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SUBLOGARITHMIC FLUCTUATIONS FOR INTERNAL DLA

BY AMINE ASSELAH AND ALEXANDRE GAUDILLIÈRE

Université Paris-Est Créteil and Université de Provence

We consider internal diffusion limited aggregation in dimension larger
than or equal to two. This is a random cluster growth model, where random
walks start at the origin of the d-dimensional lattice, one at a time, and stop
moving when reaching a site that is not occupied by previous walks. It is
known that the asymptotic shape of the cluster is a sphere. When the di-
mension is two or more, we have shown in a previous paper that the inner
(resp., outer) fluctuations of its radius is at most of order log(radius) [resp.,
log2(radius)]. Using the same approach, we improve the upper bound on the
inner fluctuation to

√
log(radius) when d is larger than or equal to three. The

inner fluctuation is then used to obtain a similar upper bound on the outer
fluctuation.

1. Introduction. This note is a companion to our paper [1]. There, we intro-
duced a family of cluster growth models with a spherical asymptotic shape, but a
wide diversity of shape fluctuations. Internal diffusion limited aggregation (inter-
nal DLA) was one member of this family. More precisely, the internal DLA cluster
of volume N , say A(N), is obtained inductively as follows. Initially, we assume
that the explored region is empty, that is, A(0) = ∅. Then, consider N indepen-
dent discrete-time random walks S1, . . . , SN starting from 0. Assume A(k − 1) is
obtained, and define

τk = inf
{
t ≥ 0 :Sk(t) /∈ A(k − 1)

}
and A(k) = A(k − 1) ∪ {

Sk(τk)
}
.(1.1)

We call explorers the random walks obeying the aggregation rule (1.1). We say that
the kth explorer is settled on Sk(τk) after time τk , and is unsettled before time τk .
The cluster A(N) is interpreted as the positions of the N settled explorers.

In this paper we show how the tools developed in [1] lead in dimension d ≥ 3 to
sharper estimates on the fluctuations of A(N) with respect to its spherical asymp-
totic shape. We keep the notation of [1], and recall the basic ones to make the paper
as self-contained as possible. We denote with ‖ · ‖ the Euclidean norm on R

d . For
any x in R

d and r in R, set

B(x, r) = {
y ∈ R

d :‖y − x‖ < r
}

and B(x, r) = B(x, r) ∩ Z
d .(1.2)
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For � ⊂ Z
d , |�| denotes the number of sites in �, and the boundary of � is

∂� = {z /∈ � :∃y ∈ �,‖y − z‖ = 1}. For a simple random walk, let H(�) denotes
its first hitting time of �. The inner error δI (n) is such that

n − δI (n) = sup
{
r ≥ 0 : B(0, r) ⊂ A

(∣∣B(0, n)
∣∣)}.(1.3)

Also, the outer error δO(n) is such that

n + δO(n) = inf
{
r ≥ 0 :A

(∣∣B(0, n)
∣∣) ⊂ B(0, r)

}
.(1.4)

Our main result is as follows.

PROPOSITION 1.1. There are constants {αd,βd, d ≥ 3} such that in dimen-
sion d ≥ 3, with probability 1,

lim sup
δI (n)√
log(n)

≤ αd and lim sup
δO(n)√
log(n)

≤ βd.(1.5)

REMARK 1.2. For d = 2 we show, with similar computations, that there are
constants α2, β2 such that, with probability 1,

lim sup
δI (n)

log(n)
≤ α2 and lim sup

δO(n)

log(n)
≤ β2.(1.6)

The inner error bound in (1.6) was already obtained in all dimensions in [1]. Re-
cently, Jerison, Levine and Sheffield [2] established, in dimension two and with a
different method, the estimates (1.6). Also, they announced in [2] that the approach
they followed could be adapted in dimension d ≥ 3 to get (1.5).

Let us describe the main steps. The inner error is at the heart of the argument.
It is based on a large deviation estimate which refines our previous estimates, with
interest of its own. For a real x, let �x� be the integer part of x.

LEMMA 1.3. Choose R and A large enough. Assume that �ARd� explorers
lie initially on B(0,R/2). We call η the initial configuration of these explorers and
A(η) the cluster they produce. There are positive constants {κd, d ≥ 2} indepen-
dent of R and A, such that when d ≥ 3,

P
(
B(0,R) ⊂ A(η)

) ≤ exp
(−κdAR2)

,(1.7)

and when d = 2, we have

P
(
B(0,R) ⊂ A(η)

) ≤ exp
(
−κ2

AR2

log(R)

)
.(1.8)

REMARK 1.4. The reason behind the previous lemma, in d ≥ 3, is that out of
�ARd� explorers, only about AR2 eventually hit a fixed site on the boundary of
B(0,R), so that it is only these very explorers that need to be pushed away from
this very site. The cost should be proportional to AR2.
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For the outer error, we use a large deviation estimate symmetrical to Lemma 1.3
as well as our coupling between internal DLA and the flashing process of [1]. The
latter large deviation estimate was recently proved by Jerison, Levine and Sheffield
in [2].

LEMMA 1.5 (Lemma A of Jerison, Levine and Sheffield [2]). For β and R

positive reals, assume that �βRd� explorers lie initially outside B(0,R). We call
η the initial configuration of these explorers and A(η) the cluster they produce.
There are positive constants {κ ′

d, d ≥ 2}, such that for β small enough, we have
when d ≥ 3,

P
(
0 ∈ A(η)

) ≤ exp
(−κ ′

dR2)
,(1.9)

whereas when d = 2, we have

P
(
0 ∈ A(η)

) ≤ exp
(
−κ ′

2
R2

log(R)

)
.(1.10)

We give an alternative proof of this result, based on estimating the probability
of crossing a shell, while avoiding traps.

LEMMA 1.6. Consider d ≥ 2. Fix a positive real R, and start a random walk
on z ∈ ∂B(0,2R). There are positive constants {κd, ad} such that for any V subset
of the shell S = B(0,2R) \ B(0,R), we have

Pz

(
H

(
B(0,R)

)
< H

(
V c)) ≤ exp

(
ad − κd

R

ρ

)
where ρd−1 = |V |

R
.(1.11)

REMARK 1.7. V c = S \ V is interpreted as traps. Note that ρ is proportional
to the radius of a cylinder of height R and volume |V |. We can also read (1.11) in
the following way:

Pz

(
H

(
B(0,R)

)
< H

(
V c)) ≤ exp

(
ad − κd

(
Rd

|V |
)1/(d−1))

.(1.12)

This shows that for (1.12) to be an effective inequality, one needs that |V | be
smaller than Rd . The power 1/(d − 1) on Rd/|V | in (1.12) is not important in
proving Lemma 1.5. If one were willing to accept the weaker power 1/d , then one
would have the following simple heuristics in dimension d ≥ 3. Let t denote the
time the walk spends in the annulus of height R. On one hand, the central limit
scaling yields that this probability of such a stay is of order exp(−cR2/t). On
the other hand, all this time should be spent on sites of V , and it is well known
that the probability is of order exp(−κdt/|V |2/d). Putting together these opposite
requirements, and optimizing over t , we find a statement weaker than (1.12), but
sufficient for our present purpose:

Pz

(
H

(
B(0,R)

)
< H

(
V c)) ≤ exp

(
ad − κd

(
Rd

|V |
)1/d)

.(1.13)
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Even though it is not written in [1], inequality (1.13) was the motivation behind
the introduction of flashing processes in [1], which were basically used to bypass
this type of estimate. In this paper we show how the use of flashing explorers leads
easily to Lemma 1.6.

The rest of the paper is organized as follows. In Section 2, we enounce some
known results: we recall the approach of Lawler, Bramson and Griffeath [5] and
useful large deviation estimates. Then the inner error estimate is proved in Sec-
tion 3. In Section 4, we show how a flashing process permits a simple control on
the outer error. Finally, we have gathered in an Appendix the proof of the large
deviations Lemmas 1.3, 1.5 and 1.6.

2. Prerequisites.

2.1. Notation. We recall some notation of [1]. The state space of configura-
tions is N

Z
d
, its elements are denoted η and they represent starting conditions for

a set of explorers, or random walks. Two types of initial configurations play an
important role here: (i) the configuration n1z∗ formed by n trajectories starting on
a given site z∗ and (ii) for � ⊂ Z

d , the configuration 1� that we simply identify
with �. For any configuration η ∈ N

Z
d
, we write

|η| = ∑
z∈Zd

η(z).(2.1)

DEFINITION 2.1. Let R ∈ R+ ∪ {∞}. For z ∈ B(0,R) ∪ ∂B(0,R), we de-
note by MR(η, z) [resp., WR(η, z)] the number of simple random walks (resp.,
explorers) initially on η that hit z when or before exiting B(0,R). Thus, when
z ∈ ∂B(0,R), MR(η, z) [resp., WR(η, z)] is the number of simple random walks
(resp., explorers) which exit B(0,R) exactly on z.

REMARK 2.2. Note that trajectories of walkers and explorers can be coupled
to be the same up to the settling time of the explorer, the walker then proceeding
along its simple random walk trajectories.

As in [4] (Section 3), it is useful to stop explorers as they reach ∂B(0,R), for
some R > 0, and then to define AR(η) as the set of positions of settled explorers.

DEFINITION 2.3. Consider R ∈ R ∪ {∞}. We set

∀z ∈ B(0,R) M̃R(η, z) = WR(η, z) + MR

(
AR(η), z

)
.(2.2)

Finally, for any function F : Zd → R and subset � ⊂ Z
d , we denote

F(�) = ∑
z∈�

F(z).
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2.2. On a classical approach. We recall the approach of Lawler, Bramson
and Griffeath in [5]. Send N = |B(0, n)| explorers from the origin. The approach
of [5] is based on the following observations. (i) If explorers did not settle, they
would just be independent random walks; (ii) exactly one explorer occupies each
site of the cluster. Then, observations (i) and (ii) imply that for any integer n and
z ∈ B(0, n),

M̃n(N10, z) := Wn(N10, z) + Mn

(
An(N), z

) law≥ Mn(N10, z).(2.3)

When z ∈ ∂B(0, n), inequality (2.3) becomes an equality,

Wn(N10, z) + Mn

(
An(N), z

) law= Mn(N10, z).(2.4)

Note that for any set � ⊂ B(0, n), Mn(�,z) is a sum of independent Bernoulli
variables. Note also that An(N) ⊂ B(0, n) so that for any z ∈ B(0, n) ∪ ∂B(0, n)

Wn(N10, z) + Mn

(
B(0, n), z

) ≥ M̃n(N10, z).(2.5)

However, Lawler et al. did not use that Wn(N10, z) and Mn(B(0, n), z) were inde-
pendent. They could only obtain a rough estimate on the lower tail of Wn(N10, z).
This in turn gave some estimates on the inner error, which was used to derive
bounds on the outer error, by using that the cluster covers B(0, n− δI (n)). In other
words, from (2.4), and the definition of δI (n), for R > n and z ∈ ∂B(0,R),

WR(N10, z) + MR

(
B

(
0, n − δI (n)

)
, z

) ≤ M̃R(N10, z).(2.6)

Therefore, if δI (n) is likely to be smaller than r < n < R, and z ∈ ∂B(0,R), we
have

1{δI (n)≤r}
(
WR(N10, z) + MR

(
B(0, n − r), z

) ≤ M̃R(N10, z)
)
.(2.7)

We will also make use of the independence of the σ -fields generated by the events
{δI (n) ≤ r} and the random variables WR(N10, z) on the one hand, and that gen-
erated by the random variable MR(B(0, n − r), z) on the other.

2.3. On sums of Bernoulli variables. Let us now recall a simple tool of [1] in
estimating deviations in view of (2.5) and (2.6). We first enounce the lower tail
estimate.

LEMMA 2.4. Suppose that a sequence of random variables {Wn,Mn,Ln,

M̃n, n ∈ N}, and a sequence of real numbers {cn, n ∈ N}, satisfy for each n ∈ N,

Wn + Ln + cn ≥ M̃n and M̃n
law= Mn.(2.8)

Assume that Wn and Ln are independent, and that Ln and Mn both are
sums of independent Bernoulli variables. Assume that the Bernoulli variables
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{Y (n)
1 , . . . , Y

(n)
Nn

} whose sum is Ln, satisfy for some κ > 1,

(H1) sup
n

sup
i≤Nn

E
[
Y

(n)
i

]
<

κ − 1

κ
,

(H2) μn := E[Mn] − E[Ln] ≥ 0.

Then, for any n in N and ξn in R, we have for all λ ≥ 0,

P(Wn < ξn) ≤ exp

(
−λ(μn − ξn − cn) + λ2

2

(
μn + κ

Nn∑
i=1

E
[
Y

(n)
i

]2
))

.(2.9)

The upper tail estimate needs other assumptions.

LEMMA 2.5. Assume for each n ∈ N, and for an event An,

1An(Wn + Ln) ≤ M̃n and M̃n
law= Mn.(2.10)

Assume that Wn and Ln are independent, 1An and Ln are independent and that
Ln and Mn both are sums of independent Bernoulli variables such that μn :=
E[Mn] − E[Ln] ≥ 0. Then, for all n in N, ξn in R and λ ∈ [0, log 2],

P(Wn ≥ ξn, An) ≤ exp
(
−λ(ξn − μn) + λ2

(
μn + 4

∑
i

E
[
Y

(n)
i

]2
))

.(2.11)

REMARK 2.6. This lower (resp., upper) tail estimate turns out to be useful
when ξn + cn is less than (resp., ξn is more than) E[Mn]−E[Ln]. By Lemmas 2.4
and 2.5 tail estimates reduce to a three-step strategy: (i) estimation of E[Mn] −
E[Ln]; (ii) estimation of

∑
i E

2[Y (n)
i ]; (iii) optimization in λ. We emphasize that,

in particular for the lower tail, this strategy does not require any control of the
variance of Wn.

PROOF OF LEMMAS 2.4 AND 2.5. As in [1] this is an application of
Lemma 2.3 of [1]. For the lower tail, using the exponential Chebyshev’s inequal-
ity, the independence between Wn and Ln, formula (2.8) and centering the random
variables, we get

P(Wn < ξn) ≤ E[e−λ(Mn−E[Mn])]
E[e−λ(Ln−E[Ln])] e−λ(E[Mn]−E[Ln]−ξn−cn).(2.12)

With, for all t ∈ R, f (t) = et − (1 + t) and g(t) = (et − 1)2, by Lemma 2.3 of [1],

E[e−λ(Mn−E[Mn])]
E[e−λ(Ln−E[Ln])]

(2.13)

≤ exp

{
f (−λ)

(
E[Mn] − E[Ln]) + κ

2
g(−λ)

Nn∑
i=1

E2[
Y

(n)
i

]}
.
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We conclude by observing that for all t ∈ R,

f (t) ≤ t2

2
e[t]+ and g(t) ≤ t2e2[t]+,(2.14)

where [·]+ stands for the positive part. The proof for the upper tail is similar. �

2.4. On a discrete mean value property of Green’s function.

PROPOSITION 2.7. Consider d ≥ 2. There is a constant Kd such that, for
any n and R with n − n1/3 ≤ R ≤ n and z in B(0,R) with n − ‖z‖ ≤ 1,∣∣∣∣∣∣B(0,R)

∣∣Gn(0, z) − ∑
y∈B(0,R)

Gn(y, z)

∣∣∣∣ ≤ Kd.(2.15)

PROOF. For n − R large enough (larger than some constant that depends only
on d) this is Theorem 5.2 of [1]. For n = R this is a direct consequence of Lem-
mas 2 and 3 of [4]. For the remaining cases, one can use the same Lemmas in
conjunction with Lemma 5 of [4]. �

REMARK 2.8. For the inner bound we will use Proposition 2.7 with R = n.
For the outer bound we will use Proposition 2.7 with n − R of order logn in
dimension 2 and

√
logn in dimension d ≥ 3.

3. Inner error.

3.1. Exploration by waves. We choose the following height sequence. For any
positive integer n, h(n) = √

log(n) in d ≥ 3, and h(n) = log(n) in d = 2. We
partition Z

d into concentric shells of heights h(n). We define S0 = B(0, h(n)),
and for k ≥ 1,

Sk = B
(
0, (k + 1)h(n)

) \ B
(
0, kh(n)

)
and �k = ∂B

(
0, kh(n)

)
.(3.1)

We realize the internal DLA with N = |B(0, n)| explorers as an exploration
wave process, where concentric shells are covered in turn; see Section 3 of [4].

We fix an integer k. For a site z ∈ �k , we call cell centered on z, C(z) :=
B(z, h(n)) ∩ Sk , and we call tile centered on z, T (z) := B(z, h(n)/2) ∩ �k .
A generic cell is denoted C , and a generic tile is denoted T . Note the obvious
facts ⋃

z∈�k

B
(
z,h(n)

) ⊃ Sk.(3.2)

Before covering shell Sk , one stops the unsettled explorers on �k . Following [1],
for z ∈ �k , we prove that the Wkh(n)(N10, T ) explorers stopped on T = T (z) are
likely to cover C(z), if kh(n) ≤ n − Ah(n) for a large enough constant A. More
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precisely, we show that the probability of the event {Sk ⊂ A(N)} is smaller, for A

large enough, than any given power of 1/n. As first observed in [5],

Wkh(n)(N10, T ) + Mkh(n)

(
B

(
0, kh(n)

)
, T

) ≥ M̃kh(n)(N10, T ).(3.3)

Since (3.3) corresponds to an inequality of type (2.8), we wish to use Lemma 2.4,
but we need to ensure (H1) and (H2).

First, if B̃(r) denotes the sites of B(0, kh(n)) at a distance less than r from T ,
there is L and ρd > 1 (which depend only on the dimension), such that

sup
y∈B(0,kh(n))\B̃(Lh(n))

Py

(
S
(
H(�k)

) ∈ T
)
<

ρd − 1

ρd

;(3.4)

(see Lemma 5.1 of [1]). Set cn = |B̃(Lh(n))|, and note that cn ≤ c(Lh(n))d for
some constant c. From (3.3) we have

Wkh(n)(N10, T ) + Mkh(n)

(
B

(
0, kh(n)

) \ B̃
(
Lh(n)

)
, T

)
(3.5)

≥ M̃kh(n)(N10, T ) − cn.

We will use Lemma 2.4 with Ln = Mkh(n)(B(0, kh(n)) \ B̃(Lh(n)), T ) and we
note that (H1) is ensured by (3.4). Let us define

μ(T ) = E
[
Mkh(n)(N10, T )

] − E
[
Mkh(n)

(
B

(
0, kh(n)

) \ B̃T
(
Lh(n)

)
, T

)]
.(3.6)

We consider the event that Sk is not covered, and use the bound

P(Sk not covered)

≤ P
(∃T ⊂ �k :Wkh(n)(N10, T ) < 1

3μ(T )
)

(3.7)

+ P
(

Sk not covered,∀T ⊂ �k :Wkh(n)(N10, T ) ≥ 1
3μ(T )

)
.

In the next sections, we compute μ(T ), and estimate the probabilities of the two
events on the right-hand side of (3.7).

3.1.1. Mean number of explorers crossing a tile. If T is a tile of a cell C which
belongs to shell Sk ⊂ B(0, n), at a distance Ah(n) from B(0, n), then we show that
for some positive constants {cd, d ≥ 2},

μ(T ) ≥ cdAh(n)d .(3.8)

The inequality in (3.8) follows as in [1], Section 4.2, and relies on Proposition 2.7.
Note that (3.8) ensures (H2).
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3.1.2. Wkh(n)(N10, T ) is unlikely to be small. Like in (4.17) and (4.18) of
Section 4.2 of [1], there are constants Cd such that

∑
y∈B(0,kh(n))

P 2
y

(
S
(
H(�k)

) ∈ T
) ≤

{
C2h

2(n) log(n), for d = 2,

Cdhd(n), for d ≥ 3.
(3.9)

By Lemma 2.4, since for A large enough we have μ(T ) ≥ 3cLdh(n)d ≥ 3cn, there
are positive constants {c′

d, d ≥ 2} such that

P
(
Wkh(n)(N10, T ) < 1

3μ(T )
)

(3.10)

≤
{

exp
(−λκ2Ah2(n) + λ2c′

2h
2(n) log(n)

)
, for d = 2,

exp
(−λκdAhd(n) + λ2c′

dhd(n)
)
, for d ≥ 3.

Thus, after optimizing over λ, we get

P

(
∃z ∈ �k :Wkh(n)

(
N10, T (z)

)
<

1

3
μ(T )

)
(3.11)

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n2 exp
(
−κ2

2A2h2(n)

4c′
2 log(n)

)
, for d = 2,

nd exp
(
−κ2

dA2hd(n)

4c′
d

)
, for d ≥ 3,

and the event {Wkh(n)(N10, T ) ≤ 1
3μ(T )} has a probability that decreases, for A

large enough, faster than any given power of 1/n.

3.1.3. C is likely to be covered when Wkh(n)(N10, T ) is large. We consider
here the event {∀T ⊂ S,Wkh(n)(N10, T ) ≥ κ

3 Ahd(n)}. Consider shell Sk at a dis-
tance Ah(n) from ∂B(0, n). Since Sk is the union of B(z, h(n)) when z ∈ �k ,
Lemma 1.3 implies, when d = 2, that

P

(
Sk /∈ A(N) and Wkh(n)(N10, T ) >

1

3
μ(T ) for all T

)
(3.12)

≤ |Sk| exp
(
−κ2κA

h2(n)

log(n)

)
.

We obtain a bound smaller than any power of 1/n when h(n) = log(n) and A is
large enough. When d ≥ 3, then we have

P
(

Sk /∈ A(N) and Wkh(n)(N10, T ) > 1
3μ(T ) for all T

)
(3.13)

≤ |Sk| exp
(−κdκAh2(n)

)
.

For any given power of n, we obtain a negligible bound when h2(n) = log(n)

and A is large enough.



FLUCTUATIONS FOR INTERNAL DLA 1169

4. Outer error. In this section, we prove the outer error estimate (1.5). This is
a consequence of our inner error estimates, of Lemma 1.5, combined with coupling
with a flashing process of [1]. When dimension d = 2, and for A large to be chosen
later, we decompose the event {δO(n) ≥ A log(n)}, as{

δO(n) ≥ A log(n)
} = ⋃

i≥1

{
δO(n) ∈ [

A log(n) + i − 1,A log(n) + i
[}

.(4.1)

In dimension d ≥ 3,
√

log(n) replaces log(n) in (4.1). Note that the index i is
at most of order nd . Now, we fix i ≥ 1, and we set 3h(n) = A

√
log(n) + i in

d ≥ 3, and 3h(n) = A log(n) + i in d = 2. We now consider the event {δO(n) ∈
[3h(n) − 1,3h(n)[}. We also define

� = B
(
0, n + 3h(n)

) \ B
(
0, n + 3h(n) − 1

)
.

Note now that

P
(
δO(n) ∈ [

3h(n) − 1,3h(n)
[)

(4.2)

≤ P

( ⋃
z∈�

{
z ∈ A(N), δO(n) = ‖z‖ − n

})
.

For z ∈ �, and in view of Lemma 1.5, we define

G(z) = {
z ∈ A(N), δO(n) = ‖z‖ − n,

∣∣A(N) ∩ B
(
z,h(n)

)∣∣ > βhd(n)
}
.(4.3)

To prove that P(z ∈ A(N), δO(n) = ‖z‖ − n) is smaller than any given power
of 1/n, we further split the event into two pieces:

P
(
z ∈ A(N), δO(n) = ‖z‖ − n

)
(4.4)

≤ P
(
G(z)

) + P
(
z ∈ A(N),

∣∣A(N) ∩ B
(
z,h(n)

)∣∣ ≤ βhd(n)
)
.

The second term on the right-hand side of (4.4) is dealt with using Lemma 1.5. We
deal now with G(z). Note that under {δO(n) ∈ [3h(n) − 1,3h(n)[}, no explorer
escapes B(0, n + 3h(n)). Thus, on G(z), there are at least βhd(n) explorers which
settle on B(z, h(n)) before exiting B(0, n+3h(n)). We now express the event G(z)

in term of flashing explorers, as introduced in [1].

4.1. On a flashing process. We refer the reader to Section 3.1 of [1] for a
definition of flashing processes. Here, we partition Z

d into shells encaging B(0, n),
with for k ≥ 0,

Sk = B
(
0, n + 2(k + 1)h(n)

) \ B
(
0, n + 2kh(n)

)
.

Also, for k ≥ 0, let �k = ∂B(0, n + (2k + 1)h(n)). We now consider the flashing
process. Explorers behave like internal DLA explorers, as long as they stay in
B(0, n). After exiting B(0, n) they do not flash until their hitting of �0, and behave
like flashing explorers as defined in Section 3.1 of [1]. In shells {Sk, k ≥ 0}, cells
and tiles have the meaning given in Section 4 of [1]. The key features the reader
has to keep in mind are as follows:
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• If a flashing explorer is unsettled up to time H(�k), then after time H(�k), it
probes one site distributed almost uniformly over the cell centered at S(H(�k)),
and settles if the site is unoccupied.

• When an explorer leaves the cell centered on S(H(�k)), it cannot afterward
settle in Sk , but perform a simple random walk, independent of other explorers,
until it hits �k+1. Thus, if we know that an explorer has reached at time t a site
of B(0, n + (2k + 1)h) \ B(0, n + 2kh), then it performs after time t a simple
random walk, independent of its surroundings, until it reaches �k .

• We can build the internal DLA cluster, A(N), and the flashing cluster A∗(N)

using the same trajectories S1, . . . , SN such that

A(N) =
N⋃

i=1

{
Si

(
T (i)

)}
and A∗(N) =

N⋃
i=1

{
Si

(
T ∗(i)

)}
,(4.5)

and for all i = 1, . . . ,N,T ∗(i) ≥ T (i). This last property, at the heart of our
coupling argument between the flashing process and the original DLA, is fun-
damental. It implies that if a DLA explorer has crossed a site before settling, then
the corresponding flashing explorer has also crossed the site before settling.

Before introducing more notation, let us explain the simple idea behind our
estimate.

Heuristics. Using representation (4.5), event G(z) for z ∈ � implies that at least
βhd(n) flashing explorers hit B(z, h(n)) before exiting B(0, n + 3h(n)). Consider
these explorers after the moment they enter B(z, h(n)) ⊂ S1 for the first time. They
are behaving as independent random walks until they hit �1. Now, a fraction must
hit �1 on B(z,2h(n))∩�1. We show that this latter event has a probability we can
estimate through the approach of [1].

For simplicity, let us call R1 the radius of �1, that is, R1 = n + 3h(n). Recall
that for � ⊂ B(0,R1) ∪ ∂B(0,R1), we call WR1(N10,�) the number of flashing
explorers which hit � before (or as) they hit �1. In this section, the initial config-
uration is always N10, and we omit this coordinate in WR1 to simplify notation.
Under our coupling (4.5), we have

G(z) ⊂ {
WR1

(
B

(
z,h(n)

)) ≥ βhd(n)
}
.(4.6)

Let z′ be the closest site of �1 to the line (0, z), and note that ‖z− z′‖ ≤ 1. Note
that a fraction of the WR1(B(z, h(n))) independent random walks in B(z, h(n)) ∩
B(0, n + 3h(n)), must hit �1 in a neighborhood of z′. Indeed, first note that since
z′ ∈ �1, we have∣∣∂B

(
z′,2h(n)

) ∩ B
(
0, n + 3h(n)

)∣∣ ≥ 1
4

∣∣∂B
(
z′,2h(n)

)∣∣.(4.7)

Now, for any y ∈ ∂B(z, h(n)), a random walk starting on y, exits B(z′,2h(n)) on
any site of ∂B(z′,2h(n)) with a probability proportional to (2h(n))1−d . Thus, there
is a positive constant ρ such that

inf
y∈∂B(z,h(n))

Py

(
S
(
H

(
∂B

(
z′,2h(n)

))) ∈ S2
) ≥ ρ.(4.8)
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In other words, each flashing explorer stopped on ∂B(z, h(n)) before hitting �1
has a probability at least ρ to exit �1 from �1 ∩ B(z,2h(n)). Thus, there is a
positive constant I , such that for any large enough integer k,

P

(
WR1

(
B

(
z′,2h(n)

) ∩ �1
)
<

ρ

2
k
∣∣∣WR1

(
B

(
z,h(n)

))
> k

)
≤ exp(−Ik).(4.9)

From (4.6), we have⋃
z∈�

G(z) ⊂ ⋃
z′∈�1

{
WR1

(
B

(
z′,2h(n)

) ∩ �1
) ≥ ρ

2
βhd(n)

}

∪ ⋃
z′∈�1

{
WR1

(
B

(
z′,2h(n)

) ∩ �1
)
<

ρ

2
βhd(n) and(4.10)

WR1

(
B

(
z,h(n)

)) ≥ βhd(n)

}
.

Let us now define, for any a > 0,

F(a) = ⋃
z∈�1

{
WR1

(
B

(
z,2h(n)

) ∩ �1
) ≥ ahd(n)

}
.(4.11)

Thus, from (4.10) and (4.9), and for some constant C > 0

P

( ⋃
z∈�

G(z)

)
≤ P

( ⋃
z′∈�1

{
WR1

(
B

(
z′,2h(n)

) ∩ �1
) ≥ ρ

2
βhd(n)

})

+ |�1| sup
z′∈�1

P

(
WR1

(
B

(
z′,2h(n)

) ∩ �1
)
<

ρ

2
βhd(n)

∣∣∣
(4.12)

WR1

(
B

(
z,h(n)

)) ≥ βhd(n)

)

≤ P

(
F

(
ρ

2
β

))
+ Cnd−1 exp

(
−I

ρ

2
βhd(n)

)
.

It remains to show that for any fixed a, we can find A [defining h(n)] such that
P(F(a)) is smaller than any given power of 1/n.

4.2. Estimating P(F(a)). Note that by definition of δI (n), for z ∈ �1 =
∂B(0, n + 3h(n)) and Tz = B(z,2h) ∩ �1, WR1(Tz) satisfies the inequality

WR1(Tz) + MR1

(
B

(
0, n − δI (n)

)
, Tz

) ≤ M̃R1(N10, Tz).(4.13)

Thus, for some large constant αd to be chosen later, we have

1δI (n)≤αdh(n)/(2A)

(
WR1(Tz) + MR1

(
B

(
0, n − αd

h(n)

2A

)))
(4.14)

≤ M̃R1(N10, Tz).
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Inequality (4.13) puts us in the setting of Lemma 2.5. Thus, we first need to
compute

μ̃(Tz) = E
[
MR1(N10, Tz)

] − E

[
MR1

(
B

(
0, n − αd

h(n)

2A

)
, Tz

)]
.(4.15)

Following the same computations as in Section 4.3 of [1], we have for some con-
stant K

μ̃(Tz) ≤ K

(
αd

h(n)

A
nd−1

)
× hd−1(n)

nd−1 ≤ Kαd

A
hd(n).(4.16)

Second, note that as in Section 4.3 of [1], we have that for constants {cd, d ≥ 2},
∑

z∈B(0,n)

P 2
z

(
S
(
H(�1)

) ∈ Tz

) ≤
{

c2h
2(n) log(n), if d = 2,

cdhd(n), if d ≥ 3.
(4.17)

In optimizing over λ in (2.5), we find for (other) constants {cd, d ≥ 2}, if A is
choosen large enough

P
(∃z ∈ �1 :WR1(Tz) ≥ ahd(n)

)
(4.18)

≤ P

(
δI (n) > αd

h(n)

2A

)
+ nd

⎧⎪⎨
⎪⎩

exp
(
−c2

h2(n)

log(n)

)
, if d = 2,

exp
(−cdhd(n)

)
, if d ≥ 3.

We conclude using the fact, for αd large enough, the first term of the sum in
the right-hand side of (4.18) is smaller than any given power of 1/n. This was
proved in Section 3 for the original internal DLA and the same proof can be
adapted for the flashing process we consider here. The only difference is that we
need a stronger version of Lemma 1.3 where P(B(0,R) ⊂ A(η)) is replaced by
P(B(0,R) ⊂ AαR(η)) for some large α (this stronger version of the lemma is ac-
tually what we prove in the Appendix). Indeed, we can use Lemma 1.3 in the con-
text of our flashing process by considering only explorers that do not exit B(0, n).
Once αd is fixed, we choose A large enough so that (4.18) holds.

APPENDIX A: PROOF OF LEMMA 1.3

We fix η, a configuration of ARd explorers in B(0,R/2), and we choose z ∈
B(0,R). Then

P
(
B(0,R) ⊂ A(η)

) ≤ P
(
B(0,R) ⊂ AαR(η)

)
(A.1)

≤ ∑
z∈B(0,R)

P
(
WαR(η, z) = 0

)
for any α > 1 (in the sequel α will have to be taken large enough). Let L be a large
positive real to be fixed later, and let ζ be the configuration with one explorer on
each site of B(0, αR) \ B(z,L). We have

WαR(η, z) + MαR(ζ, z) ≥ M̃αR(η, z) − ∣∣B(z,L)
∣∣.(A.2)
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Note that WαR(η, z) and MαR(ζ, z) are independent: we are in the setting of
Lemma 2.4. Assume for a moment that conditions (H1) and (H2) hold, and in
addition,

E
[
MαR(η, z)

] − E
[
MαR(ζ, z)

]
(A.3)

≥ max
(

3
∣∣B(z,L)

∣∣, ∑
y∈B(0,αR)

Py(Hz < HαR)2
)
.

Then, we have

P
(
WαR(η, z) = 0

) ≤ exp
(−C

(
E

[
MαR(η, z)

] − E
[
MαR(ζ, z)

]))
.(A.4)

We next consider separately the case d ≥ 3 and the case d = 2, estimate the expec-
tation of M̃αR(η, z) − MαR(ζ, z) and show (A.3).

A.1. The case d ≥ 3. We show in this section that for some κd > 0, and A

large enough,

E
[
M̃αR(η, z) − MαR(ζ, z)

] ≥ κd

2
AR2 � 3

∣∣B(z,L)
∣∣.(A.5)

The proof is based on the following classical estimates. There are a1, a2 positive
constants such that for any y, z ∈ Z

d

a1

1 + ‖y − z‖d−2 ≤ Py(Hz < ∞) ≤ a2

1 + ‖y − z‖d−2 .(A.6)

Note first that when L is large enough, (H1) holds. Indeed,

sup
y:‖z−y‖>L

Py(Hz < HαR) ≤ sup
y:‖z−y‖>L

Py(Hz < ∞)

(A.7)

≤ a2

1 + Ld−2 ≤ κ − 1

κ
with κ > 1.

We now estimate the mean number of explorers hitting z.

E
[
MαR(η, z)

] − E
[
MαR(ζ, z)

]
= ∑

y∈B(0,R/2)

η(y)Py(Hz < HαR) − ∑
y∈B(0,αR)\B(z,L)

Py(Hz < HαR)(A.8)

≥ ∑
y∈B(0,R/2)

η(y)Py(Hz < HαR) − ∑
y∈B(0,αR)

Py(Hz < ∞).

Note that for y ∈ B(0,R/2), we have

Py(Hz < HαR) = Py(Hz < ∞) − Ey

[
1HαR<HzPS(HαR)(Hz < ∞)

]
≥ a1

1 + ‖y − z‖d−2 − Ey

[
a2

1 + ‖S(HαR) − z‖d−2

]
(A.9)

≥ inf
y∈B(0,R/2)

a1

1 + ‖y − z‖d−2 − sup
y∈∂B(0,αR)

a2

1 + ‖y − z‖d−2 .
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Now, for a constant α which depends only on a1, a2, there is κ > 0 such that

inf
y∈B(0,R/2)

Py(Hz < HαR) ≥ κ

Rd−2 .(A.10)

Now, using (A.10) in (A.8), we have a constant c such that

E
[
M̃αR(η, z) − MαR(ζ, z)

] ≥ ARd κ

Rd−2 − ∑
y:‖y−z‖<αR

a1

1 + ‖y − z‖d−2

(A.11)
≥ κAR2 − ca2(αR)2.

When A is chosen large enough, we obtain (A.5).
Finally, there are constants {Cd, d ≥ 3} such that for any z ∈ B(0,R)

∑
y∈B(0,αR)

Py(Hz < HαR)2 ≤
⎧⎨
⎩

C3αR, for d = 3,

C4 log(αR), for d = 4,

Cd, for d ≥ 5.

(A.12)

Thus, hypothesis (A.3) holds.

A.2. The case d = 2. We still have

Py(Hz < HαR) = GαR(y, z)

GαR(z, z)
= GαR(z, y)

GαR(z, z)
and

(A.13)
GαR(z, y) = Ez

[
a
(
S(HαR), y

)] − a(z, y),

where the potential kernel a(., .) replaces Green’s function. Note that for 0 ≤ ‖z‖+
R < αR, we have two positive constants K2 and K ′

2 such that

K ′
2 log(2αR) ≥ GB(z,2αR) ≥ GαR(z, z) ≥ GB(z,R)(z, z) ≥ K2 log(R),(A.14)

by Proposition 1.6.6 of Lawler [3]. To estimate GαR(z, y), we use Theorem 4.4.4
of [6] which establishes that for z = 0 (with γ the Euler constant),∣∣∣∣a(0, z) − 2

π
log

(‖z‖) − 2γ + log(8)

π

∣∣∣∣ ≤ Kg

‖z‖2 .(A.15)

Thus, for y ∈ B(0, αR), 0 ≤ ‖z‖ ≤ R, and y = z∣∣∣∣GαR(z, y) − 2

π
E

[
log

(‖S(HαR) − z‖
‖y − z‖

)]∣∣∣∣ ≤ 2Kg.(A.16)

When y ∈ B(0,R/2), we get

GαR(z, y) ≥ 2

π
log

(
2(α − 1)/3

) − 2Kg.(A.17)

We choose α large enough so that for some constant C1, we have, for all y in
B(0,R/2),

GαR(z, y) ≥ C1.(A.18)
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Formulas (A.13), (A.14) and (A.18) together imply that

E
[
MαR(η, z)

] = ∑
y∈B(0,R/2)

η(y)Py(Hz < HαR)

≥ C1

K ′
2 log(2αR)

∑
y∈B(0,R/2)

η(y)(A.19)

= C1AR2

K ′
2 log(2αR)

.

Using Lemma 3 of [4], we have, for some positive constant C2,

E
[
MαR(ζ, z)

] ≤ E
[
MαR

(
B(0, αR), z

)] ≤ C2(αR)2

log(R)
.(A.20)

We need now to choose L to have (H1) satisfied. Note that for y = z, (A.16)
and (A.14) yields

Py(Hz < HαR) ≤ 1

K2 log(R)
E

[
2

π
log

(‖S(HαR) − z‖
‖y − z‖

)
+ 2Kg

]
.(A.21)

If ‖z − y‖ > R/ log(R), we obtain, for some constant C3,

Py(Hz < HαR) ≤ C3 log((α + 1) log(R))

log(R)
.(A.22)

When R is large enough, we have that (H1) holds for L = R/ log(R). Note that
|B(0,L)| is of order R2/ log(R)2 and is much smaller than R2/ log(R).

Finally we need to control the sum of second moments. Simply note that,
from (A.20),

∑
y∈B(0,αR)\B(0,L)

P 2
y (Hz < HαR) ≤ E

[
MαR(ζ, z)

] ≤ C2α
2R2

log(R)
.(A.23)

APPENDIX B: PROOF OF LEMMA 1.6

We will choose an h such that R/2h is a positive integer. We divide S =
B(0,2R)\B(0,R) into R/2h concentric shells of height 2h. For k = 1, . . . ,R/2h,
define

Sk = B
(
0,2R − 2(k − 1)h

) \ B(0,2R − 2kh) and
(B.1)

�k := ∂B
(
0,2R − (2k − 1)h

)
.

Also, we set S0 = B(0,2R)c. Then, we start on z ∈ ∂B(0,2R) a flashing explorer
associated with this partition with an explored region V . The flashing setting is
much simpler than the one introduced in Section 3.1 of [1]. There is an under-
lying simple random walk, say S∗, and each shell S1, S2, . . . is associated with
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a flashing site. These flashing sites, say {Zk,0 ≤ k ≤ 2R/h} are obtained as fol-
lows. We set Z0 = z, and for k ≥ 1 we draw a continuous random variable Rk on
[0, h] with density in r ∈ [0, h] �→ drd−1/hd : the flashing site Zk is the exit site
from B(S∗(H(�k)),Rk) after time H(�k). Then, the explorer settles on the first
flashing site in S \V . The purpose of the flashing construction is that: (i) the flash-
ing site is distributed almost uniformly inside the ball B(S∗(H(�k)), h); and (ii)
Pz(H(B(0,R)) < H(V c)) is bounded above by the probability that the explorer
crosses S .

For a small β to be chosen later, we say that y ∈ �k has a dense neighborhood
if |B(y,h)∩V | ≥ βhd , and we call Dk their set. There is κ > 0 such that knowing
that S∗ has crossed D1, . . . ,Dk−1:

• if S∗(H(�k)) /∈ Dk , then the probability that S∗ does not settle in Sk is smaller
than κβ;

• the probability that S∗(H(�k)) ∈ Dk is smaller than κ|Dk|/hd−1 (see Lemma 5
of [5]) uniformly over the position of the previous flashing site (in Sk−1 or,
exceptionally, on the border of Sk−1).

Now, the flashing explorer has crossed the annulus S if Zk ∈ V for all k ≥ 1. In
other words,

{
H

(
B(0,R)

)
< H

(
V c)} ⊂

R/2h⋂
k=1

{Zk ∈ V }.(B.2)

By successive conditioning, we obtain

Pz

(R/2h⋂
k=1

{Zk ∈ V }
)

≤
R/2h∏
k=1

(
κβ + κ|Dk|

hd−1
k

)
.(B.3)

By the arithmetic–geometric inequality and (B.2), we obtain

Pz

(
H

(
B(0,R)

)
< H

(
V c)) ≤

(
κβ + κ

R/2h

R/2h∑
k=1

|Dk|
hd−1

)R/2h

.(B.4)

Note that each y ∈ Dk satisfies |B(y,h) ∩ V | ≥ βhd , but each site in B(y,h) ∩ V

is in the neighborhood of at most hd−1 sites of Dk . Thus for some κ ′,
R/2h∑
k=1

β|Dk|hd

hd−1 ≤ κ ′|V | i.e.,
1

R/2h

R/2h∑
k=1

|Dk|
hd−1 ≤ 2κ ′|V |

βRhd−1 .(B.5)

We choose now β such that 4κβ < 1, and we choose the smallest h such that R/2h

is a positive integer and

h ≥ max
{
h0,

(
2κ ′|V |
β2R

)1/(d−1)}
.(B.6)
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This adds a constraint on |V |,

|V | ≤ β2

2dκ ′ R
d.(B.7)

Instead of including (B.7) as a condition of our lemma, we find it more convenient
to note that the probability we estimate is always less than 1, so that we deal with
the case where (B.7) is violated with the constant ad of (1.11).

APPENDIX C: PROOF OF LEMMA 1.5

Recall that ad and κd are the constants appearing in Lemma 1.6. We define a
positive constant

γ = max
(

1,

(
2ad

κd

)d−1)
.(C.1)

Choose now β > 0 such that 4dβγ ≤ 1 and h0 = R/4 ≥ 1. Note that

γ |η| ≤ γβRd ≤ hd
0 .(C.2)

We build now, by induction, a random subdivision of B(z,R) into shells of heights
h0, h1, . . . , in which, respectively, N0,N1, . . . explorers of A(η) have settled. We
emphasize that the randomness comes from A(η), and that the event {0 ∈ A(η)}
imposes to have Ni ≥ �hi�, for i ≥ 0. Assume that h1, . . . , hk have been defined
such that

hk ≥ 1 and
k∑

i=1

hi <
R

2
.(C.3)

We define hd
k+1 = γNk ≤ γ |η|, and, by (C.2) we have hk+1 ≤ h0. Note also that

hk+1 ≥ 1. Indeed, necessarily Nk ≥ �hk�, so that hd
k+1 ≥ γ �hk� ≥ �hk�. Since

min(h1, . . . , hk+1) ≥ 1, the number of steps before we violate (C.3), say L, is
finite. Obviously L ≤ R. Note that since hL ≤ h0,

R

2
≤

L∑
i=1

hi ≤ hL +
L−1∑
i=1

hi ≤ R

4
+ R

2
.(C.4)

Thus, we define

hL+1 = R −
(

L∑
i=0

hi

)
≥ 0.(C.5)

For any choice of integers l, n0, . . . , nl , the event {L = l,N0 = n0, . . . ,NL = nl}
implies that n1 + · · · + nl explorers have crossed a shell B(z,R) \ B(z,R − h0)

by stepping on at most n0 explorers settled in it, that n2 + · · · + nL explorers have
crossed shell B(z,R − h0) \ B(z,R − h0 − h1) with n1 explorers settled in it,
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and so on and so forth. Using Lemma 1.6, the fact that ni ≤ βRd , l ≤ R and the
notation δ = 1

d−1 , we reach the following estimate:

P
(
0 ∈ A(η)

)
≤ ∑

l≤R,n0,n1,...,nl≤|η|
∀i,ni≥�hi�

P(L = l,N0 = n0, . . . ,NL = nl)

(C.6)
≤ R

(
βRd)R+1 sup

l≤R,n0,n1,...,nl≤|η|
∀i,ni≥�hi�

ead
∑L

i=1 ini

× exp

(
−κd

L∑
i=1

ni

((
hd

0

n0

)δ

+ · · · +
(

hd
i−1

ni−1

)δ))
.

Now, note that by the arithmetic–geometric inequality, for 1 ≤ i ≤ l (and using
hi ≤ h0)

1

i

((
hd

0

n0

)δ

+ · · · +
(

hd
i−1

ni−1

)δ)
≥

(
hd

0

n0
× · · · × hd

i−1

ni−1

)δ/i

(C.7)

=
(

hd
0

ni−1
γ i−1

)δ/i

=
(

hd
0

hd
i

γ i

)δ/i

≥ 2ad

κd

.

Thus, from (C.6) and (C.7), we have

P
(
0 ∈ A(η)

) ≤ R
(
βRd)R+1 max

l≤R,n0,n1,...,nl≤|η|
∀i,ni≥�hi�

exp

(
−ad

L∑
i=1

ini

)

(C.8)

≤ R
(
βRd)R+1 max

l≤R,n0,n1,...,nl≤|η|
∀i,ni≥�hi�

exp

(
−ad

γ

L−1∑
i=1

ihd
i+1

)
.

Since h1 ≤ R/4, note that we have h2 + · · · + hL ≥ R/4 by (C.4). By Hölder’s
inequality, note that for constants {cd, d ≥ 2},

L−1∑
i=1

ihd
i+1 ≥ (

∑L−1
i=1 hi+1)

d

(
∑L−1

i=1 1/i1/(d−1))d−1

(C.9)

≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2
R2

log(L)
≥ c2

R2

log(R)
, for d = 2,

cd

Rd

Ld−2 ≥ cdR2, for d ≥ 3.

This completes the proof.



FLUCTUATIONS FOR INTERNAL DLA 1179

REFERENCES

[1] ASSELAH, A. and GAUDILLIÈRE, A. (2013). From logarithmic to subdiffusive polynomial fluc-
tuations for internal DLA and related growth models. Ann. Probab. 41 1115–1159.

[2] JERISON, D., LEVINE, L. and SHEFFIELD, S. (2012). Logarithmic fluctuations for internal
DLA. J. Amer. Math. Soc. 25 271–301. MR2833484

[3] LAWLER, G. F. (1991). Intersections of Random Walks. Birkhäuser, Boston, MA. MR1117680
[4] LAWLER, G. F. (1995). Subdiffusive fluctuations for internal diffusion limited aggregation. Ann.

Probab. 23 71–86. MR1330761
[5] LAWLER, G. F., BRAMSON, M. and GRIFFEATH, D. (1992). Internal diffusion limited aggre-

gation. Ann. Probab. 20 2117–2140. MR1188055
[6] LAWLER, G. F. and LIMIC, V. (2010). Random Walk: A Modern Introduction. Cambridge Stud-

ies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. MR2677157

LAMA
UNIVERSITÉ PARIS-EST CRÉTEIL

61 AVENUE DU GÉNÉRAL DE GAULLE

94010 CRÉTEIL CEDEX

FRANCE

E-MAIL: amine.asselah@u-pec.fr

LATP
UNIVERSITÉ DE PROVENCE

CNRS, 39 RUE F. JOLIOT CURIE

13013 MARSEILLE

FRANCE

E-MAIL: gaudilli@cmi.univ-mrs.fr

http://www.ams.org/mathscinet-getitem?mr=2833484
http://www.ams.org/mathscinet-getitem?mr=1117680
http://www.ams.org/mathscinet-getitem?mr=1330761
http://www.ams.org/mathscinet-getitem?mr=1188055
http://www.ams.org/mathscinet-getitem?mr=2677157
mailto:amine.asselah@u-pec.fr
mailto:gaudilli@cmi.univ-mrs.fr

	Introduction
	Prerequisites
	Notation
	On a classical approach
	On sums of Bernoulli variables
	On a discrete mean value property of Green's function

	Inner error
	Exploration by waves
	Mean number of explorers crossing a tile
	Wkh(n)(N10,T) is unlikely to be small
	C is likely to be covered when Wkh(n)(N10,T) is large


	Outer error
	On a flashing process
	Estimating P(F(a))

	Appendix A: Proof of Lemma 1.3
	The case d>=3
	The case d=2

	Appendix B: Proof of Lemma 1.6
	Appendix C: Proof of Lemma 1.5
	References
	Author's Addresses

