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We develop a nonanticipative calculus for functionals of a continuous
semimartingale, using an extension of the Itô formula to path-dependent
functionals which possess certain directional derivatives. The construction is
based on a pathwise derivative, introduced by Dupire, for functionals on the
space of right-continuous functions with left limits. We show that this func-
tional derivative admits a suitable extension to the space of square-integrable
martingales. This extension defines a weak derivative which is shown to be
the inverse of the Itô integral and which may be viewed as a nonanticipative
“lifting” of the Malliavin derivative.

These results lead to a constructive martingale representation formula for
Itô processes. By contrast with the Clark–Haussmann–Ocone formula, this
representation only involves nonanticipative quantities which may be com-
puted pathwise.

1. Introduction. In the analysis of phenomena with stochastic dynamics,
Itô’s stochastic calculus [8, 15, 16, 19, 23, 28, 29] has proven to be a powerful
and useful tool. A central ingredient of this calculus is the Itô formula [15, 16, 23],
a change of variable formula for functions f (Xt) of a semimartingale X which al-
lows one to represent such quantities in terms of a stochastic integral. Given that in
many applications such as statistics of processes, physics or mathematical finance,
one is led to consider path-dependent functionals of a semimartingale X and its
quadratic variation process [X] such as∫ t

0
g(t,Xt) d[X](t), G(t,Xt , [X]t ), or

(1)
E[G(T ,X(T ), [X](T ))|Ft ]

(where X(t) denotes the value at time t and Xt = (X(u),u ∈ [0, t]) the path up to
time t), there has been a sustained interest in extending the framework of stochastic
calculus to such path-dependent functionals.

In this context, the Malliavin calculus [3, 22, 24, 25, 30–32] has proven to
be a powerful tool for investigating various properties of Brownian functionals.
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Since the construction of Malliavin derivative does not refer to an underlying filtra-
tion Ft , it naturally leads to representations of functionals in terms of anticipative
processes [4, 14, 25]. However, in most applications it is more natural to consider
nonanticipative versions of such representations.

In a recent insightful work, Dupire [9] has proposed a method to extend the
Itô formula to a functional setting using a pathwise functional derivative which
quantifies the sensitivity of a functional Ft :D([0, t],R) → R to a variation in the
endpoint of a path ω ∈ D([0, t],R).

∇ωFt(ω) = lim
ε→0

Ft(ω + ε1t ) − Ft(ω)

ε
.

Building on this insight, we develop hereafter a nonanticipative calculus [5] for
a class of processes—including the above examples—which may be represented
as

Y(t) = Ft

({X(u),0 ≤ u ≤ t}, {A(u),0 ≤ u ≤ t}) = Ft(Xt ,At),(2)

where A is the local quadratic variation defined by [X](t) = ∫ t
0 A(u)du, and the

functional

Ft :D([0, t],Rd) × D([0, t], S+
d ) → R

represents the dependence of Y on the path Xt = {X(u),0 ≤ u ≤ t} of X and its
quadratic variation.

Our first result (Theorem 4.1) is a change of variable formula for path-dependent
functionals of the form (2). Introducing At as an additional variable allows us to
control the dependence of Y with respect to the “quadratic variation” [X] by re-
quiring smoothness properties of Ft with respect to the variable At in the supre-
mum norm, without resorting to p-variation norms as in “rough path” theory [20].
This allows our result to cover a wide range of functionals, including the examples
in (1).

We then extend this notion of functional derivative to processes: we show that
for Y of the form (2) where F satisfies some regularity conditions, the process
∇XY = ∇ωF(Xt ,At ) may be defined intrinsically, independently of the choice
of F in (2). The operator ∇X is shown to admit an extension to the space of square-
integrable martingales, which is the inverse of the Itô integral with respect to X:
for φ ∈ L2(X),∇X(

∫
φ · dX) = φ (Theorem 5.8). In particular, we obtain a con-

structive version of the martingale representation theorem (Theorem 5.9), which
states that for any square-integrable F X

t -martingale Y ,

Y(T ) = Y(0) +
∫ T

0
∇XY · dX, P-a.s.

This formula can be seen as a nonanticipative counterpart of the Clark–Hauss-
mann–Ocone formula [4, 13, 14, 18, 25]. The integrand ∇XY is an adapted process
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which may be computed pathwise, so this formula is more amenable to numerical
computations than those based on Malliavin calculus.

Finally, we show that this functional derivative ∇X may be viewed as a nonan-
ticipative “lifting” of the Malliavin derivative (Theorem 6.1): for square-integrable
martingales Y whose terminal values is differentiable in the sense of Malliavin
Y(T ) ∈ D1,2, we show that ∇XY(t) = E[DtH |Ft ].

These results provide a rigorous mathematical framework for developing and
extending the ideas proposed by Dupire [9] for a large class of functionals. In par-
ticular, unlike the results derived from the pathwise approach presented in [6, 9],
Theorems 5.8 and 5.9 do not require any pathwise regularity of the functionals and
hold for nonanticipative square-integrable processes, including stochastic integrals
and functionals which may depend on the quadratic variation of the process.

2. Functional representation of nonanticipative processes. Let X : [0, T ]×
� �→ Rd be a continuous, Rd -valued semimartingale defined on a filtered probabil-
ity space (�, F , Ft ,P) assumed to satisfy the usual hypotheses [8]. Denote by P
(resp., O) the associated predictable (resp., optional) sigma-algebra on [0, T ].
F X

t denotes the (P-completed) natural filtration of X. The paths of X then lie
in C0([0, T ],Rd), which we will view as a subspace of D([0, T ],Rd) the space of
cadlag functions with values in Rd . We denote by [X] = ([Xi,Xj ], i, j = 1, . . . , d)

the quadratic (co-)variation process associated to X, taking values in the set S+
d of

positive d × d matrices. We assume that

[X](t) =
∫ t

0
A(s) ds(3)

for some cadlag process A with values in S+
d . Note that A need not be a semi-

martingale. The paths of A lie in St = D([0, t], S+
d ), the space of cadlag functions

with values S+
d .

2.1. Horizontal extension and vertical perturbation of a path. Consider a path
x ∈ D([0, T ]),Rd) and denote by xt = (x(u),0 ≤ u ≤ t) ∈ D([0, t],Rd) its re-
striction to [0, t] for t < T . For a process X we shall similarly denote X(t) its
value at t and Xt = (X(u),0 ≤ u ≤ t) its path on [0, t].

For h ≥ 0, we define the horizontal extension xt,h ∈ D([0, t + h],Rd) of xt to
[0, t + h] as

xt,h(u) = x(u), u ∈ [0, t]; xt,h(u) = x(t), u ∈]t, t + h].(4)

For h ∈ Rd , we define the vertical perturbation xh
t of xt as the cadlag path obtained

by shifting the endpoint by h.

xh
t (u) = xt (u), u ∈ [0, t[, xh

t (t) = x(t) + h,(5)

or, in other words, xh
t (u) = xt (u) + h1t=u.
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2.2. Adapted processes as nonanticipative functionals. A process Y : [0, T ] ×
� �→ Rd adapted to F X

t may be represented as

Y(t) = Ft

({X(u),0 ≤ u ≤ t}, {A(u),0 ≤ u ≤ t}) = Ft(Xt ,At ),(6)

where F = (Ft )t∈[0,T ] is a family of functionals

Ft :D([0, t],Rd) × St → R

representing the dependence of Y(t) on the underlying path of X and its quadratic
variation.

Since Y is nonanticipative, Y(t,ω) only depends on the restriction ωt of ω on
[0, t]. This motivates the following definition:

DEFINITION 2.1 (Nonanticipative functional). A nonanticipative functional is
a family of functionals F = (Ft )t∈[0,T ] where

Ft :D([0, t],Rd) × D([0, t], S+
d ) �→ R,

(x, v) → Ft(x, v)

is measurable with respect to Bt , the canonical filtration on D([0, t],Rd) ×
D([0, t], S+

d ).

We can also view F = (Ft )t∈[0,T ] as a map defined on the space ϒ of stopped
paths

ϒ = {(t,ωt,T −t ), (t,ω) ∈ [0, T ] × D([0, T ],Rd × S+
d )}.(7)

Whenever the context is clear, we will denote a generic element (t,ω) ∈ ϒ simply
by its second component, the path ω stopped at t . ϒ can also be identified with the
“vector bundle”

� = ⋃
t∈[0,T ]

D([0, t],Rd) × D([0, t], S+
d ).(8)

A natural distance on the space ϒ of stopped paths is given by

d∞((t,ω), (t ′,ω′)) = |t − t ′| + sup
u∈[0,T ]

|ωt,T −t (u) − ω′
t ′,T −t ′(u)|.(9)

(ϒ,d∞) is then a metric space, a closed subspace of ([0, T ] × D([0, T ],Rd ×
S+

d ),‖ · ‖∞) for the product topology.
Introducing the process A as an additional variable may seem redundant at this

stage: indeed A(t) is itself Ft -measurable, that is, a functional of Xt . However, it
is not a continuous functional on (ϒ,d∞). Introducing At as a second argument
in the functional will allow us to control the regularity of Y with respect to [X]t =∫ t

0 A(u)du simply by requiring continuity of Ft in supremum or Lp norms with
respect to the “lifted process” (X,A); see Section 2.3. This idea is analogous in
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some ways to the approach of rough path theory [20], although here we do not
resort to p-variation norms.

If Y is a Bt -predictable process, then [8, Volume I, paragraph 97]

∀t ∈ [0, T ], Y (t,ω) = Y(t,ωt−),

where ωt− denotes the path defined on [0, t] by

ωt−(u) = ω(u), u ∈ [0, t[, ωt−(t) = ω(t−).

Note that ωt− is cadlag and should not be confused with the caglad path u �→
ω(u−).

The functionals discussed in the introduction depend on the process A via [X] =∫ ·
0 A(t) dt . In particular, they satisfy the condition Ft(Xt ,At) = Ft(Xt ,At−). Ac-

cordingly, we will assume throughout the paper that all functionals Ft :D([0, t],
Rd) × St → R considered have “predictable” dependence with respect to the sec-
ond argument,

∀t ∈ [0, T ],∀(x, v) ∈ D([0, t],Rd) × St , Ft (xt , vt ) = Ft(xt , vt−).(10)

2.3. Continuity for nonanticipative functionals. We now define a notion of
(left) continuity for nonanticipative functionals.

DEFINITION 2.2 (Continuity at fixed times). A functional F defined on ϒ is
said to be continuous at fixed times for the d∞ metric if and only if

∀t ∈ [0, T ),∀ε > 0,∀(x, v) ∈ D([0, t],Rd) × St ,

∃η > 0, (x′, v′) ∈ D([0, t],Rd) × St ,(11)

d∞((x, v), (x′, v′)) < η ⇒ |Ft(x, v) − Ft(x
′, v′)| < ε.

We now define a notion of joint continuity with respect to time and the under-
lying path:

DEFINITION 2.3 (Continuous functionals). A nonanticipative functional F =
(Ft )t∈[0,T ) is said to be continuous at (x, v) ∈ D([0, t],Rd) × St if

∀ε > 0,∃η > 0,∀(x ′, v′) ∈ ϒ,
(12)

d∞((x, v), (x′, v′)) < η ⇒ |Ft(x, v) − Ft ′(x
′, v′)| < ε.

We denote by C0,0([0, T )) the set of continuous nonanticipative functionals on ϒ .

DEFINITION 2.4 (Left-continuous functionals). A nonanticipative functional
F = (Ft , t ∈ [0, T )) is said to be left-continuous if for each t ∈ [0, T ), Ft :D([0, t],
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Rd) × St → R in the sup norm and

∀ε > 0,∀(x, v) ∈ D([0, t],Rd) × St ,

∃η > 0,∀h ∈ [0, t],∀(x′, v′) ∈ D([0, t − h],Rd) × St−h,(13)

d∞((x, v), (x′, v′)) < η ⇒ |Ft(x, v) − Ft−h(x
′, v′)| < ε.

We denote by C
0,0
l ([0, T )) the set of left-continuous functionals.

We define analogously the class of right-continuous functionals C0,0
r ([0, T )).

We call a functional “boundedness preserving” if it is bounded on each bounded
set of paths:

DEFINITION 2.5 (Boundedness-preserving functionals). Define B([0, T )) as
the set of nonanticipative functionals F such that for every compact subset K

of Rd , every R > 0 and t0 < T ,

∃CK,R,t0 > 0,∀t ≤ t0,∀(x, v) ∈ D([0, t],K) × St ,
(14)

sup
s∈[0,t]

|v(s)| < R ⇒ |Ft(x, v)| < CK,R,t0 .

2.4. Measurability properties. Composing a nonanticipative functional F

with the process (X,A) yields an Ft -adapted process Y(t) = Ft(Xt ,At ). The
results below link the measurability and pathwise regularity of Y to the regularity
of the functional F .

LEMMA 2.6 (Pathwise regularity). If F ∈ C
0,0
l , then for any (x, v) ∈ D([0, T ],

Rd) × ST , the path t �→ Ft(xt−, vt−) is left-continuous.

PROOF. Let F ∈ C
0,0
l and t ∈ [0, T ). For h > 0 sufficiently small,

d∞((xt−h, vt−h), (xt−, vt−)) = sup
u∈(t−h,t)

|x(u) − x(t − h)|
(15)

+ sup
u∈(t−h,t)

|v(u) − v(t − h)| + h.

Since x and v are cadlag, this quantity converges to 0 as h → 0+, so

Ft−h(xt−h, vt−h) − Ft(xt−, vt−)
h→0+→ 0,

so t �→ Ft(xt−, vt−) is left-continuous. �

THEOREM 2.7. (i) If F is continuous at fixed times, then the process Y defined
by Y((x, v), t) = Ft(xt , vt ) is adapted.

(ii) If F ∈ C
0,0
l ([0, T )), then the process Z(t) = Ft(Xt ,At ) is optional.
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(iii) If F ∈ C
0,0
l ([0, T )), and if either A is continuous or F verifies (10), then Z

is a predictable process.

In particular, any F ∈ C
0,0
l is a nonanticipative functional in the sense of Def-

inition 2.1. We propose an easy-to-read proof of points (i) and (iii) in the case
where A is continuous. The (more technical) proof for the cadlag case is given in
the Appendix.

CONTINUOUS CASE. Assume that F is continuous at fixed times and that the
paths of (X,A) are almost-surely continuous. Let us prove that Y is Ft -adapted:
X(t) is Ft -measurable. Introduce the partition t in = iT

2n , i = 0, . . . ,2n of [0, T ], as
well as the following piecewise-constant approximations of X and A:

Xn(t) =
2n∑

k=0

X(tnk )1[tnk ,tnk+1)
(t) + XT 1{T }(t),

(16)

An(t) =
2n∑

k=0

A(tnk )1[tnk ,tnk+1)
(t) + AT 1{T }(t).

The random variable Yn(t) = Ft(X
n
t ,An

t ) is a continuous function of the random
variables {X(tnk ),A(tnk ), tnk ≤ t} and hence is Ft -measurable. The representation
above shows in fact that Yn(t) is Ft -measurable. Xn

t and An
t converge respec-

tively to Xt and At almost-surely so Yn(t)→n→∞ Y(t) a.s., and hence Y(t) is
Ft -measurable.

(i) implies point (iii) since the path of Z are left-continuous by Lemma 2.6.

3. Pathwise derivatives of nonanticipative functionals.

3.1. Horizontal and vertical derivatives. We now define pathwise derivatives
for a nonanticipative functional, following Dupire [9].

DEFINITION 3.1 (Horizontal derivative). The horizontal derivative at (x, v) ∈
D([0, t],Rd) × St of nonanticipative functional F = (Ft )t∈[0,T ) is defined as

DtF (x, v) = lim
h→0+

Ft+h(xt,h, vt,h) − Ft(xt , vt )

h
(17)

if the corresponding limit exists. If (17) is defined for all (x, v) ∈ ϒ , the map

DtF :D([0, t],Rd) × St �→ Rd,
(18)

(x, v) → DtF (x, v)

defines a nonanticipative functional DF = (DtF )t∈[0,T ], the horizontal derivative
of F .
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Note that our definition (17) is different from the one in [9] where the case
F(x, v) = G(x) is considered.

Dupire [9] also introduced a pathwise spatial derivative for such functionals,
which we now introduce. Denote (ei, i = 1, . . . , d) the canonical basis in Rd .

DEFINITION 3.2. A nonanticipative functional F = (Ft )t∈[0,T ) is said to be
vertically differentiable at (x, v) ∈ D([0, t]),Rd) × D([0, t], S+

d ) if

Rd �→ R,

e → Ft(x
e
t , vt )

is differentiable at 0. Its gradient at 0,

∇xFt (x, v) = (
∂iFt (x, v), i = 1, . . . , d

)
(19)

where ∂iFt (x, v) = lim
h→0

Ft(x
hei
t , v) − Ft(x, v)

h

is called the vertical derivative of Ft at (x, v). If (19) is defined for all (x, v) ∈ ϒ ,
the maps

∇xF :D([0, t],Rd) × St �→ Rd,
(20)

(x, v) → ∇xFt (x, v)

define a nonanticipative functional ∇xF = (∇xFt )t∈[0,T ], the vertical derivative
of F . F is then said to be vertically differentiable on ϒ .

REMARK 3.3. ∂iFt (x, v) is simply the directional derivative of Ft in the di-
rection (1{t}ei,0). Note that this involves evaluating F at cadlag perturbations of
the path x, even if x is continuous.

REMARK 3.4. If Ft(x, v) = f (t, x(t)) with f ∈ C1,1([0, T ) × Rd), then we
retrieve the usual partial derivatives

DtF (x, v) = ∂tf (t,X(t)), ∇xFt (Xt ,At ) = ∇xf (t,X(t)).

REMARK 3.5. Bismut [3] considered directional derivatives of functionals on
D([0, T ],Rd) in the direction of purely discontinuous (e.g., piecewise constant)
functions with finite variation, which is similar to Definition 3.2. This notion, used
in [3] to derive an integration by parts formula for pure-jump processes, is natural
in the context of discontinuous semimartingales. We will show that the directional
derivative (19) also intervenes naturally when the underlying process X is contin-
uous, which is less obvious.

DEFINITION 3.6 (Regular functionals). Define C1,k([0, T )) as the set of func-
tionals F ∈ C

0,0
l which are:
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• horizontally differentiable with DtF continuous at fixed times;
• k times vertically differentiable with ∇j

xF ∈ C
0,0
l ([0, T )) for j = 1, . . . , k.

Define C
1,k
b ([0, T )) as the set of functionals F ∈ C1,2 such that DF,∇xF, . . . ,

∇k
xF ∈ B([0, T )).

We denote C1,∞([0, T )) = ⋂
k≥1 C1,k([0, T ).

Note that this notion of regularity only involves directional derivatives with
respect to local perturbations of paths, so ∇xF and DtF seems to contain less
information on the behavior of F than, say, the Fréchet derivative which con-
siders perturbations in all directions in C0([0, T ],Rd) or the Malliavin deriva-
tive [21, 22] which examines perturbations in the direction of all absolutely con-
tinuous functions. Nevertheless we will show in Section 4 that knowledge of
DF,∇xF,∇2

xF along the paths of X is sufficient to reconstitute the path of
Y(t) = Ft(Xt ,At).

EXAMPLE 1 (Smooth functions). In the case where F reduces to a smooth
function of X(t),

Ft(xt , vt ) = f (t, x(t)),(21)

where f ∈ C1,k([0, T ] × Rd), the pathwise derivatives reduce to the usual ones

DtF (xt , vt ) = ∂tf (t, x(t)), ∇j
xFt (xt , vt ) = ∂j

x f (t, x(t)).(22)

In fact to have F ∈ C1,k we just need f to be right-differentiable in the time
variable, with right-derivative ∂tf (t, ·) which is continuous in the space variable
and f , ∇f and ∇2f to be jointly left-continuous in t and continuous in the space
variable.

EXAMPLE 2 (Cylindrical functionals). Let g ∈ C0(Rd,R), h ∈ Ck(Rd,R)

with h(0) = 0. Then

Ft(ω) = h
(
ω(t) − ω(tn−)

)
1t≥tng(ω(t1−),ω(t2−), . . . ,ω(tn−))

is in C
1,k
b with DtF (ω) = 0 and

∀j = 1, . . . , k,

∇j
ωFt (ω) = h(j)(ω(t) − ω(tn−)

)
1t≥tng(ω(t1−),ω(t2−) . . . ,ω(tn−)).

EXAMPLE 3 (Integrals with respect to quadratic variation). A process Y(t) =∫ t
0 g(X(u)) d[X](u) where g ∈ C0(Rd) may be represented by the functional

Ft(xt , vt ) =
∫ t

0
g(x(u))v(u) du.(23)
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It is readily observed that F ∈ C
1,∞
b , with

DtF (xt , vt ) = g(x(t))v(t), ∇j
xFt (xt , vt ) = 0.(24)

EXAMPLE 4. The martingale Y(t) = X(t)2 − [X](t) is represented by the
functional

Ft(xt , vt ) = x(t)2 −
∫ t

0
v(u)du.(25)

Then F ∈ C
1,∞
b with

DtF (x, v) = −v(t), ∇xFt (xt , vt ) = 2x(t),
(26)

∇2
xFt (xt , vt ) = 2, ∇j

xFt (xt , vt ) = 0, j ≥ 3.

EXAMPLE 5. Y = exp(X − [X]/2) may be represented as Y(t) = F(Xt)

Ft (xt , vt ) = ex(t)−1/2
∫ t

0 v(u)du.(27)

Elementary computations show that F ∈ C
1,∞
b with

DtF (x, v) = −1

2
v(t)Ft (x, v), ∇j

xFt (xt , vt ) = Ft(xt , vt ).(28)

Note that, although At may be expressed as a functional of Xt , this functional
is not continuous and without introducing the second variable v ∈ St , it is not
possible to represent Examples 3, 4 and 5 as a left-continuous functional of x

alone.

3.2. Obstructions to regularity. It is instructive to observe what prevents a
functional from being regular in the sense of Definition 3.6. The examples below
illustrate the fundamental obstructions to regularity:

EXAMPLE 6 (Delayed functionals). Let ε > 0. Ft(xt , vt ) = x(t − ε) defines a
C

0,∞
b functional. All vertical derivatives are 0. However, F fails to be horizontally

differentiable.

EXAMPLE 7 (Jump of x at the current time). Ft(xt , vt ) = x(t)−x(t−) defines
a functional which is infinitely differentiable and has regular pathwise derivatives

DtF (xt , vt ) = 0, ∇xFt (xt , vt ) = 1.(29)

However, the functional itself fails to be C
0,0
l .

EXAMPLE 8 (Jump of x at a fixed time). Ft(xt , vt ) = 1t≥t0(x(t0) − x(t0−))

defines a functional in C
0,0
l which admits horizontal and vertical derivatives at any

order at each point (x, v). However, ∇xFt (xt , vt ) = 1t=t0 fails to be either right- or
left-continuous, so F is not C0,1 in the sense of Definition 3.2.
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EXAMPLE 9 (Maximum). Ft(xt , vt ) = sups≤t x(s) is C
0,0
l but fails to be ver-

tically differentiable on the set
{
(xt , vt ) ∈ D([0, t],Rd) × St , x(t) = sup

s≤t
x(s)

}
.

4. Functional Itô calculus.

4.1. Functional Itô formula. We are now ready to prove our first main result,
which is a change of variable formula for nonanticipative functionals of a semi-
martingale [5, 9]:

THEOREM 4.1. For any nonanticipative functional F ∈ C
1,2
b verifying (10)

and any t ∈ [0, T ),

Ft(Xt ,At) − F0(X0,A0)

=
∫ t

0
DuF (Xu,Au)du +

∫ t

0
∇xFu(Xu,Au) · dX(u)(30)

+
∫ t

0

1

2
tr(∇2

xFu(Xu,Au)d[X](u)) a.s.

In particular, for any F ∈ C
1,2
b , Y(t) = Ft(Xt ,At ) is a semimartingale.

Theorem 4.1 shows that, for a regular functional F ∈ C1,2([0, T )), the process
Y = F(X,A) may be reconstructed from the second-order jet (DF,∇xF,∇2

xF ) of
F along the paths of X.

PROOF. Let us first assume that X does not exit a compact set K and that
‖A‖∞ ≤ R for some R > 0. Let us introduce a sequence of random partitions
(τn

k , k = 0, . . . , k(n)) of [0, t], by adding the jump times of A to the dyadic parti-
tion (tni = it

2n , i = 0, . . . ,2n),

τn
0 = 0, τ n

k = inf
{
s > τn

k−1|2ns ∈ N or |A(s) − A(s−)| > 1

n

}
∧ t.(31)

The following arguments apply pathwise. Lemma A.3 ensures that

ηn = sup
{
|A(u) − A(τn

i )| + |X(u) − X(τn
i )| + t

2n
, i ≤ 2n, u ∈ [τn

i , τ n
i+1)

}
→

n→∞ 0.

Denote nX = ∑∞
i=0 X(τn

i+1)1[τn
i ,τn

i+1)
+ X(t)1{t} which is a cadlag piecewise con-

stant approximation of Xt , and nA = ∑∞
i=0 A(τn

i )1[τn
i ,τn

i+1)
+ A(t)1{t} which is an

adapted cadlag piecewise constant approximation of At . Denote hn
i = τn

i+1 − τn
i .
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Start with the decomposition

Fτn
i+1

(nXτn
i+1−,n Aτn

i+1−) − Fτn
i
(nXτn

i −,n Aτn
i −)

= Fτn
i+1

(nXτn
i+1−,n Aτn

i ,hn
i
) − Fτn

i
(nXτn

i
,n Aτn

i
)(32)

+ Fτn
i
(nXτn

i
,n Aτn

i −) − Fτn
i
(nXτn

i −,n Aτn
i −),

where we have used the fact that F has predictable dependence in the second
variable to have Fτn

i
(nXτn

i
,n Aτn

i
) = Fτn

i
(nXτn

i
,n Aτn

i −). The first term in (32) can
be written ψ(hn

i ) − ψ(0) where

ψ(u) = Fτn
i +u(nXτn

i ,u,n Aτn
i ,u).(33)

Since F ∈ C1,2([0, T ]), ψ is right-differentiable and left-continuous by Lem-
ma 2.6, so:

Fτn
i+1

(nXτn
i ,hn

i
,n Aτn

i ,hn
i
) − Fτn

i
(nXτn

i
,n Aτn

i
)

(34)

=
∫ τn

i+1−τn
i

0
Dτn

i +uF (nXτn
i ,u,n Aτn

i ,u) du.

The second term in (32) can be written φ(X(τn
i+1) − X(τn

i )) − φ(0) where

φ(u) = Fτn
i
(nX

u
τn
i −,n Aτn

i
). Since F ∈ C

1,2
b , φ is a C2 function and φ′(u) =

∇xFτn
i
(nX

u
τn
i −,n Aτn

i ,hi
), φ′′(u) = ∇2

xFτn
i
(nX

u
τn
i −,n Aτn

i ,hi
). Applying the Itô for-

mula to φ between 0 and τn
i+1 − τn

i and the (Fτi+s)s≥0 continuous semimartingale
(X(τn

i + s))s≥0, yields:

φ
(
X(τn

i+1) − X(τn
i )

) − φ(0)

=
∫ τn

i+1

τn
i

∇xFτn
i

(
nX

X(s)−X(τn
i )

τn
i − ,n Aτn

i

)
dX(s)(35)

+ 1

2

∫ τn
i+1

τn
i

tr
[t∇2

xFτn
i

(
nX

X(s)−X(τn
i )

τn
i − ,n Aτn

i

)
d[X](s)].

Summing over i ≥ 0 and denoting i(s) the index such that s ∈ [τn
i(s), τ

n
i(s)+1), we

have shown:

Ft(nXt ,n At ) − F0(X0,A0)

=
∫ t

0
DsF

(
nXτn

i(s),s−τn
i(s)

,n Aτn
i(s),s−τn

i(s)

)
ds

(36)

+
∫ t

0
∇xFτn

i(s)+1

(
nX

X(s)−X(τn
i(s))

τn
i(s)− ,n Aτn

i(s),hi(s)

)
dX(s)

+ 1

2

∫ t

0
tr

[∇2
xFτn

i(s)

(
nX

X(s)−X(τn
i(s))

τn
i(s)− ,n Aτn

i(s)

) · d[X](s)]
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Ft(nXt ,n At ) converges to Ft(Xt ,At ) almost surely. Since all approximations of
(X,A) appearing in the various integrals have a d∞-distance from (Xs,As) less
than ηn → 0, the continuity at fixed times of DF and left-continuity ∇xF , ∇2

xF

imply that the integrands appearing in the above integrals converge respectively to
DsF (Xs,As),∇xFs(Xs,As),∇2

xFs(Xs,As) as n → ∞. Since the derivatives are
in B the integrands in the various above integrals are bounded by a constant de-
pendent only on F , K and R and t does not depend on s nor on ω. The dominated
convergence and the dominated convergence theorem for the stochastic integrals
[28, Chapter IV, Theorem 32] then ensure that the Lebesgue–Stieltjes integrals
converge almost surely, and the stochastic integral in probability, to the terms ap-
pearing in (30) as n → ∞.

Consider now the general case where X and A may be unbounded. Let Kn be an
increasing sequence of compact sets with

⋃
n≥0 Kn = Rd and define the optional

stopping times

τn = inf{s < t |Xs /∈ Kn or |As | > n} ∧ t.

Applying the previous result to the stopped process (Xt∧τn,At∧τn) and noting that,
by (10), Ft(Xt ,At) = Ft(Xt ,At−) leads to

Ft(Xt∧τn,At∧τn) − F0(Z0,A0)

=
∫ t∧τn

0
DuFu(Xu,Au)du + 1

2

∫ t∧τn

0
tr(t∇2

xFu(Xu,Au)d[X](u))

+
∫ t∧τn

0
∇xFu(Xu,Au) · dX +

∫ t

t∧τn
DuF(Xu∧τn,Au∧τn) du.

The terms in the first line converges almost surely to the integral up to time t since
t ∧ τn = t almost surely for n sufficiently large. For the same reason the last term
converges almost surely to 0. �

REMARK 4.2. The above proof is probabilistic and makes use of the (classi-
cal) Itô formula [15]. In the companion paper [6] we give a nonprobabilistic proof
of Theorem 4.1, using the analytical approach of Föllmer [12], which allows X to
have discontinuous (cadlag) trajectories.

EXAMPLE 10. If Ft(xt , vt ) = f (t, x(t)) where f ∈ C1,2([0, T ] × Rd),
(30) reduces to the standard Itô formula.

EXAMPLE 11. For the functional in Example 5 Ft(xt , vt ) = ex(t)−1/2
∫ t

0 v(u)du,
the formula (30) yields the well-known integral representation

exp
(
X(t) − 1

2
[X](t)

)
=

∫ t

0
eX(u)−1/2[X](u) dX(u).(37)
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An immediate corollary of Theorem 4.1 is that if X is a local martingale, any
C

1,2
b functional of X which has finite variation is equal to the integral of its hori-

zontal derivative:

COROLLARY 4.3. If X is a local martingale and F ∈ C
1,2
b , the process

Y(t) = Ft(Xt ,At ) has finite variation if only if ∇xFt (Xt ,At) = 0 d[X] × dP-
almost everywhere.

PROOF. Y(t) is a continuous semimartingale by Theorem 4.1, with semi-
martingale decomposition given by (30). If Y has finite variation, then by
formula (30), its continuous martingale component should be zero, that is,∫ t

0 ∇xFt (Xt ,At) · dX(t) = 0 a.s. Computing its quadratic variation, we obtain
∫ T

0
tr(t∇xFt (Xt ,At ) · ∇xFt (Xt ,At) · d[X]) = 0

which implies in particular that ‖∂iFt (Xt ,At )‖2 = 0 d[Xi] × dP-almost every-
where for i = 1, . . . , d . Thus, ∇xFt (Xt ,At ) = 0 for (t,ω) /∈ A ⊂ [0, T ]×� where∫
A d[Xi] × dP = 0 for i = 1, . . . , d . �

4.2. Vertical derivative of an adapted process. For a (Ft -adapted) process Y ,
the the functional representation (42) is not unique, and the vertical ∇xF depends
on the choice of representation F . However, Theorem 4.1 implies that the process
∇xFt (Xt ,At) has an intrinsic character, that is, independent of the chosen repre-
sentation:

COROLLARY 4.4. Let F 1,F 2 ∈ C
1,2
b ([0, T )), such that

∀t ∈ [0, T ), F 1
t (Xt ,At ) = F 2

t (Xt ,At ) P-a.s.(38)

Then, outside an evanescent set,

t [∇xF
1
t (Xt ,At ) − ∇xF

2
t (Xt ,At )]A(t−)[∇xF

1
t (Xt ,At ) − ∇xF

2
t (Xt ,At )]

(39)
= 0.

PROOF. Let X(t) = B(t) + M(t), where B is a continuous process with finite
variation and M is a continuous local martingale. There exists �1 ⊂ � such that
P(�1) = 1, and for ω ∈ � the path of t �→ X(t,ω) is continuous and t �→ A(t,ω)

is cadlag. Theorem 4.1 implies that the local martingale part of 0 = F 1(Xt ,At) −
F 2(Xt ,At) can be written as

0 =
∫ t

0
[∇xF

1
u (Xu,Au) − ∇xF

2
u (Xu,Au)]dM(u).(40)
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Considering its quadratic variation, we have, on �1,

0 =
∫ t

0

1

2
t [∇xF

1
u (Xu,Au) − ∇xF

2
u (Xu,Au)]

(41)
× A(u−)[∇xF

1
u (Xu,Au) − ∇xF

2
u (Xu,Au)]du.

By Lemma 2.6 (∇xF
1(Xt ,At) = ∇xF

1(Xt−,At−) since X is continuous and F

verifies (10). So on �1 the integrand in (41) is left-continuous; therefore (41) im-
plies that for t < T and ω ∈ �1,

t [∇xF
1
u (Xu,Au) − ∇xF

2
u (Xu,Au)]A(u−)[∇xF

1
u (Xu,Au) − ∇xF

2
u (Xu,Au)

= 0. �

In the case where for all t < T , A(t−) is almost surely positive definite, Corol-
lary 4.4 allows us to define intrinsically the pathwise derivative of a process Y

which admits a functional representation Y(t) = Ft(Xt ,At):

DEFINITION 4.5 (Vertical derivative of a process). Define C 1,2
b (X) the set of

Ft -adapted processes Y which admit a functional representation in C
1,2
b ,

C 1,2
b (X) = {Y,∃F ∈ C

1,2
b Y (t) = Ft(Xt ,At ) P-a.s.}.(42)

If A(t) is nonsingular, that is, det(A(t)) �= 0 dt × dP almost-everywhere, then for
any Y ∈ C 1,2

b (X), the predictable process

∇XY(t) = ∇xFt (Xt ,At )

is uniquely defined up to an evanescent set, independently of the choice of F ∈
C

1,2
b in the representation (42). We will call ∇XY the vertical derivative of Y with

respect to X.

In particular this construction applies to the case where X is a standard Brow-
nian motion, where A = Id , so we obtain the existence of a vertical derivative
process for C

1,2
b Brownian functionals:

DEFINITION 4.6 (Vertical derivative of nonanticipative Brownian functionals).
Let W be a standard d-dimensional Brownian motion. For any Y ∈ C 1,2

b (W) with
representation Y(t) = Ft(Wt , t), the predictable process

∇WY(t) = ∇xFt (Wt , t)

is uniquely defined up to an evanescent set, independently of the choice of F ∈
C

1,2
b .
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5. Martingale representation formulas. Consider now the case where X is
a Brownian martingale:

ASSUMPTION 5.1. X(t) = X(0) + ∫ t
0 σ(u) · dW(u) where σ is a process

adapted to F W
t verifying

det(σ (t)) �= 0, dt × dP-a.e.(43)

The functional Itô formula (Theorem 4.1) then leads to an explicit martingale
representation formula for Ft -martingales in C 1,2

b (X). This result may be seen as
a nonanticipative counterpart of the Clark–Haussmann–Ocone formula [4, 14, 25]
and generalizes other constructive martingale representation formulas previously
obtained using Markovian functionals [7, 10, 11, 17, 26], Malliavin calculus [2,
14, 18, 24, 25] or other techniques [1, 27].

Consider an FT measurable random variable H with E|H | < ∞, and consider
the martingale Y(t) = E[H |Ft ].

5.1. A martingale representation formula. If Y admits a representation Y(t) =
Ft(Xt ,At ) where F ∈ C

1,2
b , we obtain the following stochastic integral represen-

tation for Y in terms of its derivative ∇XY with respect to X:

THEOREM 5.2. If Y(t) = Ft(Xt ,At) for some functional F ∈ C
1,2
b , then

Y(T ) = Y(0) +
∫ T

0
∇xFt (Xt ,At) dX(t) = Y(0) +

∫ T

0
∇XY · dX.(44)

Note that regularity assumptions are not on H = Y(T ), but on the martingale
Y(t) = E[H |Ft ], t < T , which is typically more regular than H itself.

PROOF. Theorem 4.1 implies that for t ∈ [0, T ),

Y(t) =
∫ t

0
DuF (Xu,Au)du + 1

2

∫ t

0
tr[t∇2

xFu(Xu,Au)d[X](u)]
(45)

+
∫ t

0
∇xFu(Xu,Au)dX(u).

Given the regularity assumptions on F , the first term in this sum is a continuous
process with finite variation, while the second is a continuous local martingale.
However, Y is a martingale and its decomposition as sum of a finite variation
process and a local martingale is unique [29]. Hence the first term is 0, and Y(t) =∫ t

0 Fu(Xu,Au)dXu. Since F ∈ C
0,0
l ([0, T ]) Y (t) has limit FT (XT ,AT ) as t → T ,

so the stochastic integral also converges. �
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EXAMPLE 12. If eX(t)−1/2[X](t) is a martingale, applying Theorem 5.2 to the
functional Ft(xt , vt ) = ex(t)−∫ t

0 v(u)du yields the familiar formula

eX(t)−1/2[X](t) = 1 +
∫ t

0
eX(s)−1/2[X](s) dX(s).(46)

5.2. Extension to square-integrable functionals. Let L2(X) be the Hilbert
space of progressively-measurable processes φ such that

‖φ‖2
L2(X)

= E

[∫ t

0
φ2

s d[X](s)
]

< ∞(47)

and I 2(X) be the space of square-integrable stochastic integrals with respect to X.

I 2(X) =
{∫ .

0
φ(t) dX(t), φ ∈ L2(X)

}
(48)

endowed with the norm ‖Y‖2
2 = E[Y(T )2]. The Itô integral IX :φ �→ ∫ .

0 φs dX(s)

is then a bijective isometry from L2(X) to I 2(X).
We will now show that the operator ∇X : �→ L2(X) admits a suitable extension

to I 2(X) which verifies

∀φ ∈ L2(X), ∇X

(∫
φ · dX

)
= φ, dt × dP-a.s.;(49)

that is, ∇X is the inverse of the Itô stochastic integral with respect to X.

DEFINITION 5.3 (Space of test processes). The space of test processes D(X)

is defined as

D(X) = C 1,2
b (X) ∩ I 2(X).(50)

Theorem 5.2 allows us to define intrinsically the vertical derivative of a process
in D(X) as an element of L2(X).

DEFINITION 5.4. Let Y ∈ D(X) define the process ∇XY ∈ L2(X) as the
equivalence class of ∇xFt (Xt ,At), which does not depend on the choice of the
representation functional Y(t) = Ft(Xt ,At ).

PROPOSITION 5.5 (Integration by parts on D(X)). Let Y,Z ∈ D(X). Then

E[Y(T )Z(T )] = E

[∫ T

0
∇XY(t)∇XZ(t) d[X](t)

]
.(51)
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PROOF. Let Y,Z ∈ D(X) ⊂ C 1,2
b (X). Then Y,Z are martingales with Y(0) =

Z(0) = 0 and E[|Y(T )|2] < ∞,E[|Z(T )|2] < ∞. Applying Theorem 5.2 to Y

and Z, we obtain

E[Y(T )Z(T )] = E

[∫ T

0
∇XY dX

∫ T

0
∇XZ dX

]
.

Applying the Itô isometry formula yields the result. �

Using this result, we can extend the operator ∇X to define a weak derivative on
the space of (square-integrable) stochastic integrals, where ∇XY is characterized
by (51) being satisfied against all test processes.

The following definition introduces the Hilbert space W 1,2(X) of martingales
on which ∇X acts as a weak derivative, characterized by integration-by-part for-
mula (51). This definition may be also viewed as a nonanticipative counterpart of
Wiener–Sobolev spaces in the Malliavin calculus [22, 30].

DEFINITION 5.6 (Martingale Sobolev space). The martingale Sobolev space
W 1,2(X) is defined as the closure in I 2(X) of D(X).

The martingale Sobolev space W 1,2(X) is in fact none other than I 2(X), the
set of square-integrable stochastic integrals:

LEMMA 5.7. {∇XY,Y ∈ D(X)} is dense in L2(X) and

W 1,2(X) = I 2(X).

PROOF. We first observe that the set U of “cylindrical” processes of the form

φn,f,(t1,...,tn)(t) = f (X(t1), . . . ,X(tn))1t>tn,

where n ≥ 1, 0 ≤ t1 < · · · < tn ≤ T and f ∈ C∞
b (Rn,R) is a total set in L2(X),

that is, the linear span of U is dense in L2(X). For such an integrand φn,f,(t1,...,tn),
the stochastic integral with respect to X is given by the martingale

Y(t) = IX

(
φn,f,(t1,...,tn)

)
(t) = Ft(Xt ,At),

where the functional F is defined on ϒ as

Ft(xt , vt ) = f (x(t1−), . . . , x(tn−))
(
x(t) − x(tn)

)
1t>tn,

so that

∇xFt (xt , vt ) = f (xt1−, . . . , xtn−)1t>tn, ∇2
xFt (xt , vt ) = 0,

DtF (xt , vt ) = 0

which shows that F ∈ C
1,2
b ; see Example 2. Hence, Y ∈ C 1,2

b (X). Since f is
bounded, Y is obviously square integrable, so Y ∈ D(X). Hence IX(U) ⊂ D(X).

Since IX is a bijective isometry from L2(X) to I 2(X), the density of U in
L2(X) entails the density of IX(U) in I 2(X), so W 1,2(X) = I 2(X). �
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THEOREM 5.8 (Extension of ∇X to W 1,2(X)). The vertical derivative
∇X :D(X) �→ L2(X) is closable on W 1,2(X). Its closure defines a bijective isom-
etry

∇X : W 1,2(X) �→ L2(X),
(52) ∫ ·

0
φ · dX �→ φ

characterized by the following integration by parts formula: for Y ∈ W 1,2(X),
∇XY is the unique element of L2(X) such that

∀Z ∈ D(X), E[Y(T )Z(T )] = E

[∫ T

0
∇XY(t)∇XZ(t) d[X](t)

]
.(53)

In particular, ∇X is the adjoint of the Itô stochastic integral

IX : L2(X) �→ W 1,2(X),
(54)

φ �→
∫ ·

0
φ · dX

in the following sense:

∀φ ∈ L2(X),∀Y ∈ W 1,2(X),
(55)

E

[
Y(T )

∫ T

0
φ · dX

]
= E

[∫ T

0
∇XYφ d[X]

]
.

PROOF. Any Y ∈ W 1,2(X) may be written as Y(t) = ∫ t
0 φ(s) dX(s) with

φ ∈ L2(X), which is uniquely defined d[X] × dP a.e. The Itô isometry formula
then guarantees that (53) holds for φ. To show that (53) uniquely characterizes φ,
consider ψ ∈ L2(X) which also satisfies (53), then, denoting IX(ψ) = ∫ ·

0 ψ dX its
stochastic integral with respect to X, (53) then implies that

∀Z ∈ D(X), 〈IX(ψ) − Y,Z〉W 1,2(X) = E

[(
Y(T ) −

∫ T

0
ψ dX

)
Z(T )

]
= 0

which implies IX(ψ) = Y d[X] × dP a.e., since by construction D(X) is dense in
W 1,2(X). Hence, ∇X :D(X) �→ L2(X) is closable on W 1,2(X).

This construction shows that ∇X : W 1,2(X) �→ L2(X) is a bijective isometry
which coincides with the adjoint of the Itô integral on W 1,2(X). �

Thus, the Itô integral IX with respect to X,

IX : L2(X) �→ W 1,2(X),

admits an inverse on W 1,2(X) which is an extension of the (pathwise) vertical
derivative ∇X operator introduced in Definition 3.2, and

∀φ ∈ L2(X), ∇X

(∫ ·
0

φ dX

)
= φ(56)
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holds in the sense of equality in L2(X).
The above results now allow us to state a general version of the martingale

representation formula, valid for all square-integrable martingales:

THEOREM 5.9 (Martingale representation formula: general case). For any
square-integrable (F X

t )t∈[0,T ]-martingale Y ,

Y(T ) = Y(0) +
∫ T

0
∇XY dX, P-a.s.

6. Relation with the Malliavin derivative. The above results hold in partic-
ular in the case where X = W is a Brownian motion. In this case, the vertical
derivative ∇W may be related to the Malliavin derivative [2, 3, 22, 31] as follows.

Consider the canonical Wiener space (�0 = C0([0, T ],Rd),‖ ·‖∞,P) endowed
with its Borelian σ -algebra, the filtration of the canonical process. Consider an
FT -measurable functional H = H(X(t), t ∈ [0, T ]) = H(XT ) with E[|H |2] <

∞. If H is differentiable in the Malliavin sense [2, 22, 24, 31], for example, H ∈
D1,2 with Malliavin derivative DtH , then the Clark–Haussmann–Ocone formula
[24, 25] gives a stochastic integral representation of H in terms of the Malliavin
derivative of H .

H = E[H ] +
∫ T

0

pE[DtH |Ft ]dWt,(57)

where pE[DtH |Ft ] denotes the predictable projection of the Malliavin derivative.
This yields a stochastic integral representation of the martingale Y(t) = E[H |Ft ],

Y(t) = E[H |Ft ] = E[H ] +
∫ t

0

pE[DtH |Fu]dWu.

Related martingale representations have been obtained under a variety of condi-
tions [2, 7, 11, 18, 24, 26].

Denote by:

• L2([0, T ] × �) the set of (anticipative) processes φ on [0, T ] with
E

∫ T
0 ‖φ(t)‖2 dt < ∞;

• D the Malliavin derivative operator, which associates to a random variable H ∈
D1,2(0, T ) the (anticipative) process (DtH)t∈[0,T ] ∈ L2([0, T ] × �).

THEOREM 6.1 (Lifting theorem). The following diagram is commutative is
the sense of dt × dP equality:

I 2(W)
∇W→ L2(W)

↑(E[·|Ft ])t∈[0,T ] ↑(E[·|Ft ])t∈[0,T ]

D1,2 D→ L2([0, T ] × �).
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In other words, the conditional expectation operator intertwines ∇W with the
Malliavin derivative,

∀H ∈ L2(�0, FT ,P), ∇W(E[H |Ft ]) = E[DtH |Ft ].(58)

PROOF. The Clark–Haussmann–Ocone formula [25] gives

∀H ∈ D1,2, H = E[H ] +
∫ T

0

pE[DtH |Ft ]dWt,(59)

where pE[DtH |Ft ] denotes the predictable projection of the Malliavin derivative.
On other hand, Theorem 5.2 gives

∀H ∈ L2(�0, FT ,P), H = E[H ] +
∫ T

0
∇WY(t) dW(t),(60)

where Y(t) = E[H |Ft ]. Hence pE[DtH |Ft ] = ∇WE[H |Ft ], dt × dP almost ev-
erywhere. �

Thus, the conditional expectation operator (more precisely: the predictable pro-
jection on Ft [8, Volume I]) can be viewed as a morphism which “lifts” relations
obtained in the framework of Malliavin calculus into relations between nonantic-
ipative quantities, where the Malliavin derivative and the Skorokhod integral are
replaced, respectively, by the vertical derivative ∇W and the Itô stochastic integral.

From a computational viewpoint, unlike the Clark–Haussmann–Ocone repre-
sentation which requires to simulate the anticipative process DtH and compute
conditional expectations, ∇XY only involves nonanticipative quantities which can
be computed path by path. It is thus more amenable to numerical computations.
This topic is further explored in a forthcoming work.

APPENDIX: PROOF OF THEOREM 2.7

In order to prove Theorem 2.7 in the general case where A is only required to
be cadlag, we need the following three lemmas. The first lemma states a property
analogous to “uniform continuity” for cadlag functions:

LEMMA A.1. Let f be a cadlag function on [0, T ] and define f (t) = f (t)−
f (t−). Then

∀ε > 0,∃η(ε) > 0,
(61)

|x − y| ≤ η ⇒ |f (x) − f (y)| ≤ ε + sup
t∈(x,y]

{|f (t)|}.

PROOF. If (61) does not hold, then there exists a sequence (xn, yn)n≥1 such
that xn ≤ yn, yn − xn → 0, but |f (xn) − f (yn)| > ε + supt∈[xn,yn]{|f (t)|}. We
can extract a convergent subsequence (xψ(n)) such that xψ(n) → x. Noting that
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either an infinity of terms of the sequence are less than x or an infinity are more
than x, we can extract monotone subsequences (un, vn)n≥1 which converge to x.
If (un), (vn) both converge to x from above or from below, |f (un) − f (vn)| →
0 which yields a contradiction. If one converges from above and the other from
below, supt∈[un,vn]{|f (t)|} ≥ |f (x)|, but |f (un) − f (vn)| → |f (x)|, which
results in a contradiction as well. Therefore (61) must hold. �

LEMMA A.2. If α ∈ R and V is an adapted cadlag process defined on a fil-
tered probability space (�, F , (Ft )t≥0,P) and σ is a optional time, then

τ = inf{t > σ, |V (t) − V (t−)| > α}(62)

is a stopping time.

PROOF. We can write that

{τ ≤ t} = ⋃
q∈Q∩[0,t)

({σ ≤ t − q} ∩
{

sup
t∈(t−q,t]

|V (u) − V (u−)| > α
}

(63)

and, using Lemma A.1,
{

sup
u∈(t−q,t]

|V (u) − V (u−)| > α
}

(64)

= ⋃
n0>1

⋂
n>n0

⋃
m≥1

{
sup

1≤i≤2n

∣∣∣∣V
(
t − q

i − 1

2n

)
− V

(
t − q

i

2n

)∣∣∣∣ > α + 1

m

}
.

�

LEMMA A.3 (Uniform approximation of cadlag functions by step functions).
Let f ∈ D([0, T ],Rd) and πn = (tni )n≥1,i=0,...,kn a sequence of partitions (0 =
tn0 < t1 < · · · < tnkn

= T ) of [0, T ] such that

sup
0≤i≤kn−1

|tni+1 − tni | n→∞→ 0, sup
u∈[0,T ]\πn

|f (u)| n→∞→ 0

then

sup
u∈[0,T ]

∣∣∣∣∣f (u) −
kn−1∑
i=0

f (tni )1[tni ,tni+1)
(u) + f (tnkn

)1{tnkn }(u)

∣∣∣∣∣
n→∞→ 0.(65)

PROOF. Denote hn = f − ∑kn−1
i=0 f (tni )1[tni ,tni+1)

+ f (tnkn
)1{tnkn }. Since f − hn

is piecewise constant on πn and hn(tni ) = 0 by definition,

sup
t∈[0,T ]

|hn(t)| = sup
i=0,...,kn−1

sup
[tni ,tn+1

i )

|hn(t)| = sup
tni <t<tn+1

i

|f (t) − f (tni )|.
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Let ε > 0. For n ≥ N sufficiently large, supu∈[0,T ]\πn |f (u)| ≤ ε/2 and
supi |tni+1 − tni | ≤ η(ε/2) using the notation of Lemma A.1. Then, applying
Lemma A.1 to f we obtain, for n ≥ N ,

sup
t∈[tni ,tn+1

i )

|f (t) − f (tni )| ≤ ε

2
+ sup

tni <t<tn+1
i

|f (u)| ≤ ε.
�

We can now prove Theorem 2.7 in the case where A is a cadlag adapted process.

PROOF OF THEOREM 2.7. Let us first show that Ft(Xt ,At ) is adapted. Define

τN
0 = 0, τN

k = inf
{
t > τN

k−1|2Nt ∈ N or |A(t) − A(t−)| > 1

N

}
∧ t.(66)

From lemma A.2, τN
k are stopping times. Define the following piecewise constant

approximations of Xt and At along the partition (τN
k , k ≥ 0):

XN(s) = ∑
k≥0

XτN
k

1[τN
k ,τN

k+1[(s) + X(t)1{t}(s),

(67)
AN(s) = ∑

k=0

AτN
k

1[τN
k ,τN

k+1)
(t) + A(t)1{t}(s),

as well as their truncations of rank K

KXN(s) =
K∑

k=0

XτN
k

1[τN
k ,τN

k+1)
(s), KAN(t) =

K∑
k=0

AτN
k

1[τN
k ,τN

k+1)
(t).(68)

Since (KXN
t ,K AN

t ) coincides with (XN
t ,AN

t ) for K sufficiently large,

Ft(X
N
t ,AN

t ) = lim
K→∞Ft(KXN

t ,K AN
t ).(69)

The approximations Fn
t (KXN

t ,K AN
t ) are Ft -measurable as they are continuous

functions of the random variables

{(X(τN
k )1τN

k ≤t ,A(τN
k )1τN

k ≤t ), k ≤ K},
so their limit Ft(X

N
t ,AN

t ) is also Ft -measurable. Thanks to Lemma A.3, XN
t

and AN
t converge uniformly to Xt and At , and hence Ft(X

N
t ,AN

t ) converges to
Ft(Xt ,At ) since Ft : (D([0, t],Rd) × St ,‖ · ‖∞) → R is continuous.

To show the optionality of Z in point (ii), we will show that Z it as limit of right-
continuous adapted processes. For t ∈ [0, T ], define in(t) to be the integer such
that t ∈ [ iT

n
, (i+1)T

n
). Define the process Zn

t = F(in(t))T /n(X(in(t))T /n,A(in(t))T /n),
which is piecewise-constant and has right-continuous trajectories, and is also
adapted by the first part of the theorem. Since F ∈ C

0,0
l , Zn(t) → Z(t) almost

surely, which proves that Z is optional. Point (iii) follows from (i) and Lemma 2.6,
since in both cases Ft(Xt ,At ) = Ft(Xt−,At−), and hence Z has left-continuous
trajectories. �
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