
dinality of I . Note that for all A ∈Mat∞(S) and finite sets I and J of positive
integers, the finite matrix fIAf∗J ∈Mat|I |×|J |(S) is the result of striking all rows
of A with indices not in I and all columns of A with indices not in J . Thus, the ma-
trices fI allow us to pick out finite chunks of a matrix A ∈Mat∞(S) and to use the
familiar rules of matrix algebra itself to manipulate the chunks. For A ∈Mat∞(S)

with only finitely many nonzero entries, we define trS A=∑
i A(i, i). For such A,

we also define [[A]] = [[fIAf∗I ]] for any finite set I of positive integers such that
eIAeI = A, which is independent of I . For each ζ ∈ S , let I∞ ⊗ ζ ∈Mat∞(S)

denote the infinite diagonal matrix with diagonal entries ζ .

8.2. The setup for studying matrix identities.

8.2.1. Data and assumption. We fix a triple (X,�,�) where

• X ∈Mat∞(S),
• � ∈ S and
• � ∈ B(S),

subject to the condition

fI
(

X√
N
− I∞ ⊗�

)
f∗I ∈GL|I |(S) for N and I ∈ IN .(118)

Here and below N is understood to range over the positive integers. Below we will
define and analyze various functions of the triple (X,�,�), calling them recipes.

REMARK 45. All triples (X,�,�) needed to prove Theorem 4 arise as fol-
lows. Let (S,L,�, e) be any SALT block design. Let

⋃
L(�N) ∈ Mat∞(S)sa

denote the infinite matrix gotten by cobbling together the matrices L(�N) ∈
MatN(S) for varying N using assumption (16). Let z be as in Theorem 4. Let t
be a real random variable independent of σ(F , z) which with probability 1/2 is
concentrated at the origin and with probability 1/2 is standard exponential. (The
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motivation for using the random variable t comes from Proposition 18 above.) Let
�L ∈ B(S) be as in Definition 8. Then the triple

(X,�,�)=
(⋃

L(�N),�+ ze+ it1S ,�L

)
(119)

satisfies (118) with probability 1 by Remark 31.

8.2.2. The first group of recipes. For N and I ∈ IN , we define

RN
I = f∗I

(
fI
(

X√
N
− I∞ ⊗�

)
f∗I
)−1

fI ∈Mat∞(S),

FN
I =

1

N
trS RN

I ∈ S,

T N
I =

(
ζ �→ 1

N

∑
i,j∈I

RN
I (i, j)ζRN

I (j, i)

)
∈ B(S),

UN
I =

1

N

∑
i,j∈I

RN
I (i, j)⊗2 ∈ S⊗2.

Note that RN
I is well-defined by assumption (118). For N put

I (2)
N = {(I, J ) ∈ IN × IN |J ⊂ I, I \ J ∈ IN, |J | ≤ 2}.

For N and (I, J ) ∈ I (2)
N put

RN
I,J = fJ RN

I f∗J ∈Mat|J |(S).

The recipes in the first group do not depend on �, whereas the remaining recipes
we are about to define do depend on �.

8.2.3. Recipes of the second group. For N and I ∈ IN put

EN
I = 1S + (

�+�(FN
I )

)
FN

I ∈ S,

HN
I =

{
−(�+�(FN

I )
)−1 ∈ S×, if [[EN

I ]]< 1/2,

0 ∈ S, if [[EN
I ]] ≥ 1/2.

Note that HN
I is well-defined by Lemma 5. For N , (I, J ) ∈ I (2)

N and j1, j2 ∈ J , we
define

HN
I,J = I|J | ⊗HN

I\J ∈Mat|J |(S),

QN
I,J√
N
=− fJ Xf∗J√

N
+ fJ XRN

I\J Xf∗J
N

− I|J | ⊗�(FN
I\J ) ∈Mat|J |(S),

QN
I,J,j1,j2

= fj1f∗J QN
I,J fJ f∗j2

∈ S,
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P N
I,J√
N
=

(
A �→ 1

N
trS (RN

I\J Xf∗J AfJ XRN
I\J )− T N

I\J ◦� ◦ trS (A)

)
∈ B

(
Mat|J |(S), S

)
,

P N
I,J,j1,j2

= (
ζ �→ P N

I,J (fJ f∗j1
ζ fj2f∗J )

) ∈ B(S),

�N
I,J =HN

I,J QN
I,J +

√
NI|J |1[[EN

I\J ]]≥1/2 ∈Mat|J |(S).

8.2.4. Abuses of notation. We write

�kRN
I,J = (�N

I,J )kRN
I,J and �RN

I,J =�1RN
I,J .

We often write j where we should more correctly write {j}, for example, we write
QN

I,j instead of QN
I,{j}. Note that

RN
I,j =RN

I (j, j), HN
I,j =HN

I\j , QN
I,j,j,j =QN

I,j , P N
I,j,j,j = P N

I,j .

In the same spirit, we occasionally write N in place of {1, . . . ,N}.

REMARK 46. This is a continuation of Remark 45 and furthermore a continu-
ation of the thread of remarks including Remarks 11, 29 and 34. Suppose now that
(S,L,�, e) is a self-adjoint linearization of some f ∈Matn(C〈X〉)sa. Then with
τS,e as in Definition 9, we have

SμN
f
(z)= τS,e(F

N
N ) on the event t= 0.(120)

This representation of SμN
f
(z) is just a rewrite of (65). Next, let (S,L,�+♦S , e)

be the “underlined” SALT block design derived from (S,L,�, e) via Lemma 15.
Consider the triple

(X,�,�)=
(⋃

L(�N),�+♦S + ze+ it1S ,�L

)
,(121)

which again satisfies assumption (118) with probability 1. Let the recipes attached
to the underlined triple (X,�,�) be denoted with underlines in order to distin-
guish them from those attached to the triple (X,�,�) defined by (119). We then
have

∂1F
N
I = T N

I and ∂2F
N
I =UN

I(122)

by (61), (62), (74) and (75). The relations (122) joined with the relations (92) will
be crucial for the proof of relation (25) of Theorem 4.

REMARK 47. The recipe UN
I does not figure in any identities stated in Sec-

tion 8 but does become an important random variable later. We therefore include
its definition here so that Section 8.2 can serve as a handy catalog of the basic
random variables.
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REMARK 48. Note that RN
I is the inverse of the matrix eI (

X√
N
− I∞ ⊗�)eI

as computed in the algebra eI Mat∞(S)eI the identity element of which is eI . This
observation simplifies calculations below on several occasions.

8.3. Basic identities. We obtain block-type generalizations of matrix identities
familiar from the study of resolvents of Wigner matrices.

LEMMA 17. For N and I ∈ IN , along with any positive integer k,

RN+1
I =RN

I +
k−1∑
ν=1

(
δNRN

I

eIXe∗I√
N

)ν

RN
I +

(
δNRN

I

eIXe∗I√
N

)k

RN+1
I ,(123)

where δN =
√

N( 1√
N
− 1√

N+1
).

PROOF. By induction, we may assume k = 1. Then, in view of Remark 48,
formula (123) is merely an instance of the resolvent identity (35). �

LEMMA 18. For N and (I, J ) ∈ I (2)
N ,

RN
I,J =

( fJ Xf∗J√
N
− I|J | ⊗�− fJ XRN

I\J Xf∗J
N

)−1

,(124)

RN
I −RN

I\J =
(

f∗J −RN
I\J

X√
N

f∗J
)
RN

I,J

(
fJ − fJ

X√
N

RN
I\J

)
.(125)

In particular, we automatically have RN
I,J ∈GL|J |(S).

PROOF. In Proposition 8, let us now take

A= eI Mat∞(S)eI , x = eI

(
X√
N
− I∞ ⊗�

)
eI , π = eJ ,

π⊥ = eI\J , σ = eI ,

and again let us take advantage of Remark 48. Rewritten in the form

eJ RN
I eJ = f∗J RN

I,J fJ = f∗J
(
fJ (x − xRN

I\J x)f∗J
)−1fJ ,

identity (124) becomes a special case of (43). Similarly, rewritten in the form

RN
I −RN

I\J = (eJ −RN
I\J xeJ )RN

I (eJ − eJ xRN
I\J ),

identity (125) becomes a specialization of (44). �

LEMMA 19. For N and (I, J ) ∈ I (2)
N , along with any positive integer k,

RN
I,J =HN

I,J +
k−1∑
ν=1

(HN
I,J QN

I,J )νHN
I,J

Nν/2 + �kRN
I,J

Nk/2 .(126)
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PROOF. By induction on k, we may assume k = 1. Rewrite (124) in the form

−(I|J | ⊗ (
�+�(FN

I\J )
))

RN
I,J = I|J | ⊗ 1S +

QN
I,J RN

I,J√
N

.(127)

Then left-multiply by HN
I,J on both sides and rearrange slightly to get the result.

�

8.4. More elaborate identities. We specialize and combine the basic identities.

8.4.1. Comparison of R to H . For N , (I, J ) ∈ I (2)
N and j1, j2 ∈ J , we have

RN
I (j1, j2)− δj1j2HI\J = fj1f∗J

�RN
I,J√
N

fJ f∗j2
,(128)

RN
I (j1, j2)− δj1j2HI\J −

HI\J QN
I,J,j1,j2

HI\J√
N

= fj1f∗J
�2RN

I,J

N
fJ f∗j2

(129)

by merely rewriting (126) in the cases k = 1 and k = 2, respectively, at the level of
individual matrix entries.

8.4.2. Increments of F and of H . For N and (I, J ) ∈ I (2)
N we have

N(FN
I − FN

I\J )= trS (RN
I,J )+ trS

(
RN

I\J
X√
N

f∗J RN
I,J fJ

X√
N

RN
I\J

)
(130)

=
(

trS +T N
I\J ◦� ◦ trS +

P N
I,J√
N

)
(RN

I,J )

by applying trS to both sides of (125). We note also the identity

HN
I −HN

I\J =HN
I 1[[EN

I\J ]]≥1/2 −HN
I\J 1[[EN

I ]]≥1/2
(131)

+HN
I �(FN

I − FN
I\J )HN

I\J
obtained by exploiting the resolvent identity (35) in evident fashion.

8.4.3. The Schwinger–Dyson error. For N and I ∈ IN such that |I | ≥ 2 we
have

EN
I +
|I | −N

N
1S = 1

N

∑
j∈I

(
�(FN

I − FN
I\j )RN

I,j −
QN

I,jR
N
I,j√

N

)
(132)

after applying 1
N

∑
j∈I (·) to both sides of (127) in the singleton case J = {j} and

rearranging.

REMARK 49. Identity (132) is an approximate version of the Schwinger–
Dyson equation. Identities of this sort have long been in use for study of Wigner
matrices.
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8.4.4. Refined Schwinger–Dyson error. For N and I ∈ IN such that |I | ≥ 2,

we also have

EN
I +
|I | −N

N
1S + 1

N

∑
j∈I

QN
I,jH

N
I\j√

N
(133)

= 1

N

∑
j∈I

(
�(FN

I − FN
I\j )RN

I,j −
QN

I,j�RN
I,j

N

)
,

by (126) for k = 1 in the singleton case J = {j} and (132), after rearrangement.

8.4.5. Comparison of F to H . For N and I ∈ IN , we have

HN
I − FN

I =HN
I EN

I − FN
I 1[[EN

I ]]≥1/2(134)

by direct appeal to the definitions. One then obtains for |I | ≥ 2 the identity

HN
I − FN

I +
1

N

∑
j∈I

FN
I\jQN

I,jH
N
I\j√

N

= N − |I |
N

FN
I +HN

I (EN
I )2 − (FN

I + FN
I EN

I )1[[EN
I ]]≥1/2

(135)

+ 1

N

∑
j∈I

(
FN

I �(FN
I − FN

I\j )RN
I,j −

FN
I QN

I,j�RN
I,j

N

− (FN
I − FN

I\j )QN
I,jH

N
I\j√

N

)
by iterating (134) and combining it with (133).

8.4.6. Refined increment of F . For N and (I, J ) ∈ I (2)
N we have

FN
I − FN

I\J − |J |
(1B(S) + T N

I\J ◦�)(HN
I\J )

N(136)

= P N
I,J (RN

I,J )+ (trS +T N
I\J ◦� ◦ trS )(�RN

I,J )

N3/2

by rearrangement of (130), using (126) for k = 1.

8.4.7. Increment of F with respect to N . For N and I ∈ IN , we have

(N + 1)FN+1
I −NFN

I −
1

2

(
FN

I + T N
I (�)

)
= 1

N
trS

((
NδN − 1

2

)(
eI +RN

I (I∞ ⊗�)
)
RN

I(137)

+ (NδN)2

N

(
eI +RN

I (I∞ ⊗�)
)2

RN+1
I

)
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by Lemma 17 in the case k = 2 after using Remark 48, applying trS on both sides
and rearranging. Note that 1

2 − 1
2N
≤NδN ≤ 1

2 .

8.4.8. The link recipe. Let

LinkN = 1

2

(
FN

N + T N
N (�)

)− FN+1
N+1 +HN+1

N + T N+1
N (�(HN+1

N )),

where here and below in similar contexts we abuse notation by writing N where
we should more correctly write {1, . . . ,N}. We then have

N(FN+1
N+1 − FN

N )− LinkN

= (N + 1)FN+1
N −NFN

N − 1
2

(
FN

N + T N
N (�)

)
(138)

+ (N + 1)(FN+1
N+1 − FN+1

N )−HN+1
N − T N+1

N

(
�(HN+1

N )
)

by mere rearrangement of terms.

8.5. The bias identity. We derive the most intricate identity used in the paper.

8.5.1. Further refinement of the Schwinger–Dyson error. We first need an in-
termediate result which continues the process of expansion begun in identity (133).
For N and I ∈ IN such that |I | ≥ 2, we have

EN
I +
|I | −N

N
1S

+ 1

N

∑
j∈I

((QN
I,jH

N
I\j )2 − (�+� ◦ T N

I\j ◦�)(RN
I,j )R

N
I,j

N

(139)

+ (QN
I,jH

N
I\j )3

N3/2

)

= 1

N

∑
j∈I

(
−QN

I,jH
N
I\j√

N
− QN

I,j�
3RN

I,j

N2 + � ◦ P N
I,j (R

N
I,j )R

N
I,j

N3/2

)

by expanding the terms
QN

I,jRN
I,j√

N
in (132) by using (126) for k = 3 in the singleton

case J = {j}, and furthermore expanding the terms �(FN
I − FN

I\j )RN
I,j in (132)

by using (130) in the singleton case J = {j}, after suitable rearrangement.

8.5.2. The bias identity. Fix N ≥ 2 and j ∈N arbitrarily. To compactify nota-
tion put

T̃ N
j =�+� ◦ T N

N\j ◦�, P̃ N
j =� ◦ P N

N\j , ŘN
j =HN

N\jQN
N,jH

N
N\j ,

ErrNj = (QN
N,jH

N
N\j )2 − T̃ N

j (HN
N\j )HN

N\j + (QN
N,jH

N
N,j )

3/
√

N,
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ErrN,1
j = (

T̃ N
j (HN

N\j )ŘN
j + T̃ N

j (ŘN
j )HN

N\j + P̃ N
j (HN

N\j )HN
N\j

)
/N −QN

N,jH
N
N\j ,

ErrN,2
j = T̃ N

j (HN
N\j )�2RN

N,j + T̃ N
j (ŘN

j )�RN
N,j + T̃ N

j (�2RN
N,j )R

N
N,j

+ P̃ N
j (HN

N\j )�RN
N,j + P̃ N

j (�RN
N,j )R

N
N,j −QN

N,j�
3RN

N,j .

At last, we obtain the bias identity

EN
N +

1

N

∑
j∈N

ErrNj
N
= 1

N

∑
j∈N

(ErrN,1
j√
N
+ ErrN,2

j

N2

)
(140)

by using (126) several times with k = 1,2 in the singleton case J = {j} to expand
the terms (�+� ◦T N

N\j ◦�)(RN
N,j )R

N
N,j and � ◦P N

N,j (R
N
N,j )R

N
N,j in (139), after

suitable rearrangement.

9. Lp estimates for the block Wigner model. We introduce a straightfor-
ward generalization of the usual Wigner matrix model with matrix entries in a
block algebra. Using all the tools collected in Section 4 and Section 8, we investi-
gate how control of moments of “randomized resolvents” propagates to give con-
trol of moments of many related random variables. Our main result in this section
is Theorem 5 below which converts identity (140) above to a key approximation.

9.1. The block Wigner model. The ad hoc infinite matrix formalism of Sec-
tion 8.1 will be the algebraic framework for our discussion of the block Wigner
model.

9.1.1. Data. Data for the block Wigner model consist of

• a block algebra S ,
• a random matrix X ∈Mat∞(S)sa,
• a (deterministic) linear map � ∈ B(S),
• a (deterministic) tensor � ∈ S⊗2,
• a random element � ∈ S and
• a random variable G ∈ [1,∞).

9.1.2. The σ -fields F (i, j) and the auxiliary random variables z and t. In
addition to the data above, as a convenience of bookkeeping, we keep for use
in the present setup the same system {F (i, j)}1≤i≤j<∞ of independent σ -fields
mentioned in Section 2.4.1. As before, let F denote the σ -field generated by all
the F (i, j). More generally, for any set I of positive integers, let FI denote the σ -
field generated by the family {F (i, j)|i, j ∈ I }. We also keep the random variables
z from Theorem 4 and t from Remark 45 on hand, and we continue to assume that
F , z and t are independent. In Section 9, the random variables z and t intervene
only through their σ -fields but in Section 10 these random variables themselves
take an active part.
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9.1.3. Assumptions. Of the sextuple (S,X,�,�,�,G), we assume the fol-
lowing:

∞
sup
i,j=1
‖[[X(i, j)]]‖p <∞ for 1≤ p <∞,(141)

X(i, j) is F (i ∧ j, i ∨ j)-measurable and of mean zero for all i and j ,(142)

�= (ζ �→ EX(i, j)ζX(j, i)) and � = E(X(i, j)⊗2) for distinct i and j ,(143)

[[�]]p <∞ for p ∈ [1,∞),(144)

� is σ(z, t)-measurable and G is σ(z)-measurable,(145)

fI
(

X√
N
− I∞ ⊗�

)
f∗I ∈GL|I |(S) for N and I ∈ IN .(146)

For N and I ∈ IN , we then put

RN
I = f∗I

(
fI
(

X√
N
− I∞ ⊗�

)
f∗I
)−1

fI ∈Mat∞(S),

which is a generalized resolvent (Green’s function). Finally, we assume that

sup
N

∨
I∈IN

‖[[RN
I /G]]‖p <∞.(147)

We work with a fixed instance (S,X,�,�,�,G) of the block Wigner model
over S for the rest of Section 9.

REMARK 50. Fix real numbers a and b. Using assumptions (14)–(20) it is
easy to verify directly that the collection

(S,X,�,�,�,G)
(148)

=
(

C,
⋃
N

(a�N
1 + b�N

2 ), a2 + b2, a2 − b2, z+ it,1+ 1/�z
)

satisfies assumptions (141)–(147). This specialization is merely a slight variant of
the standard Wigner matrix model. The reader might find it helpful to concentrate
on this case when making a first pass through the Lp estimates assembled below.

REMARK 51. All instances of the block Wigner model needed for the proof of
Theorem 4 arise as follows. Let (S,L,�, e) be a SALT block design and let c0, c1,
c2 and T be the constants from Definition 11. We keep the notation of Remark 45.
Let �L and �L be as in Definition 8. Then, using assumptions (14)–(20) along
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with Remark 31, it is easy to verify that the collection

(S,X,�,�,�,G)

=
(

S,
⋃
N

L(�N),�L,�L,�+ ze+ it1S ,(149)

c0
(
1+ [[L(�)]])c1(1+ 1/�z)c2

)
satisfies assumptions (141)–(147).

9.1.4. Random variables defined by recipes. Since assumption (146) is a ver-
batim repetition of assumption (118), all the recipes of Section 8.2 define random
variables in the present setting. The object RN

I figuring in assumption (147) is of
course a recipe. We now furthermore have random variables FN

I , HN
I , T N

I , UN
I ,

etc. at our disposal. The compound objects LinkN , ErrNj , etc. figuring in the more
elaborate identities also become random variables in the present setting.

REMARK 52. We note that (147) can be considerably refined in the special-
ization (149) of the block Wigner model. Namely, for each N and I ∈ IN we have
almost sure bounds

[[FN
I ]] ≤ [[RN

I ]] ≤G

(
1+

[[
fIXf∗I√

N

]])c1

,(150)

[[FN
I ]] ≤ [[RN

I ]] ≤ 1
2 on the event t≥ T.(151)

One can also easily verify that

(GL : DL→ S,�L,�,T,G) is an SD tunnel.(152)

Of course this SD tunnel is random since � and G are random.

9.1.5. Partially averaged random variables. We complete our enumeration of
the random variables we will be studying. For N and I ∈ IN , we define

F
N

I =GE(FN
I /G|z, t) ∈ S and E

N

I = 1S + (
�+�(F

N

I )
)
F

N

I ∈ S.

Since [[FN
I ]]/G is integrable by assumption (147), in fact F

N

I and E
N

I are well-

defined, almost surely. Theorem 5 below gives a delicate approximation to E
N

N .
(Recall our abuse of notation N = {1, . . . ,N}.)

9.2. Basic estimates. We start gathering consequences of (147).
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9.2.1. The norms ||| · |||p,k . Given a constant p ∈ [1,∞), a positive integer k

and a finite-dimensional-Banach-space-valued random variable Z (defined on the
same probability space as G), we write |||Z|||p,k = ‖[[Z]]/Gk‖p to compress nota-
tion.

REMARK 53. We emphasize that in Section 9 we make no assumption con-
cerning the strength of the repulsion of z from the real axis. Indeed, we make no
assumptions about z at all. But nevertheless, looking ahead to the completion of
the proof of Theorem 4, we are obliged to keep track of issues involving the repul-
sion strength. To do so, we will use the parameter k appearing in the norm ||| · |||p,k

and in a similar seminorm introduced in Section 9.2.2 below.

PROPOSITION 19. For each constant p ∈ [1,∞), we have

sup
N

∨
I∈IN

|||RN
I |||p,1 ∨ |||FN

I |||p,1 ∨ |||HN
I |||p,1 ∨ |||T N

I |||p,2 ∨ |||UN
I |||p,2 <∞,(153)

sup
N

∨
(I,J )∈I(2)

N

|||RN
I,J |||p,1 ∨ |||HN

I,J |||p,1 <∞,(154)

sup
N

∨
(I,J )∈I(2)

N

N |||FN
I − FN

I\J |||p,3
<∞.(155)

PROOF. The claim made in (153) for RN
I just repeats the hypothesis (147) in

different notation. We have

[[RN
I ]] ≥ [[FN

I ]] ∨ [[T N
I ]]1/2 ∨ 1

2
[[HN

I ]] ∨
1√
s
[[UN

I ]]1/2

obviously in the first two cases, by Lemma 5 in the penultimate case and Lemma 12
in the last, where s2 is the dimension of S over the complex numbers. Thus, (153)
holds in general. Clearly, we have

[[RN
I,J ]] ≤ [[RN

I ]] and [[HN
I,J ]] = [[HN

I\J ]],
whence (154) via (153). By Lemma 12 and identity (130), we have

N

|J |2 [[F
N
I − FN

I\J ]] ≤ [[RN
I ]] +

s

N
[[RN

I ]][[RN
I\J ]]2

∑
(i,j)∈(I\J )×J

[[X(i, j)]]2.

From this, estimate (155) follows by assumption (141), the Minkowski inequality
and estimate (153). �
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9.2.2. The seminorms ||| · |||p,k,I . Given a constant p ∈ [1,∞), a positive in-
teger k, a set I of positive integers and a finite-dimensional-Banach-space-valued
random variable Z defined on the same probability space as G such that |||Z|||p,k <

∞, we define

|||Z|||p,k,I = ‖[[E(Z/Gk|FI , z, t)]]‖p.

Since the random variable [[Z/Gk]] is assumed to be in Lp ⊂ L1, the conditional
expectation appearing on the right is well defined, almost surely, and moreover

|||Z|||p,k ≥ |||Z|||p,k,I ≥ |||Z|||p,k,J

for any set J ⊂ I by Jensen’s inequality. In particular,

‖E(Z/Gk|z, t)‖p = |||Z|||p,k,∅

whenever |||Z|||p,k <∞.

PROPOSITION 20. For each constant p ∈ [1,∞), we have

sup
N

∨
(I,J )∈I(2)

N

|||QN
I,J |||p,1 ∨ |||P N

I,J |||p,2 <∞,(156)

sup
N

∨
(I,J )∈I(2)

N

|||QN
I,J |||p,1,I\J ∨ |||P N

I,J |||p,2,I\J = 0.(157)

It is hard to overestimate the importance of this proposition. This is the estimate
ultimately driving convergence. Our exploitation of it is of course an imitation of
the procedure of [3].

PROOF OF PROPOSITION 20. Fix N , (I, J ) ∈ I (2)
N and j1, j2 ∈ J arbitrarily.

By definition, we have

QN
I,J,j1,j2

=−X(j1, j2)+ 1√
N

(
fj1XRN

I\J Xf∗j2
−Nδj1j2�(FN

I\J )
)
,

(158)

P N
I,J,j1,j2

=
(
ζ �→ 1√

N

(
trS (RN

I\J Xf∗j1
ζ fj2XRN

I\J )−Nδj1j2T
N
I\J (�(ζ ))

))
.

By (141) and (153), the random variables [[QN
I,J,j1,j2

]] and [[P N
I,J,j1,j2

]] are inte-
grable, hence the conditional expectations

E(QN
I,J,j1,j2

/G|FI\J , z, t) and E(P N
I,J,j1,j2

/G2|FI\J , z, t)

are well-defined and vanish almost surely by assumptions (141), (142) and (143).
By Proposition 11, Remark 14, estimate (153) and the hypotheses of the block
Wigner model, the quantities

|||QN
I,J,j1,j2

+X(j1, j2)|||p,1
, |||X(j1, j2)|||p,1 and |||P N

I,J,j1,j2
|||

p,2

are bounded uniformly in N , I , J , j1 and j2. Thus, claims (156) and (157) hold.
�
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9.3. More elaborate estimates. We combine and specialize the basic esti-
mates.

PROPOSITION 21. For each constant p ∈ [1,∞), we have

sup
N

∨
I∈IN

s.t. |I |≥2

√
N

∣∣∣∣∣∣∣∣∣∣∣∣EN
I +
|I | −N

N
1S

∣∣∣∣∣∣∣∣∣∣∣∣
p,4

<∞,(159)

sup
N

∨
(I,J )∈I(2)

N s.t.

|I |≥N−√N

|||�N
I,J |||p,4 <∞,(160)

sup
N

∨
I∈IN s.t.
|I |≥N−99

N |||EN
I |||p,6,∅ <∞.(161)

PROOF. We take Propositions 19 and 20 for granted at every step. Iden-
tity (132) implies the estimate (159). Estimate (159) and the Chebyshev bound

1[[EN
I ]]≥1/2 ≤ (2[[EN

I ]])c (c ≥ 0)(162)

imply estimate (160). Identity (133) and estimate (160) imply the estimate

sup
N

∨
I∈IN

s.t. |I |≥N−√N

N

∣∣∣∣∣∣∣∣∣∣∣∣EN
I +
|I | −N

N
1S + 1

N

∑
j∈I

QN
I,jH

N
I\j√

N

∣∣∣∣∣∣∣∣∣∣∣∣
p,6

<∞.

Estimate (161) follows via (157). �

PROPOSITION 22. For each constant p ∈ [1,∞), we have

sup
N

N3/2
∣∣∣∣∣∣∣∣∣∣∣∣FN+1

N+1 − FN
N −

LinkN

N

∣∣∣∣∣∣∣∣∣∣∣∣
p,7

<∞,(163)

sup
N

∨
I∈IN s.t.
|I |≥N−99

N2|||EN

I −EN
I |||p,14,∅ <∞.(164)

PROOF. We take Propositions 19, 20 and 21 for granted at every step. We have

sup
N

N

∣∣∣∣∣∣∣∣∣∣∣∣(N + 1)FN+1
N −NFN

N −
1

2

(
FN

N + T N
N (�)

)∣∣∣∣∣∣∣∣∣∣∣∣
p,3

<∞
by identity (137) along with assumption (144). The estimate

sup
N

∨
(I,J )∈I(2)

N

|I |≥N−√N

N3/2
∣∣∣∣∣∣∣∣∣∣∣∣FN

I − FN
I\J − |J |

(1B(S) + T N
I\J ◦�)(HN

I\J )

N

∣∣∣∣∣∣∣∣∣∣∣∣
p,7

<∞
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follows from identity (136). Estimate (163) then follows via the definition of
LinkN . From the last estimate above, it also follows that

sup
N

sup
I∈IN

|I |≥N−99

N2‖VarS (FN
I /G7|z, t)‖p <∞

via Proposition 12, whence estimate (164). �

PROPOSITION 23. For each constant p ∈ [1,∞), we have

sup
N

∨
(I,J )∈I(2)

N s.t.

|I |≥N−√N

∨
j1,j2∈J

√
N |||RN

I (j1, j2)− δj1j2H
N
I\J |||p,5

<∞,(165)

sup
N

∨
(I,J )∈I(2)

N s.t.

|I |≥N−√N

∨
j1,j2∈J

N |||RN
I (j1, j2)− δj1,j2H

N
I\J |||p,9,I\J <∞,(166)

sup
N

∨
(I,J )∈I(2)

N s.t.

|I |≥N−√N

N |||HN
I −HN

I\J |||p,9
<∞,(167)

sup
N

∨
I∈IN s.t.

|I |≥N−√N

√
N |||HN

I − FN
I |||p,5 <∞,(168)

sup
N

∨
I∈IN

|I |≥N−√N

N |||HN
I − FN

I |||p,9,I\J <∞.(169)

PROOF. Taking Propositions 19, 20 and 21 for granted and using again
the Chebyshev bound (162), one derives the estimates in question from identi-
ties (128), (129), (131), (134) and (135), respectively. �

9.4. The bias theorem. We work out a delicate approximation to E
N

N . We use
again the apparatus introduced to state and prove Proposition 13, as well as the
cumulant and shuffle notation introduced in Section 6.5.

9.4.1. Corrections. For N ≥ 2 and j = 1, . . . ,N we define

CorrNj = 〈[�,�]2, [UN
N\j , (HN

N\j )⊗2]2〉4 −�(HN
N\j )HN

N\j

+ 〈EX(j, j)⊗2, (HN
N\j )⊗2〉2 − 1√

N
〈EX(j, j)⊗3, (HN

N\j )⊗3〉3

+ 1

N

∑
i∈N\j

〈
C(4)(X(i, j)), [(RN

I\j,i)⊗2, (HN
N\j )⊗2]2〉4.



2172 G. W. ANDERSON

THEOREM 5. For each constant p ∈ [1,∞), we have

sup
N≥2

N2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣EN

N +
1

N

N∑
j=1

CorrNj
N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p,14,∅

<∞.(170)

The proof of the theorem takes up the rest of Section 9.4. We need several
lemmas.

LEMMA 20. For each constant p ∈ [1,∞), we have

sup
N≥2

N∨
j=1

|||ErrNj |||p,6
∨ |||ErrN,1

j |||p,6
∨ |||ErrN,2

j |||p,14
<∞,(171)

sup
N≥2

N∨
j=1

|||ErrN,1
j |||p,6,N\j = 0.(172)

PROOF. Taking Propositions 19, 20 and 21 for granted, these facts can be read
off from the definitions presented in Section 8.5. �

9.4.2. Moment notation. For any sequence i = i1 · · · i2k of positive integers
and positive integer j not appearing in i put

Mj (i)= E

[(
X(j, i1)⊗X(i2, j)−E

(
X(j, i1)⊗X(i2, j)

))⊗ · · ·
⊗ (

X(j, i2k−1)⊗X(i2k, j)−E
(
X(j, i2k−1)⊗X(i2k, j)

))]
∈ S⊗2k.

LEMMA 21. For sequences i = i1 · · · i2k of positive integers, and positive in-
tegers j not appearing in i, the following statements hold:

(I) For each fixed k, [[Mj (i)]] is bounded uniformly in i and j .
(II) Mj (i) vanishes unless �(i) ∈ Part∗(2k).

(III) If �(i) ∈ Part∗2(2k), then Mj (i) depends only on �(i).

PROOF. Assumption (141) implies statement (I). Assumptions (142) implies
statement (II). Assumptions (142) and (143) imply statement (III). �

9.4.3. Tensor products of resolvent entries. For N , I ∈ IN and sequences i=
i1 · · · i2k ∈ Seq(2k, I ) put

RN
I (i)=RN

I (i1, i2)⊗ · · · ⊗RN
I (i2k−1, i2k) ∈ S⊗k.
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9.4.4. The random variable RubN
j . For N ≥ 2 and j = 1, . . . ,N put

RubN
j =

1

N2

∑
i∈Seq(6,N\j) s.t.
�(i)∈Part∗(6) and

�(i)∼{{1,2,3},{4,5,6}}

〈Mj (i), [RN
N\j (i), (HN

N\j )⊗3]3〉6.

Here, we employ again the notation ∼ for �3-orbit equivalence previously intro-
duced in connection with the list (55).

LEMMA 22. For N ≥ 3 and j = 1, . . . ,N we have

[[G6
E(ErrNj /G6|FN\j , z, t)−CorrNj −RubN

j ]] ≤
c

N
[[RN

N\j ]]6,
almost surely, for a constant c independent of N and j .

PROOF. In the case (I, J )= (N, {j}), formula (158) above simplifies to

QN
N,j +X(j, j)= 1√

N

(
fjXRN

N\jXf∗j −GE(fjXRN
N\jXf∗j /G|FN\j , z, t)

)
.

Note that the right-hand side is independent of X(j, j). A straightforward calcu-
lation using Lemma 21(II) yields that for k ∈ {2,3},

G2k
E
(
(QN

N,jH
N
N\j )k/G2k|FN\j , z, t

)− (−1)k〈EX(j, j)⊗k, (HN
N\j )⊗3〉3

= 1

Nk/2

∑
i∈Seq(2k,N\j)

s.t. �(i)∈Part∗(2k)

〈Mj (i), [RN
N\j (i), (HN

N\j )⊗k]k〉2k.

By a calculation using Lemma 21(II, III) and enumeration (54), with α,β ∈N \ j

arbitrarily chosen distinct elements, we have

G4
E
(
(QN

N,jH
N
N\j )2/G4|FN\j , z, t

)− 〈E(X(j, j)⊗2), (HN
N\j )⊗2〉2

= 1

N

∑
i1,i2∈N\j

〈Mj (αβαβ), [RN
N\j (i1, i2)⊗2, (HN

N\j )⊗2]2〉4

+ 1

N

∑
i1,i2∈N\j

〈Mj (αββα), [RN
N\j (i1, i2)⊗RN

N\j (i2, i1), (HN
N\j )⊗2]2〉4

+ 1

N

∑
i∈N\j

〈Mj (iiii)−Mj (αββα)−Mj (αβαβ),

[(RN
N\j,i)⊗2, (HN

N\j )⊗2]2〉4
= 〈[�,�]2, [UN

N\j , (HN
N\j )⊗2]2〉4 +� ◦ T N

N\j ◦�(HN
N\j )

+ 1

N

∑
i∈N\j

〈C(4)(X(i, j)), [(RN
N\j,i)⊗2, (HN

N\j )⊗2]2〉4.
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It follows that

G6
E(ErrNj /G6|FN\j , z, t)−CorrNj −RubN

j

= 1

N2

∑
i∈Seq(6,N\j) s.t.
�(i)∈Part∗(6) and

�(i) �∼{{1,2,3},{4,5,6}}

〈Mj (i), [RN
N\j (i), (HN

N\j )⊗3]3〉6,

whence the result by Proposition 13 and Lemma 21(I, III). �

LEMMA 23. Fix p ∈ [1,∞) arbitrarily. For N ≥ 3 and distinct j, j1, j2 ∈N ,
the quantity

N |||(HN
N\j )⊗3⊗RN

N\j (j1j1j2j2j1j2)|||p,14,N\{j,j1,j2}
is bounded uniformly in N , j , j1 and j2.

PROOF. Put J = {j, j1, j2}. The quantity

N |||(HN
N\J )⊗5 ⊗RN

N\j (j1, j2)|||p,14,N\J
is bounded uniformly in N , j , j1 and j2 by (153) and (166). The quantity

N |||(HN
N\j )⊗3 ⊗RN

N\j (j1j1j2j2j1j2)− (HN
N\J )⊗5⊗RN

N\j (j1, j2)|||p,14

is bounded uniformly in N , j , j1 and j2 by (165) and (167). �

9.4.5. Completion of the proof of Theorem 5. We have

sup
N≥2

N2|||EN

N −EN
N |||p,14,∅ <∞

by estimate (164). We have

sup
N≥2

N2
∣∣∣∣∣∣∣∣∣∣∣∣EN

N +
1

N

N∑
j=1

ErrNj
N

∣∣∣∣∣∣∣∣∣∣∣∣
p,14,∅

<∞

by the bias identity and Lemma 20. We have

sup
N≥2

N∨
j=1

N |||ErrNj −CorrNj −RubN
j |||p,14

<∞

by Proposition 19 and Lemma 22. Finally, we have

sup
N≥2

N∨
j=1

N |||RubN
j |||p,14,∅

<∞

by Lemma 21(I) and Lemma 23, which finishes the proof.
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10. Concluding arguments. We finish the proof of Theorem 4.

10.1. Setup for the concluding arguments. Throughout Section 10, we fix an
instance

(S,L,�, e), c0, c1, c2, T(173)

of Definition 11 and we work with the corresponding instance

(S,X,�,�,�,G)

=
(

S,
⋃
N

L(�N),�L,�L,�+ ze+ it1S , c0
(
1+ [[L(�)]])c1(1+ 1/�z)c2

)
of the block Wigner model exhibited in Remark 51. We emphasize that we must
consider a general example of a SALT block design because, at various stages
below, we have to consider both a SALT block design arising as a self-adjoint
linearization, that is, via Proposition 14, and also a SALT block design arising by
the underline construction, that is, via Lemma 15.

Given any σ(F , z, t)-measurable Banach-space-valued integrable random vari-
able Z, we define Z|t=0 to be any σ(F , z)-measurable random variable which on
the event t = 0 equals Z almost surely. For example, we have �|t=0 = � + ze.
Since the latter random variable intervenes frequently below, we will write �0 =
�|t=0 to compress notation.

In a similar vein, given Z as above along with a σ -field G on which z is mea-
surable, we abuse notation by writing E(Z|G)=Gk

E(Z/Gk|G) when there exists
some positive integer k large enough so that Z/Gk is integrable and hence the
conditional expectation E(Z/Gk|G) is well defined.

We will employ the abbreviated notation

G : D→ S

in place of the more heavily subscripted notation GL : DL→ S . In a similar spirit,
we write

G′ =D[G], Ǧ= (
(G−1)⊗2 −�

)−1
, BiasN = BiasN

L .

Note also that for every p ∈ [1,∞) the bounds

|||G(�)|||p,1 ∨ |||G′(�)|||p,2 ∨ |||Ǧ(�)|||p,2 ∨ sup
N

|||BiasN(�)|||p,5 <∞(174)

hold, as one checks by means of Remark 41. We also have

|||G(�)−1|||p,1 <∞(175)

by the SD equation 1S + (�+�(G(�)))G(�)= 0 and assumption (144).
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10.2. Application of Proposition 18. We claim that

sup
N

∨
I∈IN s.t.
|I |≥N−99

√
N |||FN

I |t=0 −G(�0)|||p,99 <∞,(176)

sup
N

∨
I∈IN s.t.
|I |≥N−99

N |||FN
I |t=0 +G′(�0; (EN

I |t=0)G(�0)
−1)

(177)
−G(�0)|||p,99 <∞,

sup
N

N2|||FN

N |t=0 +G′(�0; (EN

N |t=0)G(�0)
−1)−G(�0)|||p,99 <∞.(178)

To prove the claim, we introduce several further random variables. Put

C= 99e2T(1+ [[�]] + [[�]] + |z|).
For N and I ∈ IN put

LN
I =G2

(
1+

[[
fIXf∗I√

N

]])2c1

, EN
I = E([[EN

I ]]|F , z).

Also for N put

L
N =G2

E

(
1+

[[
fNXf∗N√

N

]])2c1

, E
N = E([[EN

N ]]|z).

By Proposition 18 applied conditionally, with help from Remarks 31 and 52 to
check hypotheses, we have

√
N [[FN

I |t=0 −G(�0)]] ≤
√

N(CGLN
I )6(EN

I + (EN
I )2),

N [[FN
I |t=0 +G′(�0; (EN

I |t=0)G(�0)
−1)−G(�0)]]

≤N(CGLN
I )12((EN

I )2 + (EN
I )4),

N2[[FN

N |t=0 +G′(�0; (EN

N |t=0)G(�0)
−1)−G(�0)]]

≤N2(CGL
N

)12((EN
)2 + (E

N
)4).

Now fix p ∈ [1,∞) arbitrarily. The right sides above can be bounded in the norm
||| · |||p,k for suitably chosen k, as follows. Firstly, C has moments of all orders.
Secondly, we are in effect allowed to ignore factors of G on the right sides above
at the expense of increasing k. Thirdly, we have

sup
N

∨
I∈IN

|||LN
I |||p,2 <∞, sup

N

|||LN |||p,2 <∞
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by assumption (15). Fourthly, we have

sup
N

∨
I∈IN s.t.

|I |≥N−√N

√
N |||EN

I |||p,4 <∞, sup
N

N |||EN |||p,14 <∞,

via (159), (161), (164) and Jensen’s inequality. The claims (176), (177) and (178)
are proved.

From (177), we then deduce

sup
N

∨
I∈IN s.t.
|I |≥N−99

N |||FN
I |t=0 −G(�0)|||p,99,∅ <∞(179)

via (161), (174) and (175).

10.3. Proof of statement (22) of Theorem 4. In this paragraph, we assume that
(S,L,�, e) is a self-adjoint linearization of some f ∈Matn(C〈X〉). Then (recall)
we have formulas

τS,e(G(�0))= Sμf
(z) and τS,e(F

N
N |t=0)= SμN

f
(z)(180)

by Remarks 34 and 46, respectively. Thus, we have

[[SμN
f
(z)− Sμf

(z)]] ≤ [[FN
N |t=0 −G(�0)]].

Now fix p ∈ [1,∞) arbitrarily. By (176), it follows that

sup
N

√
N |||SμN

f
(z)− Sμf

(z)|||
2p,99

<∞.

Now this last bound holds no matter what strength of repulsion of z from the real
axis we choose. Let us now choose the repulsion strength strong enough so that
‖G99‖2p <∞. Then we reach the desired conclusion (22).

The preceding proof explains by example how bounds in the norm ||| · |||p,k

with k independent of p translate to bounds in the norm ‖[[·]]‖p provided that
the strength of repulsion of z from the real axis is sufficiently strong, depending
on p. In the remainder of the proof of Theorem 4, we will omit similar details of
translation.

10.4. Easy consequences of (176) and (179). Estimates (176) and (179) along
with Propositions 20 and 23 yield the following bounds:

sup
N

sup
I∈IN

|I |≥N−99

√
N |||HN

I |t=0 −G(�0)|||p,99 <∞,(181)

sup
N

sup
I∈IN

|I |≥N−99

N |||HN
I |t=0 −G(�0)|||p,99,∅ <∞,(182)
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sup
N

sup
(I,J )∈I(2)

N

|I |≥N−99

∨
j1,j2∈J

√
N |||RN

I (j1, j2)|t=0 − δj1,j2G(�0)|||p,99 <∞,(183)

sup
N

sup
(I,J )∈I(2)

N

|I |≥N−99

∨
j1,j2∈J

N |||RN
I (j1, j2)|t=0 − δj1,j2G(�0)|||p,99,∅

<∞.(184)

10.5. Bootstrapping: Application of the secondary trick. Let

(S,L,�+♦S , e), c0, c1, c2, T(185)

be the instance of Definition 11 obtained by applying the underline construction to
the instance (173). Consider as well the corresponding instance

(S,X,�,�,�,G)

=
(

S,
⋃
N

L(�N),�L,�L,�+♦S + ze+ it1S ,

c0
(
1+ [[L(�)]])c1(1+ 1/�z)c2

)
of the block Wigner model constructed in Remark 51. By Lemma 15, we can take
c0 = 3c2

0, c1 = 2c1 and c2 = 2c2. It follows that we can take G = 3
2G2. By (92)

and (122) in combination with (176) and (179), we thus obtain bounds

sup
N

sup
I∈IN

|I |≥N−99

√
N |||T N

I |t=0 −G′(�0)|||p,199 <∞,(186)

sup
N

sup
I∈IN

|I |≥N−99

√
N |||UN

I |t=0 − Ǧ(�0)|||p,199 <∞,(187)

sup
N

sup
I∈IN

|I |≥N−99

N |||UN
I |t=0 − Ǧ(�0)|||p,199,∅ <∞.(188)

We can dispense now with the underlined SALT block design (185) for the rest of
the proof. We just needed it to get the estimates immediately above.

10.6. Proof of statement (23) of Theorem 4. Using again (180), we see that it
is enough to prove for every p ∈ [1,∞) that

sup
N

N3/2|||FN+1
N+1 |t=0 − FN

N |t=0|||p,999 <∞.

In turn, by estimate (163), it is enough to prove that

sup
N

N1/2|||LinkN |t=0|||p,999 <∞.

But the latter follows in a straightforward way from (77), (176), (181) and (186).
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10.7. The last estimate. We pause to explain in general terms how we are go-
ing to estimate the seminorm ||| · |||p,k,∅ applied to the difference between a tensor
product of random variables of the form UN

I |t=0, HN
I |t=0 and RN

I (j, j)|t=0 on the
one hand and a tensor product of random variables of the form G(�0) and Ǧ(�0)

on the other. It is worthwhile to have a relatively abstract discussion of the method
now so that we can skip an unpleasant proliferation of indices below.

Let A1, . . . ,Am ∈ S be random and σ(F , z)-measurable. Let B1, . . . ,Bm ∈ S
be random and σ(z)-measurable. Let k1, . . . , km be positive integers and put k =
k1 + · · · + km. Assume that for every p ∈ [1,∞) we have

m∨
i=1

|||Ai |||p,ki
∨

m∨
i=1

|||Bi |||p,ki
<∞.

Now put

A
(0)
i = Bi, A

(1)
i =Ai −Bi −E

(
(Ai −Bi)|z), A

(2)
i = E

(
(Ai −Bi)|z),

noting that

Ai =A
(0)
i +A

(1)
i +A

(2)
i .

We then have for every p ∈ [1,∞) that

|||A1 ⊗ · · ·Am −B1⊗ · · · ⊗Bm|||p,k,∅ ≤
∑

(ν1,...,νk)∈{0,1,2}m
ν1+···+νm≥2

m∏
i=1

∣∣∣∣∣∣A(νi)
i

∣∣∣∣∣∣
mp,ki

(189)

after taking into account the most obvious cancellations and applying the Hölder
inequality. Roughly speaking, (189) is advantageous because in the intended ap-
plication, we have A

(ν)
i =O( 1

Nν/2 ).

10.8. Proof of statements (24) and (25) of Theorem 4. By Remark 39, the
bound (174) and yet another application of (180), it suffices to prove that

sup
N

N2
∣∣∣∣∣∣∣∣∣∣∣∣FN

N |t=0 − BiasN(�0)

N
−G(�0)

∣∣∣∣∣∣∣∣∣∣∣∣
p,9999

<∞.

Using Theorem 5, (178) and (180) above it suffices to prove

sup
N

N∨
j=1

N |||B̂ias
N
L (�0)−CorrNj |t=0|||p,999

<∞.

Finally, this last bound is obtained by using the general observation (189) in con-
junction with assumption (14) and the estimates (181), (182), (183), (184), (187)
and (188) above. The proof of Theorem 4 is complete.
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