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LARGE DEVIATIONS FOR THE CURRENT AND TAGGED
PARTICLE IN 1D NEAREST-NEIGHBOR SYMMETRIC

SIMPLE EXCLUSION

BY SUNDER SETHURAMAN1 AND S. R. S. VARADHAN2

University of Arizona and New York University

Laws of large numbers, starting from certain nonequilibrium measures,
have been shown for the integrated current across a bond, and a tagged par-
ticle in one-dimensional symmetric nearest-neighbor simple exclusion [Ann.
Inst. Henri Poincaré Probab. Stat. 42 (2006) 567–577]. In this article, we
prove corresponding large deviation principles and evaluate the rate func-
tions, showing different growth behaviors near and far from their zeroes
which connect with results in [J. Stat. Phys. 136 (2009) 1–15].

1. Introduction and results. The one-dimensional nearest-neighbor sym-
metric simple exclusion process follows a collection of nearest-neighbor random
walks on the lattice Z, each of which is equally likely to move left or right, ex-
cept in that jumps to already occupied sites are suppressed. More precisely, the
model is a Markov process ηt = {ηt (x) :x ∈ Z}, evolving on the configuration
space � = {0,1}Z, with generator

(Lφ)(η) = (1/2)
∑
x

[
η(x)

(
1−η(x+1)

)+η(x+1)
(
1−η(x)

)](
φ(ηx,x+1)−φ(η)

)
,

where ηx,y , for x �= y, is the configuration obtained from η by exchanging the
values at x and y,

ηx,y(z) =
⎧⎨⎩

η(z), when z �= x, y,
η(x), when z = y,
η(y), when z = x.

A detailed treatment can be found in Liggett [23].
As the process is “mass conservative,” that is, no birth or death, one expects

a family of invariant measures corresponding to particle density. In fact, for each
ρ ∈ [0,1], the product over Z of Bernoulli measures νρ which independently puts
a particle at locations x ∈ Z with probability ρ, that is, νρ(ηx = 1) = 1 − νρ(ηx =
0) = ρ, are invariant. We will denote Eρ as expectation under νρ .
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Consider now the integrated current across the bond (−1,0), and a distin-
guished, or tagged particle, say initially at the origin. Let J−1,0(t) and Xt be the
current and position of the tagged particle at time t , respectively. The problem of
characterizing the asymptotic behavior of the current and tagged particle in in-
teracting systems has a long history (cf. Spohn [37], Chapters 8.I, 6.II), and was
mentioned in Spitzer’s seminal paper [36].

The goal of this paper is to investigate the large deviations of J−1,0(t) and Xt

when the initial distribution of particles is part of a large class of nonequilibrium
measures. Our initial motivation was to understand better laws of large numbers
(LLN) and central limit theorems (CLT) in Jara and Landim [16] for the current
and tagged particle when the process starts from a class of “local equilibrium”
initial measures. It turns out that recent formal expansions of the large deviation
“pressure” for the current in Derrida and Gerschenfeld [10, 11] might also be re-
covered in such a study.

The article [16] is a nonequilibrium generalization of CLTs in Arratia [1],
Rost and Vares [32], and De Masi and Ferrari [8], which established “sub-
diffusive” behaviors in the 1D nearest-neighbor symmetric simple exclusion
model. Namely, starting under an equilibrium νρ , t−1/4J−1,0(t) ⇒ N(0, σ 2

J ) and
t−1/4Xt ⇒ N(0, σ 2

X), where σ 2
J = √

2/π(1 − ρ)ρ and σ 2
X = √

2/π(1 − ρ)/ρ.
Physically, the “subdiffusive” scale in the CLT is explained as being due to “trap-
ping” induced from the nearest-neighbor dynamics which enforces a rigid order-
ing of particles. Recently, the CLTs were extended to an invariance principle with
respect to a fractional Brownian motion, λ−1/4J−1,0(λt) ⇒ σJ f BM1/4(t) and
λ−1/4Xλt ⇒ σXf BM1/4(t), in Peligrad and Sethuraman [26].

We now specify the class of initial measures considered, that is, “deterministic
initial configurations” and “local equilibrium product measures.” Let M1 be the
space of functions γ : R → [0,1], and let M1(ρ∗, ρ∗) be those functions in M1
which equal ρ∗ for all x ≤ x∗, and which equal ρ∗ for all x ≥ x∗, for some x∗ ≤ x∗.

We will consider on M1 the topology induced by CK(R), the set of continu-
ous, compactly supported functions on R, with the duality 〈·; ·〉 where 〈γ ;G〉 =∫

G(x)γ (x) dx for γ ∈ M1 and G ∈ CK(R). This topology, if M1 is thought of as
a measure space, is the vague topology which is metrizable.

Local equilibrium measure (LEM). For 0 < ρ∗, ρ∗ < 1, let γ ∈ M1(ρ∗, ρ∗) be
a piecewise continuous function, such that 0 < γ (x) < 1 for all x ∈ R. With re-
spect to γ and a scaling parameter N ≥ 1, we define a sequence of local equilib-
rium product measures ν

(N)
γ (·) as those formed from the marginals ν

(N)
γ (·)(η(x) = 1) =

γ (x/N) for x �= 0, and ν
(N)
γ (·)(η(0) = 1) = 1.

Deterministic initial configuration (DIC). For 0 < ρ∗, ρ∗ < 1, let γ be a piece-
wise continuous function in M1(ρ∗, ρ∗). Then, a sequence of deterministic initial
configurations ξγ,N is one such that ξγ,N(0) = 1 and for all continuous, compactly
supported G, limN→∞ 1

N

∑
x ξγ,N(x)G(x/N) = ∫ G(x)γ (x) dx.

We remark particular examples of local equilibrium measures ν
(N)
γ (·) are the equi-

librium measures νρ(·|η(0) = 1) conditioned to have a particle at the origin for
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0 < ρ < 1. Suitable deterministic configurations ξγ,N , for instance, include the
“alternating” configuration where every other vertex is occupied corresponding
to γ (x) ≡ 1/2. Nonequilibrium initial measures, corresponding to step profiles
γ (x) = ρ∗1(−∞,0](x) + ρ∗1(0,∞)(x), can also be constructed. The condition that
the origin is occupied in these configurations allows us to distinguish the corre-
sponding particle as the “tagged” particle.

In a sense, the profiles γ , associated to the local equilibria and deterministic
profiles above, are “nondegenerate,” in that γ is asymptotically bounded strictly
between 0 and 1. Also, the property that γ (x) is constant for large |x|, and with
respect to (LEM) specifications that 0 < γ < 1, is useful to establish later Proposi-
tion 1.3, although some modifications, for instance, in terms of profiles sufficiently
close to being constant for large |x|, should be possible with more work. However,
under “degenerate” profiles, different current and tagged particle large deviation
behaviors might occur. See comments after Theorems 1.7 and 1.8 for an “exam-
ple.”

We now describe the LLNs, proved in Jara and Landim [16] (stated under a
class of local equilibrium measures, but the same proof also works starting from
the initial measures above):

lim
N→∞

1

N
J−1,0(N

2t) = vt and lim
N→∞

1

N
XN2t = ut ,(1.1)

in probability, where vt and ut satisfy

dvt

dt
= −1

2
∂xρ(t,0) and

dut

dt
= −1

2

∂xρ(t, ut )

ρ(t, ut )

and ∂tρ = (1/2)∂xxρ and ρ(0, x) = γ (x), that is, ρ(t, x) = σt ∗ γ (x) where
σt (y) = (2πt)−1/2 exp{−y2/2t}. Note that

vt = −1

2

∫ t

0
∂xρ(s,0) ds =

∫ ∞
0

[ρ(t, x) − ρ(0, x)]dx,

and ut is also the unique number α, where∫ α

0
ρ(t, x) dx = −1

2

∫ t

0
∂xρ(s,0) ds =

∫ ∞
0

[ρ(t, x) − ρ(0, x)]dx.

To explain the last equation, the right-hand side, as already indicated, is the in-
tegrated macroscopic current across the origin up to time t . As the microscopic
dynamics is nearest-neighbor with enforced ordering of particles, the tagged parti-
cle, initially at the origin, will be at the head of the flow through the origin. So, to
compute its macroscopic position ut at time t , we find α so that the mass at time t

between positions x = 0 and x = α, the left-hand side of the equation, equals the
integrated current, and conclude ut = α.

We remark, starting from a class of local equilibrium measures, corresponding
invariance principles in subdiffusive t1/4 scale, in the sense of finite-dimensional



1464 S. SETHURAMAN AND S. R. S. VARADHAN

distributions, with respect to fractional Brownian motion-type Gaussian processes,
was also proved in [16]. Also, for the current, starting from a large class of product
measures, self-normalized CLTs have been shown in Liggett [24] and Vandenberg-
Rodes [38].

In this context, we derive large deviation principles (LDPs) (Theorem 1.5), in
diffusive scale, corresponding to the laws of large numbers (1.1) when starting
from (LEM) or (DIC) measures. We give also lower and upper bounds on the
associated rate functions, starting from various nondegenerate initial conditions
(Theorem 1.6). A consequence of these rate function bounds, say when starting
from deterministic initial configurations, is that the following growth structure can
be deduced: Namely, the rate functions are quadratic near their zeroes, but are third
order far away from the zeroes.

In particular, the third order asymptotics we derive confirm the formal third-
order expansions in Derrida–Gerschenfeld [10] for the probability distribution of
the current across the origin at large times; cf. discussion after Theorem 1.6. On
the other hand, starting from a “degenerate” deterministic initial configuration with
γ (x) = 1[−1,1](x), we show that the large deviations behavior is, at most, quadratic
(Theorem 1.8).

Moreover, in Theorem 1.7, starting under deterministic configurations when
γ (x) ≡ ρ, we find the exact asymptotic behavior of the rate functions near their
zeroes.

The main idea for the LDPs is to relate, through several “entropy” and “energy”
estimates, the current and tagged particle deviations to those established in Kipnis,
Olla and Varadhan [18], Landim [20] and Landim and Yau [22], with respect to
the hydrodynamic limit of the process empirical density; cf. Propositions 1.1, 1.4.
The growth order asymptotics are proved in part by estimations of currents and
calculus of variations arguments.

At this point, we remark that the behavior of the tagged particle, in contrast
to the subdiffusive d = 1 nearest-neighbor result, scales differently in symmetric
exclusion models in d ≥ 2, and also in d = 1 when the underlying jump prob-
ability is not nearest-neighbor, that is, when particles are free to pass by other
particles. Namely, in Kipnis and Varadhan [19], starting under an equilibrium
νρ{·|η(0) = 1), in diffusive scale, invariance principles for the tagged particle to
Brownian motion were proved. Later, in Rezakhanlou [31], starting from local
equilibrium measures, in diffusive scale, an invariance principle with respect to
a diffusion with a drift given in terms of the profile γ is proved for the “aver-
aged” tagged particle position, averaging over all the positions of O(N) particles
in a sequence of tori with N vertices. In Quastel, Rezakhanlou and Varadhan [30],
in d ≥ 3, a corresponding large deviations principle is proved for the “averaged”
tagged particle position with rate function, which is finite on processes with finite
relative entropy, with respect to diffusions which, in some sense, add an additional
drift to the limit diffusion in [31]. This LDP for the “averaged” tagged particle
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would seem also to hold in d ≤ 2 (nonnearest-neighbor in d = 1), given regular-
ity results on the self-diffusion coefficient in Landim, Olla and Varadhan [21] not
available when [30] was written.

We also mention, other large deviation works with respect to empirical densi-
ties and currents in related interacting systems are Benois, Landim and Kipnis [2],
Bertini et al. [3, 4], Bertini, Landim and Mourragui [5], Farfan, Landim and Mour-
ragui [12], Quastel [29], and Grigorescu [14]; see also Kipnis and Landim [17],
Chapter 10, and references therein. Also, we note, with respect to totally asym-
metric nearest-neighbor exclusion in d = 1, large deviation “lower tail” bounds
for tagged particles are found in Seppäläinen [35].

We now give the hydrodynamic limit and rate function for the process empirical
density μN(s, x;η) ∈ D([0, T ];M1),

μN(s, x;η) =∑
k∈Z

ηN2s(k)1[k/N,(k+1)/N)(x)

where x ∈ R, s ∈ [0, T ], and 0 < T < ∞ is a fixed time.

PROPOSITION 1.1. Starting from local equilibrium measures or deterministic
configurations, we have for t ∈ [0, T ], ε > 0 and smooth, compactly supported φ,
that

lim
N↑∞P

{∣∣∣∣∫ φ(x)μN(t, x) dx −
∫

φ(x)m(t, x) dx

∣∣∣∣> ε

}
= 0,

where m satisfies ∂tm = (1/2)∂xxm with initial data m(0, x) = γ (x).

A reference for the proof of Proposition 1.1, among other places, is Theorem 8.1
in Seppäläinen [34].

The rate functions for the process empirical density differ depending on the
type of initial distribution. First, following [18, 20], suppose the process starts
from a local equilibrium measure ν

(N)
γ (·). For μ ∈ D([0, T ];M1), define the linear

functional on C
1,2
K ([0, T ] × R):

l(μ;G) =
∫

G(T ,x)μT (x) dx −
∫

G(0, x)μ0(x) dx

−
∫ T

0

∫
μt(x)

(
∂

∂t
+ 1

2

∂2

∂x2

)
G(t, x) dx dt.

Let

I0(μ) = sup
G∈C

1,2
K ([0,T ]×R)

{
l(μ;G) − 1

2

∫ T

0

∫
μt(1 − μt)(x)G2

x(t, x) dx dt

}
,

h(μ0;γ ) = sup
φ0,φ1∈CK(R)

{∫
μ0(x)φ0(x) dx +

∫ (
1 − μ0(x)

)
φ1(x) dx

−
∫

log
[
γ (x)eφ0(x) + (1 − γ (x)

)
eφ1(x)]dx

}
,
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and form the rate function

ILE
γ (μ) = I0(μ) + h(μ0;γ ).

Here, C
α,β
K is the space of compactly supported functions, α and β-times contin-

uously differentiable in t and x, respectively. In addition, we will use the notation
μt(x) = μ(t, x).

Next, starting from deterministic configurations ξγ,N , the rate function in [22]
(written for zero-range systems, but the methods straightforwardly apply to our
exclusion context) is given by

IDC
γ (μ) =

{
I0(μ), when μ0 = γ ,
∞, otherwise.

To simplify notation, we call both ILE
γ and IDC

γ as Iγ , omitting the super scripts
“LE” and “DC,” when statements apply to both and the context clear. For 0 ≤
α,β ≤ 1, let hd(α;β) = α log[α/β] + (1 − α) log[(1 − α)/(1 − β)] with usual
conventions 0 log 0 = 0/0 = 0 and log 0 = −∞.

From the definition, Iγ is a convex function. Also, a main point in [18] was to
note that when Iγ (μ) < ∞ is finite, that first

h(μ0;γ ) =
∫

hd(μ0(x);γ (x)) dx < ∞.

[Of course, starting from deterministic configurations, μ0 = γ .] Also second, μ

corresponds to a function Hx ∈ L2([0, T ] × R,μ(1 − μ)dx dt) and satisfies a
“weakly asymmetric hydrodynamic equation,”

∂tμ = 1
2∂xxμ − ∂x[Hxμ(1 − μ)](1.2)

in the weak sense. That is, for G ∈ C
1,2
K ([0, T ] × R), we have

l(μ;G) =
∫ T

0

∫
GxHxμ(1 − μ)(t, x) dx dt(1.3)

and

I0(μ) = 1

2

∫ T

0

∫
H 2

x μ(1 − μ)dx dt.(1.4)

Reciprocally, if for a density μ ∈ D([0, T ];M1), there exists Hx ∈ L2([0, T ] ×
R,μ(1−μ)dx dt), such that μ satisfies (1.2) weakly, then I0(μ) is given by (1.4).

Recall a function I : X → [0,∞] on a complete, separable metric space X is a
rate function if it has closed level sets {x : I(x) ≤ a}. It is a good rate function if the
level sets are also compact. Also, a sequence {Xn} of random variables with values
in X satisfies a large deviation principle (LDP) with speed n and rate function I if
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for every Borel set U ∈ B X ,

− inf
x∈Ū

I(x) ≥ lim sup
n→∞

1

n
log Pr(Xn ∈ U)

≥ lim inf
n→∞

1

n
log Pr(Xn ∈ U) ≥ − inf

x∈U◦ I(x),

where U◦ is the interior of U , and Ū is the closure of U .
Let A = A(γ ) be the space of all densities μ, such that Iγ (μ) < ∞, which can

be approximated in D([0, T ];M1) by a sequence of densities {μn} satisfying (1.2)
corresponding to {Hn

x } ⊂ C
1,2
K ([0, T ] × R), such that Iγ (μn) → Iγ (μ).

For general local equilibrium measures (LEM) and deterministic initial config-
urations (DIC), only a weak large deviation principle is available. The next propo-
sition follows straightforwardly from the methods of [18] (see also [17], Chapter
10), and replacement estimates in [22], namely Theorem 6.1 and Claims 1, 2 [22],
Section 6.

PROPOSITION 1.2. With respect to initial local equilibrium measures (LEM)
or deterministic configurations (DIC), corresponding to profile γ , Iγ is a good
convex rate function, and for U ⊂ D([0, T ];M1),

− inf
μ∈Ū

Iγ (μ) ≥ lim sup
N↑∞

1

N
logP [μN ∈ U ]

≥ lim inf
N↑∞

1

N
logP [μN ∈ U ] ≥ − inf

μ∈U◦∩A
Iγ (μ).

The last proposition raises the question when A(γ ) is large enough so that the
lower bound matches the upper bound. However, with respect to the profiles con-
sidered, the following containment is true, so that, as a corollary, the full LDP
holds.

PROPOSITION 1.3. With respect to profiles γ associated to local equilibrium
measures (LEM) and deterministic configurations (DIC),

A(γ ) ⊃ {μ : Iγ (μ) < ∞}.

COROLLARY 1.4. With respect to initial local equilibrium measures (LEM)
and deterministic configurations (DIC), the LDP with speed N holds for {μN }
with good convex rate function Iγ .

We note Proposition 1.3, for continuous profiles γ ∈ M1(ρ,ρ) with 0 < ρ < 1
and 0 < γ (·) < 1 corresponding to local equilibrium measures, was stated in [20],
and the associated LDP in Corollary 1.4 with respect to these initial measures is
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Theorems 3.2, 3.3 [20]. In Section 5, we prove Proposition 1.3, generalizing the
initial states allowed.

It will be convenient to rewrite (1.2) in terms of a macroscopic “current” or
“flux” J : That is, when Iγ (μ) < ∞, define J so that weakly,

∂xJ + ∂tμ = 0; J = −1
2∂xμ + Hxμ(1 − μ).

It turns out such currents have nice properties and relations; cf. Propositions 2.4
and 2.6. Namely, the time integrated current x �→ ∫ T

0 J (x, t) dt is a well-defined
function on R. Also, the limit∫ ∞

0
[μT (x) − μ0(x)]dx := lim

L→∞

∫ L

0
[μT (x) − μ0(x)]dx converges(1.5)

and ∫ T

0
J (0, t) dt =

∫ ∞
0

μT (x) − μ0(x) dx.(1.6)

In addition, for α,β ∈ R,
∫ T

0 [J (β, t) − J (α, t)]dt = ∫ α
β [μT (x) − μ0(x)]dx.

We now write the current and tagged particle rate function in terms of Iγ . Define
the functions J = Jγ and I = Iγ , for a ∈ R, by

J(a) = inf
{
Iγ (μ) :

∫ T

0
J (0, t) dt = a

}
= inf

{
Iγ (μ) :

∫ ∞
0

μT (x) − μ0(x) dx = a

}
and

I(a) = inf
{
Iγ (μ) :

∫ T

0
J (0, t) dt =

∫ a

0
μT (x) dx

}
= inf

{
Iγ (μ) :

∫ ∞
0

μT (x) − μ0(x) dx =
∫ a

0
μT (x) dx

}
.

When starting from (LEM) or (DIC) initial conditions, we sometimes distinguish
the corresponding rate functions by adding a superscript.

It follows from the definitions that

I
LE
γ (a) ≤ I

DC
γ (a) and J

LE
γ (a) ≤ J

DC
γ (a).(1.7)

We also observe that the restriction in the infimum in the definition of I may take
different form. For instance, when

∫ T
0 J (0, t) dt = ∫ a

0 μT (x) dx, by the relation∫ T
0 J (0, t) − J (a, t) dt = ∫ a

0 μT (x) − μ0(x) dx, one obtains the following restric-
tion which could be used instead:

∫ T
0 J (a, t) dt = ∫ a

0 μ0(x) dx.
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In addition, by translation-invariance, considering μ′(t, x) = μ(t, x + a),
J ′(x, t) = J (x + a, t) and γ ′(x) = γ (x + a), we see, starting from a (DIC) initial
state, that

I
DC
γ (a) = inf

{
IDC
γ (μ) :

∫ T

0
J (a, t) dt =

∫ a

0
γ (x) dx

}
(1.8)

= J
DC
γ ′
(∫ a

0
γ (x) dx

)
.

Although one can readily see J is convex, given Iγ is convex and the constraint
in the definition of J is linear in μ and a, it is not so easily seen whether I is convex
from this sort of argument. However, as seen later in Theorems 1.6 and 1.7, near
their zeroes, both J and I behave quadratically.

Also, it is perhaps curious to note that J and I can be written completely in
terms of densities μ, a consequence of the enforced ordering of particles in the
nearest-neighbor d = 1 setting. In contrast, the large deviation rate function for
the “averaged” tagged particle position in [30] involves an auxiliary current in its
description.

We now give some properties of J and I and state the large deviation principles.

THEOREM 1.5. With respect to (DIC) or (LEM) initial measures:

(i) J and I are finite on R, lim|a|↑∞ J(a) = lim|a|↑∞ I(a) = ∞, and J and I are
a good rate functions. Further, J and I have unique zeroes at the LLN constants
vT and uT , respectively.

(ii) The scaled quantities {J−1,0(N
2T )/N} and {XN2T /N} satisfy LDPs in

scale N with respective rate functions J and I.

A natural question at this point is to calculate the rate functions J and I. Al-
though this appears difficult, some bounds (with nonoptimal constants) are possi-
ble under various conditions.

THEOREM 1.6. Starting under (DIC) or (LEM) initial conditions, there is a
constant c1 = c1(γ ), such that

lim sup
a→vT

√
T

(a − vT )2 J(a), lim sup
|a|↑∞

T

|a|3 J(a) ≤ c1,

lim sup
a→uT

√
T

(a − uT )2 I(a), lim sup
|a|↑∞

T

|a|3 I(a) ≤ c1.

Also, starting under (DIC) initial conditions, there is a constant c2 = c2(γ ) > 0,
such that

lim inf
a→vT

√
T

(a − vT )2 J(a), lim inf|a|↑∞
T

|a|3 J(a) ≥ c2,
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lim inf
a→uT

√
T

(a − uT )2 I(a), lim inf|a|↑∞
T

|a|3 I(a) ≥ c2.

We remark the quadratic asymptotics for J(a) and I(a) near their zeroes recalls
Gaussian expansions, and the CLTs in [16], [24] and [38]. On the other hand,
the cubic bounds for large |a| in Theorem 1.6 seem intriguing, perhaps connected
with totally asymmetric nearest-neighbor exclusion (TASEP) effects. That is, for
the current or tagged particle to deviate to a far level aN , order O(|a|N) particles
must be driven far away from their initial positions, so that perhaps the process
behaves like a driven system like TASEP.

We remark on these last points that in Derrida and Gerschenfeld [10, 11], start-
ing from a local equilibrium measure with step profile γ ρ1,ρ2(x) = ρl1(−∞,0] +
ρr1(0,∞), the large deviation “pressure” of the current J0,1(t) across the bond
(0,1), limt↑∞ t−1/2 logE[exp{λJ0,1(t)}] = F(ρl, ρr, λ), is found. Also, formal

asymptotics with F give P(J0,1(t) = a) ∼ exp[√t{−π2

12 a3 + · · ·}], for large t and
large a > 0 (cf. page 980 [11]).

In this context, the large deviation principle in Theorem 1.5 and bounds in The-
orem 1.6 prove the form of this expression with respect to the dominant third order
term when starting from (DIC) initial conditions: Namely, for large a and constants
c0, c1,

−c0|a|3 ≥ − inf|x|≥a
J(x) ≥ lim sup

t→∞
1√
t
P
(|J0,1(t)| ≥ a

)
≥ lim inf

t→∞
1√
t

logP
(|J0,1(t)| ≥ a

)≥ − inf|x|>a
J(x) ≥ −c1|a|3.

This addresses, in part, a question in [10], as to whether the large |a| asymptotics
would extend to nonstep profiles. See also Hurtado and Garrido [15].

Also, with respect to the current and tagged particle, fluctuations in the “KPZ”
class are discussed in Praehofer and Spohn [28], Ferrari and Spohn [13] and
Sasamoto [33], with respect to TASEP starting initial conditions with step or con-
stant profiles. In particular, the scaling limits of the current and tagged particle
are of “Tracy–Widom” or “Airy” process types whose marginal distribution have
upper tail on order e−c0|x|3 as x ↑ ∞, and lower tail on order e−c1|x|3/2

as x ↓ ∞,
for some constants c0, c1. In our context, starting from (DIC) initial conditions, we
have from Theorem 1.6 that J(a), I(a) are on cubic order |a|3 for large |a|. For-
mally, one is tempted to link this cubic order in terms of the TASEP scaling limit
process exponents. It would be interesting to investigate such analogies.

We now refine the behavior of J(a) and I(a) near their zeroes vT = uT = 0
when the deterministic initial condition has constant profile γ ≡ ρ. Arratia’s CLT
variances σ 2

J and σ 2
X , mentioned earlier, can be computed by adding static and

dynamic contributions, due to initial configuration and later motion fluctuations,
respectively. However, starting from deterministic initial configurations, only the
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dynamical contributions would be present, and we show later, in Proposition 4.5,
that these parts of the variances are σ 2

J,dyn = √
πρ(1 − ρ) and σ 2

X,dyn = √
π(1 −

ρ)/ρ.

THEOREM 1.7. For ρ ∈ (0,1), starting from (DIC) initial configurations with
profile γ ≡ ρ, we have

lim|a|↓0

1

a2 J(a) = 1

2σ 2
J,dyn

√
T

=
√

π

2
√

T
ρ(1 − ρ)

and

lim|a|↓0

1

a2 I(a) = 1

2σ 2
X,dyn

√
T

=
√

π

2
√

T

ρ

1 − ρ
.

At this point, one might ask about the large deviation behavior starting from ini-
tial conditions with “degenerate” profiles. In this case, diffusive scaling may not al-
ways capture for the tagged particle nontrivial LLNs, as in (1.1) or large deviations
as in Theorem 1.5. For instance, starting under ξγ,N where γ (x) = 1(−∞,0](x) is
the step profile, in Arratia [1] it is shown that t−1/2x(t) − √

log(t) → 0 a.s. which
shows that the tagged particle diverges at rate

√
t log(t). With respect to large de-

viations, it is clear the tagged particle, initially at the origin, cannot travel to nega-
tive locations. Also, for a ≥ 0, the condition in I(a) reduces to

∫∞
a μT (x) dx = 0

which, given that μ(t, x) satisfies (1.2), is impossible since the density formally
becomes positive on R as soon as t > 0. Hence, starting from this step profile
configuration, formally I = ∞. However, for the current, starting from this ini-
tial condition, in diffusive scaling, vT < ∞, and a corresponding CLT is proved
in [24].

On the other hand, when the degenerate initial profile has a density of particles
around the tagged particle, diffusive scaling would still seem appropriate to estab-
lish an LDP for the tagged particle and current. Here, as a contrast to the results
in Theorem 1.6 and to argue this last sentiment, we show quadratic upper bounds
for the current and tagged particle large deviations starting from the degenerate
configuration ξγ1,N where ξγ1,N (x) = 1 for |x| ≤ N and ξγ1,N (x) = 0 otherwise.
Here, γ1(x) = 1[−1,1](x). Note the associated LLN speeds vT = uT = 0.

THEOREM 1.8. Starting under ξγ1,N , there exists c1 = c1(T ) > 0 such that,
for a ≥ 0,

lim sup
N↑∞

1

N
logP

(|J−1,0(N
2T )|/N ≥ a

)≤ {−c1a
2, for 0 ≤ a ≤ 1,

−∞, for a > 1,

lim sup
N↑∞

1

N
logP

(|X(N2T )|/N ≥ a
)≤ −c1a

2.
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The interpretation, for instance, with respect to the tagged particle, is that in
configurations ξγ1,N , although it is trapped in the middle of a large segment of
particles, to displace large distances, as there are only O(N) number of particles
in the system, the cost is not as great as under ξρ,N , where there are an infinite
number of particles. At the same time, there is a positive density of particles to the
left and right of the origin, unlike for the profile γ (x) = 1(−∞,0](x), which slows
down the tagged particle so that deviations to a ∈ R have finite cost in diffusive
scale. With respect to the current, a similar explanation applies; we note, however,
current levels larger than N cannot happen, and so they are given infinite cost.

Finally, we remark on some natural questions.
(1) As indicated by Theorem 1.8, different large deviation behaviors might arise

when starting from degenerate initial conditions. It would be of interest to investi-
gate these phenomena and provide estimates for the corresponding rate functions.
When starting from a degenerate initial profile, with a density of mass around the
initial tagged particle position, although the basic argument of Theorem 1.5(ii)
in Section 3 holds, main obstacles are to extend approximation Propositions 1.3
and 2.1, energy estimate Proposition 2.4, first bounds and development of the rate
functions in Section 2.4 and exponential tightness Lemma 3.2.

(2) Also, a joint large deviations principle for the current and tagged particle,
with rate

K(a, b) := inf
{
Iγ (μ) :

∫ ∞
0

(
μT (x) − μ0(x)

)
dx =

∫ b

0
μT (x) dx = a

}
,

should hold by the methods of the article. In this case, asymptotics of the rate
function K(a, b) for (a, b) near (vT , uT ) might be studied.

The plan of the paper is now to develop preliminary estimates in Section 2. In
Section 3, we prove Theorem 1.5. Then, in Section 4, we prove Theorems 1.6, 1.7
and 1.8. These last two sections can be read independently of each other. Finally, in
Section 5, as remarked earlier, we prove Proposition 1.3, and other approximations.

2. Preliminary estimates. We develop, in several subsections, “energy” and
current estimates with respect to finite rate densities, and also prove that J and I

are a finite-valued rate functions.

2.1. Approximation and limit estimates. We state an approximation result de-
rived in the course of the proof of Proposition 1.3, and also certain useful limits at
infinity. Proofs of these results are given in Section 5.

PROPOSITION 2.1. Let μ be a density such that I0(μ) < ∞. Then for all
ε > 0, there is μ+ ∈ D([0, T ];M1), such that:

(i) ∃0 < δ < 1 such that δ ≤ μ+(t, x) ≤ 1 − δ for (t, x) ∈ [0, T ] × R,
(ii) μ+ ∈ C∞([0, T ] × R),
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(iii) H+
x ∈ C∞

K ([0, T ] × R) and

(iv) ‖∂(k)
x ∂

(l)
t μ+‖L∞([0,T ]×R) < ∞ for k, l ≥ 1.

(v) If μ0 ≡ γ ∈ M1(ρ∗, ρ∗), then μ+
0 = σα ∗ γ for an α > 0. In particular, if

μ0(x) ≡ ρ, then μ+
0 (x) ≡ ρ.

(vi) Also, Skorohod distance d(μ+,μ) < ε in D([0, T ];M1),
(vii) |I0(μ

+) − I0(μ)| < ε.
(viii) Also, suppose γ̂ ∈ M1(ρ∗, ρ∗) is piecewise continuous, and 0 < γ̂ (x) < 1

for x ∈ R. Then, if h(μ0; γ̂ ) < ∞, we have |h(μ+
0 ; γ̂ ) − h(μ0; γ̂ )| ≤ ε.

We remark, of course, Proposition 2.1 implies that if I0(μ) < ∞, there is a
sequence of densities μn satisfying properties (i)–(viii) which converges to μ in
D([0, T ];M1).

LEMMA 2.2. Let γ̂ ∈ M1(ρ∗, ρ∗), and μ be a smooth density such that
h(μ0; γ̂ ) < ∞, I0(μ) < ∞, and which also satisfies (i)–(iv) in Proposition 2.1
Then, we have

lim|y|↑∞ sup
t∈[0,T ]

|μ(t, y) − γ̂ (y)| = 0.

The next lemma will be used in the proof of Theorem 1.7.

LEMMA 2.3. Let {μ} be a smooth density such that μ0(x) ≡ ρ, I0(μ) < ∞,
and which satisfies (i)–(iv) in Proposition 2.1. Then

sup
0≤t≤T

∫
(μt − ρ)2 dx ≤ 8I0(μ).

2.2. “Energy” and current estimates. We give a formula for the rate I0(μ),
bounds on the “energy” ‖∂xμ‖L2 , and relations with the current.

PROPOSITION 2.4. Let μ be a smooth density, with finite rate I0(μ), satis-
fying (i)–(iv) in Proposition 2.1. Suppose also there is a smooth γ̂ ∈ M1(ρ∗, ρ∗),
strictly bounded between 0 and 1, such that h(μ0; γ̂ ) < ∞. Then,

I0(μ) = 1

8

∫ T

0

∫
(∂xμ)2

μ(1 − μ)
dx dt + 1

2
[h(μT ; γ̂ ) − h(μ0; γ̂ )]

+ 1

2

∫
∂xγ̂

γ̂ (1 − γ̂ )

∫ T

0
J dt dx + 1

2

∫ T

0

∫
J 2

μ(1 − μ)
dx dt,

1

4
‖∂xμ‖2

L2 ≤ h(μ0; γ̂ ) + I0(μ) + T
∥∥∂xγ̂ /

(
γ̂ (1 − γ̂ )

)∥∥2
L2(2.1)

and ∫ T

0
J (a, t) dt −

∫ T

0
J (b, t) dt =

∫ b

a
μT (x) − μT (0) dx for a, b ∈ R.(2.2)
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PROOF. First, as J = −(1/2)∂xμ + Hxμ(1 − μ), we have

I0(μ) = 1

2

∫ T

0

∫
H 2

x μ(1 − μ)dx dt

= 1

8

∫ T

0

∫
(∂xμ)2

μ(1 − μ)
dx dt

+ 1

2

∫ T

0

∫
J∂xμ

μ(1 − μ)
dx dt + 1

2

∫ T

0

∫
J 2

μ(1 − μ)
dx dt.

We now find a suitable expression for the middle term. Let GL be a smooth,
nonnegative, compactly supported function in [−L,L], bounded by 1, which
equals 1 on [−L + 1,L − 1], and supL

∫
AL

(G′
L)2/GL dx < ∞ where AL =

[L − 1,L] ∪ [−L,−L + 1]. Then

∂t

∫
GL(x)hd(μt (x); γ̂ ) dx

= −1

2

∫
GL(x)

(∂xμt )
2

μt(1 − μt)
dx +

∫
GL(x)Hx∂xμt dx

(2.3)

+ 1

2

∫
GL(x)

∂xγ̂ ∂xμ

γ̂ (1 − γ̂ )
dx −

∫
GL(x)Hxμ(1 − μ)

∂xγ̂

γ̂ (1 − γ̂ )
dx

+
∫
AL

G′
L(x)

[−(1/2)∂xμt + Hx

(
μt(1 − μt)

)]
log

μt

1 − μt

1 − γ̂

γ̂
dx.

Hence, by Schwarz’s inequality and 0 ≤ μ ≤ 1, we can bound, with respect to a
universal constant C,∫

GL(x)hd(μT (x); γ̂ (x)) dx + 1

4

∫ T

0

∫
GL(x)

(∂xμs)
2

μs(1 − μs)
dx ds

≤
∫

GL(x)hd(μ0(x); γ̂ (x)) dx + C

∫ T

0

∫
(Hx)

2μs(1 − μs)dx ds

+ CT

∫
GL(x)

(∂xγ̂ )2

γ̂ 2(1 − γ̂ )2 dx

+ C

∫
AL

[(G′
L)2/GL]

[
log

μt

1 − μt

1 − γ̂

γ̂

]2

dx.

We can take L ↑ ∞, so that the last term vanishes by Lemma 2.2. Then, by mono-
tone convergence, with respect to a universal constant C,

h(μT ; γ̂ ) + 1

4

∫ T

0

∫
(∂xμs)

2

μs(1 − μs)
dx ds

≤ h(μ0; γ̂ ) + C

∫ T

0

∫
(Hx)

2μs(1 − μs)dx ds + CT ‖∂xγ̂ ‖L2,
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and as 0 < μ, γ̂ < 1, we have ‖∂xμ‖L2,‖J‖L2 < ∞.
Hence, integrating (2.3) and taking limit on L, the middle term equals∫ T

0

∫
J∂xμ

μ(1 − μ)
dx dt = h(μT ; γ̂ ) − h(μ0; γ̂ ) +

∫ T

0

∫
J∂xγ̂

γ̂ (1 − γ̂ )
dx dt.

The desired bound on ‖∂xμ‖L2 now follows. Since μ(1 − μ) ≤ 1/4 and
‖Hxμ(1 − μ)‖2

L2 ≤ I0(μ) (cf. (1.4)), by Schwarz’s inequality, we may write

‖∂xμ‖2
L2 ≤ h(μ0; γ̂ ) + 1

2
‖J‖2

L2 + T

2

∥∥∂xγ̂ /
(
γ̂ (1 − γ̂ )

)∥∥2
L2 + 2I0(μ)

≤ h(μ0; γ̂ ) + 1

4
‖∂xμ‖2

L2 + 5

2
I0(μ) + T

∥∥∂xγ̂ /
(
γ̂ (1 − γ̂ )

)∥∥2
L2 .

Finally, (2.2) expresses that the difference of the currents across a and b up to
time T is equal to the difference in the masses in the interval [a, b] from times T

to 0. This is obtained by integrating ∂xJ = −∂tμ. �

COROLLARY 2.5. Let μ be a density with finite rate Iγ (μ) < ∞. Let also
{μn} be a sequence converging to μ with properties (i)–(viii) in Proposition 2.1.
Then, ∂xμ

n and Jn are uniformly bounded in L2([0, T ] × R) and ∂xμ
n → ∂xμ,

Jn → J weakly in L2([0, T ] × R); consequently, ∂xμ,J ∈ L2([0, T ] × R).

PROOF. Let γ̂ be a smooth function in M(ρ∗, ρ∗) such that 0 < γ∗ < γ̂ <

γ ∗ < 1 for some constants γ∗, γ ∗, and h(γ ; γ̂ ) < ∞. Then, by property (viii)
Proposition 2.1, as h(μ0; γ̂ ) < ∞, we have h(μn

0; γ̂ ) → h(μ0; γ̂ ), and, in par-
ticular, {h(μn

0; γ̂ )} is uniformly bounded.
Also, as I0(μ) < ∞, by property (vii) Proposition 2.1, we have I0(μ

n) → I0(μ)

and {I0(μ
n)} is uniformly bounded. In particular, {‖Hn

x μn(1 − μn)‖L2} is uni-
formly bounded.

Hence, as ∂xγ̂ /(γ̂ (1 − γ̂ )) ∈ L2, and by (2.1) in Proposition 2.4, we have
{‖∂xμ

n‖L2} is uniformly bounded. Also, since Jn = (1/2)∂xμ
n + Hn

x μn(1 − μn),
we also conclude {‖Jn‖L2} is uniformly bounded.

We can then extract subsequences ∂xμ
nk and Jnk converging weakly to ζ and φ,

respectively. Given μnk → μ in D([0, T ]×M1), for smooth, compactly supported
G, we have

∫
G∂xμ

nk dx ds = ∫ −Gxμ
nk dx ds converges to both

∫
Gζ dx ds and∫ −Gxμdx ds. Then, ∂xμ exists weakly in L2 and ∂xμ = ζ . Hence, the whole

sequence ∂xμ
n → ∂xμ weakly in L2.

Similarly, noting Skorohod convergence μn → μ implies at the endpoints that
μn

0,μ
n
T converge to μ0,μT , respectively, and ∂tμ

n + ∂xJ
n = 0, we have φx =

−∂tμ weakly in L2. Then, φx = (−1/2)∂xxμ + ∂x[Hxμ(1 − μ)] weakly in L2,
and so φ = (−1/2)∂xμ + Hxμ(1 − μ) + C(t) with respect to a function C(t) not
dependent on x. But, given φ, ∂xμ,Hxμ(1 − μ) ∈ L2([0, T ] × R), we conclude
C(t) ≡ 0. In particular, φ = J = −(1/2)∂xμ+Hxμ(1−μ) ∈ L2, and the sequence
Jn → J weakly in L2. �
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2.3. Current-mass relation. We give some properties of the integrated current∫ T
0 J (x, t) dt and prove the current-mass relation indicated in the Introduction.

PROPOSITION 2.6. Let μ be a density such that Iγ (μ) < ∞. Let {μn} be a
sequence converging to μ with properties (i)–(viii) in Proposition 2.1. Then, x �→∫ T

0 J (x, t) dt is a Lipschitz function, lim|x|↑∞
∫ T

0 J (x, t) dt = 0, and pointwise for
x ∈ R,

lim
n→∞

∫ T

0
Jn(x, t) dt =

∫ T

0
J (x, t) dt.

In addition, convergence (1.5), and the “current-mass” relation (1.6) hold.

PROOF. First, from (2.2) in Proposition 2.4, we have∫ T

0
Jn(a, t) dt −

∫ T

0
Jn(b, t) dt =

∫ b

a
μn

T (x) − μn
T (0) dx.

Hence | ∫ T
0 Jn(a, t) dt − ∫ T

0 Jn(b, t) dt | ≤ |b − a| as 0 ≤ μn ≤ 1. In particular,∫ T
0 Jn(a, t) dt is Lipschitz in a. Moreover, a subsequence,

∫ T
0 Jnk (·, t) dt → ψ(·)

converges uniformly on compact subsets to a Lipschitz function ψ . Given Jn →
J weakly in L2([0, T ] × R) by Corollary 2.5, we conclude by a limit argu-
ment with respect to G ∈ L2(R) that

∫
G(a)

∫ T
0 J (a, t) dt da = ∫

G(a)ψ(a) da,
and so ψ(a) = ∫ T

0 J (a, t) dt . In particular, the whole sequence
∫ T

0 Jn(·, t) dt →∫ T
0 J (·, t) dt and the limit

∫ T
0 J (·, t) dt is Lipschitz.

Therefore, since∫ [∫ T

0
J (x, t) dt

]2

dx ≤ T

∫ ∫ T

0
J 2(x, t) dt dx < ∞,

we obtain the pointwise limit
∫ T

0 J (x, t) dt → 0 as |x| ↑ ∞.
Finally, given Skorohod convergence μn → μ, μn

0 and μn
T converge respec-

tively to μ0 and μT . Then, by taking limits, we can write∫ T

0
J (0, t) dt −

∫ T

0
J (L, t) dt =

∫ L

0
μT (x) − μ0(x) dx.

Now, since limL→∞
∫ T

0 J (L, t) dt = 0, we obtain (1.5) and (1.6). �

2.4. First estimates on J and I. We develop some first bounds on J and I, and
at the end show they are rate functions.

Recall σt (x) = (2πt)−1/2 exp{−x2/2t}, and consider a C∞ smooth function,
supported on [−1,1], say

ψ0(x) = exp{−1/(1 − x2)}.
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Define the smooth, anti-symmetric function

ψ(x) =
{−ψ0

(
2(x + 1/2)

)
, for x ≤ 0,

ψ0
(
2(x − 1/2)

)
, for x ≥ 0

and also the anti-derivative �(x) = ∫ x
−1 ψ(y)dy, both supported on [−1,1].

Let γ ∈ M1(ρ∗, ρ∗) be a profile associated to an initial (LEM) local equilibrium
measure or a (DIC) deterministic configuration. Recall, when Iγ (μ) < ∞, it has
explicit representation; cf. 1.4. Recall, also that vT and uT are the LLN speeds
associated to γ ; cf. (1.1).

Since J and I are given through infima, it is natural to look for explicit densities
where computations can be made. Consider the density

μ(s, x) = σs ∗ γ (x) + (λε(s/T )
)
ψ(x/L),

where ε(t) is a smooth, increasing function which vanishes for 0 ≤ t ≤ 1/10, and
ε(1) = 1, and L �= 0. At time s = T/10, 0 < γ∗ < σs ∗ γ < γ ∗ < 1 for some
constants γ∗, γ ∗. We will take 0 ≤ λ < min{γ∗,1 − γ ∗}/2, small enough so that
γ∗/2 ≤ μ ≤ (1 − γ ∗)/2 for T/10 ≤ t ≤ T .

Then, as μ follows the heat equation for [0, T /10], μ satisfies (1.2) with respect
to Hx , supported on [T/10, T ] × [−|L|, |L|], given by

Hx =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

μ(1 − μ)

[
λε(s/T )

2L
ψ ′
(

x

L

)
− λLε′(s/T )

T
�

(
x

L

)]
,

for
T

10
≤ s ≤ T , |x| ≤ |L|,

0, otherwise.

Also, as μ0 = γ , we have h(μ0;γ ) = 0, and

I0(μ) = 1

2

∫ T

T/10

∫ 1

μ(1 − μ)

[
λε(s/T )

2L
ψ ′
(

x

L

)
− λLε′(s/T )

T
�

(
x

L

)]2

dx ds

(2.4)

≤ 4ε∗

γ∗(1 − γ ∗)

[
λ2T

4|L|
∫ 1

−1
ψ ′(x)2 dx + λ2|L|3

T

∫ 1

−1
�(x)2 dx

]
,

where ε∗ = 1 + ‖ε′‖2
L∞ . Compute now∫ ∞

0
[μT (x) − μ0(x)]dx = λL

∫ 1

0
ψ(x)dx + vT

= λL

∫ 1

0
ψ(x)dx +

∫ uT

0
σT ∗ γ (x) dx,

and, for c ∈ R,∫ c

0
μT (x) dx =

∫ c

0
σT ∗ γ (x) dx + λL

∫ |c|/|L|
0

ψ(x)dx.
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Then, the restriction specified in the definition of J(c),
∫ T

0 J (0, t) dt = c, is the
same as

λL

∫ 1

0
ψ(x)dx = c − vT ,(2.5)

and the restriction listed in I(c),∫ T

0
J (0, t) dt =

∫ ∞
0

μT (x) − μ0(x) dx =
∫ c

0
μT (x) dx,

is equivalent to

λL

∫ 1

|c|/|L|
ψ(x)dx =

∫ c

uT

σT ∗ γ (x) dx.(2.6)

LEMMA 2.7. For c ∈ R, J(c), I(c) < ∞ and in particular J(vT ) = I(uT ) = 0.
Moreover, on any interval [a, b] ⊂ R, supc∈[a,b] J(c), supc∈[a,b] I(c) < ∞.

PROOF. For c ∈ R, given bound (2.4), we need only demonstrate that restric-
tions (2.5) and (2.6), with respect to J and I, hold with respective choices of λ

and L. If c = vT or uT , we may take λ = 0, and so clearly J(vT ) = I(uT ) = 0.
For c �= vT , let λ > 0, and note the left-hand side of (2.5) can be made equal to

the right-hand side vT − c with a proper choice of L. Similarly, when c �= uT , let
λ > 0, and note that the left-hand side of (2.6) vanishes for |L| ≤ |c| and diverges
to ±∞ as L → ±∞. Hence, a proper choice of L allows us to verify (2.6) also.

In particular, we can see, by varying L, with respect to c ∈ [a, b] in any finite
interval, we obtain supc∈[a,b] J(c), supc∈[a,b] I(c) < ∞. �

LEMMA 2.8. With respect to local equilibrium measures or deterministic ini-
tial configurations, J and I are lower semi-continuous.

PROOF. We give the proof for I; the argument for J is analogous. We first
consider when starting from a local equilibrium measure and Iγ = ILE

γ . Let {an}
be a convergent sequence an → a. From Proposition 2.7, we have supn I(an) < ∞.
Then, by Propositions 2.1 and 2.6, we can find densities {μn} so that |ILE

γ (μn) −
I(an)| < n−1 and | ∫ T

0 Jn(0, t) dt − ∫ an

0 μn
T (x) dx| ≤ n−1.

As ILE
γ is a good rate function and {ILE

γ (μn)} is uniformly bounded, a subse-
quence can be found where μnk converges to a density μ̂ in D([0, T ];M1) and
lim inf I(an) = lim I(ank ) = lim ILE

γ (μnk ).

By Proposition 2.6, we have
∫ T

0 Jnk (0, t) dt → ∫ T
0 Ĵ (0, t) dt . Also, as μ

nk

T →
μ̂T , and an → a, we have

∫ an

0 μ
nk

T (x) dx → ∫ a
0 μ̂T (x) dx. Then,

∫ T
0 Ĵ (0, t) dt =∫ a

0 μ̂T (x) dx, and hence μ̂ satisfies the infimum restriction in the definition of I(a).
By lower semi-continuity of ILE

γ , the desired lower semi-continuity of I follows
as lim inf I(an) = lim ILE

γ (μnk ) ≥ ILE
γ (μ̂) ≥ I(a).
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Starting from a deterministic configuration, we can repeat the steps with ILE
γ

replaced by I0. The densities {μnk }, by Proposition 2.1, also are such that μ
nk

0 con-
verges to γ . Hence, the limit μ̂ satisfies μ̂0 = γ and so I0(μ̂) = IDC

γ (μ̂). There-
fore, I is also lower semi-continuous in this case. �

COROLLARY 2.9. With respect to local equilibrium measures or deterministic
initial conditions, J and I are finite-valued rate functions. In addition, J(a′) = 0
and I(a) = 0 exactly when a′ = vT and a = uT .

PROOF. We concentrate on the proof with respect to I, as a similar argument
holds for J. First, that I : R → R, I(uT ) = 0, and I is a rate function follows from
Lemmas 2.7 and 2.8. We need only show that uT is the only zero of I.

When a �= uT , if I(a) vanishes, out of a minimizing sequence of densities,
through Propositions 2.1 and 2.6, one can find a subsequence converging to a min-
imizing μ satisfying the restriction

∫ T
0 J (0, t) dt = ∫ a

0 μT (x) dx.
With respect to local equilibrium measures, by lower semi-continuity of h(·;γ )

and I0(·), we have h(μ0;γ ) = I0(μ) = 0. Under deterministic initial conditions,
since the subsequence at time 0 converges to γ , we have μ0 = γ , and by lower
semi-continuity, I0(μ) = 0.

Then, in either case, μ0 = γ a.s. and, noting (1.4), H 2
x μ(1 − μ) = 0 a.s. In

particular, μt = σt ∗ γ is the unique bounded solution of the weak heat equation
with initial data γ . However, then

∫ T
0 J (0, t) dt = ∫ uT

0 μT (x) dx which does not
equal

∫ a
0 μT (x) dx since μT is positive and a �= uT . This is a contradiction. �

3. Proof of Theorem 1.5. The proofs follow in several steps which are di-
vided into subsections. The first step is to describe key relations between a tagged
particle and the current across the bond (−1,0), which will allow us later to invoke
large deviations of the empirical density. Next, a super-exponential inequality is
given. Then, exponential tightness is established, and weak upper and lower large
deviation bounds are proved. Finally, Theorem 1.5 is shown.

3.1. Tagged particle and current relations. For x ∈ Z and t ≥ 0, define
Jx,x+1(t) as the integrated current up to time t across the bond (x, x + 1), that
is, the number of particles which crossed from x to x + 1 up to time t minus the
number of particles which moved from x + 1 to x in time t . It is well known (cf.
Liggett [23], DeMasi and Ferrari [8]) that for integers r > 0,

{Xt ≥ r} =
{
J−1,0(t) ≥

r−1∑
x=0

ηt (x)

}
.(3.1)

Similarly, for r < 0,

{Xt ≤ r} =
{
J−1,0(t) ≤ −

−1∑
x=r

ηt (x)

}
(3.2)



1480 S. SETHURAMAN AND S. R. S. VARADHAN

and

{Xt ≤ 0} = {J−1,0(t) ≤ 0}.
Also, from a moment’s thought, we have

Jx−1,x(N
2t) − Jx,x+1(N

2t) = ηN2t (x) − η0(x).

We would like to make a summation-by-parts,

J−1,0(N
2t) =∑

x≥0

Jx−1,x(N
2t) − Jx,x+1(N

2t) =∑
x≥0

ηN2t (x) − η0(x),

to write the current across the bond (−1,0) in terms of the empirical process. How-
ever, the above display is only formal as the sum on the right may not converge. To
treat it carefully, we introduce a “cutoff” function as in Rost and Vares [32]. For
n ≥ 1, let

Gn(u) = 1[0,n](u)(1 − u/n).

Also, denote for a function G ∈ C∞
K (R),

YN
t (G) = 1

N

∑
x

G(x/N)ηN2t (x).

Then

YN
t (Gn) − YN

0 (Gn) = 1

N

∑
x

Gn(x/N)
(
Jx−1,x(N

2t) − Jx,x+1(N
2t)
)

= 1

N

∑
x

(
Gn(x/N) − Gn(x − 1/N)

)
Jx−1,x(N

2t)

= 1

N
J−1,0(N

2t) − 1

N

nN∑
x=1

1

nN
Jx−1,x(N

2t).

This implies

1

N
J−1,0(N

2t) = YN
t (Gn) − YN

0 (Gn) + 1

N

nN∑
x=1

1

nN
Jx−1,x(N

2t).

Hence, for a > 0,

{XN2t /N ≥ a}

=
{

1

N
J−1,0(N

2t) ≥ 1

N

�aN�∑
x=0

ηN2t (x)

}
(3.3)

=
{
YN

t (Gn) − YN
0 (Gn) + 1

nN2

nN∑
x=1

Jx−1,x(N
2t) ≥ 1

N

�aN�∑
x=0

ηN2t (x)

}
.
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A similar statement holds for a ≤ 0, namely,

{XN2t /N ≤ a} =
{
YN

t (Gn) − YN
0 (Gn)

+ 1

nN2

nN∑
x=1

Jx−1,x(N
2t) ≤ − 1

N

−1∑
x=�aN�

ηN2t (x)

}
,

where for a = 0, we take
∑−1

x=0 ηN2t (x) = 0.
Therefore, heuristically, the tagged particle large deviations should be given in

terms of the rate for the empirical density Iγ under a certain restriction, as long as
the contribution from the term (1/nN2)

∑nN
x=1 Jx−1,x(N

2t) is superexponentially
small as n,N ↑ ∞.

3.2. Superexponential estimate. In relation to (3.3), the superexponential esti-
mate needed is implied by the following estimate.

PROPOSITION 3.1. For each λ > 0, starting from (LEM) or (DIC) initial
states,

lim
n↑∞ lim

N↑∞
1

N
logEexp

∣∣∣∣∣ λN

nN2

nN∑
x=1

Jx−1,x(N
2t)

∣∣∣∣∣= 0.

PROOF. By the inequality e|x| ≤ ex + e−x , we can remove the absolute value
in the last display. Now, note that

exp

{
λN

nN2

nN∑
x=1

Jx−1,x(N
2t) −

nN∑
x=1

(eλ/nN − 1)

∫ N2t

0
ηx−1(1 − ηx)(s) ds

−
nN∑
x=1

(e−λ/nN − 1)

∫ N2t

0
ηx(1 − ηx−1)(s) ds

}
is a martingale with mean 1. Then together, the second and third terms in the
exponent equal

nN∑
x=1

[
(eλ/nN − λ/nN − 1)

∫ N2t

0
ηx−1(1 − ηx)(s) ds

+ (e−λ/nN + λ/nN − 1)

∫ N2t

0
ηx(1 − ηx−1)(s) ds

]

+ λ

nN

∫ N2t

0
(η0 − ηnN)(s) ds

≤ 2eλ/nNλ2

n2N2 (nN)(N2t) + λ

nN
(N2t) ≤ C(t, λ)N

n
,
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which gives the result with standard manipulations. �

3.3. Exponential tightness estimate. We now show that the scaled tagged par-
ticle positions are exponential tight.

LEMMA 3.2. Starting from (LEM) or (DIC) initial states, we have

lim
a↑∞ lim

N↑∞
1

N
logP {|J−1,0(N

2T )|/N ≥ a}

= lim
a↑∞ lim

N↑∞
1

N
logP {|XN2T |/N ≥ a} = −∞.

PROOF. We give the argument for the tagged particle, as the proof for the cur-
rent is similar, and somewhat easier. From (3.3), we need only super-exponentially
estimate, for a positive (as a similar argument works for a < 0) and n fixed,

P

{
YN

T (Gn) − YN
0 (Gn) + 1

nN2

nN∑
x=1

Jx−1,x(N
2T ) ≥ YN

T (1[0,a])
}
.

We need only estimate

E

[
exp

{
N

[
YN

T (Gn) − YN
0 (Gn) + 1

nN2

nN∑
x=1

Jx−1,x(N
2T ) − YN

T

(
1[0,a]

)]}]

= E[eQ1eQ2eQ3eQ4]
with Q1 = NYN

T (Gn), Q2 = −NYN
0 (Gn), Q3 = (nN)−1∑nN

x=1 Jx−1,x(N
2t) and

Q4 = −∑�aN�
x=0 ηN2T (x). By Chebyshev, we can estimate the exponential terms

separately. For fixed n, limN−1 logE[e4Q3] is bounded from Proposition 3.1, and
as Q1 ≤ nN by properties of Gn, limN−1 logE[e4Q1] is also bounded. In addition,
as exp{4Q2} ≤ 1, this term can be neglected.

Finally, by Borcea, Branden and Liggett [6], Theorem 5.2, as the initial measure
of type (LEM) or (DIC) is a product measure [of degenerate Bernoulli’s under
(DIC) initial configurations], the coordinates {ηN2T (x)} are negatively associated.
Hence, E[e4Q4] ≤∏�aN�

x=1 E[e−4η
N2T

(x)], and using log(1−x) ≤ −x for 0 ≤ x ≤ 1,
we write

1

N
logE[e4Q4] ≤ 1

N

�aN�∑
x=1

logE[e−4η
N2T

(x)]

≤ 1

N

�aN�∑
x=1

log
[
(e−4 − 1)P

(
ηN2T (x) = 1

)+ 1
]

≤ e−4 − 1

N
E

[�aN�∑
x=1

ηN2T (x)

]
→ (e−4 − 1)

∫ a

0
m(T ,x) dx,
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where m(T ,x) = σT ∗ γ (x) is the solution of the hydrodynamic equation (Propo-
sition 1.1). Since σT/10 ∗ γ (x) ≥ γ∗ > 0 as γ ∈ M1(ρ∗, ρ∗) for ρ∗, ρ∗ > 0, the
right-hand side is bounded above by (e−4 − 1)γ∗a ↓ −∞ as a ↑ ∞. �

3.4. Weak LDP upper bounds. The weak upper bound for the tagged particle
deviations, starting from local equilibrium measures or deterministic initial con-
figuration, follows in several steps and is stated in Step 6. As the same argument
works for the current, we also state its associated weak upper bound in Step 6,
below. For the convenience of the reader, we indicate the modifications needed in
Step 1; the other steps involve similar changes.

Step 1. Consider an interval [a, b] for 0 < a < b; subsequent arguments carry
over straightforwardly to all intervals [a, b] ⊂ R using (3.2) by splitting at the
origin if necessary. Now, divide [a, b] into m equal intervals Ak = [ck, ck+1]. Then,
by the union of events estimate,

lim sup
N→∞

1

N
logP(XN2T /N ∈ [a, b]) ≤ max

k
lim sup
N→∞

1

N
logP(XN2T /N ∈ Ak).

Then, from (3.3) and Proposition 3.1, we have that

lim sup
N↑∞

1

N
logP(XN2T /N ∈ [a, b])

≤ lim sup
m↑∞

lim sup
δ↓0

lim sup
n↑∞

max
1≤k≤m

lim sup
N↑∞

1

N

× logP
(
YN

T (Gn) − YN
0 (Gn) ∈ [YN

T

(
1[0,ck]

)− δ, YN
T

(
1[0,ck+1]

)+ δ
])

.

Since the maps μ �→ ∫
G(x)μT dx,

∫
G(x)μ0 dx,

∫ c
0 μT dx, for compactly

supported G and constants c, are continuous in the Skorohod topology on
D([0, T ];M1), from Corollary 1.4, we conclude, for fixed k, n and δ that

lim sup
N→∞

1

N
logp

(
YN

T (Gn) − YN
0 (Gn)ds ∈ [YN

T

(
1[0,ck]

)− δ, YN
T

(
1[0,ck+1]

)+ δ
])

≤ − inf
{
Iγ (μ);

∫
Gn(x)[μT (x) − μ0(x)]dx(3.4)

∈
[∫ ck

0
μT (x) dx − δ,

∫ ck+1

0
μT (x) dx + δ

]}
.

We now indicate the modifications needed for the current in this step. For 0 <

a < b, from (3.3) and Proposition 3.1, we have

lim sup
N↑∞

1

N
logP

(
J−1,0(N

2T )/N ∈ [a, b])
≤ lim sup

m↑∞
lim sup

δ↓0
lim sup

n↑∞
max

1≤k≤m
lim sup
N↑∞

1

N
logP

(
YN

T (Gn) − YN
0 (Gn)

∈ [ck − δ, ck+1 + δ]).
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From continuity of the maps μ �→ ∫
GμT dx and μ �→ ∫

Gμ0 dx, and Corol-
lary 1.4, we further bound

lim sup
N→∞

1

N
logP

(
YN

T (Gn) − YN
0 (Gn)ds ∈ [ck − δ, ck+1 + δ])

≤ − inf
{
Iγ (μ);

∫
Gn(x)[μT (x) − μ0(x)]dx ∈ [ck − δ, ck+1 + δ]

}
.

Step 2. Next, we give a uniform upper bound of the infimum in (3.4). We exhibit
a density μc satisfying, for each δ > 0 and all large n,∫

Gn(x)[μc
T (x) − μc

0(x)]dx ∈
[∫ c

0
μc

T (x) dx − δ,

∫ c

0
μc

T (x) dx + δ

]
and supc∈[a,b] Iγ (μc) < B0 < ∞ where B0 is independent of n and δ.

This is accomplished by the constructions in Section 2.4, namely one takes μc =
σt ∗ γ + λε(t/T )ψ(x/L) with λ,L chosen so that λL

∫ 1
|c/L| ψ(x)dx = ∫ c

uT
σT ∗

γ (x) dx. Let J c be its current, and H c
x be the associated function with respect to

(1.2).
Proposition 2.7 gives Iγ (μc) is uniformly bounded for c ∈ [a, b]. Now compute∫

Gn(x)[μc
T (x) − μc

0(x)]dx

=
∫ T

0

∫
Gn(x)[(1/2)∂xxμ

c − ∂xH
c
xμ

c(1 − μc)]dx dt

(3.5)

=
∫ T

0
−(1/2)∂xμ

c(t,0) + H c
xμ

c(1 − μc)(t,0) dt

+ 1

n

∫ T

0

∫ n

0
[(1/2)∂xμ

c − H c
xμ

c(1 − μc)]dx dt.

Since
∫ c

0 μc
T (x) dx = ∫ T

0 J c(0, t) dt and J c(0, t) = −(1/2)∂xμ
c(t,0) + H c

xμ
c(1 −

μc)(t,0), we have

sup
c∈[a,b]

∣∣∣∣∫ Gn(x)[μc
T (x) − μc

0(x)]dx −
∫ c

0
μc

T (x) dx

∣∣∣∣
≤ 1

n

∣∣∣∣∫ T

0

∫ n

0
(1/2)∂xμ

c − H c
xμ

c(1 − μc) dx dt

∣∣∣∣
≤ sup

c∈[a,b]

∣∣∣∣ 1

2n

∫ T

0

(
μc

t (n) − μc
t (0)

)
dt

∣∣∣∣+ 1√
n
‖H c

xμ
c(1 − μc)‖L2([0,T ]×R).

Since ‖H c
xμ

c(1 − μc)‖2
L2 ≤ 2I0(μ

c), the right-hand side is O(n−1/2) by Lem-
ma 2.7.

Step 3. As Iγ is a good rate function, by the uniform bounds in step 2, out of
minimizers νk,n,δ over k = k(m), and n, δ in the infimum in (3.4), by the uniform
bound on Iγ (νk,n,δ), we can extract a subsequence, on which the limsup of (3.4)
is attained as δ ↓ 0 and n,m ↑ ∞, and which converges in D([0, T ];M1) to a μ̄.
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By Proposition 2.1, the subsequence, labeled νk,n,δ itself for simplicity, may
be approximated by {μk,n,δ} so that μk,n,δ is smooth, strictly bounded between
0 and 1, Hk,n,δ

x ∈ C∞([0, T ] × R), Skorohod distance d(μk,n,δ, νk,n,δ) ↓ 0,
|I0(ν

k,n,δ) − I0(μ
k,n,δ)| ↓ 0 and when γ̂ ∈ M1(ρ∗, ρ∗) is piecewise continuous

and 0 < γ̂ (x) < 1 for x ∈ R, |h(ν
k,n,δ
0 ; γ̂ ) − h(μ

k,n,δ
0 ; γ̂ )| ↓ 0. Also, as [a, b] is

compact, the subsequence can be chosen so that ck+1 converges to a c ∈ [a, b].
Given νk,n,δ satisfies the restriction in (3.4), we may also arrange∫ ck

0
μ

k,n,δ
T (x) dx − 2δ ≤

∫
Gn(x)[μk,n,δ

T (x) − μ
k,n,δ
0 (x)]dx

(3.6)
≤
∫ ck+1

0
μ

k,n,δ
T (x) dx + 2δ.

With these specifications, by lower semi-continuity, we have that (3.4) is less
than, in the case of starting from a local equilibrium measure,

lim
m↑∞ lim

δ↓0
lim
n↑∞ max

k
−ILE

γ (μk,n,δ) ≤ −ILE
γ (μ̄).

When starting from a deterministic configuration, noting ν
k,n,δ
0 = μ̄0 = γ , (3.4) is

less than

lim
m↑∞ lim

δ↓0
lim
n↑∞ max

k
−I0(μ

k,n,δ) ≤ −I0(μ̄) = −IDC
γ (μ̄).

Step 4. We now show that μ̄ satisfies∫ T

0
J̄ (0, t) dt =

∫ c

0
μ̄T (x) dx.(3.7)

As convergence in D([0, T ];M1) implies μ
k,n,δ
T → μ̄T , ck+1 − ck = m−1 and

0 ≤ μ
k,n,δ
T (x) ≤ 1, we have both∫ ck

0
μ

k,n,δ
T (x) dx,

∫ ck+1

0
μ

k,n,δ
T (x) dx →

∫ c

0
μ̄T (x) dx.

Also, following sequence (3.5),∫
Gn(x)[μk,n,δ

T (x) − μ
k,n,δ
0 (x)]dx

=
∫ T

0
J k,n,δ(0, t) dt

+ 1

n

∫ T

0

∫ n

0
[(1/2)∂xμ

k,n,δ
t − Hk,n,δ

x μk,n,δ(1 − μk,n,δ)(t, x)]dx dt.

Since ‖Hk,n,δ
x μk,n,δ(1 − μk,n,δ)‖2

L2 ≤ 2I0(μ
k,n,δ) is uniformly bounded, the last

term is bounded uniformly by n−1T + (nT )−1/2
√

2I0(μk,n,δ). On the other hand,∫ T
0 J k,n,δ(0, t) dt → ∫ T

0 J̄ (0, t) dt by Proposition 2.6.
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Hence, noting (3.6), we obtain (3.7) immediately.
Step 5. Therefore,

lim sup
m↑∞

lim sup
δ↓0

lim sup
n↑∞

max
1≤k≤m

− inf
{
Iγ (μ);

∫
Gn(x)[μT (x) − μ0(x)]dx

∈
[∫ ck

0
μT (x) dx − δ,

∫ ck+1

0
μT (x) dx + δ

]}
≤ −Iγ (μ̄) ≤ − min

c∈[a,b] I(c).

Step 6. The weak LDP upper bound, with respect to the tagged particle, for
compact K ⊂ R,

lim sup
N↑∞

1

N
P(XN2t /N ∈ K) ≤ − inf

a∈K
I(a),(3.8)

is now standard, given that I is lower semi-continuous (Lemma 2.8).
Similarly, we have the weak upper bound for the current

lim sup
N↑∞

1

N
P
(
J−1,0(N

2t)/N ∈ K
)≤ − inf

a∈K
J(a).(3.9)

3.5. LDP lower bound. As before, we concentrate on the tagged particle de-
viations, as the proof for the current is analogous. For the first step, the scheme for
the weak upper bound is used. Let O ⊂ R be a nonempty open set, and suppose
a ∈ O . We also assume a > 0 as a similar argument works for a ≤ 0 by focusing
on a subinterval to the left of the origin. Let ε > 0 be such that a − ε > 0 and
(a − ε, a + ε) ⊂ O .

Then, for θ > 0,

lim
N↑∞

1

N
logP(XN2T /N ∈ O)

≥ lim
N↑∞

1

N
P
(
XN2T /N ∈ (a − ε, a + ε)

)
≥ lim

n↑∞ lim
N→∞

1

N
logP

(
YN

T

(
1[0,a−ε]

)
< YN

T (Gn) − YN
0 (Gn)(3.10)

+ 1

nN2

nN∑
x=1

Jx−1,x(N
2T ) < YN

T

(
1[0,a+ε]

)

and YN
T

(
1[a−ε,a+ε]

)
> θ

)
.
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From Proposition 3.1 and Corollary 1.4, the left-hand side of (3.10) is greater
than

lim
θ↓0

lim
δ↓0

lim
n↑∞ lim

N→∞
1

N
logP

(
YN

T

(
1[0,a−ε]

)+ δ < YN
T (Gn) − YN

0 (Gn)

< YN
T

(
1[0,a+ε]

)− δ, and YN
T

(
1[a−ε,a+ε]

)
> θ

)
≥ lim

θ↓0
lim
δ↓0

lim
n↑∞(3.11)

− inf
{
Iγ (μ) :

∫ a−ε

0
μT (x) dx + δ <

∫
Gn(x)[μT (x) − μ0(x)]dx

<

∫ a+ε

0
μT (x) dx − δ, and

∫ a+ε

a−ε
μT (x) dx > θ

}
.

Now, for α > 0, let μ̄ be a density such that |Iγ (μ̄) − I(a)| < α, and∫ T

0
J̄ (0, t) dt =

∫ a

0
μ̄T (x) dx.

By the method used for (3.5) and (3.8) in the last section, through approximations
of μ̄ with smooth μn by Proposition 2.1, we can show that

lim
n

∫ ∞
0

Gn(x)[μ̄T (x) − μ̄0(x)]dx =
∫ T

0
J̄ (0, t) dt.(3.12)

We will need now to approximate μ̄ as follows to ensure a certain positivity.
Let χ = σs ∗ γ + λε(t/T )ψ(x/L) from Section 2.4 where λ,L are chosen so that∫ T

0 Jχ(0, t) dt = ∫ a
0 χT (x) dx. Recall Iγ (χ) < ∞, and note (3.12), with χ and Jχ

replacing μ̄ and J , also holds by the explicit construction. For 0 < b < 1, define
μb = (1 − b)χ + bμ̄. Clearly, limb↑1 μb = μ̄ uniformly, and so in D([0, T ];M1).
In fact, limb↑1 Iγ (μb) = Iγ (μ̄): By lower semi-continuity, lim inf Iγ (μb) ≥ Iγ (μ̄)

and, by convexity, lim sup Iγ (μb) ≤ Iγ (μ̄). Now, for given β > 0, let b be such
that |Iγ (μb) − Iγ (μ̄)| < β .

With θ > 0, noting

lim
n

∫ ∞
0

Gn(x)[μb
T (x) − μb

0(x)]dx =
∫ a

0
μb

T (x) dx,

we have for n ≥ N(θ, μ̄,χ) that∫ a−ε

0
μb

T (x) dx + b

∫ a

a−ε
μ̄T (x) dx + (1 − b)

∫ a

a−ε
χT (x) dx − θ

≤
∫

Gn(x)[μb
T (x) − μb

0(x)]dx

≤
∫ a+ε

0
μb

T (x) dx − b

∫ a+ε

a
μ̄T (x) dx − (1 − b)

∫ a+ε

a
χT (x) dx + θ.
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By the construction of χ ,
∫ a
a−ε χT (x) dx,

∫ a+ε
a χT (x) dx ≥ cε for a constant c > 0.

Hence, we can choose θ = θ(ε, b,χ) so that for all small δ,

(1 − b)

∫ a+ε

a
χT (x) dx − θ, (1 − b)

∫ a

a−ε
χT (x) dx − θ > δ.

Therefore, as μ̄ is nonnegative, μb satisfies the restriction in the infimum in
(3.11). In particular, we have

lim
N↑∞

1

N
P(XN2t /N ∈ O) ≥ −Iγ (μb) ≥ −Iγ (μ̄) − β ≥ −I(a) − α − β.

Hence,

lim
N↑∞

1

N
P(XN2t /N ∈ O) ≥ − inf

a∈O
I(a).(3.13)

Analogously, we have weak lower bound large deviations for the current

lim
N↑∞

1

N
P
(
J−1,0(N

2t)/N ∈ O
)≥ − inf

a∈O
J(a).(3.14)

PROOF OF THEOREM 1.5. First, the functions J and I are finite-valued rate
functions which vanish exactly at vT and uT , respectively, by Corollary 2.9.

Next, a “weak” LDP is found from (3.9) and (3.14) with respect to rate func-
tion J, and (3.8) and (3.13) with respect to I. Standard arguments, given expo-
nential tightness (Lemma 3.2), extend the “weak” LDP to the full large deviation
principle.

Finally, given the LDP and exponential tightness, it follows that (1) J and I

are good rate functions by Lemma 1.2.18 [9], and also that (2) lim|a|↑∞ J(a) =
lim|a|↑∞ I(a) = ∞. �

4. Asymptotic evaluations. We prove Theorems 1.6, 1.7 and 1.8 in succeed-
ing subsections.

4.1. Proof of Theorem 1.6. We first prove the upper bounds which are implied
by the following lemma, and then the lower bounds.

LEMMA 4.1. Starting from (DIC) or (LEM) initial conditions, there are
constants c0, c1, c2, c3 depending only on γ , such that when, respectively, |a −
vT |/√T ≥ c0 and |a − uT |/√T ≥ c0, we have, in turn,

J(a) ≤ c1|a − vT |3
T

and I(a) ≤ c1|a − uT |3
T

.

Also, when, respectively, |a − vT |/√T ≤ c2 and |a − uT |/√T ≤ c2, we have,
correspondingly,

J(a) ≤ c3(a − vT )2
√

T
and I(a) ≤ c3(a − uT )2

√
T

.
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PROOF. We prove the estimates for the current rate function, and deduce cor-
responding bounds for the tagged particle rate function. Let also a > vT as the
argument for a < vT is analogous. For the reader’s convenience, we recall esti-
mate (2.4) and write

J(a) ≤ 4ε∗

γ∗(1 − γ ∗)

[
λ2T

4|L|
∫ 1

−1
ψ ′(x)2 dx + λ2|L|3

T

∫ 1

−1
�(x)2 dx

]
.

Recall also the restriction equation (2.6) when c = a,

λ = a − vT

L
∫ 1

0 ψ dx
,

subject to 0 < λ ≤ min{γ∗,1 − γ ∗}/2. The requirement on λ holds when

L ≥ |a − vT |
/[1

2
min{γ∗, (1 − γ ∗)}

∫ 1

0
ψdx

]
:= κ0|a − vT |.

Now take L in the form L = κ
√

T . Substituting into the bound for J(a), we obtain

J(a) ≤ (a − vT )2
√

T

4ε∗κ
γ∗(1 − γ ∗)

[
1

4κ4

∫ 1

−1
ψ ′(x)2 dx +

∫ 1

−1
�(x)2 dx

]
.

Hence, when a is large, say κ = |a − vT |κ0/
√

T ≥ 1, we have J(a) ≤ c(γ )|a −
vT |3/T . Correspondingly, when a is such that |a − vT |κ0/

√
T ≤ 1, we choose

κ = 1 to get J(a) ≤ c(γ )|a − vT |2/√T .
The bounds on the tagged particle rate function I follow from the current rate

function bounds. First, by (1.7), ILE
γ (a) ≤ IDC

γ (a). Also, by (1.8), with γ ′(x) =
γ (x + a), IDC

γ (a) = JDC
γ ′ (

∫ a
0 γ dx). For fixed a, let now vT (γ ′) be the LLN inte-

grated current through the origin starting from γ ′. Then∫ a

0
γ dx − vT (γ ′) =

∫ a

0
γ dx −

∫ ∞
0

σT ∗ γ ′ − γ ′ dx

=
∫ a

0
σT ∗ γ dx −

∫ ∞
0

σT ∗ γ − γ dx =
∫ a

uT

σT ∗ γ dx.

Hence, γ∗|a − uT | ≤ | ∫ a
0 γ dx − vT (γ ′)| ≤ γ ∗|a − uT |. Since γ∗, γ ∗ are uniform

lower and upper bounds on σT/10 ∗ γ (and hence on σT/10 ∗ γ ′), the desired esti-
mates on I(a) are derived from the bounds on Jγ ′(

∫ a
0 γ dx). �

The lower bounds in Theorem 1.6 are implied by the following two estimates.

LEMMA 4.2. Starting from a (DIC) condition with profile γ , there are con-
stants c0 = c0(γ, T ), c1 = c1(γ ) such that for |a| ≥ c0, we have

J(a), I(a) ≥ c1|a|3
T

.
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LEMMA 4.3. Starting from a (DIC) condition with profile γ , there is a con-
stant c1(γ ), such that for a ∈ R, we have

J(a) ≥ c1(a − vT )2
√

T
and I(a) ≥ c1(a − uT )2

√
T

.

PROOF OF LEMMA 4.2. We concentrate first on the current calculation. Sup-
pose a > 0, as the argument for a < 0 is similar. Let γ̂ ∈ M1(ρ∗, ρ∗) be a
smooth density, strictly bounded away from 0 and 1, such that h(γ ; γ̂ ) < ∞.
For ε > 0, by Proposition 2.1, let μ be a smooth density such that μ0 = σα ∗ γ ,
|h(μ0; γ̂ ) − h(γ ; γ̂ )| < ε and |I0(μ) − J(a)| ≤ ε. Noting Proposition 2.6, we can,
in addition, impose on the approximating density that | ∫ T

0 J (0, t) dt − a| ≤ ε.
Now, noting (2.2) in Proposition 2.4, we have the Lipschitz bound,∣∣∣∣∫ T

0
J (x, t) dt −

∫ T

0
J (0, t) dt

∣∣∣∣= ∣∣∣∣∫ x

0
μT (z) − μ0(z) dz

∣∣∣∣≤ |x|.

Then, for 0 ≤ x ≤ a − ε, we have
∫ T

0 J (x, t) dt ≥ ∫ T
0 J (0, t) dt − x ≥ a − ε − x so

that

(a − ε)3/3 =
∫ a−ε

0
[a − ε − x]2 dx

≤
∫ a−ε

0

[∫ T

0
J (x, t) dt

]2

dx ≤ T

∫ ∫ T

0
J 2 dt dx.

Hence, as μ(1 − μ), γ̂ (1 − γ̂ ) ≤ 1/4, from the formula for I0(μ) in Proposition
2.4 and simple computations,

J(a) ≥ I0(μ) − ε ≥
∫ ∫ T

0
J 2 dt dx − 1

2
h(μ0; γ̂ ) − T

∫
(∂xγ̂ )2

γ̂ 2(1 − γ̂ )2 dx − ε

(4.1)

≥ (a − ε)3

3T
− 1

2
h(γ ; γ̂ ) − T

∫
(∂xγ̂ )2

γ̂ 2(1 − γ̂ )2 dx − 3

2
ε.

For the tagged particle rate function, from (1.8), we have IDC
γ (a)= JDC

γ ′ (
∫ a

0 γ dx)

where γ ′(x) = γ (x + a). Since γ (x) ≥ min{ρ∗, ρ∗} for all large |x|, | ∫ a
0 γ dx| ≥

c(γ )|a| for all large |a| where c(γ ) > 0. Also, as γ ′, γ̂ ∈ M1(ρ∗, ρ∗), by calcula-
tion h(γ ′; γ̂ ) = O(|a|). Hence, plugging into (4.1), we obtain the desired estimate
on I(a). �

PROOF OF LEMMA 4.3. We focus first on the current rate function computa-
tion. By Proposition 2.1 and 2.6, let μ be a smooth density with properties (i)–(viii)
such that μ0 = σα ∗ γ , |J(a) − I0(μ)| < ε and | ∫ T

0 J (t,0) dt − a| < ε. Let vT (α)

be the LLN speed starting from profile σα ∗ γ , and note limα↓0 |vT − vT (α)| = 0.
Consider solutions of ∂tρ = (1/2)ρxx and ∂tμ = (1/2)∂xxμ−∂x(Hxμ(1−μ)),

both with initial value σα ∗ γ . The difference U = ρ − μ satisfies equation
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∂tU = (1/2)∂xxU − ∂x(Hxμ(1 − μ)) with U(0, x) ≡ 0. Integrating once in the
space variable, noting properties of μ, S(t, x) = ∫ x

−∞ U(t, y) dy satisfies ∂tS =
(1/2)∂xxS − Hxμ(1 − μ). Hence, we have

S(t, x) = σt ∗ S(0, x)

+
∫ t

0

∫ 1√
2π(t − s)

e−(x−y)2/(2(t−s))[−Hxμ(1 − μ)](s, y) dy ds

= −
∫ t

0

∫ 1√
2πt

e−(x−y)2/(2t)Hxμ(1 − μ)(t − s, y) dy ds.

Now, the difference in integrated macroscopic currents across x up to time t

with respect to ρ and μ is −S(t, x); cf. above (1.5). Therefore, by the Schwarz
inequality and 0 ≤ μ ≤ 1, when x = 0, we have for small α that(

vT − a + O(ε)
)2

≤
[∫ T

0

(∫
σ 2

t (y) dy

)1/2(∫
H 2

x μ(1 − μ)(y, t) dy

)1/2

dt

]2

.

As ‖σ 2
t ‖2

L2(R)
≤ Ct1/2, a further bound of the right-hand side is 2C

√
T I0(μ) ≤

2C
√

T (J(a) + O(ε)) for some universal constant C.
We now use relations (1.8) to analyze the tagged particle rate function. Indeed,

let uT (α) be the corresponding tagged particle LLN speed starting from profile
ρ0 = σα ∗ γ , and note limα↓0 uT (α) = uT . As before, by Proposition 2.1, let μ be
a smooth density such that μ0 = ρ0, |I(a) − I0(μ)| < ε and by Proposition 2.6,
| ∫ T

0 J (a, t) dt − ∫ a
0 ρ0(x) dx| < ε.

Note, with respect to density ρ, the current across a equals
∫∞
a σT ∗ρ0 −ρ0 dx,

and the current across the origin equals
∫∞

0 σT ∗ ρ0 − ρ0 dx = ∫ uT (α)
0 σT ∗ ρ0 dx.

Then, for small α, the square of the difference in integrated currents with respect to
ρ and μ across a equals (

∫ a
uT

σT ∗γ (x) dx +O(ε))2 ≥ γ 2∗ (a −uT +O(ε))2 where
σT ∗ γ ≥ γ∗ > 0. But, on the other hand, as before, ‖σt (· − a)‖2

L2(R)
≤ Ct1/2, and

the square current difference is still bounded by 2C
√

T I0(μ) ≤ 2C
√

T (I(a) +
O(ε)). This finishes the proof. �

4.2. Proof of Theorem 1.7. Starting from a (DIC) state, since γ (x) ≡ ρ, noting
(1.8), we observe that γ ′(x) ≡ ρ,

∫ a
0 γ dx = aρ, and I(a) = J(aρ). Hence, we need

only give the argument for the current rate function J, as the estimate for the tagged
particle rate function I follows directly.

We now make some useful reductions. Recall, when starting under a determin-
istic configuration with profile γ (x) ≡ ρ, in order for IDC

γ (ν) < ∞, ν must satisfy
ν0(x) ≡ ρ and IDC

γ (ν) = I0(ν) < ∞. By Proposition 2.1 and Proposition 2.6, for
each ε > 0, we can find a smooth density μ, such that μ0(x) ≡ ρ and

J(a) ≥ I0(μ) − ε
a2
√

T
.
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In addition, we may also impose that∣∣∣∣∫ T

0
J (0, t) dt − a

∣∣∣∣< aε.

For such a density μ, by Proposition 2.4 [applied with γ (x) ≡ ρ],

I0(μ) = 1

8

∫ ∫ T

0

(∂xμ)2

μ(1 − μ)
dt dx + 1

2
h(μT ;ρ)

(4.2)

+ 1

2

∫ ∫ T

0

J 2

μ(1 − μ)
dt dx.

Consider now a sequence {μa} of such εa2/
√

T -minimizers of J(a) as |a| ↓ 0.
The upper and lower bounds in Lemmas 4.1 and 4.3, as vT = 0, gives I0(μ

a) =
O(a2/

√
T ). Then, by Lemma 2.3, we have μa → ρ in L2([0, T ] × R), and in fact

sup
0≤t≤T

∫ (
μa(t, x) − ρ

)2
dx = O(a2).

We now deduce that there are functions r(t, x) and j (t, x) on [0, T ] × R such
that r(0, x) ≡ 0, ∂t r + ∂xj = 0 weakly in L2([0, T ] × R),

∫ T
0 j (t,0) dt = 1, and

ρ(1 − ρ) × lim inf
a↓0

J(a)/a2

(4.3)

≥ 1

8

∫ T

0

∫
(∂xr)

2 dx dt + 1

4

∫
|r(T , x)|2 dx + 1

2

∫ T

0

∫
j2(t, x) dx dt.

Consider a function λa(t, x) = ψ(μa(t, x)) where ψ ′(x) = min{(x(1−x))−1/2,

M} for some M ≥ 2(ρ(1 − ρ))−1/2. Then, ∂xλ
a = ψ ′(μa)∂xμ

a ≤ (μa(1 −
μa))−1/2∂xμ

a , and so∫ T

0

∫
(∂xλ

a)2 dx dt ≤
∫ T

0

∫
(∂xμ

a)2

μa(1 − μa)
dx dt.

At this point, let us take weak L2([0, T ] × R) limits of a−1∂xλ
a , a−1(μa − ρ)

and a−1J a , and label them as u, r and j , respectively. Also, take a weak L2(R)

limit of a−1(μa(T , x) − ρ) and call it q . Using suitable truncations, and Fatou’s
Lemma, given μa → ρ strongly, we have∫ T

0

∫
u2 dx dt ≤ lim inf

1

a2

∫ T

0

∫
(∂xλ

a)2 dx dt,

1

2ρ(1 − ρ)

∫
|q(x)|2 dx ≤ lim inf

1

a2

∫
hd(μa

T (x);ρ)dx,

1

ρ(1 − ρ)

∫ T

0

∫
j2 dx dt ≤ lim inf

1

a2

∫ T

0

∫
(J a)2

μa(1 − μa)
dx dt.
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We may identify (a) ∂xr = √
ρ(1 − ρ)u, (b) r(T , x) = q(x), and (c) ∂t r +∂xj =

0 weakly in L2([0, T ] × R). The last two (b), (c) follow from weak limits and
properties of μa . However, (a) also holds given the weak limits since ∂xμ

a =
ψ ′(μa)−1∂xλ

a and ψ ′(μa)−1 → √
ρ(1 − ρ) strongly in L2.

Now, define

K(t, x) =
∫ t

0
j (s, x) ds.

Then, the right-hand side of (4.3) becomes

K = 1

4

∫
|∂xK(T , x)|2 dx + 1

2

∫ T

0

∫
|∂tK(t, x)|2 dx dt

+ 1

8

∫ T

0

∫
|∂xxK(t, x)|2 dx dt.

By scaling, M(t, x) = K(tT , x
√

T ), we obtain

lim inf|a|↓0

√
T

a2 J(a) ≥ [ρ(1 − ρ)]−1 inf M,

where the infimum is over M ∈ C1,2([0,1] × R), such that M(0, x) ≡ 0 and
M(1,0) = 1, and

M = 1

4

∫
|Mx(1, x)|2 dx + 1

2

∫ 1

0

∫
|Mt(t, x)|2 dx dt

+ 1

8

∫ 1

0

∫
|Mxx(t, x)|2 dx dt.

On the other hand, the upper bound

lim sup
|a|↓0

√
T

a2 J(a) ≤ [ρ(1 − ρ)]−1 inf M(4.4)

also follows by a similar strategy: In Proposition 4.4 below, we evaluate inf M
and find a minimizer. One can find a smooth ε, approximating M with bounded
derivatives, and trace back to obtain the corresponding density μa satisfying
a−1(μa − ρ) = ∂xK , a−1J a = ∂tK , a−1∂xμ

a = ∂xxK with
∫ T

0 J a(0, t) dt = a

and μa
0(x) ≡ ρ. Given ‖∂xM‖L∞([0,T ]×R) < ∞, we have ‖μa − ρ‖L∞([0,T ]×R) ≤

|a|‖∂xK‖L∞ = (|a|/√T )‖∂xM‖L∞ = O(|a|). The argument to derive (4.4) now
follows from standard approximations with respect to (4.2).

Hence, the proof of Theorem 1.7 will follow from evaluations infM M = √
π/2,

σ 2
X,dyn = (1 − ρ)/(ρ

√
π) and σ 2

J,dyn = ρ(1 − ρ)/
√

π in Propositions 4.4 and 4.5
below.
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PROPOSITION 4.4. We have

inf
M

M =
√

π

2
,

where the infimum is over M ∈ C1,2([0,1] × R) such that M(0, x) ≡ 0 and
M(1,0) = 1.

PROOF. The argument is in three steps. (A) We first minimize∫ 1

0

∫ ∞
−∞

1

2
|Mt(t, x)|2 + 1

8
|Mxx(t, x)|2 dx dt(4.5)

when M(0, x) ≡ 0 and M(1, x) is a given compactly supported C4(R) function.
The Euler equation is

Mtt = 1

4
Mxxxx(4.6)

with the boundary conditions at t = 0,1.
One can verify the solution of (4.6), which is smooth and classical, in terms of

Fourier transform with respect to the x variable but not transforming the t variable,
is given by

M̂(t, y) = M̂(1, y)
ety2/2 − e−ty2/2

ey2/2 − e−y2/2
,(4.7)

where

M̂(1, y) = 1√
2π

∫
eiyxM(1, x) dx.

The corresponding value of (4.5), through Plancherel’s formula, is expressed as∫ ∞
−∞

|M̂(1, y)|2k(y) dy,

where

k(y) =
∫ 1

0

y4

8

[ety2/2 + e−ty2/2]2 + [ety2/2 − e−ty2/2]2

[ey2/2 − e−y2/2]2
dt

=
∫ 1

0

y4

4

ety2 + e−ty2

[ey2/2 − e−y2/2]2
dt

= y2

4

ey2 − e−y2

[ey2/2 − e−y2/2]2
= y2

4

ey2/2 + e−y2/2

ey2/2 − e−y2/2
.

Given that the integrand in (4.5) is a strict convex function of Mt and Mxx , solution
(4.7) is the unique minimizer of (4.5) (by say straightforward modifications of the
proof of [7], Theorem 2.1).
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(B) Now, we consider the term

1

4

∫ ∞
−∞

|Mx(1, x)|2 dx = 1

4

∫ ∞
−∞

y2|M̂(1, y)|2 dy

and minimize, over M ∈ L2([0,1] × R),

1

4

∫ ∞
−∞

|M̂(1, y)|2y2
[
1 + ey2/2 + e−y2/2

ey2/2 − e−y2/2

]
dy

= 1

2

∫ ∞
−∞

|M̂(1, y)|2y2 ey2/2

ey2/2 − e−y2/2
dy

subject to

1√
2π

∫ ∞
−∞

M̂(1, y) dy = 1.

Recall that the minimizer of ∫
|g(y)|2K(y)dy

when
∫

g(y) dy = a is given by g(y) = cK(y)−1 and c = a[∫ K(y)−1 dy]−1, with
minimum value a2[∫ K(y)−1 dy]−1. Hence, with a = √

2π and

K(y) = y2

2

ey2/2

ey2/2 − e−y2/2
,

we identify M(1, y) through its transform M̂(1, y) = cK(y)−1. Denote M̃ as the
function in (4.7) with this choice of M(1, y).

(C) Let now M∗ be a compactly supported C2,4([0,1] × R) function such that
M∗(0, x) ≡ 0 and M∗(1,0) = 1 whose M-value approximates infM M. From
steps (A) and (B), we obtain a lower bound of the infimum value which is actually
achieved by the smooth C2,4([0,1]×R) function M̃ . Therefore, M̃ is a minimizer.

Finally, given∫
K(y)−1 dy = 2

∫ 1 − e−y2

y2 dy

= 2
∫ 1

0

∫
e−ty2

dy dt = 2
∫ 1

0

√
π

t
dt = 4

√
π,

we obtain the infimum, infM M = 2π/(4
√

π) = √
π/2, as desired. �

PROPOSITION 4.5. Starting under initial distribution νρ , the dynamical parts
of the limiting variances of T −1/4J−1,0(T ) and T −1/4x(T ) under νρ are

σ 2
J,dyn := lim

T →∞
1√
T

Eνρ

[(
J−1,0(T ) − Eη[J−1,0(T )])2]= ρ(1 − ρ)√

π
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and

σ 2
X,dyn := lim

T →∞
1√
T

Eνρ

[(
x(T ) − Eη[x(T )])2]= 1 − ρ

ρ

1√
π

.

PROOF. First, we note the limit distribution and variance of both T −1/4x(T )

and ρ−1T −1/4J−1,0(T ) are the same, namely N(0, σ 2) with σ 2 = √
2/π(1 −

ρ)/ρ; cf. [1]. Moreover, limT ↑∞ Eνρ [(T −1/4X(T ) − ρ−1T −1/4J−1,0(T ))2] = 0,
since (T −1/4X(T )−ρ−1T −1/4J−1,0(T ))2 vanishes in probability, and also is uni-
formly integrable; cf. [8], equation (28), or [1], page 368, and [26], Proposition 4.2
and proof of Lemma 3.2.

Then we need only show

lim
T →∞

1√
T

Eνρ [(Eη[J−1,0(T )])2] = ρ(1 − ρ)

√
2 − 1√

π
,

which, given the form of the limiting variance of the scaled current, and

Eνρ [(J−1,0(T ))2] = Eνρ

[(
J−1,0(T ) − Eη[J−1,0(T )])2]+ Eνρ [(Eη[J−1,0(T )])2]

implies the desired results.
Now, the current J−1,0 has martingale decomposition (cf. Section 2 [26]),

J−1,0(t) = M(t) + 1

2

∫ t

0
ηs(−1) − ηs(0) ds.

Also, for x ∈ Z, from “duality” (cf. Liggett [23], Section VIII.1, page 363),

Eη[ηt (x)] =∑
i

p(t, i − x)η(i),

where p(t, j) = P(St = j) is the probability a continuous time random walk, start-
ing from the origin, travels to j in time t . Then,

Eη[J−1,0(T )] = 1

2

∫ T

0
Eη[ηt (−1)] − Eη[ηt (0)]dt

= 1

2

∑
i

η(i)

∫ T

0
p(t, i + 1) − p(t, i) dt

= 1

2

∑
i

(
η(i) − ρ

) ∫ T

0
p(t, i + 1) − p(t, i) dt.

Therefore, from independence of coordinates {η(i)},

Q0(T ) := Eνρ [(Eη[J−1,0(T )])2] = ρ(1 − ρ)
∑
i

∣∣∣∣12
∫ T

0
p(t, i + 1) − p(t, i) dt

∣∣∣∣2.
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Now, as a priori the variance Q0(u) ≤ Eνρ [J 2−1,0(u)] = O(
√

u), we need only
find the limit of

Q1(T ) = ρ(1 − ρ)√
T

∑
i

∣∣∣∣12
∫ T

εT
p(t, i + 1) − p(t, i) dt

∣∣∣∣2
(4.8)

= ρ(1 − ρ)

4
√

T

∑
i

∫
[εT ,T ]2

[p(t, i + 1) − p(t, i)][p(s, i + 1) − p(s, i)]ds dt.

To estimate the integrand, from Doob’s inequality, note

p(t, x) = E[P(SNt = x)]
(4.9)

= E

[
P(SNt = x), sup

t∈[εT ,T ]
|Nt/t − 1| ≤ ε

]
+ O(T −10),

where Nt is a Poisson process with rate 1 independent of the discrete time random
walk {Sk}, Nt/t − 1 is a martingale and E refers to expectation with respect to Nt .
Further (since we could not find an appropriate continuous time version), from the
local limit theorem (Petrov [27], Theorem VII.13; page 205), uniformly over x,
with respect to the discrete time walk, we have for Nt ≥ 1 that

P(SNt = x) = 1√
2πNt

e−x2/(2Nt ) + 1√
2π

e−x2/(2Nt )
q2(x/

√
Nt)

N
3/2
t

+ o(N
−3/2
t )

(4.10)

= 1√
2πNt

e−x2/(2Nt ) + O(N
−3/2
t ),

where q2(y) = (γ4/24θ4)(y4 − 6y2 + 3), γk is the kth order cumulant and θ2 is
the variance of the symmetric Bernoulli variable. [In our case, in Petrov’s formula,
q1(y) = (γ3/6θ3)(y3 − 3y) ≡ 0 as γ3 = 0.]

Let pN(t, x) = P(SNt = x) and pR(s, x) = P(SRs = x) where Rs is an inde-
pendent Poisson process also with rate 1. We now argue that only the leading terms
in (4.9) and (4.10) are significant.

Since
∑

x p(u, x),
∑

x pN(u, x) ≤ 1, the error term on order O(T −10) in (4.9)
can be neglected in estimating (4.8). Indeed,

O(T −10)√
T

∫
[εT ,T ]2

∑
i

p(s, i) ds dt = O(T −10)√
T

∫
[εT ,T ]2

∑
i

pN(t, i) ds dt = o(1).

Also, note the error term of order O(N
−3/2
t ) in (4.10) is not significant with

respect to (4.8). Indeed,∑
x

1√
2πNt

∣∣e−(x+1)2/(2Nt ) − e−x2/(2Nt )
∣∣

=∑
x

1√
2πNt

∣∣e−(2x+1)/2Nt − 1
∣∣e−x2/(2Nt )
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≤ Ce−√
Nt/4 + C

∑
|x|≤N

3/4
t

1√
2πNt

|x|
Nt

e−x2/2Nt

≤ C√
Nt

for some constants C. Then, given |Nt/t − 1|, |Rs/s − 1| ≤ ε for s, t ∈ [εT ,T ], a
product of

∑
i (2πNt)

−1/2|e−(i+1)2/2Nt − e−i2/2Nt | and the error term with respect
to the s-integration, for instance, leads to bounding

1√
T

∫
[εT ,T ]2

∑
i

1

R
3/2
s

1√
2πNt

∣∣e−(i+1)2/(2Nt ) − e−i2/(2Nt )
∣∣ds dt

≤ 1√
T

∫
[εT ,T ]2

C

R
3/2
s

√
Nt

ds dt ≤ O(T −1/2).

Therefore, focusing on the leading order terms,

1

4
√

T

∑
i

∫
[εT ,T ]2

[pN(t, i + 1) − pN(t, i)][pR(s, i + 1) − pR(s, i)]ds dt

= o(1) + 1

8π
√

T

∑
i

∫
[εT ,T ]2

1√
RsNt

[
e−(i+1)2/2Nt − e−i2/2Nt

]
× [e−(i+1)2/2Rs − e−i2/2Rs

]
ds dt.

Now, using again |Nt/t − 1|, |Rs/s − 1| ≤ ε for s, t ∈ [εT ,T ], we further evaluate
the integral on the right-hand side as

o(1) + 1

8π
√

T

∑
|i|≤T 3/4

∫
[εT ,T ]2

i2

RsNt

√
RsNt

e(−i2/2)[1/Nt+1/Rs ] ds dt

= o(1) + 1

8π
√

T

∫
[εT ,T ]2

∫ ∞
−∞

x2

RsNt

√
RsNt

e(−x2/2)[1/Nt+1/Rs ] dx ds dt

= o(1) +
√

2

8
√

πT

∫
[εT ,T ]2

(Nt + Rs)
−3/2 ds dt =: Q2(T , ε).

Finally, we have that Q2(T , ε) satisfies

lim
T ↑∞

∣∣∣∣Q2(T , ε) −
√

2 − 1√
π

∣∣∣∣≤ c(ε),

where c(ε) vanishes as ε ↓ 0. �

4.3. Proof of Theorem 1.8. We concentrate on the argument for the tagged
particle, as a similar proof holds for the current. By symmetry,

P
(|X(N2T )|/N ≥ a

)= 2P
(
X(N2T )/N ≥ a

)
.
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From (3.1), and noting J−1,0(t) − J�aN�,�aN�+1(t) =∑�aN�
x=0 ηt (x) − η0(x) by the

development of Section 3.1, we have

{X(N2t) ≥ aN} =
{
J�aN�,�aN�+1(N

2t) ≥
�aN�∑
x=0

η0(x)

}
.

We now rewrite currents in terms of the standard Harris stirring process {ξx
t }.

Namely, at time t = 0, a particle is put at each x ∈ Z. Then, to bonds (x, x + 1) in
Z, associate independent Poisson clocks with parameter 1/2. When the clock rings
at a bond, interchange the positions of the particles at the bond’s vertices. Let ξx

t

be the position at time t of the particle initially at x. Then the exclusion process,
starting from initial configuration η, satisfies ηt (x) = 1{x ∈ {ξ i

t :η(i) = 1}}. More
details and constructions can be found in Chapter VIII [23].

Then, for 0 ≤ a ≤ 1,

J�aN�,�aN�+1(N
2t) = ∑

x≤�aN�
η0(x)1[ξx

N2t
>�aN�] − ∑

x>�aN�
η0(x)1[ξx

N2t
≤�aN�].

Write, given the initial profile η0 is deterministic, by Chebyshev, that

1

N
logP

(
X(N2t) ≥ aN

)≤ 1

N
logE exp

{
−λ

�aN�∑
x=0

η0(x)

}
(4.11)

+ 1

N
logE exp

{
λJ�aN�,�aN�+1(N

2t)
}
.

The first term on the right-hand side tends to −λa as N ↑ ∞. The second
term is bounded, by Chebyshev and Liggett [23], Proposition VIII.1.7, noting

eα
∑l

i=k 1[xi∈A] is positive definite for any α ∈ R, and log(1 + x) ≤ x for x ≥ 1,
by

1

2N
logE exp

{
2λ

∑
x≤�aN�

η0(x)1[ξx

N2t
>�aN�]

}

+ 1

2N
logE exp

{
−2λ

∑
x>�aN�

η0(x)1[ξx

N2t
≤�aN�]

}

≤ 1

2N

∑
x≤�aN�

(
e2λη0(x) − 1

)
P(ξx

N2t
> �aN�)

+ 1

2N

∑
x>�aN�

(
e−2λη0(x) − 1

)
P(ξx

N2t
≤ �aN�).

Given η0(x) = 1[|x|≤N] and ξx
N2t

marginally is the position of a simple random

walk, started at x at time N2t ; as N ↑ ∞, we have

1

2N

∑
x≤�aN�

(
e2λη0(x) − 1

)
P(ξx

N2t
> �aN�) → e2λ − 1

2

∫ a

−1
P
(
N(0, t) > a − x

)
dx
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and
1

2N

∑
x>�aN�

(
e−2λη0(x) − 1

)
P(ξx

N2t
≤ �aN�)

→ e−2λ − 1

2

∫ 1

a
P
(
N(0, t) ≤ a − x

)
dx,

where N(0, t) is a normal distribution with mean 0 and variance t .
Hence, combining the estimates, we have that (4.11) is less than

−λa + e2λ − 1

2

∫ a

−1
P
(
N(0, t) > a −x

)
dx + e−2λ − 1

2

∫ 1

a
P
(
N(0, t) ≤ a −x

)
dx.

Choosing λ = εa for small ε > 0, we obtain further that (4.11) is bounded by

−εa2
[
1 − 1

a

∫ 1+a

1−a
P
(
N(0, t) > y

)
dy

]
+ O(ε2a2) ≤ −Ca2

for a constant C, noting 1 > a−1 ∫ 1+a
1−a P (N(0, t) > y)dy for 0 < a ≤ 1.

For a ≥ 1, we write

J�aN�,�aN�+1(t) = ∑
|x|≤N

η0(x)1[ξx

N2t
>�aN�].

Then, as above,

P
(
X(N2t) ≥ aN

)≤ e−λ
∑�aN�

x=0 η0(x)E exp
{
λ
∑

|x|≤N

η0(x)1[ξx

N2t
>�aN�]

}

≤ e−λN
∏

|x|≤N

E exp
{
λ1[ξx

N2t
>�aN�]

}
.

Taking the logarithm, dividing by N and taking the limit, we obtain

lim sup
N↑∞

1

N
logP

(
X(N2t) ≥ aN

)
≤ −λ + lim sup

N↑∞
1

N

∑
|x|≤N

(eλ − 1)P (ξx
N2t

> �aN�)

≤ −λ + (eλ − 1)

∫ 1

−1
P
(
N(0, t) ≥ a − x

)
dx.

Optimizing on λ, the right-hand side of the above display is bounded by

log
∫ 1

−1
P
(
N(0, t) > a − x

)
dx + 1 −

∫ 1

−1
P
(
N(0, t) > a − x

)
dx < 0.

However, for a large, this expression is bounded by −Ca2.
Working with the 0 ≤ a ≤ 1 and a > 1 bounds, we obtain the desired quadratic

order estimate.
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5. Proofs of approximations. We give the proofs of Propositions 1.3 and 2.1,
and Lemmas 2.2 and 2.3.

5.1. Proofs of Propositions 1.3 and 2.1. The proofs are through a series of
lemmas inspired by the scheme in [20] (see also Oelschläger [25], and Bertini,
Landim and Mourragui [5]). As several of the steps are different, we give some
details.

To this end, let μ be a density such that I0(μ) < ∞. The first lemma states that
finite rate densities μ, when integrated against smooth test functions, are uniformly
continuous in time; cf. Lemma 4.4 [5].

LEMMA 5.1. Let η ∈ D([0, T ];M1) be a density such that I0(η) < ∞, and let
J ∈ C2

K(R). Then, s �→ 〈ηs,J〉 = ∫
J(x)ηs(x) dx is a uniformly continuous func-

tion.

PROOF. Let G ∈ C
1,2
K ([0, T ] × R). As I0(η) < ∞, from (1.3), we infer

l2(η;G) ≤ 2I0(η)

∫ T

0

∫
G2

x(t, x)ηt (x)
(
1 − ηt (x)

)
dx dt.

Let Fδ be a smooth approximations of the indicator 1[s,t](u). Then, by applying
the previous inequality with Gδ = FδJ, we obtain∣∣∣∣∫ ηtJdx −

∫
ηsJdx

∣∣∣∣= lim
δ↓0

{
l(η;Gδ) + 1

2

∫ T

0

∫
Gδ

xxηu(x) dx du

}
≤ |t − s|‖J′′‖L1 +

√
2I0(η)|t − s|1/2‖J′‖L2,

completing the proof. �

For the remainder of the subsection, let μ ∈ D([0, T ];M1) be a density with
finite rate, I0(μ) < ∞. We now build a succession of approximating densities in
the next lemmas with special properties.

LEMMA 5.2. For each ε > 0, there exists a density μ̂, smooth in the space
variable, such that: (1) the Skorohod distance d(μ̂;μ) < ε; (2) there is 0 < δε < 1
such that δε < μ̂(t, x) < 1 − δε for (t, x) ∈ [0, T ] × R; (3) |I0(μ̂) − I0(μ)| < ε.

In addition, (4) if γ̂ ∈ M1(ρ∗, ρ∗) is piecewise continuous, 0 < γ̂ (x) < 1 for
x ∈ R, and h(μ0; γ̂ ) < ∞, then also |h(μ̂0; γ̂ ) − h(μ0; γ̂ )| < ε.

PROOF. For 0 < ρ∗, ρ∗ < 1, let γ ∈ M1(ρ∗, ρ∗) be a function. Consider

μb,α = σt+α ∗ γ + b(σα ∗ μ − σt+α ∗ γ )(5.1)

for 0 ≤ b ≤ 1 and α ≥ 0. Clearly, μb,α is smooth in the space variable when α > 0.
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Next, for fixed α > 0 and 0 < b < 1, there is 0 < δ < 1 such that δ < μb,α <

1 − δ as σt+α ∗ γ is strictly bounded between 0 and 1 for t ∈ [0, T ].
Now, μb,α → μ1,α as b ↑ 1 in D([0, T ] × R). Also, noting limα↓0 ‖σα ∗ G −

G‖L1(R) = 0 for G ∈ L1(R), we have also have the Skorohod convergence μ1,α →
μ as α ↓ 0.

By lower semi-continuity of I0,

lim inf I0(μ
b,α) ≥ I0(μ).

On the other hand, by convexity of I0(ν), we have

I0(μ
b,α) ≤ (1 − b)I0(σt+α ∗ γ ) + bI0(σα ∗ μ).

Note that I0(σt+α ∗ γ ) = 0, and by translation-invariance and convexity, the right-
hand side in the display is less than

b

∫
σα(y)I0

(
μ(t, x − y)

)
dy = bI0(μ) ↑ 1 as b ↑ 1.

Similarly, if γ̂ ∈ M1(ρ∗, ρ∗) is piecewise continuous, 0 < γ̂ < 1 and h(μ0; γ̂ ) <

∞, then, by lower semi-continuity and convexity of h(·; γ̂ ), we have

h(μ0; γ̂ ) ≤ lim inf
b↑1,α↓0

h(μ
b,α
0 ; γ̂ )

and

h(μ
b,α
0 ; γ̂ ) ≤ (1 − b)h(σα ∗ γ ; γ̂ ) + bh(σα ∗ μ0; γ̂ ).

Also, once more by convexity,

h(σα ∗ μ0; γ̂ ) ≤
∫

dyσα(y)

∫
dxhd

(
μ0(x); γ̂ (x − y)

)
.

The right-hand side, since |h(μ0(·); γ̂ (· − y))−h(μ0; γ̂ )| ≤ C|y| by properties of
γ̂ , converges to h(μ0; γ̂ ) as α ↓ 0. By the same argument, limα↓0 h(σα ∗ γ ; γ̂ ) =
h(γ ; γ̂ ). Hence limb↑1,α↓0 h(μ

b,α
0 ; γ̂ ) = h(μ0; γ̂ ).

Therefore, statements (1)–(4) hold for μ̂ = μb,α when b ∼ 1, α ∼ 0. �

LEMMA 5.3. Let μ̂ be the density constructed in Lemma 5.2. Then: (1) for
each ε > 0, there exists a smooth density μ̃ such that μ̃0 = μ̂0; (2) the Skorohod
distance d(μ̃; μ̂) < ε; (3) |I0(μ̃) − I0(μ̂)| < ε. Also, (4) all partial derivatives of
μ̃ are uniformly bounded in [0, T ] × R.

PROOF. To obtain a smooth density, we need only approximate μ̂ by smooth-
ing in the time variable. Define for β > 0 a density which is constant in time on a
short time interval.

νβ(t, x) =
{

μ̂0(x), for 0 ≤ t < β,
μ̂(t − β,x), for β ≤ t ≤ T + β.
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Let κε ∈ C∞
K (R) be smooth approximations of the identity in L1(R) such that

κε ≥ 0,
∫

κε(x) dx = 1, Supp(κε) ⊂ (0, ε) and for f ∈ L1(R), f ∗ κε → f as ε ↓ 0
in L1. Form the convolution, for 0 < ε ≤ β ,

νβ,ε(t, x) =
∫ T

0
νβ(t + s, x)κε(s) ds.

It is clear, by continuity of μ̂ in time (Lemma 5.1), that limβ↓0 limε↓0 νβ,ε = μ̂ in

D([0, T ];M1). By construction, νβ,ε is smooth, and also ν
β,ε
0 = μ̂0.

From lower semi-continuity and convexity

lim inf
β,ε

I0(ν
β,ε) ≥ I0(μ̂) and I0(ν

β,ε) ≤
∫ T

0
κε(s)I0

(
νβ(t + s, x)

)
ds.

Using the variational definition of I0, noting μ̂0 = σα ∗ (γ + b(μ0 − γ )), the rate
of νβ on the interval [0, β] is bounded by

sup
G∈C

1,2
K

1

2

∫ β

0

∫
Gx∂xμ̂0 − G2

xμ̂0(1 − μ̂0) dx dt ≤ β

8

∫
(∂xμ̂0)

2

μ̂0(1 − μ̂0)
dx,

which vanishes as β ↓ 0. On the other hand, by formula (1.4), the rate of νβ

on the interval [β,T ] converges to I0(μ̂) as β ↓ 0. We can conclude then that
limβ,ε↓0 I0(ν

β,ε) → I0(μ̂).
Moreover, by differentiating the convolutions, since ‖νβ,ε‖L∞ ≤ 1, we have

‖∂(k)
x ∂

(l)
t μ̃‖L∞ ≤ ‖∂(k)

x σα‖L1‖∂(l)
t κε‖L1 < ∞.

Hence, to find the desired density, we can take μ̃ = νβ,ε for β, ε small. �

We now continue to adjust the approximation so that the associated function
“Hx” of the approximating density has desired properties.

LEMMA 5.4. Let μ̃ be the density constructed in Lemma 5.3, and H̃x be asso-
ciated to it via (1.2). Then: (1) H̃x ∈ C∞([0, T ] × R); (2) ‖H̃x‖L2([0,T ]×R) < ∞;

(3) ‖H̃x‖L∞([0,T ]×R) < ∞.

PROOF. By construction, we recall, for a δ > 0, that δ < μ̃ < 1 − δ, μ̃ is
smooth with uniformly bounded derivatives on [0, T ] × R of all orders, and

∂t μ̃ = 1
2∂xxμ̃ − ∂x[H̃xμ̃(1 − μ̃)].(5.2)

Then, as 2I0(μ̃) = ∫ T
0
∫
(H̃x)

2μ̃(1 − μ̃) dx dt < ∞, we obtain the L2 bound on
H̃x , and, by solving for H̃x in (5.2), we have that H̃x is smooth.

We now deduce that H̃x is bounded in L∞. This bound will follow from the L2

bound on H̃xμ̃(1− μ̃) and δ < μ̃ < 1− δ, if we show that H̃xμ̃(1− μ̃) is Lipschitz
in both space and time variables with uniform constant over [0, T ] × R. However,
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from (5.2), H̃xμ̂(1 − μ̂) is Lipschtiz in the space variable with uniform constant
as ∂t μ̃ and ∂xxμ̃ are bounded on [0, T ] × R.

To show H̃xμ̃(1 − μ̃) is also Lipschitz in the time variable t uniformly over
[0, T ] × R, write

H̃xμ̃(1 − μ̃)(x, t)

= H̃xμ̃(1 − μ̃)(0, t) + (1/2)∂xμ̃(x, t) − (1/2)∂xμ̃(0, t) −
∫ x

0
∂t μ̃ dy.

The first three terms on the right-hand side are clearly uniformly Lipschitz in t as
their partial derivatives in time are bounded on [0, T ].

To treat the last term, consider a smooth G compactly supported in [−ε, x + ε]
which equals 1 on [0, x]. Since ∂tt μ̃ is bounded, we have∣∣∣∣∫ x

0
∂tt μ̃(u, y) dy

∣∣∣∣≤ ∣∣∣∣∫ G(y)∂tt μ̃(u, y) dy

∣∣∣∣+ 2Cε.

Now, by construction in the proof of Lemma 5.3, μ̃ = κε ∗ νβ , and so∫
G(y)∂tt μ̃(u, y) dy =

∫ T

0

∫
G(y)κ ′′

ε (s)νβ(u + s, y) dy ds.

As I0(ν
β) < ∞, we can associate via (1.2) an H

β
x to the density νβ . From the

weak formulation (1.3), and κ ′
ε(0) = κ ′

ε(T ) = 0, the right-hand side equals

−1

2

∫ T

0

∫
G′′(y)κ ′

ε(s)ν
β(u + s, y) dy ds,

−
∫ T

0

∫
G′(y)κ ′

ε(s)H
β
x νβ(1 − νβ)(u + s, y) dy ds.

The first integral, because νβ is bounded and G′ �= 0 on a set of width at most
2ε is uniformly bounded in time u and space x. Similarly, the second integral, as
‖Hβ

x νβ(1 − νβ)‖L2 ≤ 2I0(ν
β) < ∞, is also both uniformly bounded in u and x.

�

The function H̃x associated to μ̃ in Lemma 5.4, although smooth, does not
necessarily have compact support. Let Hm

x ∈ C∞
K ((0, T ] × R) be smooth approxi-

mations of H̃x with the following properties:

‖Hm
x − H̃x‖L2([0,T ]×R) ≤ m−1 and sup

t∈[0,T ]
x∈[−m,m]

|Hm
x − H̃x | ≤ m−1.

Denote wm ∈ D([0, T ];M1) as the smooth density with initial condition wm
0 =

μ̃0 which satisfies the equation

∂tv = (1/2)∂xxv − ∂x

(
Hm

x v(1 − v)
)
.
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Existence, for instance, follows from the hydrodynamic limit for weakly asymmet-
ric exclusion processes in [18] using the replacement estimates Theorem 6.1 and
Claims 1, 2 [22], Section 6; see also Theorem 3.1 [20]. Uniqueness in the class of
bounded solutions follows by the method of Proposition 3.5 [25].

We now show that wm, whose associated function Hm
x ∈ C∞

K , is close to μ̃.
Hence, wm will turn out to be a suitable candidate with respect to Proposition 2.1.
In addition, we will be able to deduce that μ ∈ A under (LEM) initial distributions.

LEMMA 5.5. The sequence wm converges uniformly to μ̃ on compact subsets
of [0, T ] × R, and hence in D([0, T ];M1). Also, I0(w

m) → I0(μ̃).

PROOF. Suppose that we have proven wm → μ̃ uniformly on compact sub-
sets. As ‖Hm

x − Ĥx‖L2 → 0, we would then conclude I0(w
m) → I0(μ̃). In the

following, the constant C may change line to line.
Now, given ∂tσt (x) = (1/2)∂xxσt (x), we have for t, h > 0 that

σh ∗ wm
t (y) − σt+h ∗ wm

0 (y)

=
∫ t

0

∫
Hm

x wm(1 − wm)(s, z)
−(z − y)

t + h − s
σt−s+h(z − y)dz ds.

By properties of wm,Hm
x and (|z − y|/√u) exp(−(z − y)2/4u) ≤ 1,

|Hm
x wm(1 − wm)|(s, z) |z − y|

t + h − s
σt+h−s(z − y)

≤ C|t − s|−1/2σ2T (z − y) ∈ L1([0, t] × R).

Hence, taking h ↓ 0, we obtain

wm
t (y) = σt ∗ wm

0 (y)
(5.3)

+
∫ t

0

∫
Hm

x wm(1 − wm)(s, z)
−(z − y)

t − s
σt−s(z − y)dz ds.

Equation (5.3) also holds with respect to μ̃.
Let now |y| ≤ m/2. We have then, using again (|z − y|/√u) exp(−(z −

y)2/4u) ≤ 1, and wm
0 = μ̃0, that

|wm
t (y) − μ̃t (y)|

≤ σt ∗ |wm
0 − μ̃0|(y)

+
∫ t

0

∫
|Hm

x wm(1 − wm) − Ĥxμ̃(1 − μ̃)|(s, z) |z − y|
t − s

σt−s(z − y)dz ds(5.4)

≤ C

∫ t

0

∫
|Hm

x wm(1 − wm) − H̃xμ̃(1 − μ̃)|(s, z)

× (t − s)−1/2σ2(t−s)(z − y)dz ds.
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We now estimate the last line in two parts, noting

|Hm
x wm(1 − wm) − H̃xμ̃(1 − μ̃)|(s, z)

≤ |Hm
x − H̃x |(s, z) + |H̃x ||μ̃(1 − μ̂) − wm(1 − wm)|(s, z).

The first part, noting |y| ≤ m/2, by properties of Hm
x , ‖σt (x)‖L2([0,T ]×R) ≤ CT 1/4,

and supt∈(0,T ] t−1/2σ4t (1) ≤ C, is bounded for large m, as∫ t

0

∫
|Hm

x − H̃x |(s, z)(t − s)−1/2σ2(t−s)(z − y)dz ds

≤
∫ t

0

∫
|z|≥m

|Hm
x − H̃x |(s, z)(t − s)−1/2σ2(t−s)(z − y)dz ds + m−1√t

≤ C

∫ t

0

∫
|z|≥m

|Hm
x − H̃x |(s, z)σ4(t−s)(z − y)dz ds + m−1√t

≤ Cm−1T 1/4 + m−1
√

T .

The second part is decomposed as the sum of three terms,∫ t

0

∫
|H̃x ||μ̃(1 − μ̃) − wm(1 − wm)|(s, z)(t − s)−1/2σ2(t−s)(z − y)dz ds

= D1 + D2 + D3,

where D1,D2,D3 is the integral over [0, t] × {|z| ≥ m/2 + ε}, [0, t] × {m/2 ≤
|z| ≤ m/2 + ε} and [0, t] × {|z| ≤ m/2}, respectively, for ε > 0.

The term D1, noting supt∈(0,T ] t−1/2σ4t (ε) ≤ Cε , is bounded by

2
∫ t

0

∫
|z|≥m/2+ε

|H̃x |(s, z)(t − s)−1/2σ2(t−s)(z − y)dz ds

≤ C(ε,T )‖H̃x‖L2([0,T ]×{z : |z|≥m/2}).
The second term D2 is bounded by

2
∫ t

0

∫
m/2≤|z|≤m/2+ε

|H̃x ||t − s|−1/2σ2(t−s)(z − y)dz ds

≤ C‖H̃x‖L∞
∫ t

0
s−3/4

∫ ε

0
s−1/4e−z2/4s dz ds

≤ C‖H̃x‖L∞T 1/4√ε.

The third term D3 is bounded, with respect to a τ ≥ t , by

2
∫ t

0

∫
|z|≤m/2

|H̃x ||μ̃ − wm|(s, z)|t − s|−1/2σ2(t−s)(z − y)dz ds

(5.5)
≤ 2

√
t‖H̃x‖L∞ sup

|z|≤m/2
s≤τ

|μ̃s(z) − wm
s (z)|.
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Hence, for τ > 0 small enough but fixed, which satisfies 2
√

τ‖H̃x‖L∞ = 1/2, or
τ = (16‖H̃x‖L∞)−1, and L < m/2, we have

sup
|z|≤L
t≤τ

|μ̃(z, t) − wm(z, t)| ≤ sup
|z|≤m/2
t≤τ

|μ̃(z, t) − wm(z, t)|

≤ C(T )m−1 + 2C(ε,T )‖H̃x‖L2([0,T ]×{z : |z|≥m/2})
+ 2C‖H̃x‖L∞T 1/4√ε.

Here, we absorbed the right-hand side of (5.5) into the left-hand side above.
We may repeat the same scheme, starting from time τ , where now the initial

difference (5.4) is taken into account:

sup
|y|≤m/3

σt ∗ |wm
τ − μ̃τ |(y)

≤ sup
|z|≤m/2

|wm
τ − μ̃τ |(z) + sup

|y|≤m/3

∫
|z|>m/2

σt (y − z) dz

≤ sup
|z|≤m/2

|wm
τ − μ̃τ |(z) + e−Cm2/T .

With a finite number of iterations of such type, say Nτ = [T/τ ] + 1 iterations,
when L < m/Nτ , we obtain uniform convergence, as m ↑ ∞, for |z| ≤ L and
0 ≤ s ≤ T . �

PROOF OF PROPOSITION 2.1. The proof follows by applying Lemmas 5.2,
5.3 and 5.5 to build a density μ+ = wm, which satisfies specifications (i)–(viii).
We remark property (v) is shown as follows: When μ0 = γ , by construction in
(5.1), we have wm

0 = μ̃0 = μ̂0 = μ
b,α
0 = σα ∗ γ . When γ (x) ≡ ρ, this reduces to

μ̃0(x) ≡ ρ. �

Starting under (DIC) initial conditions, however, to prove Proposition 1.3, we
will need to specify that wm can be approximated by a suitable density with initial
value equal to μ0 = γ ∈ M1(ρ∗, ρ∗).

LEMMA 5.6. Recall wm from Lemma 5.5. Suppose μ0 = γ ∈ M1(ρ∗, ρ∗).
Then, for ε > 0, ∃M such that ∀m ≥ M , there is a density χ̄ ∈ C∞((0, T ] × R),
such that: (1) equation (1.2) is satisfied with respect to H̄x ∈ C∞

K ([0, T ] × R);
(2) initial value χ̄0 = γ ; (3) the Skorohod distance d(χ̄,wm) < ε; (4) |I0(χ̄) −
I0(w

m)| < ε.

PROOF. Consider wm
0 from Lemma 5.5. From the assumption μ0 = γ , we

have wm
0 = μ̃0 = σα ∗ γ from (5.1). Form the density χ̄ as follows:

χ̄ =
{

σt ∗ γ, for 0 ≤ t ≤ α,
wm

t−α, for α ≤ t ≤ T .
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Since Hm
x is supported on a compact subset of (0, T ] × R, χ̄ ∈ C∞((0, T ] × R),

and satisfies (1.2) with respect to H̄x ∈ C∞
K ([0, T ] × R) given by

H̄x =
{

0, for (t, x) ∈ [0, α] × R,
Hm

x (t − α,x), for (t, x) ∈ [α,T ] × R.

Now, 2I0(χ̄) = ∫ T
0
∫

H̄ 2
x χ̄(1 − χ̄) dx dt = ∫ T −α

0
∫
(Hm

x )2wm(1 − wm)dx dt .
Then, the difference

2I0(χ̄) − 2I0(w
m) =

∫ T

T −α

∫
(Hm

x )2wm(1 − wm)dx dt.

To estimate the right-hand side, recall from Lemma 5.5 that ‖Hm
x − H̃x‖L2 ≤ m−1,

and wm → μ̃ uniformly on compact subsets. Then∫ T

T −α

∫
(Hm

x )2wm(1 − wm)dx dt

≤ 2‖Hm
x − H̃x‖2

L2([0,T ]×R)
+ 2

∫ T

0

∫
|x|≥L

H̃ 2
x dx dt

+ 4
∫ T

0

∫
|x|≤L

H̃ 2
x |wm − μ̃|dx dt + 2

∫ T

T −α

∫
H̃ 2

x μ̃(1 − μ̃) dx dt

= B1 + B2 + B3 + B4.

Choose L = L(H̃x) large so that B2 ≤ ε/4, and take m = m(H̃x,L) large enough
so that both B1,B3 ≤ ε/4.

The term B4/4 is the rate of μ̃ on the time interval [T − α,T ]. Since μ̃ and H̃x

depend on α, we bound B4 in terms of Hx (which does not depend on α) to show
that it is small when α is small. By the construction of μ̃ in Lemma 5.3, convexity
of the the rate, translation-invariance and that the rate of σt+α ∗ γ vanishes, we
estimate

B4 ≤ 2b

∫
σα(z)

∫ T

0
κε(s)

∫ T

T −α

∫
H 2

x μ(1 − μ)(t + s − β,x − z) dx dt ds dz

≤ 2
∫ T

T −2α

∫
H 2

x μ(1 − μ)dx dt,

when β ≤ α ≤ T − α. Then, as I0(μ) < ∞, B4 ↓ 0 as α ↓ 0.
Hence, with α small enough, there is M so that for m ≥ M , we have |I0(χ̄) −

I0(w
m)| < ε. Also, by Lemma 5.5, I0(w

m) ≤ I0(μ) + 1, and so by uniform conti-
nuity (Lemma 5.1), the Skorohod distance d(χ̄;wm) < ε. �

PROOF OF PROPOSITION 1.3. Let γ be a profile associated to an (LEM)
or (DIC) measure, and let μ be such that Iγ (μ) < ∞. By successively applying
Lemmas 5.2, 5.3, 5.5 and 5.6, we can approximate μ by an appropriate den-
sity μ+ to verify μ ∈ A. Specifically, under an (LEM) initial measure, when
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Iγ (μ) = ILE
γ (μ), μ+ = wm in Lemma 5.5 with appropriate choice of parame-

ters b,α,β, ε and m. Under a (DIC) initial configuration, when Iγ (μ) = IDC
γ (μ),

μ+ = χ̄ in Lemma 5.6 again with suitable parameters. �

5.2. Proof of Lemmas 2.2, 2.3. We prove the lemmas in succession.

PROOF OF LEMMA 2.2. Note that

|μt(x) − γ̂ (x)| = lim
h↓0

|σh ∗ (μt − γ̂ )(x)|
≤ lim

h↓0
|σt+h ∗ (μ0 − γ̂ )(x)|

+
∫ t

0

∫
|Hx |μ(1 − μ)(s, z)|∂zσt−s+h(z − x)|dzds.

Since Hx has compact support in [0, T ] × R, the second term on the right-hand
side is bounded by

CH

∫ t

0

∫
|z|≤MH

|x − z|
t − s

σt−s(z − x)dz ds

for some constants CH,MH . Since (|y|/√s)e−y2/4s ≤ 1, when |x| ≥ MH , we can
bound it further by 4CH

√
T e−(x−MH )2/8T , which vanishes as |x| ↑ ∞.

The first term, however, is bounded as follows:

|σt+h ∗ (μ0 − γ̂ )(x)|
≤ sup

|z|≤l

|μ0 − γ̂ |(z − x) ·
∫
|z|≤l

σt (z) dz + √
2e−l2/4T

∫
|z|≥l

σ2t (z) dz

≤ sup
|z|≤l

|μ0 − γ̂ |(z − x) + √
2e−l2/4T .

Now, since h(μ0; γ̂ ) < ∞, γ̂ ∈ M1(ρ∗, ρ∗), ‖∂xμ0‖L∞ < ∞, we conclude, for
fixed l, that lim|x|↑∞ sup|z|≤l |μ0 − γ̂ |(z − x) = 0. This completes the proof. �

PROOF OF LEMMA 2.3. Consider Hellinger’s inequality (
√

α − √
β)2 ≤

hd(α;β). [Let H(α;β) = (
√

α − √
β)2 + (

√
1 − α − √

1 − β)2. By Jensen’s in-
equality and log(1 − x) ≤ −x for 0 ≤ x < 1, hd(α;β) ≥ −2 log[1 − (1/2)H(α;
β)] ≥ H(α;β).] We write then (μt (x) − ρ)2 ≤ 2(

√
μ − √

ρ)2 ≤ 2hd(μt (x);ρ).
Hence, by Proposition 2.4 (with respect to the density on [0, t] × R with γ̂ ≡ ρ),∫ (

μt(x) − ρ
)2

dx ≤ 2
∫

hd(μt(x);ρ)dx

≤ 4
∫ t

0

∫
(Hn

x )2μ(1 − μ)dx ds ≤ 8I0(μ)

uniformly in 0 ≤ t ≤ T . �
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