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UNIFORM LOGARITHMIC SOBOLEV INEQUALITIES FOR
CONSERVATIVE SPIN SYSTEMS WITH SUPER-QUADRATIC

SINGLE-SITE POTENTIAL

BY GEORG MENZ1 AND FELIX OTTO

Max Planck Institute for Mathematics in the Sciences

We consider a noninteracting unbounded spin system with conservation
of the mean spin. We derive a uniform logarithmic Sobolev inequality (LSI)
provided the single-site potential is a bounded perturbation of a strictly con-
vex function. The scaling of the LSI constant is optimal in the system size.
The argument adapts the two-scale approach of Grunewald, Villani, West-
dickenberg and the second author from the quadratic to the general case.
Using an asymmetric Brascamp–Lieb-type inequality for covariances, we re-
duce the task of deriving a uniform LSI to the convexification of the coarse-
grained Hamiltonian, which follows from a general local Cramér theorem.

1. Introduction and main result. The grand canonical ensemble μ is a prob-
ability measure on R

N given by

μ(dx) := 1

Z
exp(−H(x)) dx.

Throughout the article, Z denotes a generic normalization constant. The value of
Z may change from line to line or even within a line. The noninteracting Hamil-
tonian H : RN → R is given by a sum of single-site potentials ψ : R → R that are
specified later, that is,

H(x) :=
N∑

i=1

ψ(xi).(1)

For a real number m, we consider the N − 1 dimensional hyper-plane XN,m given
by

XN,m :=
{
x ∈ R

N,
1

N

N∑
i=1

xi = m

}
.
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We equip XN,m with the standard scalar product induced by R
N , namely

〈x, x̃〉 :=
N∑

i=1

xix̃i .

The restriction of μ to XN,m is called canonical ensemble μN,m, that is,

μN,m(dx) := 1

Z
exp(−H(x))HN−1

�XN,m
(dx).(2)

Here, HN−1
�XN,m

denotes the N − 1 dimensional Hausdorff measure restricted to the
hyperplane XN,m. For convenience, we introduce the notation:

a � b ⇔ there is a constant C > 0 uniformly in the systems size N and
the mean spin m such that a ≤ Cb;

a ∼ b ⇔ it holds that a � b and b � a.

In 1993, Varadhan ([23], Lemma 5.3 ff.) posed the question for which kind
of single-site potential ψ the canonical ensemble μN,m satisfies a spectral gap
inequality (SG) uniformly in the system size N and the mean spin m. A partial
answer was given by Caputo [5]:

THEOREM 1.1 (Caputo). Assume that for the single-site potential ψ there
exist a splitting ψ = ψc + δψ and constants β−, β+ ∈ [0,∞) such that for all
x ∈ [0,∞),

ψ ′′
c (x) ∼ |x|β+ + 1, ψ ′′

c (−x) ∼ |x|β− + 1 and
(3)

|δψ | + |δψ ′| + |δψ ′′| � 1.

Then the canonical ensemble μN,m satisfies the SG with constant � > 0 uniformly
in the system size N and the mean spin m. More precisely, for any function f ,

varμN,m
(f ) =

∫ (
f −

∫
f dμN,m

)2

dμN,m ≤ 1

�

∫
|∇f |2 dμN,m.

Here, ∇ denotes the gradient determined by the Euclidean structure of XN,m.

In this article, we give a full answer to the question by Varadhan [23] and also
show that the last theorem can be strengthened to the logarithmic Sobolev inequal-
ity (LSI).

DEFINITION 1.2 (LSI). Let X be a Euclidean space. A Borel probability mea-
sure μ on X satisfies the LSI with constant � > 0, if for all functions f ≥ 0∫

f logf dμ −
∫

f dμ log
(∫

f dμ

)
≤ 1

2�

∫ |∇f |2
f

dμ.(4)

Here, ∇ denotes the gradient determined by the Euclidean structure of X.
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REMARK 1.3 (Gradient on XN,m). If we choose X = XN,m in Definition 1.2,
we can calculate |∇f |2 in the following way: Extend f :XN,m → R to be constant
on the direction normal to XN,m. Then

|∇f |2 =
N∑

i=1

∣∣∣∣ d

dxi

f

∣∣∣∣
2

.

The LSI was originally introduced by Gross [10]. It yields the SG and can be
used as a powerful tool for studying spin systems. Like the SG, the LSI implies
exponential convergence to equilibrium of the naturally associated conservative
diffusion process. The rate of convergence is given by the LSI constant �; cf. [22],
Chapter 3.2, and Remark 1.7. Therefore, an appropriate scaling of the LSI constant
in the system size indicates the absence of phase transitions. The SG yields con-
vergence in the sense of variances in contrast to the LSI, which yields convergence
in the sense of relative entropies. The SG and the LSI are also useful for deducing
the hydrodynamic limit; see [23] for the SG and [11] for the LSI.

We consider three cases of different potentials: sub-quadratic, quadratic and
super-quadratic single-site potentials. In the case of sub-quadratic single-site po-
tentials, Barthe and Wolff [2] gave a counterexample where the scaling in the sys-
tem size of the SG and the LSI constant of the canonical ensemble differs in the
system size. More precisely, they showed:

THEOREM 1.4 (Barthe and Wolff). Assume that the single-site potential ψ is
given by

ψ(x) =
{

x, for x > 0,
∞, else.

Then the SG constant �1 and the LSI constant �2 of the canonical ensemble μN,m

satisfy

�1 ∼ 1

m2 and �2 ∼ 1

Nm2 .

In the case of perturbed quadratic single-site potentials it is known that Theo-
rem 1.1 can be improved to the LSI. More precisely, several authors (cf. [6, 11,
17]) deduced the following statement by different methods:

THEOREM 1.5 (Landim, Panizo and Yau). Assume that the single-site po-
tential ψ is perturbed quadratic in the following sense: There exists a splitting
ψ = ψc + δψ such that

ψ ′′
c = 1 and |δψ | + |δψ ′| + |δψ ′′| � 1.(5)

Then the canonical ensemble μN,m satisfies the LSI with constant � > 0 uniformly
in the system size N and the mean spin m.
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There is only left to consider the super-quadratic case. It is conjectured that the
optimal scaling LSI also holds if the single-site potential ψ is a bounded pertur-
bation of a strictly convex function; cf. [17], page 741, [6], Theorem 0.3 f., and
[5], page 226. Heuristically, this conjecture seems reasonable: Because the LSI is
closely linked to convexity (consider, e.g., the Bakry–Émery criterion), a perturbed
strictly convex potential should behave no worse than a perturbed quadratic one.
However technically, the methods for the quadratic case are not able to handle the
perturbed strictly convex case because they require an upper bound on the second
derivative of the Hamiltonian. In the main result of the article we show that the
conjecture from above is true:

THEOREM 1.6. Assume that the single-site potential ψ is perturbed strictly
convex in the sense that there is a splitting ψ = ψc + δψ such that

ψ ′′
c � 1 and |δψ | + |δψ ′| � 1.(6)

Then the canonical ensemble μN,m satisfies the LSI with constant � > 0 uniformly
in the system size N and the mean spin m.

REMARK 1.7 (From Glauber to Kawasaki). The bound on the r.h.s. of (4)
is given in terms of the Glauber dynamics in the sense that we have endowed
XN,m with the standard Euclidean structure inherited from R

N . By the discrete
Poincaré inequality, one can recover the bound for the Kawasaki dynamics (cf.
[11], Remark 15, or [5]) in the sense that one endows XN,m with the Euclidean
structure coming from the discrete H−1-norm. More precisely, if � is a cubic
lattice in any dimension of width L, then Theorem 1.6 yields the LSI for Kawasaki
dynamics with constant L−2�, which is the optimal scaling in L; cf. [24].

Note that the standard criteria for the SG and the LSI (cf. Appendix) fail for the
canonical ensemble μN,m:

• The Tensorization principle for the SG and the LSI does not apply because of
the restriction to the hyper-plane XN,m; cf. [12], Theorem 4.4, or Theorem A.1.

• The Bakry–Émery criterion does not apply because the Hamiltonian H is not
strictly convex; cf. [1], Proposition 3 and Corollary 2, or Theorem A.3.

• The Holley–Stroock criterion does not help because the LSI constant � has to be
independent of the system size N ; cf. [14], page 1184, or Theorem A.2.

Therefore, a more elaborated machinery was needed for the proof of Theorems 1.1
and 1.5. The approach of Caputo to Theorem 1.1 seems to be restricted to the SG
because it relies on the spectral nature of the SG. For the proof of Theorem 1.5,
Landim, Panizo and Yau [17] and Chafaï [6] used the Lu–Yau martingale method
that was originally introduced in [19] to deduce an analog version of Theorem 1.5
in the case of discrete spin values. Recently, Grunewald, Villani, Westdickenberg
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and the second author [11] provided a new technique for deducing Theorem 1.5,
called the two-scale approach. We follow this approach in the proof of Theo-
rem 1.6.

The limiting factor for extending Theorem 1.5 to more general single-site po-
tentials is almost the same for the Lu–Yau martingale method and for the two-scale
approach: It is the estimation of a covariance term w.r.t. the measure μN,m condi-
tioned on a special event; cf. [17], (4.6), and [11], (42). In the two-scale approach
one has to estimate for some large but fixed K � 1 and any nonnegative function
f the covariance ∣∣∣∣∣covμK,m

(
f,

1

K

K∑
i=1

ψ ′(xi)

)∣∣∣∣∣.
In [11], this term term was estimated by using a standard estimate (cf. Lemma 2.10
and [11], Lemma 22) that only can be applied for perturbed quadratic single-site
potentials ψ . We get around this difficulty by making the following adaptations:
Instead of one-time coarse-graining of big blocks, we consider iterative coarse-
graining of pairs. As a consequence we only have to estimate the covariance
term from above in the case K = 2. Because μ2,m is a one-dimensional mea-
sure, we are able to apply the more robust asymmetric Brascamp–Lieb inequality
(cf. Lemma 2.11) that can also be applied for perturbed strictly convex single-site
potentials ψ .

Recently, the optimal scaling LSI was established in [20] by the first author for
a weakly interacting Hamiltonian with perturbed quadratic single-site potentials
ψ , that is,

H(x) =
N∑

i=1

ψ(xi) + ε
∑

1≤i<j≤N

bij xixj .

Because the original two-scale approach was used, it is an interesting question
if one could extend this result to perturbed strictly convex single-site potentials.
A direct transfer of the argument of [20] fails because of the iterative structure of
the proof of Theorem 1.6.

The remaining part of this article is organized as follows. In Section 2.1 we
prove the main result. The auxiliary results of Section 2.1 are proved in Section 2.2.
There is one exception: The convexification of the single-site potential by iterated
renormalization (see Theorem 2.6) is proved in Section 3. In the short Appendix
we state the standard criteria for the SG and the LSI.

2. Adapted two-scale approach.

2.1. Proof of the main result. The proof of Theorem 1.6 is based on an adap-
tation of the two-scale approach of [11]. We start with introducing the concept of
coarse-graining of pairs. We recommend reading [11], Chapter 2.1, as a guideline.
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We assume that the number N of sites is given by N = 2K for some large
number K ∈ N. The step to arbitrary N is not difficult; cf. Remark 2.7, below. We
decompose the spin system into blocks, each containing two spins. The coarse-
graining operator P :XN,m → XN/2,m assigns to each block the mean spin of the
block. More precisely, P is given by

P(x) := (1
2(x1 + x2),

1
2(x3 + x4), . . . ,

1
2(xN−1 + xN)

)
.(7)

Due to the coarse-graining operator P , we can decompose the canonical ensemble
μN,m into

μN,m(dx) = μ(dx|y)μ̄(dy),(8)

where μ̄ := P#μN,m denotes the push forward of the Gibbs measure μ under P

and μ(dx|y) is the conditional measure of x given Px = y. The last equation has
to be understood in a weak sense; that is, for any test function ξ∫

ξ dμN,m =
∫
Y

(∫
{Px=y}

ξμ(dx|y)

)
μ̄(dy).

Now, we are able to state the first ingredient of the proof of Theorem 1.6.

PROPOSITION 2.1 (Hierarchic criterion for the LSI). Assume that the single-
site potential ψ is perturbed strictly convex in the sense of (6). If the marginal μ̄

satisfies the LSI with constant �1 > 0 uniformly in the system size N and the mean
spin m, then the canonical ensemble μN,m also satisfies the LSI with constant
�2 > 0 uniformly in the system size N and the mean spin m.

The proof of this statement is given in Section 2.2. Due to the last proposition
it suffices to deduce the LSI for the marginal μ̄. Hence, let us have a closer look
at the structure of μ̄. We will characterize the Hamiltonian of the marginal μ̄ with
the help of the renormalization operator R, which is introduced as follows.

DEFINITION 2.2. Let ψ : R → R be a single-site potential. Then the renor-
malized single-site potential Rψ : R → R is defined by

Rψ(y) := − log
∫

exp
(−ψ(x + y) − ψ(−x + y)

)
dx.(9)

REMARK 2.3. The renormalized single-site potential Rψ can be interpreted
in the following way: A change of variables (cf. [8], Section 3.3.3) and the invari-
ance of the Hausdorff measure under translation yield the identity

exp(−Rψ(y)) =
∫

exp
(−ψ(x + y) − ψ(−x + y)

)
dx

= 1√
2

∫
exp

(−ψ(x1) − ψ(x2)
)

H1�{x1+x2=2y}(dx).
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Therefore, the renormalized single-site potential Rψ describes the free energy
of two independent spins X1 and X2 [identically distributed as Z−1 exp(−ψ)]
conditioned on a fixed mean value 1

2(X1 + X2) = y.

LEMMA 2.4 (Invariance under renormalization). Assume that the single-site
potential ψ is perturbed strictly convex in the sense of (6). Then the renormalized
Hamiltonian Rψ is also perturbed strictly convex in the sense of (6).

Direct calculation using the coarea formula (cf. [8], Section 3.4.2) reveals the
following structure of the marginal μ̄.

LEMMA 2.5. The marginal μ̄ is given by

μ̄(dy) = 1

Z
exp

(
−

N/2∑
i=1

Rψ(yi)

)
HN/2−1

�XN/2,m
(dy).

It follows from the last two lemmas that the marginal μ̄ has the same structure
as the canonical ensemble μN,m. The single-site potential of μ̄ is given by the
renormalized single-site potential Rψ . Hence, one can iterate the coarse-graining
of pairs. The next statement shows that after finitely many iterations the renormal-
ized single-site potential RMψ becomes uniformly strictly convex. Therefore, the
Bakry–Émery criterion (cf. Theorem A.3) yields that the corresponding marginal
satisfies the LSI with constant �̃ > 0, uniformly in the system size N and the mean
spin m. Then, an iterated application of the hierarchic criterion of the LSI (cf.
Proposition 2.1) yields Theorem 1.6 in the case N = 2K .

THEOREM 2.6 (Convexification by renormalization). Let ψ be a perturbed
strictly convex single-site potential in the sense of (6). Then there is an integer M0
such that for all M ≥ M0 the M-times renormalized single-site potential RMψ is
uniformly strictly convex independently of the system size N and the mean spin m.

We conclude this section by giving some remarks and pointing out the central
tools needed for the proof of the auxiliary results. The next remark shows how
Theorem 1.6 is verified in the case of an arbitrary number N of sites.

REMARK 2.7. Note that an arbitrary number of sites N can be written as

N = K̃2K + R

for some number K̃ , a large but fixed number K and a bounded number R < 2K .
Hence, one can decompose the spin system into K̃ blocks of 2K spins and one
block of R spins. The big blocks of 2K spins are coarse-grained by pairs, whereas
the small block of R spins is not coarse-grained at all. After iterating this proce-
dure sufficiently often, the renormalized single-site potentials of the big blocks are



LSI FOR CONSERVATIVE SPIN SYSTEMS 2189

uniformly strictly convex. On the remaining block of R spins, the corresponding
single-site potentials are unchanged. Because ψ is a bounded perturbation of a
strictly convex function, it follows from a combination of the Bakry–Émery cri-
terion (cf. Theorem A.3) and the Holley–Stroock criterion (cf. Theorem A.2) that
the marginal of the whole system satisfies the LSI with constant

� � exp
(−R(sup δψ − inf δψ)

)
,

which is independent on N and m. Therefore, an iterated application of the hierar-
chic criterion of the LSI (cf. Proposition 2.1) yields Theorem 1.6.

REMARK 2.8 (Inhomogeneous single-site potentials). It is a natural question
whether this approach can be applied to the case of inhomogeneous single-site
potentials. In this case, the single-site potentials are allowed to depend on the sites;
that is, the Hamiltonian has the form H = ∑N

i=1 ψi where each ψi is a perturbed
strictly-convex potential. In principle, we believe that our approach can be adapted
to this situation even if not in a straightforward way. The reason is that only one
step of the proof of Theorem 1.6 has to be adapted: It is the convexification of the
single-site potentials by iterated renormalization (see Theorem 2.6).

Let us make a comment on the proof of Theorem 2.6, which is stated in Sec-
tion 3. Starting point for the proof is the observation that the M-times renormalized
single-site potential RMψ corresponds to the coarse-grained Hamiltonian related
to coarse-graining with block size 2M ; cf. [11].

LEMMA 2.9. For K ∈ N let the coarse-grained Hamiltonian H̄K be defined
by

H̄K(m) = − 1

K
log

∫
exp(−H(x))HK−1

�XK,m
(dx).(10)

Let M ∈ N. Then there is a constant 0 < C(2M) < ∞ depending only on 2M such
that

RMψ = 2MH̄2M + C(2M).

Because the last statement is verified by a straightforward application of the area
and coarea formula, we omit the proof. In Lemma 2.9 one could easily determine
the exact value of the constant C(2M). However, the exact value is not important
because we are only interested in the convexity of RMψ . In [11], the convexifica-
tion of H̄K was deduced from a local Cramér theorem; cf. [11], Proposition 31. For
the proof of Theorem 2.6 we follow the same strategy generalizing the argument
to perturbed strictly convex single-site potentials ψ .

Now, we make some comments on the proof of Proposition 2.1 and Lemma 2.4,
which are stated in Section 2.2. One of the limiting factors in the proof of Theo-
rem 1.5 is the application of a classical covariance estimate; cf. [11], Lemma 22.
In our framework this estimate can be formulated as:
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LEMMA 2.10. Assume that the single-site potential ψ is perturbed strictly
convex in the sense of (6). Let ν be a probability measure on R given by

ν(dx) = 1

Z
exp(−ψ(x)) dx.

Then for any function f ≥ 0 and g

| covν(f, g)| � sup
x

|g′(x)|
(∫

f dν

)1/2(∫ |f ′|2
f

dν

)1/2

.

In [11], the last estimate was applied to the function g = ψ ′. Note that the func-
tion |g′(x)| = |ψ ′′(x)| is only bounded in the case of a perturbed quadratic single-
site potential ψ . The main new ingredient for the proof of the hierarchic crite-
rion for the LSI (cf. Proposition 2.1) and the invariance principle (cf. Lemma 2.4)
is an asymmetric Brascamp–Lieb inequality, which does not exhibit this restric-
tion.

LEMMA 2.11. Assume that the single-site potential ψ is perturbed strictly
convex in the sense of (6). Let ν be a probability measure on R given by

ν(dx) = 1

Z
exp(−ψ(x)) dx.

Then for any function f and g

| covν(f, g)| ≤ exp (3 osc δψ) sup
x

∣∣∣∣ g′(x)

ψ ′′
c (x)

∣∣∣∣
∫

|f ′|dν,

where osc δψ := supx δψ(x) − infx δψ(x).

We call the last inequality asymmetric because, compared to the original
Brascamp–Lieb inequality [4], the space L2 × L2 is replaced by L1 × L∞, and
the factor (ψ ′′

c )−1/2 is not evenly distributed. It is an interesting question if an ana-
log statement also holds for higher dimensions. The proof of Lemma 2.11 is based
on a kernel representation of the covariance. All steps are elementary.

PROOF OF LEMMA 2.11. Let us consider a Gibbs measure μ associated to the
Hamiltonian H : R → R. More precisely, μ is given by

μ(dx) := 1

Z
exp(−H(x)) dx.

We start by deriving the following integral representation of the covariance of μ:

covμ(f, g) =
∫ ∫

f ′(x)Kμ(x, y)g′(y) dx dy,(11)
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where the nonnegative kernel Kμ(x, y) is given by

Kμ(x, y) :=
{
Mμ(x)(1 − Mμ)(y) for y ≥ x

(1 − Mμ)(x)Mμ(y) for y ≤ x

}
,

and Mμ(x) := μ((−∞, x)) so that (1 − Mμ)(x) = μ((x,∞)). Indeed, we start by
noting that

covμ(f, g) =
∫ ∫ (

f (z) − f (x)
)
μ(x)dx

∫ (
g(z)− g(y)

)
μ(y)dy μ(z) dz,(12)

where we do not distinguish between the measure μ(dx) and its Lebesgue density
μ(x) in our notation. Using M ′

μ(x) = μ(x), we can use integration by parts to
rewrite each factor in terms of the derivative∫ (

f (z) − f (x)
)
μ(x)dx

=
∫ z

−∞
(
f (z) − f (x)

)
M ′

μ(x) dx −
∫ ∞
z

(
f (z) − f (x)

)
(1 − Mμ)′(x) dx

=
∫ z

−∞
f ′(x)Mμ(x) dx −

∫ ∞
z

f ′(x)(1 − Mμ)(x) dx

=
∫

f ′(x)
(
I (x < z)Mμ(x) − I (x > z)(1 − Mμ)(x)

)
dx,

where I (x < z) assumes the value 1 if x < z and zero otherwise. Inserting this and
the corresponding identity for g(y) into (12), we obtain

covμ(f, g)

=
∫ ∫

f ′(x)
(
I (x < z)Mμ(x) − I (x > z)(1 − Mμ)(x)

)
dx

(13)
×

∫
g′(y)

(
I (y < z)Mμ(y) − I (y > z)(1 − Mμ)(y)

)
dyμ(z) dz

=
∫ ∫

f ′(x)Kμ(x, y)g′(y) dx dy

with kernel Kμ(x, y) as desired, given by

Kμ(x, y)

= Mμ(x)Mμ(y)

∫
I (x < z)I (y < z)μ(z) dz

− Mμ(x)(1 − Mμ)(y)

∫
I (x < z)I (y > z)μ(z) dz

− (1 − Mμ)(x)Mμ(y)

∫
I (x > z)I (y < z)μ(z) dz

+ (1 − Mμ)(x)(1 − Mμ)(y)

∫
I (x > z)I (y > z)μ(z) dz
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= Mμ(x)Mμ(y)(1 − Mμ)(max{x, y})
− Mμ(x)(1 − Mμ)(y)I (y > x)

(
Mμ(y) − Mμ(x)

)
− (1 − Mμ)(x)Mμ(y)I (y < x)

(
Mμ(x) − Mμ(y)

)
+ (1 − Mμ)(x)(1 − Mμ)(y)Mμ(min{x, y})

= I (y > x)
(
Mμ(x)Mμ(y)(1 − Mμ)(y)

− Mμ(x)(1 − Mμ)(y)
(
Mμ(y) − Mμ(x)

)
+ (1 − Mμ)(x)(1 − Mμ)(y)Mμ(x)

)
+ I (y ≤ x)

(
Mμ(x)Mμ(y)(1 − Mμ)(x)

− (1 − Mμ)(x)Mμ(y)
(
Mμ(x) − Mμ(y)

)
+ (1 − Mμ)(x)(1 − Mμ)(y)Mμ(y)

)
= I (y > x)Mμ(x)(1 − Mμ)(y) + I (y ≤ x)(1 − Mμ)(x)Mμ(y).

We now establish the following identity for the above kernel:∫
Kμ(x, y)H ′′(y) dy = μ(x).(14)

Indeed, we have by integrations by part∫
Kμ(x, y)H ′′(y) dy

= (1 − Mμ)(x)

∫ x

−∞
Mμ(y)H ′′(y) dy + Mμ(x)

∫ ∞
x

(1 − Mμ)(y)H ′′(y) dy

= (1 − Mμ)(x)

(
Mμ(x)H ′(x) −

∫ x

−∞
M ′

μ(y)H ′(y) dy

)

+ Mμ(x)

(
−(1 − Mμ)(x)H ′(x) +

∫ ∞
x

M ′
μ(y)H ′(y) dy

)

= −(1 − Mμ)(x)

∫ x

−∞
exp(−H(y))H ′(y) dy

+ Mμ(x)

∫ ∞
x

exp(−H(y))H ′(y) dy

= (1 − Mμ)(x)μ(x) + Mμ(x)μ(x) = μ(x).

Let us now consider the Gibbs measures ν(dx) and νc(dx), given by

ν(dx) = 1

Z
exp

(−ψc(x) − δψ(x)
)
dx and νc(dx) = 1

Z
exp(−ψc(x)) dx.
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By the integral representation (11) of the covariance we have the estimate

| covν(f, g)| ≤
∫ ∫

|f ′(x)|Kν(x, y)|g′(y)|dx dy.

By a straight-forward calculation, we can estimate

Mν(x) =
∫ x
−∞ exp(−ψc(x) − δψ(x)) dx∫

exp(−ψc(x) − δψ(x)) dx

≤ exp(osc δψ)

∫ x
−∞ exp(−ψc(x)) dx∫

exp(−ψc(x)) dx

= exp(osc δψ)Mνc(x).

Together with a similar estimate for (1 − Mν(y)), this yields the kernel estimate

Kν(x, y) ≤ exp(2 osc δψ)Kνc(x, y).

Applying this to the covariance estimate from above yields

| covν(f, g)| ≤ exp(2 osc δψ)

∫ ∫
|f ′(x)|Kνc(x, y)|g′(y)|dx dy.

Using the identity (14) for μ = νc, we may easily conclude

| covν(f, g)| ≤ exp(2 osc δψ) sup
y

|g′(y)|
ψ ′′

c (y)

∫
|f ′(x)|

∫
Kνc(x, y)ψ ′′

c (y) dy dx

= exp(2 osc δψ) sup
y

|g′(y)|
ψ ′′

c (y)

∫
|f ′(x)|νc(dx)

≤ exp(3 osc δψ) sup
y

|g′(y)|
ψ ′′

c (y)

∫
|f ′(x)|ν(dx). �

For the entertainment of the reader, let us argue how the identity (14) also yields
the traditional Brascamp–Lieb inequality in the case H ′′ > 0. Indeed, by the sym-
metry of the kernel Kμ(x, y), identity (14) yields, for all x and y,∫

Kμ(x, y)H ′′(y) dy = μ(x) and
∫

Kμ(x, y)H ′′(x) dx = μ(y).(15)

The integral representation of the covariance (11) yields

varμ(f ) =
∫ ∫

f ′(x)Kμ(x, y)f ′(y) dx dy

=
∫ ∫

f ′(x)

(
Kμ(x, y)H ′′(y)

H ′′(x)

)1/2

f ′(y)

(
Kμ(x, y)H ′′(x)

H ′′(y)

)1/2

dx dy.
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Then a combination of Hölder’s inequality and the identity (15) for the kernel
Kμ(x, y) yields the Brascamp–Lieb inequality,

varμ(f ) ≤
(∫ ∫ |f ′(x)|2

H ′′(x)
Kμ(x, y)H ′′(y) dy dx

)1/2

×
(∫ ∫ |f ′(y)|2

H ′′(y)
Kμ(x, y)H ′′(x) dx dy

)1/2

(16)

=
(∫ |f ′(x)|2

H ′′(x)
μ(x) dx

)1/2(∫ |f ′(y)|2
H ′′(y)

μ(y) dy

)1/2

=
∫ |f ′(x)|2

H ′′(x)
μ(x) dx.

2.2. Proof of auxiliary results. In this section we outline the proof of Propo-
sition 2.1 and Lemma 2.4. We start with Proposition 2.1, which is the hierarchic
criterion for the LSI. Unfortunately, we cannot directly apply the two-scale crite-
rion of [11], Theorem 3. The reason is that the number

κ := max
{〈HessH(x)u, v〉

|u||v| , u ∈ im(2P tP ), v ∈ im(idX − 2P tP )

}
,(17)

which measures the interaction between the microscopic and macroscopic scales,
can be infinite for a perturbed strictly convex single-site potential ψ . However, we
follow the proof of [11], Theorem 3, with only one major difference: Instead of
applying the classical covariance estimate (cf. Lemma 2.10), we apply the asym-
metric Brascamp–Lieb inequality; cf. Lemma 2.11. Let us assume for the rest of
this section that the single-site potential ψ is perturbed strictly convex in the sense
of (6).

For convenience, we set X := XN,m and Y := XN/2,m. We choose on X and Y

the standard Euclidean structure given by

〈x, y〉 =
N∑

i=1

xiyi .

The coarse-graining operator P :X → Y given by (7) satisfies the identity

2PP t = idY ,

where P t :Y → X is the adjoint operator of P . Note that our P t differs from the
P t of [11], because the Euclidean structure on Y differs from the Euclidean struc-
ture used in [11] by a factor. The last identity yields that 2P tP is the orthogonal
projection of X to imP t . Hence, one can decompose X into the orthogonal sum
of microscopic fluctuations and macroscopic variables according to

X = kerP ⊕ imP t
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and

x = (idX − 2P tP )x + 2P tPx.

We apply this decomposition to the gradient ∇f of a smooth function f on X. The
gradient ∇f is decomposed into a macroscopic gradient and a fluctuation gradient
satisfying

∇f (x) = (idX − 2P tP )∇f (x) + 2P tP∇f (x) and
(18)

|∇f (x)|2 = |(idX − 2P tP )∇f (x)|2 + |2P tP∇f (x)|2.
Note that kerP is the tangent space of the fiber {Px = y}. Hence the gradient of
f on {Px = y} is given by (idX − 2P tP )∇f (x). The first main ingredient of the
proof of Proposition 2.1 is the following statement.

LEMMA 2.12. The conditional measure μ(dx|y) given by (8) satisfies the LSI
with constant � > 0 uniformly in the system size N , the macroscopic profile y and
the mean spin m. More precisely, for any nonnegative function f∫

f logf μ(dx|y) −
∫

f μ(dx|y) log
(∫

f μ(dx|y)

)

≤ 1

2�

∫ |(idX − 2P tP )∇f |2
f

μ(dx|y).

PROOF OF LEMMA 2.12. Observe that the conditional measure μ(dx|y) has
a product structure: We decompose {Px = y} into a product of Euclidean spaces.
Namely for

X2,yi
:= {(x2i−1, x2i ), x2i−1 + x2i = 2yi}, i ∈

{
1, . . . ,

N

2

}
,

we have

{Px = y} = X2,y1 × · · · × X2,yN/2 .

It follows from the coarea formula (cf. [8], Section 3.4.2) that∫
{Px=y}

f (x)μ(dx|y)

=
∫

f (x)

N/2⊗
i=1

1

Z
exp

(−ψ(x2i−1) − ψ(x2i )
)

H1�X2,yi
(dx2i−1, dx2i ).

Hence μ(dx|y) is the product measure

μ(dx|y) =
N/2⊗
i=1

μ2,yi
(dx2i−1, dx2i),(19)
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where we make use of the notation introduced in (2). Because the single-site po-
tential ψ is perturbed strictly convex in the sense of (6), a combination of the
Bakry–Émery criterion (cf. Theorem A.3) and the Holley–Stroock criterion (cf.
Theorem A.2) yield that the measure μ2,m(dx1, dx2) satisfies the LSI with con-
stant � > 0 uniformly in m. Then the tensorization principle (cf. Theorem A.1)
implies the desired statement. �

For convenience, let us introduce the following notation: Let f be an arbitrary
function. Then its conditional expectation f̄ is defined by

f̄ (y) :=
∫

f (x)μ(dx|y).

The second main ingredient of the proof of Proposition 2.1 is the following propo-
sition, which is the analog statement of [11], Proposition 20.

PROPOSITION 2.13. Assume that the marginal μ̄(dy) given by (8) satisfies the
LSI uniformly in the system size N and the mean spin m. Then for any nonnegative
function f ,

|∇f̄ (y)|2
f̄ (y)

�
∫ |∇f (x)|2

f (x)
μ(dx|y),

uniformly in the macroscopic profile y and the system size N .

Before we verify Proposition 2.13, let us show how it can be used in the proof
of Proposition 2.1.

PROOF OF PROPOSITION 2.1. Using Lemma 2.12 and Proposition 2.13 from
above, the argument is exactly the same as in the proof of [11], Theorem 3:

Let φ denote the function φ(x) := x logx. The additive property of the entropy
implies∫

φ(f )dμN,m − φ

(∫
f dμN,m

)
=

∫ [∫
φ(f (x))μ(dx|y) − φ(f̄ (y))

]
μ̄(dy)

+
[∫

φ(f̄ (y))μ̄(dy) − φ

(∫
f̄ (y)μ̄(dy)

)]
.

An application of Lemma 2.12 yields the estimate∫ [∫
φ(f (x))μ(dx|y) − φ(f̄ (y))

]
μ̄(dy)

≤ 1

2�

∫ ∫ |(idX − 2P tP )∇f (x)|2
f (x)

μ(dx|y)μ̄(dy).



LSI FOR CONSERVATIVE SPIN SYSTEMS 2197

By assumption the marginal μ̄ satisfies the LSI with constant λ > 0. Together with
Proposition 2.13 this yields the estimate

∫
φ(f̄ (y))μ̄(dy) − φ

(∫
f̄ (y)μ̄(dy)

)
≤ 1

2λ

∫ |∇f̄ (y)|2
f̄ (y)

μ̄(dy)

�
∫ ∫ |∇f (x)|2

f (x)
μ(dx|y)μ̄(dy).

A combination of the last three formulas and the observations (8) and (18) yield∫
φ(f )dμN,m − φ

(∫
f dμN,m

)

�
∫ |(idX − 2P tP )∇f (x)|2

f (x)
μN,m(dx) +

∫ |∇f (x)|2
f (x)

μN,m(dx)

�
∫ |∇f (x)|2

f (x)
μN,m(dx),

uniformly in the system size N and the mean spin m. �

Because the hierarchic criterion for the LSI is an important ingredient in the
proof of the main result, we outline the proof of Proposition 2.13 in full detail.
We follow the proof of [11], Proposition 20, which is based on two lemmas. We
directly take over the first lemma (cf. [11], Lemma 21), which in our notation
becomes:

LEMMA 2.14. For any function f on X and any y ∈ Y , it holds∫
P∇f (x)μ(dx|y) = 1

2
∇f̄ (y) + P covμ(dx|y)(f,∇H).

REMARK 2.15. The notational difference compared to [11], Lemma 21, is
based on our choice of the Euclidean structure on Y = XN/2,m. Compared to the
notation in Lemma 21 of [11], we have

∇Y f̄ (y) = N

2
∇f̄ (y).

Hence we omit the proof, which is a straightforward calculation.

The more interesting ingredient of the proof of [11], Proposition 20, is the esti-
mate (see [11], (42), (43))

∣∣2P covμ(dx|y)(f,∇H)
∣∣2 ≤

√
2κ2

�2 f̄ (y)

∫ |(idX − 2P tP )∇f (x)|2
f (x)

μ(dx|y).
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In [11], the last estimate is deduced by direct calculation from the standard covari-
ance estimate given by Lemma 2.10. In contrast to [11] we cannot use this estimate
because the constant κ given by (17) may be infinite for a perturbed strictly convex
single-site potential ψ . We avoid this problem by applying the more robust asym-
metric Brascamp–Lieb inequality given by Lemma 2.11. Our substitute for the last
estimate is:

LEMMA 2.16. For any nonnegative function f

∣∣2P covμ(dx|y)(f,∇H)
∣∣2 � f̄ (y)

∫ |∇f (x)|2
f (x)

μ(dx|y),

uniformly in the system size N , the macroscopic profile y and the mean spin m.

We postpone the proof of Lemma 2.16 and show how it is used in the proof of
Proposition 2.13 (cf. proof of [11], Proposition 20).

PROOF OF PROPOSITION 2.13. Note that because for any a, b ∈ R,
1
2(a + b)2 ≤ a2 + b2,

it follows form the definition (7) of P that for any x,

|Px|2 ≤ 1
2 |x|2.(20)

By successively using Lemma 2.14 and Jensen’s inequality (with the convex func-
tion (a, b) �→ |b|2/a), we have

|∇f̄ (y)|2
f̄ (y)

= 4

f̄ (y)

∣∣∣∣P
∫

∇f (x)μ(dx|y) − P covμ(dx|y)(f,∇H)

∣∣∣∣
2

� 1

f̄ (y)

∣∣∣∣
∫

P∇f (x)μ(dx|y)

∣∣∣∣
2

+ 1

f̄ (y)

∣∣P covμ(dx|y)(f,∇H)
∣∣2

�
∫ |P∇f (x)|2

f (x)
μ(dx|y) + 1

f̄ (y)

∣∣2P covμ(dx|y)(f,∇H)
∣∣2.

On the first term on the r.h.s. we apply the estimate (20). On the second term we
apply Lemma 2.16, which yields the desired estimate. �

Now, we prove Lemma 2.16, which also represents one of the main differences
compared to the two-scale approach of [11]. The main ingredients are the prod-
uct structure (19) of μ(dx|y) and the asymmetric Brascamp–Lieb inequality; cf.
Lemma 2.11.

PROOF OF LEMMA 2.16. We have to estimate the covariance

∣∣2P covμ(dx|y)(f,∇H)
∣∣2 =

N/2∑
j=1

∣∣covμ(dx|y)(f, (2P∇H)j )
∣∣2.(21)



LSI FOR CONSERVATIVE SPIN SYSTEMS 2199

Therefore, let us consider for j ∈ {1, . . . , N
2 } the term covμ(dx|y)(f, (2P∇H)j ).

Note that the function

(2P∇H(x))j = ψ ′(x2j−1) + ψ ′(x2j )

only depends of the variables x2j−1 and x2j . Hence, the product structure (19) of
μ(dx|y) yields the identity

covμ(dx|y)(f,2(P∇H)j )
(22)

=
∫

covμ2,yj
(dx2j−1,dx2j

)(f, (2P∇H)j )

N/2⊗
i=1,i �=j

μ2,yi
(dx2i−1, dx2i

).

As we will show below, we obtain, by using the asymmetric Brascamp–Lieb in-
equality of Lemma 2.11 and the Csiszár–Kullback–Pinsker inequality, the estimate∣∣covμ2,yj

(dx2j−1,dx2j
)(f, (2P∇H)j )

∣∣
�

(∫
f (x)μ2,yj

(dx2j−1, dx2j
)

)1/2

(23)

×
(∫ |(d/(dx2j−1))f (x)|2 + |(d/(dx2j ))f (x)|2

f (x)

× μ2,yj
(dx2j−1, dx2j

)

)1/2

uniformly in j and yj . Therefore, a combination of identity (22), the last estimate
and Hölder’s inequality yield∣∣covμ(dx|y)(f, (2P∇H)j )

∣∣2
�

∫
f (x)μ(dx|y)

∫ |(d/(dx2j−1))f (x)|2 + |(d/(dx2j ))f (x)|2
f (x)

μ(dx|y),

which implies the desired estimate by the identity (21).
It is only left to deduce estimate (23). We assume w.l.o.g. j = 1. Recall the

splitting ψ = ψc + δψ given by (6). We use the bound on |δψ ′| to estimate∣∣covμ2,y1 (dx1,dx2)(f, (2P∇H)1)
∣∣

�
∣∣covμ2.y1 (dx1,dx2)

(
f,ψ ′

c(x1) + ψ ′
c(x2)

)∣∣(24)

+
∫ ∣∣∣∣f −

∫
f μ2,y1(dx1, dx2)

∣∣∣∣μ2,y1(dx1, dx2).

Now, we consider the first term on the r.h.s. of the last estimate. For y1 ∈ R let the
one-dimensional probability measure ν(dz|y1) be defined by the density

ν(dz|y1) := 1

Z
exp

(−ψ(−z + y1) − ψ(z + y1)
)
dz.(25)



2200 G. MENZ AND F. OTTO

A reparametrization of the one-dimensional Hausdorff measure implies∫
ξ(x1, x2)μ2,y1(dx1, dx2) =

∫
ξ(−z + y1, z + y1)ν(dz|y1)(26)

for any measurable function ξ . We may assume w.l.o.g. that f (x) = f (x1, x2) just
depends on the variables x1 and x2. Hence for

f̃ (z, y1) := f (−z + y1, z + y1) and g̃(z, y1) := ψ ′
c(−z + y1) + ψ ′

c(z + y1),

the last identity yields

covμ2,y1 (dx1,dx2)

(
f,ψ ′

c(x1) + ψ ′
c(x2)

) = covν(dz|y1)(f̃ , g̃).

Because∣∣∣∣ (d/(dz))g̃(z, y1)

ψ ′′
c (−z + y1) + ψ ′′

c (z + y1)

∣∣∣∣ =
∣∣∣∣−ψ ′′

c (−z + y1) + ψ ′′
c (z + y1)

ψ ′′
c (−z + y1) + ψ ′′

c (z + y1)

∣∣∣∣ ≤ 2,

an application of the asymmetric Brascamp–Lieb inequality (cf. Lemma 2.11)
yields

∣∣covν(dz|y1)(f̃ , g̃)
∣∣ �

∫ ∣∣∣∣ d

dz
f̃

∣∣∣∣ν(dz|y1)

�
(∫

f̃ ν(dz|y1)

)1/2(∫ |(d/(dz))f̃ |2
f̃

ν(dz|y1)

)1/2

.

From the last inequality and from (26) follows the estimate∣∣covμ2,y1 (dx1,dx2)

(
f,ψ ′

c(x1) + ψ ′
c(x2)

)∣∣
�

(∫
f μ2,y1(dx1, dx2)

)1/2

(27)

×
(∫ |(d/(dx1))f |2 + |(d/(dx2))f |2

f
μ2,y1(dx1, dx2)

)1/2

.

We turn to the second term on the r.h.s. of (24). For convenience, let us
write f̄ (y1) := ∫

f μ2,y1(dx1, dx2). An application of the well-known Csiszár–
Kullback–Pinsker inequality (cf. [7, 16]) yields∫

|f − f̄ (y1)|μ2,y1(dx1, dx2)

= f̄ (y1)

∫ ∣∣∣∣ f

f̄ (y1)
− 1

∣∣∣∣μ2,y1(dx1, dx2)

� f̄ (y1)

(∫
f

f̄ (y1)
log

f

f̄ (y1)
μ2,y1(dx1, dx2)

)1/2

.
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An application of the LSI for the measure μ2,y1(dx1, dx2) implies (cf. proof of
Lemma 2.12)∫ ∣∣∣∣f −

∫
f μ2,y1(dx1, dx2)

∣∣∣∣μ2,y1(dx1, dx2)

�
(∫

f μ2,y1(dx1, dx2)

)1/2

×
(∫ |(d/(dx1))f |2 + |(d/(dx2))f |2

f
μ2,y1(dx1, dx2)

)1/2

.

A combination of (24), (27), and the last inequality yield the estimate (23). �

We turn to the proof of Lemma 2.4. Again, the main ingredient of the proof is
the asymmetric Brascamp–Lieb inequality.

PROOF OF LEMMA 2.4. We define

ψc(m) := −1

2
log

∫
exp

(−ψc(−z + m) − ψc(z + m)
)
dz

and

δψ(m) := −1

2
log

∫
exp

(−ψ(−z + m) − ψ(z + m)
)
dz

+ 1

2
log

∫
exp

(−ψc(−z + m) − ψc(z + m)
)
dz.

Now, we show that the splitting Rψ = ψc + δψ satisfies the conditions given by
(6). Using the strict convexity of ψc it follows by a standard argument based on
the Brascamp–Lieb inequality (cf. [4] and (16)) that the first condition is preserved,
that is,

ψ
′′
c � 1.

We turn to the perturbation δψ . Analogously to the measure ν(dz|m) given by
(25), we introduce the measure νc(dz|m) via the density

νc(dz) := 1

Z
exp

(−ψc(−z + m) − ψc(z + m)
)
dz.

It follows that

δψ(m) = −1

2
log

∫
exp

(−δψ(−z + m) − δψ(z + m)
)
νc(dz).

Direct calculation using the bound |δψ | � 1 yields

|δψ(m)| � 1.
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We turn to the first derivative of δψ . A direct calculation based on the definition
of δψ yields

2δψ
′
(m) =

∫ (
ψ ′(−z + m) + ψ ′(z + m)

)
ν(dz)

−
∫ (

ψ ′
c(−z + m) + ψ ′

c(z + m)
)
νc(dz).

For s ∈ [0,1] we define the measure νs(dz) by the probability density

1

Z
exp

(−ψc(−z + m) − ψc(z + m) − sδψ(−z + m) − sδψ(z + m)
)
dz.

Note that νs interpolates between ν0 = νc and ν1 = ν. By the mean-value theorem
there is s ∈ [0,1] such that

2δψ
′
(m)

= d

ds

∫ (
ψ ′

c(−z + m) + ψ ′
c(z + m) + sδψ ′(−z + m) + sδψ ′(z + m)

)
νs(dz)

=
∫ (

δψ ′(−z + m) + δψ ′(z + m)
)
νs(dz)

+ covνs

(
ψ ′

c(−z + m) + ψ ′
c(z + m), δψ(−z + m) + δψ(z + m)

)
+ covνs

(
sδψ ′(−z + m) + sδψ ′(z + m), δψ(−z + m) + δψ(z + m)

)
.

The first term on the r.h.s. is controlled by the assumption |δψ ′| � 1. We turn
to the estimation of the first covariance term. An application of the asymmetric
Brascamp–Lieb inequality of Lemma 2.11 and |δψ |+|δψ ′| � 1 yields the estimate∣∣covνs

(
ψ ′

c(−z + m) + ψ ′
c(z + m), δψ(−z + m) + δψ(z + m)

)∣∣
� sup

z

∣∣∣∣ψ
′′
c (−z + m) − ψ ′′

c (z + m)

ψ ′′
c (−z + m) + ψ ′′

c (z + m)

∣∣∣∣
×

∫
| − δψ ′(−z + m) + δψ ′(z + m)|νs(dz)

� 1.

The second covariance term can be estimated by using |δψ |+ |δψ ′| � 1. Summing
up, we have deduced the desired estimate |δψ ′| � 1. �

3. Convexification by iterated renormalization. In this section we prove
Theorem 2.6 that states the convexification of a perturbed strictly convex single-
site potential ψ by iterated renormalization. The proof relies on a local Cramér
theorem and some auxiliary results. The proof of Theorem 2.6 is given in Sec-
tion 3.1. The proofs of the auxiliary results are given in Section 3.2.
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3.1. Proof of Theorem 2.6. Let us consider the coarse-grained Hamiltonian
H̄K given by (10). In view of Lemma 2.9, it suffices to show the strict convexity
of H̄K for large K � 1. The strategy is the same as in [11], Proposition 31. Let ϕ

denote the Cramér transform of ψ , namely

ϕ(m) := sup
σ∈R

(
σm − log

∫
exp

(
σx − ψ(x)

)
dx

)
.

Because ϕ is the Legendre transform of the strictly convex function

ϕ∗(σ ) = log
∫

exp
(
σx − ψ(x)

)
dx,(28)

there exists for any m ∈ R, a unique σ = σ(m), such that

ϕ(m) = σm − ϕ∗(σ ).(29)

From basic properties of the Legendre transform, it follows that σ is determined
by the equation

d

dσ
ϕ∗(σ ) =

∫
x exp(σx − ψ(x)) dx∫
exp(σx − ψ(x)) dx

= m.(30)

The starting point of the proof of the convexification of the coarse-grained Hamil-
tonian H̄K(m) is the explicit representation

g̃K,m(0) = exp
(
Kϕ(m) − KH̄K(m)

)
.(31)

Here, g̃K,m denotes the Lebesgue density of the distribution of the random variable

1√
K

K∑
i=1

(Xi − m),

where Xi are K real-valued independent random variables identically distributed
according to

μσ (dx) := exp
(−ϕ∗(σ ) + σx − ψ(x)

)
dx.(32)

We note that in view of (30) the mean of Xi is m. As in [11], (125), the Cramér
representation (31) follows from direct substitution and the coarea formula. As we
will see in the proof of Lemma 3.3, the Cramér transform ϕ is strictly convex. The
main idea of the proof is to transfer the convexity from ϕ to H̄K using represen-
tation (31) and a local central limit type theorem for the density g̃K,m, which is
formulated in the next statement.

PROPOSITION 3.1. Let ψ(x) be a smooth function that is increasing suffi-
ciently fast as |x| ↑ ∞ for all subsequent integrals to exist. Note that the probabil-
ity measure μσ defined by (32) depends on the field strength σ . We introduce its
mean m and variance s2

m :=
∫

xμσ (dx) and s2 :=
∫

(x − m)2μσ (dx).(33)
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We assume that uniformly in the field strength σ , the probability measure μσ

has its standard deviation s as unique length scale in the sense that∫
|x − m|kμσ (dx) � sk for k = 1, . . . ,5,(34)

∣∣∣∣
∫

exp(ixξ)μσ (dx)

∣∣∣∣ � |sξ |−1 for all ξ ∈ R.(35)

Consider K independent random variables X1, . . . ,XK identically distributed
according to μσ . Let gK,σ denote the Lebesgue density of the distribution of the
normalized sum 1√

K

∑K
i=1

Xi−m
s

.
Then gK,σ (0) converges for K ↑ ∞ to the corresponding value for the normal-

ized Gaussian. This convergence is uniform in m, of order 1√
K

, and C2 in σ :

∣∣∣∣gK,σ (0) − 1√
2π

∣∣∣∣ � 1√
K

,(36)

∣∣∣∣1

s

d

dσ
gK,σ (0)

∣∣∣∣ � 1√
K

,(37)

∣∣∣∣
(

1

s

d

dσ

)2

gK,σ (0)

∣∣∣∣ � 1√
K

.(38)

Let us comment a bit on this result: Quantitative versions of the central limit
theorem like (36) are abundant in the literature; see, for instance, [9], Chapter XVI,
[15], Appendix 2, [13], Section 3, and [17], page 752 and Section 5. In his work on
the spectral gap, Caputo appeals even to a finer estimate that makes the first terms
in an error expansion in K−1/2 explicit [5], Theorem 2.1. The coefficients of the
higher order terms are expressed in terms of moments of μσ . However, following
[11], Proposition 31, for our two-scale argument we need pointwise control of the
Lebesgue density gK,σ [in form of gK,σ (0)] and, in addition, control of derivatives
of gK,σ w.r.t. the field parameter σ ; cf. (37), (38). Note that the derivative d

dσ
has

units of length (because σ , which multiplies x in the Hamiltonian [cf. (32)] has
units of inverse length) so that 1

s
d
dσ

is the properly nondimensionalized derivative.
Pointwise control means that control of the moments [cf. (34)] is not sufficient.
One also needs to know that μσ has no fine structure on scales much smaller
than s. This property is ensured the upper bound (35).

As opposed to [11], Proposition 31, the Hamiltonian ψ we want Proposition 3.1
to apply is not a perturbation of the quadratic 1

2x2, but of a general, strictly convex
potential ψ . As a consequence, the variance s2 can be a strongly varying func-
tion of the field strength σ . Nevertheless, Lemma 3.2 from below shows that ev-
ery element μσ in the family of measures is characterized by the single length
scale s, uniformly in σ in the sense of (34) and (35). For the verification of (34)
in Lemma 3.2, one could take over the argument of [5], Lemma 2.2, that relies on
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a result by Bobkov [3] stating that the SG constant � of the measure μσ can be
estimated by its variance, that is, � � 1

s2 . However, we provide a self-contained ar-
gument for the verification of (34) and (35) in Lemma 3.2 just using basic calculus
of one variable. The merit of Proposition 3.1 consists in providing a version of the
central limit theorem that is C2 in the field strength σ even if the variance s2 varies
strongly with σ .

LEMMA 3.2. Assume that the single-site potential ψ is perturbed strictly con-
vex in the sense of (6). Then s � 1 uniformly in m, and conditions (34) and (35) of
Proposition 3.1 are satisfied.

Using Proposition 3.1, Lemma 3.2, and the Cramér representation (31) we could
easily deduce a local Cramér theorem (cf. [11], Proposition 31) for general per-
turbed strictly convex potentials ψ . However, because we are just interested in the
convexification of H̄K , we just consider the convergence of the second derivatives
of ϕ and H̄K .

LEMMA 3.3. Assume that the single-site potential ψ is perturbed strictly con-
vex in the sense of (6). Then for all m ∈ R it holds

∣∣∣∣ d2

dm2 ϕ(m) − d2

dm2 H̄K(m)

∣∣∣∣ � 1

Ks2 ,

where s2 is defined as in Proposition 3.1.

PROOF OF THEOREM 2.6. Because of Lemma 2.9 it suffices to show that
there exists δ > 0 and K0 ∈ N such that for all K ≥ K0 and m ∈ R

d2

dm2 H̄K(m) ≥ δ.

We start with some formulas on the derivatives of ϕ. Differentiation of identity
(29) yields

d

dm
ϕ = d

dm
σm + σ − d

dσ
ϕ∗ d

dm
σ

(30)= d

dm
σm + σ − m

d

dm
σ

= σ.

A direct calculation reveals that [see (61) below]

d

dσ
m = s2,
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where s2 is defined as in Proposition 3.1. Hence, a second differentiation of ϕ

yields the identity

d2

dm2 ϕ = d

dm
σ =

(
d

dσ
m

)−1

= 1

s2 .(39)

By Lemma 3.3 we thus have

d2

dm2 H̄K = d2

dm2 ϕ + d2

dm2 (H̄K − ϕ)

≥ 1

s2 − C

K

1

s2

≥ 1

2

1

s2 ,

if K ≥ K0 for some large K0. The statement follows from the uniform bound s � 1
provided by Lemma 3.2. �

3.2. Proof of the local Cramér theorem and of the auxiliary results. In this
section we prove the auxiliary statements of the last subsection. Before turning to
the proof of Proposition 3.1 we sketch the strategy. For convenience we introduce
the notation

〈f 〉 :=
∫

f (x)μσ (dx) =
∫

f (x) exp
(−ϕ∗(σ ) + σx − ψ(x)

)
dx.(40)

The definition of gK,σ (cf. Proposition 3.1) suggests to introduce the shifted and
rescaled variable

x̂ := x − m

s
.(41)

We note that by (33) the first and second moment in x̂ are normalized

〈x̂〉 = 0, 〈x̂2〉 = 1(42)

and that (34) turns into

5∑
k=1

〈|x̂|k〉 � 1.(43)

Proposition 3.1 is a version of the central limit theorem that, like most others, is
best proved with help of the Fourier transform. Indeed, since the random variables
X̂1 := X1−m

s
, . . . , X̂K := XK−m

s
in the statement of Proposition 3.1 are indepen-

dent and identically distributed, the distribution of their sum is the K-fold convo-
lution of the distribution of X̂1. Therefore, the Fourier transform of the distribution
of the

∑K
n=1 X̂n is the K th power of the Fourier transform of the distribution of X̂.

The latter is given by

〈exp(ix̂ξ̂ )〉,
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where ξ̂ denotes the variable dual to x̂. Hence, the Fourier transform of the distribu-
tion of the normalized sum 1√

K

∑K
n=1 X̂K is given by 〈exp(ix̂ 1√

K
ξ̂)〉K . Applying

the inverse Fourier transform, we obtain the representation

2πgK,σ (0) =
∫ 〈

exp
(
ix̂

1√
K

ξ̂

)〉K
dξ̂ .(44)

In order to make use of formula (44), we need estimates on 〈exp(ix̂ξ̂ )〉. Because
of

dk

dξ̂ k
〈exp(ix̂ξ̂ )〉 = ik〈x̂k exp(ix̂ξ̂ )〉,(45)

the moment bounds (43) translate into control of 〈exp(ix̂ξ̂ )〉 for |ξ̂ | � 1. Together
with the normalization (42), we obtain, in particular,∣∣〈exp(ix̂ξ̂ )〉 − (

1 − 1
2 ξ̂2)∣∣ � |ξ̂ |3.

We will use the latter in the following form: There exists a complex-valued func-
tion h(ξ̂ ) such that for |ξ̂ | � 1,

〈exp(ix̂ξ̂ )〉 = exp(−h(ξ̂ )) with
∣∣h(ξ̂ ) − 1

2 ξ̂2∣∣ � |ξ̂ |3.(46)

This estimate, showing that the Fourier transform of the normalized probability 〈·〉
is close for |ξ̂ | � 1 to the Fourier transform of the normalized Gaussian, is at the
core of most proofs of the central limit theorem.

Estimate (46) provides good control over 〈exp(ix̂ξ̂ )〉 for |ξ̂ | � 1. Another key
ingredient is uniform decay for |ξ̂ | � 1. In our new variables, (35) takes on the
form

|〈exp(ix̂ξ̂ )〉| � |ξ̂ |−1.(47)

As usual in central limit theorems, we also need control of the characteristic
function for intermediate values of |ξ̂ |. This can be inferred from (43) and (47) by
a soft argument (in particular, it does not require the more intricate argument for
[5], (2.10), from [5], Lemma 2.5):

LEMMA 3.4. Under the assumptions of Proposition 3.1 and for any δ > 0,
there exists λ < 1 such that for all σ ,

|〈exp(ix̂ξ̂ )〉| ≤ λ for all |ξ̂ | ≥ δ.

So far, the strategy is standard; now comes the new ingredient: In view of
formula (44), in order to control σ -derivatives of gK,σ (0), we need to control
1
s

d
dσ

〈exp(ix̂ξ̂ )〉. Relying on the identities

1

s

d

dσ
〈f (x)〉 = 〈x̂f (x)〉,(48)

1

s

d

dσ
x̂ = −1 − 1

2
〈x̂3〉x̂(49)
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that will be established in the proof of Lemma 3.5 below, we see that the estimate
again follows from the moment control (43). Lemma 3.5 is the only new element
of our analysis.

LEMMA 3.5. Under the assumptions of Proposition 3.1 we have∣∣∣∣1

s

d

dσ
〈exp(ix̂ξ̂ )〉

∣∣∣∣ � (1 + |ξ̂ |)|ξ̂ |3,(50)

∣∣∣∣
(

1

s

d

dσ

)2

〈exp(ix̂ξ̂ )〉
∣∣∣∣ � (1 + ξ̂2)|ξ̂ |3.(51)

Before we deduce Proposition 3.1, we prove Lemma 3.4 and Lemma 3.5.

PROOF OF LEMMA 3.4. In view of (43) and (47), it suffices to show: For any
C < ∞ and δ > 0 there exists λ < 1 with the following property: Suppose 〈·〉 is a
probability measure (in x̂) such that

〈|x̂|〉 ≤ C,(52)

|〈exp(ix̂ξ̂ )〉| ≤ C

|ξ̂ | for all ξ̂ .(53)

Then

|〈exp(ix̂ξ̂ )〉| ≤ λ for all |ξ̂ | ≥ δ.

In view of (53), it is enough to show

|〈exp(ix̂ξ̂ )〉| ≤ λ for all δ ≤ |ξ̂ | ≤ 1

δ
.

We give an indirect argument for this statement and thus assume that there is
a sequence {〈·〉ν} of probability measures satisfying (52) and (53) and a sequence
{ξ̂ν} of numbers in [δ, 1

δ
] such that

lim inf
ν↑∞ |〈exp(ix̂ξ̂ν)〉ν | ≥ 1.(54)

In view of (52), after passage to a subsequence, we may assume that there exists
a probability measure 〈·〉∞ and a number ξ̂∞ > 0 such that

lim
ν↑∞〈f 〉ν = 〈f 〉∞ for all bounded and continuous f (x̂),(55)

lim
ν↑∞ ξ̂ν = ξ̂∞.(56)

Since | exp(ix̂ξ̂ν)−exp(ix̂ξ̂∞)| ≤ |x̂||ξ̂ν − ξ̂∞|, we obtain the following from (52),
(55) and (56):

lim
ν↑∞〈exp(ix̂ξ̂ν)〉ν = 〈exp(ix̂ξ̂∞)〉∞,



LSI FOR CONSERVATIVE SPIN SYSTEMS 2209

so that (54) saturates to

|〈exp(ix̂ξ̂∞)〉∞| ≥ 1.(57)

On the other hand, (53) is preserved under (55) so that we have, in particular,

lim
|ξ̂ |↑∞

|〈exp(ix̂ξ̂ )〉∞| = 0.(58)

We claim that (57) and (58) contradict each other. Indeed, since x̂ �→ exp(ix̂ξ̂∞)

is S1-valued, it follows from (57) that there is a fixed ζ ∈ S1 such that

exp(ix̂ξ̂∞) = ζ for 〈·〉∞-a.e. x̂.

This implies for every n ∈ N,

exp(ix̂(nξ̂∞)) = ζ n for 〈·〉∞-a.e. x̂

and thus

|〈exp(ix̂(nξ̂∞))〉∞| = |ζ n| = 1,(59)

which, in view of ξ̂∞ �= 0 and thus |nξ̂∞| ↑ ∞ as n ↑ ∞, contradicts (58). �

PROOF OF LEMMA 3.5. We restrict our attention to estimate (51); estimate
(50) is easier and can be derived by the same arguments. We start with the identities
(48) and (49). Deriving (40) w.r.t. σ yields

d

dσ
〈f (x)〉 =

〈(
x − dϕ∗

dσ

)
f (x)

〉
(30)= 〈(x − m)f (x)〉.(60)

In view of definition (41), the latter turns into (48).
We now turn to identity (49) and note that, in view of definitions (33) and (41),

the identity (60) yields, in particular,

d

dσ
m

(33),(60)= 〈(x − m)x〉 (33)= 〈(x − m)2〉 (33)= s2,(61)

d

dσ
s2 (33),(60)= 〈(x − m)(x − m)2〉 (41)= s3〈x̂3〉,(62)

which we rewrite as

1

s

d

dσ
m = s,

1

s

d

dσ
s = 1

2
s〈x̂3〉.

These formulas imply, as desired,

1

s

d

dσ
x̂

(41)= 1

s

d

dσ

x − m

s
= −1 − 1

2
〈x̂3〉x̂.
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We now combine formulas (48) and (49) to express derivatives of 〈f (x̂)〉. We
start with the first derivative,

1

s

d

dσ
〈f (x̂)〉 (48)=

〈
df

dx̂
(x̂)

1

s

d

dσ
x̂ + f (x̂)x̂

〉
(63)

(49)= −
〈
df

dx̂
(x̂)

〉
− 1

2
〈x̂3〉

〈
x̂

df

dx̂
(x̂)

〉
+ 〈x̂f (x̂)〉.

[As a consistency check we note that 1
s

d
dσ

〈f (x̂)〉 (63)= −〈( d
dx̂

− x̂)f 〉 − 1
2〈x̂3〉〈x̂ df

dx̂
〉

vanishes if ψ is quadratic since then the distribution of x̂ under 〈·〉 is the normal-
ized Gaussian so that both 〈( d

dx̂
− x̂)f 〉 = 0 and 〈x̂3〉 = 0.]

Iterating this formula, we obtain for the second derivative,(
1

s

d

dσ

)2

〈f (x̂)〉 (63)= −1

s

d

dσ

〈
df

dx̂
(x̂)

〉
− 1

2

(
1

s

d

dσ
〈x̂3〉

)〈
x̂

df

dx̂
(x̂)

〉

− 1

2
〈x̂3〉

(
1

s

d

dσ

〈
x̂

df

dx̂
(x̂)

〉)
+ 1

s

d

dσ
〈x̂f (x̂)〉

(63)=
〈
d2f

dx̂2

〉
+ 1

2
〈x̂3〉

〈
x̂

d2f

dx̂2

〉
−

〈
x̂

df

dx̂

〉

+ 1

2

(
3〈x̂2〉 + 3

2
〈x̂3〉2 − 〈x̂4〉

)〈
x̂

df

dx̂

〉

+ 1

2
〈x̂3〉

×
(〈

df

dx̂
+ x̂

d2f

dx̂2

〉
+ 1

2
〈x̂3〉

〈
x̂

df

dx̂
+ x̂2 d2f

dx̂2

〉
−

〈
x̂2 df

dx̂

〉)

−
〈
f + x̂

df

dx̂

〉
− 1

2
〈x̂3〉

〈
x̂f + x̂2 df

dx̂

〉
+ 〈x̂2f 〉

=
〈
d2f

dx̂2

〉
+ 〈x̂3〉

〈
x̂

d2f

dx̂2

〉
+ 1

4
〈x̂3〉2

〈
x̂2 d2f

dx̂2

〉

+ 1

2
〈x̂3〉

〈
df

dx̂

〉
− 1

2
(1 − 2〈x̂3〉2 + 〈x̂4〉)

〈
x̂

df

dx̂

〉
− 〈x̂3〉

〈
x̂2 df

dx̂

〉

− 〈f 〉 − 1

2
〈x̂3〉〈x̂f 〉 + 〈x̂2f 〉.

Because of (45) we have for any k ∈ N,

dk

dξ̂ k

(
1

s

d

dσ

)2

〈exp(iξ̂ x̂)〉 =
(

1

s

d

dσ

)2 dk

dξ̂ k
〈exp(iξ̂ x̂)〉

(64)

= ik
(

1

s

d

dσ

)2

〈x̂k exp(iξ̂ x̂)〉.
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This formula and the normalization (42) yield that (1
s

d
dσ

)2〈exp(iξ̂ x̂)〉 vanishes to

second order in ξ̂ . More precisely, for k ∈ {0,1,2}
dk

dξ̂ k

∣∣∣∣
ξ̂=0

(
1

s

d

dσ

)2

〈exp(iξ̂ x̂)〉 = ik
(

1

s

d

dσ

)2

〈x̂k〉 = 0.(65)

Therefore, we consider the third derivative w.r.t. ξ̂ given by (64). For this pur-
pose we apply the formula for (1

s
d
dσ

)2〈f (x̂)〉 from above to the function

f = x̂3 exp(iξ̂ x̂).

Using the abbreviation e := exp(iξ̂ x̂), we obtain

d3

dξ̂3

(
1

s

d

dσ

)2

〈e〉 = i3
(

1

s

d

dσ

)2

〈x̂3e〉

= i3
(

6〈x̂e〉 + i6ξ̂〈x̂2e〉 − ξ̂2〈x̂3e〉

+ 〈x̂3〉(6〈x̂2e〉 + i6ξ̂〈x3e〉 − ξ2〈x̂4e〉)
+ 1

4
〈x3〉2(6〈x̂3e〉 + i6ξ̂〈x̂4e〉 − ξ̂2〈x̂5e〉)

+ 1

2
〈x̂3〉(3〈x̂2e〉 + iξ̂〈x̂3e〉)

− 1

2
(1 − 2〈x̂3〉2 + 〈x̂4〉)(3〈x̂3e〉 + iξ̂〈x̂4e〉)

− 〈x̂3〉(3〈x̂4e〉 + iξ̂〈x̂5e〉)
− 〈x̂3e〉 − 1

2
〈x̂3〉〈x̂4e〉 + 〈x̂5e〉

)
.

From this formula and the moment estimates (43), we obtain the estimate∣∣∣∣ d3

dξ̂3

(
1

s

d

dσ

)2

〈e〉
∣∣∣∣ � 1 + ξ̂2.

In combination with (65), this estimate yields (51). �

PROOF OF PROPOSITION 3.1. We focus on (36) and (38). The intermediate
estimate (37) can be established as (38).

We start with (36). Fix a δ > 0 so small such that the expansion (46) of
〈exp(ix̂ξ̂ )〉 holds for |ξ̂ | ≤ δ. We split the integral representation (44) accordingly:

2πgK,σ (0) =
∫
{|(1/

√
K)ξ̂ |≤δ}

〈
exp

(
ix̂

1√
K

ξ̂

)〉K
dξ̂

(66)

+
∫
{|(1/

√
K)ξ̂ |>δ}

〈
exp

(
ix̂

1√
K

ξ̂

)〉K
dξ̂ =: I + II.
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We consider the first term I on the r.h.s. of (66), which will turn out to be of
leading order. Since δ is so small that (46) holds, we may rewrite it as

I :=
∫
{|(1/

√
K)ξ̂ |≤δ}

〈
exp

(
ix̂

1√
K

ξ̂

)〉K
dξ̂

(67)

=
∫
{|(1/

√
K)ξ̂ |≤δ}

exp
(
−Kh

(
1√
K

ξ̂

))
dξ̂ .

We note that for | 1√
K

ξ̂ | ≤ δ we have by (46),

∣∣∣∣Kh

(
1√
K

ξ̂

)
− 1

2
ξ̂2

∣∣∣∣ � 1√
K

|ξ̂ |3,(68)

in particular for δ small enough,

Re
(
Kh

(
1√
K

ξ̂

))
≥ 1

4
ξ̂2,(69)

so that (68) implies by the Lipschitz continuity of C � y �→ exp(y) ∈ C on Rey ≤
−1

4 ξ̂2 with constant exp(−1
4 ξ̂2),

∣∣∣∣exp
(
−Kh

(
1√
K

ξ̂

))
− exp

(
−1

2
ξ̂2

)∣∣∣∣ � 1√
K

|ξ̂ |3 exp
(
−1

4
ξ̂2

)
.

Inserting this estimate into (67) we obtain∣∣∣∣I −
∫
{|(1/

√
K)ξ̂ |≤δ}

exp
(
−1

2
ξ̂2

)
dξ̂

∣∣∣∣ � 1√
K

∫
{|(1/

√
K)ξ̂ |≤δ}

|ξ̂ |3 exp
(
−1

4
ξ̂2

)
dξ̂

� 1√
K

∫
|ξ̂ |3 exp

(
−1

4
ξ̂2

)
dξ̂

� 1√
K

.

The latter turns, as desired, into

∣∣I − √
2π

∣∣ =
∣∣∣∣I −

∫
exp

(
−1

2
ξ̂2

)
dξ̂

∣∣∣∣
� 1√

K
+

∫
{|(1/

√
K)ξ̂ |>δ}

exp
(
−1

2
ξ̂2

)
dξ̂

� 1√
K

,

since
∫
{|(1/

√
K)ξ̂ |>δ} exp(−1

2 ξ̂2) dξ̂ is exponentially small in K .
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We now address the second term II on the r.h.s. of (66); on the integrand we use
Lemma 3.4 (on K − 2 of the K factors) and (47) (on the remaining 2 factors).∣∣∣∣

〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K

� λK−2
(

1

1 + (1/
√

K)|ξ |
)2

� KλK−2 1

K + ξ̂2
� KλK−2 1

1 + ξ̂2
.

It follows that the second term II on the r.h.s. of (66) is exponentially small and
thus of higher order:∣∣∣∣
∫
{|(1/

√
K)ξ̂ |>δ}

〈
exp

(
ix̂

1√
K

ξ̂

)〉K
dξ̂

∣∣∣∣ � KλK−2
∫ 1

1 + ξ̂2
dξ̂ � KλK−2 λ<1� 1√

K
.

We now turn to (38). We take the second σ -derivative of the integral represen-
tation (44),

2π

(
1

s

d

dσ

)2

gK,σ (0)

=
∫ (

K(K − 1)

〈
exp

(
ix̂

1√
K

ξ̂

)〉K−2(
1

s

d

dσ

〈
exp

(
ix̂

1√
K

ξ̂

)〉)2

+ K

〈
exp

(
ix̂

1√
K

ξ̂

)〉K−1(
1

s

d

dσ

)2〈
exp

(
ix̂

1√
K

ξ̂

)〉)
dξ̂

and use Lemma 3.5,∣∣∣∣
(

1

s

d

dσ

)2

gK,σ (0)

∣∣∣∣ �
∫ (

K2
∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2(

1 +
∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
2)∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
6

+ K

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−1(

1 +
∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
2)∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
3)

dξ̂(70)

� 1√
K

∫ ∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2(

1 +
∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
2)

(|ξ̂ |6 + 1) dξ̂ .

As for (36), we split the integral representation (70) according to δ:∣∣∣∣
(

1

s

d

dσ

)2

gK,σ (0)

∣∣∣∣
� 1√

K

∫
{(1/

√
K)|ξ̂ |≤δ}

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2(

1 +
∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
2)

(ξ̂6 + 1) dξ̂

+ 1√
K

∫
{(1/

√
K)|ξ̂ |>δ}

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2(

1 +
∣∣∣∣ 1√

K
ξ̂

∣∣∣∣
2)

(ξ̂6 + 1) dξ̂(71)



2214 G. MENZ AND F. OTTO

� 1√
K

∫
{(1/

√
K)|ξ̂ |≤δ}

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2

(ξ̂6 + 1) dξ̂

+ 1√
K

∫
{(1/

√
K)|ξ̂ |>δ}

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2

(ξ̂8 + 1) dξ̂ .

On the first r.h.s. term we use (69):

1√
K

∫
{(1/

√
K)|ξ̂ |≤δ}

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2

(ξ̂6 + 1) dξ̂

� 1√
K

∫
{(1/

√
K)|ξ̂ |≤δ}

exp
(
−(K − 2)

1

4

(
1√
K

ξ̂

)2)
(ξ̂6 + 1) dξ̂

K�1
� 1√

K

∫
exp

(
−1

8
ξ̂2

)
(ξ̂6 + 1) dξ̂

� 1√
K

.

On the integrand of the second r.h.s. term in (71) we use Lemma 3.4 (on K − 12
of the K − 2 factors) and (47) (on the remaining 10 factors):

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2

(ξ̂8 + 1) � λK−12
(

1

1 + (1/
√

K)|ξ |
)10

(ξ̂8 + 1)

� K5λK−12 1

K5 + ξ̂10
(ξ̂8 + 1)

� K5λK−12 1

1 + ξ̂2
.

Hence, we see that this second term in (71) is exponentially small and thus of
higher order:

1√
K

∫
{(1/

√
K)|ξ̂ |>δ}

∣∣∣∣
〈
exp

(
ix̂

1√
K

ξ̂

)〉∣∣∣∣
K−2

(|ξ̂ |8 + 1) dξ̂

� K9/2λK−12
∫ 1

1 + ξ̂2
dξ̂

� K9/2λK−12 λ<1� 1√
K

. �

For the proof of Lemma 3.2 we need the following auxiliary statement, based
on elementary calculus.
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LEMMA 3.6. Assume that the single-site potential ψ : R → R is convex. We
consider the corresponding Gibbs measure,

ν(dx) = 1

Z
exp(−ψ(x)) dx.

Let M denote the maximum of the density of ν, that is,

M := max
x

1

Z
exp(−ψ(x)).

Then we have for all k ∈ N, ∫
|x|kν(dx) � 1

Mk

for some constant only depending on k.

PROOF OF LEMMA 3.6. We may assume w.l.o.g. that

Z =
∫

exp(−ψ(x)) dx = 1,(72)

and M := supx exp(−ψ(x)) is attained at x = 0, which means

M = exp(−ψ(0)).(73)

It follows from convexity of ψ that

ψ ′(x) ≤ 0 for x ≤ 0 and ψ ′(x) ≥ 0 for x ≥ 0.(74)

We start with an analysis of the convex single-site potential ψ . We first argue that

ψ

(
± e

M

)
≥ − logM + log e = − logM + 1.(75)

Indeed in view of the monotonicity (74), we have

1
(72)≥

∫ e/M

0
exp(−ψ(y)) dy

(74)≥ e

M
exp

(
−ψ

(
e

M

))

and

1
(72)≥

∫ 0

−e/M
exp(−ψ(y)) dy

(74)≥ e

M
exp

(
−ψ

(
− e

M

))
.

We now argue that for |x| ≥ e
M

,

ψ(x) ≥ M

e

(
|x| − e

M

)
− logM.(76)

W.l.o.g. we may restrict ourselves to x ≥ e
M

. By convexity of ψ , we have

ψ ′
(

e

M

)
e

M
≥ ψ

(
e

M

)
− ψ(0)

(73)= ψ

(
e

M

)
+ logM

(75)≥ 1.
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The convexity of ψ , the last estimate and (75) yield for x ≥ e
M

, as desired,

ψ(x) ≥ ψ ′
(

e

M

)(
x − e

M

)
+ ψ

(
e

M

)

≥ M

e

(
x − e

M

)
− logM.

We finished the analysis on ψ and turn to the verification of the estimate of
Lemma 3.6. We split the integral according to∫

|x|k exp(−ψ(x)) dx =
∫ 0

−∞
|x|k exp(−ψ(x)) dx +

∫ ∞
0

|x|k exp(−ψ(x)) dx.

We will now deduce the estimate∫ ∞
0

|x|k exp(−ψ(x)) dx � 1

Mk
.

A similar estimate for the integral
∫ 0
−∞ |x|k exp(−ψ(x)) dx follows from the same

argument by symmetry. We split the integral∫ ∞
0

|x|k exp(−ψ(x)) dx

=
∫ e/M

0
|x|k exp(−ψ(x)) dx +

∫ ∞
e/M

|x|k exp(−ψ(x)) dx.

The first integral on the r.h.s. can be estimated as
∫ e/M

0
|x|k exp(−ψ(x)) dx ≤ ek

Mk

∫
exp(−ψ(x)) dx

(72)= ek

Mk
.

For the estimation of the second integral, we apply (76), which yields, by the
change of variables M

e
(x − e

M
) = x̂,∫ ∞

e/M
|x|k exp(−ψ(x)) dx ≤

∫ ∞
e/M

|x|k exp
(
−M

e

(
x − e

M

)
+ logM

)
dx

= M
e

M

∫ ∞
0

∣∣∣∣ e

M
x̂ + e

M

∣∣∣∣
k

exp(−x̂) dx̂

= e

(
e

M

)k ∫ ∞
0

|x̂ + 1|k exp(−x̂) dx̂

� 1

Mk
. �

Equipped with Lemma 3.6, we are able to give an elementary proof of
Lemma 3.2:
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PROOF OF LEMMA 3.2. We argue that s � 1. Because ψ is a bounded per-
turbation of a uniformly strictly convex function, the measure μσ given by (32)
satisfies the SG uniformly in σ . This implies, in particular,

s2 = varμσ (x) �
∫ (

d

dx
x

)2

dμσ = 1(77)

uniformly in σ and thus in m.
Now, we verify (34). Using |δψ | � 1 to pass from ψ to ψc, we may assume that

ψ is strictly convex. In fact, we can give up strict convexity of ψ and may only
assume that ψ is convex. By the change of variables x̂ = x−m

s
, we have for any

k ∈ N, ∫ |x − m|k dμ

sk
=

∫
|x̂|k exp(−ψ̂(x̂)) dx̂

for some convex function ψ̂ , which is normalized in the sense that∫
exp(−ψ̂(x̂)) dx̂ = 1 and

∫
x̂2 exp(−ψ̂(x̂)) dx̂ = 1.(78)

An application of Lemma 3.6 yields the estimate∫ |x − m|k dμ

sk
≤

∫
|x̂|k exp(−ψ̂(x̂)) dx̂ � 1

Mk
,

where M is given by M := maxx̂ exp(−ψ̂(x̂)). Now, we argue that due to the
normalization of ψ̂ , we have

M ≥ C

for some universal constant C > 0. The latter verifies the desired estimate (34).
Indeed normalization (78) implies∫

(−2,2)
exp(−ψ(x̂)) dx̂

(78)= 1 −
∫

R−(−2,2)
exp(−ψ(x̂)) dx̂

≥ 1 − 1

4

∫
x̂2 exp(−ψ(x̂)) dx̂

(78)≥ 3

4
.

Hence, there exists an x̂0 ∈ (−2,2) such that exp(−ψ(x̂0)) ≥ 3
8 , which yields

M = max
x̂

exp(−ψ̂(x̂)) ≥ exp(−ψ(x̂0)) ≥ 3

8
.

Let us turn to the statement (35) of Proposition 3.1. Writing

exp(ixξ) = d

dx

(
−i

1

ξ
exp(ixξ)

)
,
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we obtain by integration by parts that

〈exp(ixξ)〉 = i
1

ξ

∫
exp(ixξ)

d

dx

(
exp

(−ϕ∗(σ ) + σx − ψ(x)
))

dx

= i
1

ξ

∫
exp(ixξ)

(
σ − ψ ′(x)

)
exp

(−ϕ∗(σ ) + σx − ψ(x)
)
dx.

For convenience, we introduce the Hamiltonian ψ̂(x) = −σx +ψc(x) and assume
w.l.o.g. that

∫
exp(−ψ̂(x)) dx = 1. The splitting ψ = ψc + δψ with |δψ |, |δψ ′| �

1 and definition (28) of ϕ∗ yield the estimate

|〈exp(ixξ)〉| � 1

|ξ |
∫ |σ − ψ ′

c(x) − δψ ′
c(x)| exp(σx − ψc(x) − δψc(x)) dx∫

exp(σx − ψc(x) − δψc(x)) dx

� 1

s|ξ |s
∫

|ψ̂ ′(x)| exp(−ψ̂(x)) dx + 1

s|ξ |s,
where s is defined as in Proposition 3.1. Because s � 1 by (77), we only have to
consider the first term of the r.h.s. of the last inequality. We argue that for

M := max
x

exp(−ψ̂(x)),

it holds

2M =
∫

|ψ̂ ′(x)| exp(−ψ̂(x)) dx.(79)

For the proof of the last statement, we only need the fact that ψ̂(x) = −σx +ψc(x)

is convex. W.l.o.g. we may assume that M is attained at x = 0, which means M =
exp(−ψ̂(0)). It follows from convexity of ψ̂ that

ψ̂ ′(x) ≤ 0 for x ≤ 0 and ψ̂ ′(x) ≥ 0 for x ≥ 0.

Indeed, we get∫
|ψ̂ ′(x)| exp(−ψ̂(x)) dx

= −
∫ 0

−∞
ψ̂ ′(x) exp(−ψ̂(x)) dx +

∫ ∞
0

ψ̂ ′(x) exp(−ψ̂(x)) dx

= 2 exp(−ψ̂(0)) = 2M.

Because the mean of a measure μ is optimal in the sense that for all c ∈ R,∫
(x − c)2μ(dx) ≥

∫ (
x −

∫
xμ(dx)

)2

μ(dx),

we can estimate

s2 ≤
∫

x2 exp(σx − ψ(x)) dx∫
exp(σx − ψ(x)) dx

|δψ |�1
�

∫
x2 exp(−ψ̂(x)) dx.(80)
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Therefore, Lemma 3.6 applied to k = 2 and ψ replaced by ψ̂ yields

s

∫
|ψ̂ ′(x)| exp(−ψ̂(x)) dx

(79),(80)

�
(∫

x2 exp(−ψ̂(x)) dx

)1/2

M � 1,

which verifies (35) of Proposition 3.1. �

Before we turn to the proof of Lemma 3.3, we will deduce the following auxil-
iary result.

LEMMA 3.7. Assume that (34) of Proposition 3.1 is satisfied. Then, using the
notation of Proposition 3.1, it holds that

(i)
∣∣∣∣ d

dm
s

∣∣∣∣ � 1 and (ii)
∣∣∣∣ d2

dm2 s

∣∣∣∣ � 1

s
.

PROOF OF LEMMA 3.7. We start with restating some basic identities [cf. (61)
and (62)]: It holds that

d

dσ
m = s2,(81)

d2

dσ 2 m = d

dσ
s2 =

∫
(x − m)3μσ (dx),(82)

d3

dσ 3 m =
∫

(x − m)4μσ (dx).(83)

Let us consider (i): It follows from (81) and (82) that

d

dm
s2 = d

dσ
s2 d

dm
σ

=
∫

(x − m)3μσ (dx)

(
d

dσ
m

)−1

=
∫
(x − m)3μσ (dx)

s3 s,

which yields by assumption (34) of Proposition 3.1 the estimate∣∣∣∣ d

dm
s2

∣∣∣∣ � s.

The statement of (i) is a direct consequence of the last estimate and the identity

d

dm
s = 1

2s

d

dm
s2.

We turn to statement (ii): Differentiating the last identity yields

d2

dm2 s = −1

2

1

s2

d

dm
s

d

dm
s2 + 1

2s

d2

dm2 s2.
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The estimation of the first term on the r.h.s. follows from the estimates∣∣∣∣ d

dm
s2

∣∣∣∣ � s and
∣∣∣∣ d

dm
s

∣∣∣∣ � 1,

which we have deduced in the first step of the proof. We turn to the estimation of
the second term. A direct calculation using (81) yields the identity

d2

dm2 s2 = d2

dm2

d

dσ
m = d

dm

(
d2

dσ 2 m
d

dm
σ

)
(84)

= d3

dσ 3 m

(
d

dm
σ

)2

+ d2

dσ 2 m
d2

dm2 σ.

Considering the first term on the r.h.s., we get from the identities (81) and (83),
and the assumption (34) of Proposition 3.1 that∣∣∣∣ d3

dσ 3 m

(
d

dm
σ

)2∣∣∣∣ =
∫
(x − m)4μσ (dx)

s4 � 1.

Before we consider the second term of the r.h.s. of (84), we establish the following
estimate: ∣∣∣∣ d2

dm2 σ

∣∣∣∣ � 1

s3 .(85)

Indeed, direct calculation using (81) and (82) yields

d2

dm2 σ =
(

d

dσ

d

dm
σ

)
d

dm
σ

=
(

d

dσ

(
d

dσ
m

)−1)(
d

dσ
m

)−1

= −
(

d

dσ
m

)−3 d2

dσ 2 m

= − 1

s3

∫
(x − m)3μσ (dx)

s3 .

The last identity yields (85) using the assumption (34) of Proposition 3.1. Using
(85) and (82), we can estimate the second term of the r.h.s. of (84) as∣∣∣∣ d2

dσ 2 m
d2

dm2 σ

∣∣∣∣ � 1

s3

∣∣∣∣
∫

(x − m)3μσ (dx)

∣∣∣∣.
By applying assumption (34) of Proposition 3.1 this yields∣∣∣∣ d2

dσ 2 m
d2

dm2 σ

∣∣∣∣ � 1,

which concludes the argument for (ii). �
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PROOF OF LEMMA 3.3. Recall the representation (31), that is,

g̃K,m(0) = exp
(
Kϕ(m) − KH̄K(m)

)
.

Here, g̃K,m(ξ) denotes the Lebesgue density of the random variable

1√
K

K∑
i=1

(Xi − m),

where Xi are real-valued independent random variables identically distributed ac-
cording to μσ ; cf. (32). Let gK,σ denote the density of the normalized random
variable

1√
K

K∑
i=1

Xi − m

s
,

where s is given by (33). Then the densities are related by

1

s
gK,σ

(
x

s

)
= g̃K,m(x).

It follows from (31) that

Kϕ(m) − KH̄K(m) = loggK,σ (0) − log s.

In order to deduce the desired estimate, it thus suffices to show∣∣∣∣ d2

dm2 log s

∣∣∣∣ � 1

s2(86)

and ∣∣∣∣ d2

dm2 loggK,σ (0)

∣∣∣∣ � 1

s2 .(87)

The first estimate follows directly from the identity

d2

dm2 log s = d

dm

(
1

s

d

dm
s

)
= − 1

s2

(
d

dm
s

)2

+ 1

s

d2

dm2 s

and the estimates provided by Lemma 3.7.
We turn to the second estimate. The identity

d2

dm2 loggK,σ = − 1

g2
K,σ

(
d

dm
gK,σ

)2

+ 1

gK,σ

d2

dm2 gK,σ

and (36) yield for large K the estimate∣∣∣∣ d2

dm2 loggK,σ (0)

∣∣∣∣ �
(

d

dm
gK,σ (0)

)2

+
∣∣∣∣ d2

dm2 gK,σ (0)

∣∣∣∣.
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The estimation of the first term on the r.h.s. follows from estimate (37) of Propo-
sition 3.1 and the identity

1

s

d

dσ
= s

d

dm
,(88)

which is a direct consequence of (61). Let us consider the second term. The identity(
1

s

d

dσ

)2
(88)=

(
s

d

dm

)(
s

d

dm

)
= s2 d2

dm2 + s

(
d

dm
s

)
d

dm
,

which we rewrite as

s2 d2

dm2 =
(

1

s

d

dσ

)2

−
(

d

dm
s

)
1

s

d

dσ
,

yields

d2

dm2 gK,σ (0) = 1

s2

((
1

s

d

dσ

)2

gK,σ (0) −
(

d

dm
s

)
1

s

d

dσ
gK,σ (0)

)
.

Now, estimates (37) and (38) of Proposition 3.1 and Lemma 3.7 yield the desired
estimate (87). �

APPENDIX: STANDARD CRITERIA FOR THE SG AND THE LSI

In this section we quote some standard criteria for the SG and the LSI. For a
general introduction to the SG and the LSI we refer to [12, 18, 22]. Note that even
if we only formulate the criteria on the level of the LSI, they also hold on the level
of the SG. The first one shows that the LSI is compatible with products; cf., for
example, [12], Theorem 4.4.

THEOREM A.1 (Tensorization principle). Let μ1 and μ2 be probability mea-
sures on Euclidean spaces X1 and X2, respectively. If μ1 and μ2 satisfy the LSI
with constant �1 and �2, respectively, then the product measure μ1 ⊗ μ2 satisfies
the LSI with constant min{�1, �2}.

The next criterion shows how the LSI constant behaves under perturbations; cf.
[14], page 1184.

THEOREM A.2 (Holley–Stroock criterion). Let μ be a probability measure
on the Euclidean space X, and let δψ :X → R be a bounded function. Let the
probability measure μ̃ be defined as

μ̃(dx) = 1

Z
exp(−δψ(x))μ(dx).

If μ satisfies the LSI with constant �, then μ̃ satisfies the LSI with constant

�̃ = � exp
(−(sup δψ − inf δψ)

)
.
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Because of its perturbative nature, the Holley–Stroock criterion is not well
adapted for high dimensions. For the proof of the last statement, we refer the reader
to [18], Lemma 1.2. Now, we state the Bakry–Émery criterion, which connects the
convexity of the Hamiltonian to the LSI constant; cf. [1], Proposition 3 and Corol-
lary 2, or [18], Corollary 1.6.

THEOREM A.3 (Bakry–Émery criterion). Let dμ := Z−1 exp(−H(x)) dx be
a probability measure on a Euclidean spaces X. If there is a constant � > 0 such
that in the sense of quadratic forms

HessH(x) ≥ �

uniformly in x ∈ X, then μ satisfies the LSI with constant �.

A proof using semi-group methods can be found in [18], Corollary 1.6. There is
also a heuristic interpretation of the Bakry–Émery criterion on a formal Rieman-
nian structure on the space of probability measures; cf. [21], Section 3.
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