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LARGE DEVIATIONS FOR THE CURRENT AND TAGGED
PARTICLE IN 1D NEAREST-NEIGHBOR SYMMETRIC
SIMPLE EXCLUSION

BY SUNDER SETHURAMAN! AND S. R. S. VARADHAN2
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Laws of large numbers, starting from certain nonequilibrium measures,
have been shown for the integrated current across a bond, and a tagged par-
ticle in one-dimensional symmetric nearest-neighbor simple exclusion [Ann.
Inst. Henri Poincaré Probab. Stat. 42 (2006) 567-577]. In this article, we
prove corresponding large deviation principles and evaluate the rate func-
tions, showing different growth behaviors near and far from their zeroes
which connect with results in [J. Stat. Phys. 136 (2009) 1-15].

1. Introduction and results. The one-dimensional nearest-neighbor sym-
metric simple exclusion process follows a collection of nearest-neighbor random
walks on the lattice Z, each of which is equally likely to move left or right, ex-
cept in that jumps to already occupied sites are suppressed. More precisely, the
model is a Markov process 1, = {n;(x):x € Z}, evolving on the configuration
space ¥ = {0, 1}%, with generator

(L)Y = (1/2) Y [n@)(1=nGx+D)+nG+D(1—n)] (@0 TH—¢m),

where n*-Y, for x # y, is the configuration obtained from 5 by exchanging the
values at x and y,

n(2), whenz #x, y,
n"(z) = { n(x), when z =y,
ny), when z = x.

A detailed treatment can be found in Liggett [23].

As the process is “mass conservative,” that is, no birth or death, one expects
a family of invariant measures corresponding to particle density. In fact, for each
p € [0, 1], the product over Z of Bernoulli measures v, which independently puts
a particle at locations x € Z with probability p, thatis, v,(n, =1)=1—v,(n, =
0) = p, are invariant. We will denote E,, as expectation under v,.
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Consider now the integrated current across the bond (—1,0), and a distin-
guished, or tagged particle, say initially at the origin. Let J_; ¢(¢) and X; be the
current and position of the tagged particle at time ¢, respectively. The problem of
characterizing the asymptotic behavior of the current and tagged particle in in-
teracting systems has a long history (cf. Spohn [37], Chapters 8.1, 6.1I), and was
mentioned in Spitzer’s seminal paper [36].

The goal of this paper is to investigate the large deviations of J_j o(¢) and X;
when the initial distribution of particles is part of a large class of nonequilibrium
measures. Our initial motivation was to understand better laws of large numbers
(LLN) and central limit theorems (CLT) in Jara and Landim [16] for the current
and tagged particle when the process starts from a class of “local equilibrium”
initial measures. It turns out that recent formal expansions of the large deviation
“pressure” for the current in Derrida and Gerschenfeld [10, 11] might also be re-
covered in such a study.

The article [16] is a nonequilibrium generalization of CLTs in Arratia [1],
Rost and Vares [32], and De Masi and Ferrari [8], which established “sub-
diffusive” behaviors in the 1D nearest-neighbor symmetric simple exclusion
model. Namely, starting under an equilibrium v,, 11/ 4J_1,0(t) = N(0, 0}) and
t=1/4X, = N(0,03%), where 07 = /2/7(1 — p)p and o = /2/7(1 — p)/p.
Physically, the “subdiffusive” scale in the CLT is explained as being due to “trap-
ping” induced from the nearest-neighbor dynamics which enforces a rigid order-
ing of particles. Recently, the CLTs were extended to an invariance principle with
respect to a fractional Brownian motion, A1 41_1,0()\t) = oy fBMj4(t) and
AAX, = ox fBM;4(t), in Peligrad and Sethuraman [26].

We now specify the class of initial measures considered, that is, “deterministic
initial configurations” and “local equilibrium product measures.” Let M be the
space of functions y :R — [0, 1], and let M{(ps, p*) be those functions in M
which equal p, for all x < x,, and which equal p* for all x > x*, for some x, <x*.

We will consider on M the topology induced by Cg (R), the set of continu-
ous, compactly supported functions on R, with the duality (-; -) where (y; G) =
[ G(x)y(x)dx for y € M and G € Cg (R). This topology, if M| is thought of as
a measure space, is the vague topology which is metrizable.

Local equilibrium measure (LEM). For 0 < p,, p* < 1, let y € M{(p«, p*) be
a piecewise continuous function, such that 0 < y(x) < 1 for all x € R. With re-
spect to y and a scaling parameter N > 1, we define a sequence of local equilib-

}(/IX) as those formed from the marginals v](jz/; nx)=1)=

v (x/N) for x # 0, and v)(,]Z;(n(O) =1=1.

Deterministic initial configuration (DIC). For 0 < p,, p* < 1, let y be a piece-
wise continuous function in M{(py, p*). Then, a sequence of deterministic initial
configurations £7>" is one such that £7-" (0) = 1 and for all continuous, compactly
supported G, limy _ o % > V"N (x)G(x/N) = JGx)y(x)dx.

We remark particular examples of local equilibrium measures v(N.) are the equi-
librium measures v, (-|7(0) = 1) conditioned to have a particle at the origin for

rium product measures v
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0 < p < 1. Suitable deterministic configurations SV’N , for instance, include the
“alternating” configuration where every other vertex is occupied corresponding
to y(x) = 1/2. Nonequilibrium initial measures, corresponding to step profiles
Y () = psl(—00,01(X) + p*1(0,00) (x), can also be constructed. The condition that
the origin is occupied in these configurations allows us to distinguish the corre-
sponding particle as the “tagged” particle.

In a sense, the profiles y, associated to the local equilibria and deterministic
profiles above, are “nondegenerate,” in that y is asymptotically bounded strictly
between 0 and 1. Also, the property that y (x) is constant for large |x|, and with
respect to (LEM) specifications that 0 < y < 1, is useful to establish later Proposi-
tion 1.3, although some modifications, for instance, in terms of profiles sufficiently
close to being constant for large |x|, should be possible with more work. However,
under “degenerate” profiles, different current and tagged particle large deviation
behaviors might occur. See comments after Theorems 1.7 and 1.8 for an “exam-
ple.”

We now describe the LLNs, proved in Jara and Landim [16] (stated under a
class of local equilibrium measures, but the same proof also works starting from
the initial measures above):

. 1 5 . 1
(1.1 ngnooﬁj_l’()(N t)=v;, and ngnOONXNz,—u;,
in probability, where v; and u, satisfy
d 1 d 10,p0(t,
ﬁ:——ax,o(t,O) and ﬂ:__M
dt 2 dt 2 p(t,u)

and d;p = (1/2)dxxp and p(0,x) = y(x), that is, p(t,x) = oy * y(x) where
0:(y) = (2mt)~1/? exp{—y?/2t}. Note that

1 rt o
”f:‘E/o axp(s,o)dpfo [p(t. x) — p(0. x)]dx,

and u; is also the unique number «, where

¢ t dx = ! ta 0)ds = * t 0 d
/O p(t, %) x“i/o (s, 0) s—fo [p(t.x) — p(0, x)]dx.

To explain the last equation, the right-hand side, as already indicated, is the in-
tegrated macroscopic current across the origin up to time 7. As the microscopic
dynamics is nearest-neighbor with enforced ordering of particles, the tagged parti-
cle, initially at the origin, will be at the head of the flow through the origin. So, to
compute its macroscopic position u, at time ¢, we find « so that the mass at time ¢
between positions x = 0 and x = «, the left-hand side of the equation, equals the
integrated current, and conclude u; = «.

We remark, starting from a class of local equilibrium measures, corresponding
invariance principles in subdiffusive !/ scale, in the sense of finite-dimensional
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distributions, with respect to fractional Brownian motion-type Gaussian processes,
was also proved in [16]. Also, for the current, starting from a large class of product
measures, self-normalized CLT's have been shown in Liggett [24] and Vandenberg-
Rodes [38].

In this context, we derive large deviation principles (LDPs) (Theorem 1.5), in
diffusive scale, corresponding to the laws of large numbers (1.1) when starting
from (LEM) or (DIC) measures. We give also lower and upper bounds on the
associated rate functions, starting from various nondegenerate initial conditions
(Theorem 1.6). A consequence of these rate function bounds, say when starting
from deterministic initial configurations, is that the following growth structure can
be deduced: Namely, the rate functions are quadratic near their zeroes, but are third
order far away from the zeroes.

In particular, the third order asymptotics we derive confirm the formal third-
order expansions in Derrida—Gerschenfeld [10] for the probability distribution of
the current across the origin at large times; cf. discussion after Theorem 1.6. On
the other hand, starting from a “degenerate” deterministic initial configuration with
v (x) = 1;-1,1)(x), we show that the large deviations behavior is, at most, quadratic
(Theorem 1.8).

Moreover, in Theorem 1.7, starting under deterministic configurations when
y(x) = p, we find the exact asymptotic behavior of the rate functions near their
Zeroes.

The main idea for the LDPs is to relate, through several “entropy” and “energy”
estimates, the current and tagged particle deviations to those established in Kipnis,
Olla and Varadhan [18], Landim [20] and Landim and Yau [22], with respect to
the hydrodynamic limit of the process empirical density; cf. Propositions 1.1, 1.4.
The growth order asymptotics are proved in part by estimations of currents and
calculus of variations arguments.

At this point, we remark that the behavior of the tagged particle, in contrast
to the subdiffusive d = 1 nearest-neighbor result, scales differently in symmetric
exclusion models in d > 2, and also in d = 1 when the underlying jump prob-
ability is not nearest-neighbor, that is, when particles are free to pass by other
particles. Namely, in Kipnis and Varadhan [19], starting under an equilibrium
v, {-|n(0) = 1), in diffusive scale, invariance principles for the tagged particle to
Brownian motion were proved. Later, in Rezakhanlou [31], starting from local
equilibrium measures, in diffusive scale, an invariance principle with respect to
a diffusion with a drift given in terms of the profile y is proved for the “aver-
aged” tagged particle position, averaging over all the positions of O(N) particles
in a sequence of tori with N vertices. In Quastel, Rezakhanlou and Varadhan [30],
in d > 3, a corresponding large deviations principle is proved for the “averaged”
tagged particle position with rate function, which is finite on processes with finite
relative entropy, with respect to diffusions which, in some sense, add an additional
drift to the limit diffusion in [31]. This LDP for the “averaged” tagged particle
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would seem also to hold in d < 2 (nonnearest-neighbor in d = 1), given regular-
ity results on the self-diffusion coefficient in Landim, Olla and Varadhan [21] not
available when [30] was written.

We also mention, other large deviation works with respect to empirical densi-
ties and currents in related interacting systems are Benois, Landim and Kipnis [2],
Bertini et al. [3, 4], Bertini, Landim and Mourragui [5], Farfan, Landim and Mour-
ragui [12], Quastel [29], and Grigorescu [14]; see also Kipnis and Landim [17],
Chapter 10, and references therein. Also, we note, with respect to totally asym-
metric nearest-neighbor exclusion in d = 1, large deviation “lower tail” bounds
for tagged particles are found in Seppéldinen [35].

We now give the hydrodynamic limit and rate function for the process empirical
density ™ (s, x; n) € D([0, T]; My),

uwN (s, x;m) = Z nnzs K1 k/N, (k+1)/8) (X)
keZ

where x e R, s €[0,T],and 0 < T < oo is a fixed time.

PROPOSITION 1.1.  Starting from local equilibrium measures or deterministic
configurations, we have for t € [0, T], € > 0 and smooth, compactly supported ¢,
that

1%150 PH/qb(x),uN(t,x)dx—/¢(x)m(t,x)dx

where m satisfies 0ym = (1/2)0dyxm with initial data m(0, x) = y (x).

>6}=0,

A reference for the proof of Proposition 1.1, among other places, is Theorem 8.1
in Seppéldinen [34].

The rate functions for the process empirical density differ depending on the
type of initial distribution. First, following [18, 20], suppose the process starts

from a local equilibrium measure vy () For u € D([0, T]; M), define the linear
functional on CII{’Z([O, T] x R):

1w G) = [ G(T 5 () dx - / G (0, x)10(x) dx
[ (g3 2)G(r x)daxdr.

W= sup {I(M,G)——/ [t = row62a, x)dxdr}

GeCE*([0,TIxR)

Let

h(uoiy)=  sup { f 1o (V) o (x) dx + f (1= 10(x))b1 (x) dx

$0.01€Ck (R)

— /log[y(x)e‘i")(x) + (1 _ y(x))e¢1(x)]dx},
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and form the rate function
() = Io(w) + h(po; v)-

Here, C?(’ﬂ is the space of compactly supported functions, o and B-times contin-
uously differentiable in # and x, respectively. In addition, we will use the notation
e (x) = (e, x).

Next, starting from deterministic configurations £7-"V, the rate function in [22]
(written for zero-range systems, but the methods straightforwardly apply to our
exclusion context) is given by

lo(w), when puo =y,
bC _ 11 :
Y () { 00, otherwise.

To simplify notation, we call both I}fE and I;DC as I, omitting the super scripts
“LE” and “DC,” when statements apply to both and the context clear. For 0 <
o, B <1,let hy(a; B) = alogla/B] + (1 — a)log[(1 — a)/(1 — B)] with usual
conventions 0log0 = 0/0 =0 and log0 = —o0.

From the definition, 7, is a convex function. Also, a main point in [18] was to
note that when 7, (1) < oo is finite, that first

h(pos y) Z/hd(MO(X); y(x))dx < oo.

[Of course, starting from deterministic configurations, po = y.] Also second, u
corresponds to a function H, € L*([0,T] x R, uw(l — w)dxdt) and satisfies a
“weakly asymmetric hydrodynamic equation,”

(1.2) O = 30t — dx[Hupt(1 — )]

in the weak sense. That is, for G € C,l(’z([O, T1 x R), we have

T
(13) l(M;G)=/O foqu(l—ma,x)dxdt
and
(1.4) =3 [ [ H2a - wdxar.

Reciprocally, if for a density u € D([0, T]; M), there exists H, € L2([0,T] x
R, u(1 — @) dxdt), such that p satisfies (1.2) weakly, then Ip(w) is given by (1.4).

Recall a function Z: X — [0, oo] on a complete, separable metric space X is a
rate function if it has closed level sets {x : Z(x) < a}. Itis a good rate function if the
level sets are also compact. Also, a sequence { X, } of random variables with values
in X satisfies a large deviation principle (LDP) with speed n and rate function Z if
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for every Borel set U € By,

1
— inf Z(x) > limsup — log Pr(X,, e U)

xeU n—oo N
1
> liminf — logPr(X,, e U) > — inf Z(x),
n—00 n xeU°

where U° is the interior of U, and U is the closure of U.

Let A= A(y) be the space of all densities j, such that I, (1) < oo, which can
be approximated in D([0, T']; M1) by a sequence of densities {u"} satisfying (1.2)
corresponding to {H}'} C C}(’z([O, T] x R), such that I, (u") — I, ().

For general local equilibrium measures (LEM) and deterministic initial config-
urations (DIC), only a weak large deviation principle is available. The next propo-
sition follows straightforwardly from the methods of [18] (see also [17], Chapter
10), and replacement estimates in [22], namely Theorem 6.1 and Claims 1, 2 [22],
Section 6.

PROPOSITION 1.2.  With respect to initial local equilibrium measures (LEM)
or deterministic configurations (DIC), corresponding to profile y, I,, is a good
convex rate function, and for U C D([0, T]; My),

1
— inf I, () > limsup — log P[u" € U]
nel Ntoo N

1
> liminf — log P[uY e U]1>— inf I,(w).
—INH%?Q ~ 108 [u” eU]= Meglom y (1)

The last proposition raises the question when A(y) is large enough so that the
lower bound matches the upper bound. However, with respect to the profiles con-
sidered, the following containment is true, so that, as a corollary, the full LDP
holds.

PROPOSITION 1.3.  With respect to profiles y associated to local equilibrium
measures (LEM) and deterministic configurations (DIC),

A(y) D{m: I, (u) < oo}.

COROLLARY 1.4. With respect to initial local equilibrium measures (LEM)
and deterministic configurations (DIC), the LDP with speed N holds for {u™}
with good convex rate function I, .

We note Proposition 1.3, for continuous profiles y € Mi(p, p) with0 < p < 1
and 0 < y () < 1 corresponding to local equilibrium measures, was stated in [20],
and the associated LDP in Corollary 1.4 with respect to these initial measures is
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Theorems 3.2, 3.3 [20]. In Section 5, we prove Proposition 1.3, generalizing the
initial states allowed.

It will be convenient to rewrite (1.2) in terms of a macroscopic “current” or
“flux” J: That is, when I, (i) < 00, define J so that weakly,

Od +pu=0;  J=—50pu+ Hepu(l = p).

It turns out such currents have nice properties and relations; cf. Propositions 2.4
and 2.6. Namely, the time integrated current x — fOT J(x,t)dt is a well-defined
function on R. Also, the limit

00 L
(15) /O (07 () = po(@)]dx = lim. /O (17 (x) — o (x)] dx converges

and

T 00
(1.6) /O J (0, t)dt:/(; ur(x) — po(x)dx.

In addition, for &, B € R, [§ [J(B.1) — J (e, )] dt = [§[pur (x) — po(x)] dx.
We now write the current and tagged particle rate function in terms of /,,. Define
the functions J = J, and [ =1, fora € R, by

I(a) =inf{1y(u):/0T J(0, 1) dt :a}

—inl 1, o)+ [ wr 0 = oty dx =al

and
T a
I(a) =inf{l,,(u):/0 J (0, t)dt:/o ,uT(x)dx}

=il 1,602 [ o)~ w0 = [“ureodl.

When starting from (LEM) or (DIC) initial conditions, we sometimes distinguish
the corresponding rate functions by adding a superscript.
It follows from the definitions that

(1.7) 125 (a) <I0%(a) and  JL%(a) <JDC(a).

We also observe that the restriction in the infimum in the definition of I may take
different form. For instance, when fOT J(0,t)dt = [§ ur(x)dx, by the relation
fOT J(O,1) — J(a,t)dt = [ pur(x) — po(x) dx, one obtains the following restric-
tion which could be used instead: fOT J(a,t)dt = [ po(x)dx.
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In addition, by translation-invariance, considering wu'(¢,x) = u(t,x + a),
J'(x,t)=J(x +a,t) and y'(x) = y (x + a), we see, starting from a (DIC) initial
state, that

T a
ﬂfc(a):mf{lfc(u):/o J(a,t)dtz/o y(x)dx}

=°]]3C(‘/0ay(x)dx).

Although one can readily see J is convex, given /,, is convex and the constraint
in the definition of J is linear in  and a, it is not so easily seen whether I is convex
from this sort of argument. However, as seen later in Theorems 1.6 and 1.7, near
their zeroes, both J and I behave quadratically.

Also, it is perhaps curious to note that J and I can be written completely in
terms of densities u, a consequence of the enforced ordering of particles in the
nearest-neighbor d = 1 setting. In contrast, the large deviation rate function for
the “averaged” tagged particle position in [30] involves an auxiliary current in its
description.

We now give some properties of J and I and state the large deviation principles.

(1.8)

THEOREM 1.5. With respect to (DIC) or (LEM) initial measures:

(i) Jand 1 are finite on R, limyyyo0 J(a) = limgp00 I(a) = 00, and J and 1 are
a good rate functions. Further, J and 1 have unique zeroes at the LLN constants
vr and ut, respectively.

(ii) The scaled quantities {J_LO(NZT)/N} and {X 27 /NY} satisfy LDPs in
scale N with respective rate functions J and 1.

A natural question at this point is to calculate the rate functions J and I. Al-
though this appears difficult, some bounds (with nonoptimal constants) are possi-

ble under various conditions.

THEOREM 1.6. Starting under (DIC) or (LEM) initial conditions, there is a
constant ¢1 = c1(y), such that

T
L\,]](a), lim sup

lim sup J(a) <
a—vy (a —vr)? la|too lal®

lim sup 2]I(a), lim sup — 3 ]I(a) <
a—ur (@ —ur) laltoo @l

Also, starting under (DIC) initial conditions, there is a constant cp = c2(y) > 0,
such that

JT
lclln_l)})l’rlf mj(a) 11m1nf WJ(G) >
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T
lim inf LJI(a), hm mf —]I(a) >

a>ur (a—ur)? af?

We remark the quadratic asymptotics for J(a) and I(a) near their zeroes recalls
Gaussian expansions, and the CLTs in [16], [24] and [38]. On the other hand,
the cubic bounds for large |a| in Theorem 1.6 seem intriguing, perhaps connected
with totally asymmetric nearest-neighbor exclusion (TASEP) effects. That is, for
the current or tagged particle to deviate to a far level a N, order O (|a|N) particles
must be driven far away from their initial positions, so that perhaps the process
behaves like a driven system like TASEP.

We remark on these last points that in Derrida and Gerschenfeld [10, 11], start-
ing from a local equilibrium measure with step profile y”""*2(x) = p;1(—c0,0] +
or1(0,00), the large deviation “pressure” of the current Jo 1(¢) across the bond
(0, 1), lim;1o0 t~1/?1log E[exp{AJo,1 (1)}] = F (p1, p,,x) is found. Also, formal

asymptotics with F give P(Jp,1(t) =a) ~ exp[f{— a + ---}1, for large ¢ and
large a > O (cf. page 980 [11]).

In this context, the large deviation principle in Theorem 1.5 and bounds in The-
orem 1.6 prove the form of this expression with respect to the dominant third order
term when starting from (DIC) initial conditions: Namely, for large a and constants
co, C1,

1
—colal® > — 1nf J(x)>hmsup—P(|]01(t)|>a)
oo A/t

o1 . 3
zllglogfﬁloz%P(lfm(t)lza)z—lilnfaﬂ(X)z—qlal :

This addresses, in part, a question in [10], as to whether the large |a| asymptotics
would extend to nonstep profiles. See also Hurtado and Garrido [15].

Also, with respect to the current and tagged particle, fluctuations in the “KPZ”
class are discussed in Praehofer and Spohn [28], Ferrari and Spohn [13] and
Sasamoto [33], with respect to TASEP starting initial conditions with step or con-
stant profiles. In particular, the scaling limits of the current and tagged particle
are of “Tracy—Widom” or “Airy” process types whose marginal distribution have

upper tail on order el a5 x 1 00, and lower tail on order e™“! P72 as x J oo,
for some constants cg, c1. In our context, starting from (DIC) initial conditions, we
have from Theorem 1.6 that J(a), I(a) are on cubic order |a|® for large |a|. For-
mally, one is tempted to link this cubic order in terms of the TASEP scaling limit
process exponents. It would be interesting to investigate such analogies.

We now refine the behavior of J(a) and I(a) near their zeroes vy = ur =0
when the deterministic initial condition has constant profile y = p. Arratia’s CLT
variances a} and 0}2(, mentioned earlier, can be computed by adding static and
dynamic contributions, due to initial configuration and later motion fluctuations,
respectively. However, starting from deterministic initial configurations, only the
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dynamical contributions would be present and we show later, in Proposition 4.5,
that these parts of the variances are ch dyn = =./mp( —p) and Ux dyn = =/l —

p)/p.

THEOREM 1.7. For p € (0, 1), starting from (DIC) initial configurations with
profile y = p, we have

1 JT
lim —J a)= = 1—
b a2’ @ =5, 07 ayuN'T N
and
5 1 ) = 1 JToop
1m —=li(a =
lall0 a 208 VT 2T 1=p

At this point, one might ask about the large deviation behavior starting from ini-
tial conditions with “degenerate” profiles. In this case, diffusive scaling may not al-
ways capture for the tagged particle nontrivial LLNS, as in (1.1) or large deviations
as in Theorem 1.5. For instance, starting under £7°N where Y(x) = 1(—00,01(x) is
the step profile, in Arratia [1] it is shown that #~'/2x(¢) — \/Tog(r) — 0 a.s. which
shows that the tagged particle diverges at rate /¢ log(¢). With respect to large de-
viations, it is clear the tagged particle, initially at the origin, cannot travel to nega-
tive locations. Also, for a > 0, the condition in I(a) reduces to [ aoo ur(x)dx =0
which, given that w(z, x) satisfies (1.2), is impossible since the density formally
becomes positive on R as soon as ¢ > 0. Hence, starting from this step profile
configuration, formally I = co. However, for the current, starting from this ini-
tial condition, in diffusive scaling, v < oo, and a corresponding CLT is proved
in [24].

On the other hand, when the degenerate initial profile has a density of particles
around the tagged particle, diffusive scaling would still seem appropriate to estab-
lish an LDP for the tagged particle and current. Here, as a contrast to the results
in Theorem 1.6 and to argue this last sentiment, we show quadratic upper bounds
for the current and tagged particle large deviations starting from the degenerate
configuration £7" where £71V (x) = 1 for |x| < N and """ (x) = 0 otherwise.
Here, y1(x) = 1[—1,17(x). Note the associated LLN speeds vy =ur =0.

THEOREM 1.8. Starting under V0N there exists ¢1 = ¢1(T) > 0 such that,
fora >0,

1
lim sup ¥ log P(|J_1,0(N*T)|/N > a) <

{—claz, for0<a<l,
N1too -

o0, fora > 1,

lim sup - 1og P(IX(N?T)|/N = a) < —c1a®.
Ntoo
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The interpretation, for instance, with respect to the tagged particle, is that in
configurations &£V, although it is trapped in the middle of a large segment of
particles, to displace large distances, as there are only O (N) number of particles
in the system, the cost is not as great as under £”-", where there are an infinite
number of particles. At the same time, there is a positive density of particles to the
left and right of the origin, unlike for the profile y (x) = 1(—0,01(x), which slows
down the tagged particle so that deviations to a € R have finite cost in diffusive
scale. With respect to the current, a similar explanation applies; we note, however,
current levels larger than N cannot happen, and so they are given infinite cost.

Finally, we remark on some natural questions.

(1) As indicated by Theorem 1.8, different large deviation behaviors might arise
when starting from degenerate initial conditions. It would be of interest to investi-
gate these phenomena and provide estimates for the corresponding rate functions.
When starting from a degenerate initial profile, with a density of mass around the
initial tagged particle position, although the basic argument of Theorem 1.5(ii)
in Section 3 holds, main obstacles are to extend approximation Propositions 1.3
and 2.1, energy estimate Proposition 2.4, first bounds and development of the rate
functions in Section 2.4 and exponential tightness Lemma 3.2.

(2) Also, a joint large deviations principle for the current and tagged particle,
with rate

[ele) b
K(a.b)i=int] 1,0 [~ (ur ) = o) dx = [ ur (o dx =al,

should hold by the methods of the article. In this case, asymptotics of the rate
function K(a, b) for (a, b) near (vr, ur) might be studied.

The plan of the paper is now to develop preliminary estimates in Section 2. In
Section 3, we prove Theorem 1.5. Then, in Section 4, we prove Theorems 1.6, 1.7
and 1.8. These last two sections can be read independently of each other. Finally, in
Section 5, as remarked earlier, we prove Proposition 1.3, and other approximations.

2. Preliminary estimates. We develop, in several subsections, “energy” and
current estimates with respect to finite rate densities, and also prove that J and I
are a finite-valued rate functions.

2.1. Approximation and limit estimates. We state an approximation result de-
rived in the course of the proof of Proposition 1.3, and also certain useful limits at
infinity. Proofs of these results are given in Section 5.

PROPOSITION 2.1. Let p be a density such that Io(iu) < oo. Then for all
€ >0, there is u e D([0, T1; M1), such that:

(1) 30 <8 <1 suchthat 8 <u*(t,x) <1—28for (t,x)€[0,T] xR,
(i) uteC>(0,T] xR),
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(i) H € C¥([0,T] x R) and
@) 1858 Il qo,71xm) < 00 for k.1 = 1.
V) If no=y € M1 (px, p*), then M(T =0y * Y for an a > 0. In particular, if
1o(x) = p, then pd (x) = p.
(vi) Also, Skorohod distance d(u™, n) < € in D([0, T]; My),
(vii) [lo(ut) — Io(u)| <e.
(viii) Also, suppose y € M1(px, p*) is piecewise continuous, and 0 < p(x) < 1
for x € R. Then, if h(jo; ) < 00, we have [h(ig; 1) — h(po; )] <e.

We remark, of course, Proposition 2.1 implies that if Io(u) < oo, there is a
sequence of densities u" satisfying properties (i)—(viii) which converges to w in
D([0, T]; My).

LEMMA 2.2. Let y € Mi(ps, p*), and u be a smooth density such that
h(pg; p) < 0o, Ip(n) < 0o, and which also satisfies (1)—(iv) in Proposition 2.1
Then, we have

lim sup |u(t,y) =y ()| =0.
[y1100se[0,T]

The next lemma will be used in the proof of Theorem 1.7.

LEMMA 2.3. Let {iu} be a smooth density such that po(x) = p, Iop(in) < o0,
and which satisfies (1)—(iv) in Proposition 2.1. Then

sup | (1 — p)? dx < 8Ip(1).
0<t<T

2.2. “Energy” and current estimates. We give a formula for the rate Ip(w),
bounds on the “energy” ||dx |72, and relations with the current.

PROPOSITION 2.4. Let u be a smooth density, with finite rate Iy(u), satis-
fving (1)—(iv) in Proposition 2.1. Suppose also there is a smooth y € M1(p, p*),
strictly bounded between 0 and 1, such that h(ug; y) < oo. Then,

LT @ew)? 1 4 s
() = §/o 0 i S e ) = s )

1 Y, T 1 (T J?
Ny A PP )
2 y(d=p)Jo 2Jo J p(l—p
1 . .
2.1 Znaxuniz < h(uo; 7)) + loGo) + T 0,7 /(P (1 — 7)) |32

and

T T b
2.2) /()J(a,t)dt—/o J(b,t)dt:/ ur(x) — pur0)dx fora,beR.
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PROOF. First,as J = —(1/2)d,u + Hy (1 — ), we have

1 T
=3 [ [ Hu( = wdxai

2
/ GTOR N
T8 pn(d—pw)

+%/0/ (Jlai“u)d czz+2ff (I_M)dxdt

We now find a suitable expression for the middle term. Let G be a smooth,
nonnegative, compactly supported function in [—L, L], bounded by 1, which
equals 1 on [-L + 1,L — 1], and sup; fAL(G’L)Z/Gde < 00 where A =
[L—1,L]U[—L,—L+1]. Then

) / G1(0)ha (e (x); P) dx

:——/G (Bt + [ GLeoHy i dx

2.3) M;(l ) A
Y Ox [ xV
43 [ G dx = [ GrooHn( - 5 dx
+/(h@H(UD&m+H(mO—MMN% '
L—pe v

Hence, by Schwarz’s inequality and 0 < u < 1, we can bound, with respect to a
universal constant C,
(O Ms)z

. | T
/ GLeha(ur (6); () dx + 5 /0 / Guto) I s

T
< f G1()ha(io(x); P () dx + C /0 f (H) 21t (1 — i) dx ds

2
+CTfGL( )A(”’) dx

P21 —p)?

/ 13 1— J,/\ 2
+C/ (GL) /Gr]|log ~ dx.
L—pe ¥
We can take L 1 0o, so that the last term vanishes by Lemma 2.2. Then, by mono-
tone convergence, with respect to a universal constant C,

h(ur; J/)+4/ /Ms(?;lfus o

<h(uos P) + c/o /(Hx)zusa — )y dxds + CT (357 12,
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and as 0 < u, y < 1, we have ||dx |l 2, || /]2 < o0.
Hence, integrating (2.3) and taking limit on L, the middle term equals

/OT/M(JIBX_MM)d dt = h(ur; V)_h(MO»V)—f-/ / (l—y) dx dt.

The desired bound on |[|d,u|/;2 now follows. Since u(l — @) < 1/4 and
| Hypt (1 — M)||i2 < Ip(w) (cf. (1.4)), by Schwarz’s inequality, we may write

2 o b T 2
el < Ao )+ S 1172 + 51027/ (2 (L= D) 12 + 210 o)

N 1 2 5 A A N 2
< h(po; )+ Z10xplz + ST + T[0:7 /(7 (1 = D)2,

Finally, (2.2) expresses that the difference of the currents across a and b up to
time T is equal to the difference in the masses in the interval [a, b] from times T
to 0. This is obtained by integrating 0, J = —d; . [

COROLLARY 2.5. Let ju be a density with finite rate I),(1) < oo. Let also
{u'"*} be a sequence converging to u with properties (1)—(viii) in Proposition 2.1.
Then, 3,1 and J" are uniformly bounded in L*([0, T1 x R) and 9" — ¢,
J" — J weakly in L%([0,T] x R); consequently, oy, J € L%([0,T] x R).

PROOF. Let y be a smooth function in M (p4, p*) such that 0 < y, <y <
y* < 1 for some constants yy, y*, and h(y;y) < oo. Then, by property (viii)
Proposition 2.1, as h(uo; ¥) < 0o, we have h(ug; ¥) — h(io; ¥), and, in par-
ticular, {A(u; ¥)} is uniformly bounded.

Also, as Ip(p) < 0o, by property (vii) Proposition 2.1, we have Io(n") — Io()
and {Ip(n")} is uniformly bounded. In particular, {|| H]u" (1 — )|l 2} is uni-
formly bounded.

Hence, as 8,7/(p(1 — 7)) € L2, and by (2.1) in Proposition 2.4, we have
{Il3x " || .2} is uniformly bounded. Also, since J" = (1/2)d,u”* + H " (1 — '),
we also conclude {||J"||;2} is uniformly bounded.

We can then extract subsequences 9, 1"** and J"* converging weakly to ¢ and ¢,
respectively. Given u'* — p in D([0, T] x My), for smooth, compactly supported
G,wehave [ Goyu" dxds = [ —Gpu"* dx ds converges to both [ G¢ dx ds and
[ —Gypdxds. Then, 9, exists weakly in L? and 9, = ¢. Hence, the whole
sequence J, " — 9, weakly in L2

Similarly, noting Skorohod convergence " — u implies at the endpoints that
Mg, W converge to (o, (L, respectively, and d;u" + 9, J" = 0, we have ¢, =
—d;; weakly in L2. Then, ¢y = (—1/2) it + 8 [Hep(1 — )] weakly in L2,
and so ¢ = (—1/2)oxu + Hyp(1 — ) + C(¢) with respect to a function C () not
dependent on x. But, given ¢, oy, Hypu(1 — ) € L?([0, T] x R), we conclude
C(t) =0.Inparticular, p = J = —(1/2)0xu+ Hyp (1 — ) € L?, and the sequence
J" — J weakly in L?. [
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2.3. Current-mass relation. We give some properties of the integrated current
fOT J (x, t)dt and prove the current-mass relation indicated in the Introduction.

PROPOSITION 2.6. Let pu be a density such that I,,(ju) < oo. Let {u"'} be a
sequence converging to | with properties (i1)—(viii) in Proposition 2.1. Then, x +>
fOT J(x, t)dt is a Lipschitz function, lim|x |10 fOT J(x, t)dt =0, and pointwise for
xeR,

T T
lim J"(x,t)dt:/ J(x,t)dt.
n—oo 0 0
In addition, convergence (1.5), and the “current-mass” relation (1.6) hold.

PROOF. First, from (2.2) in Proposition 2.4, we have
T T b
/ J”(a,t)dt—/ J”(b,t)dt:/ wr(x) — pr(0)dx.
0 0 a

Hence |f0T J%a,t)dt — fOT J"(b,t)dt| < |b—a| as 0 < u" < 1. In particular,
fOT J"(a, t)dt is Lipschitz in a. Moreover, a subsequence, fOT JW () dt — ()
converges uniformly on compact subsets to a Lipschitz function ¢. Given J" —
J weakly in L?([0,T] x R) by Corollary 2.5, we conclude by a limit argu-
ment with respect to G € L?(R) that [ G(a) fOT J(a,t)dtda = [ G(a)¥(a)da,
and so ¥ (a) = fOT J(a, t)dt. In particular, the whole sequence fOT JU, ) dt —
Jo J (-, t)dt and the limit fj J (-, t)dt is Lipschitz.
Therefore, since

/[/OTJ(x,t)dtdegrffoT Pty dt dx < oo,

we obtain the pointwise limit fOT J(x,t)dt — 0 as |x]| 1 oco.
Finally, given Skorohod convergence u" — p, j and u’ converge respec-
tively to wo and pr. Then, by taking limits, we can write

T T L
/ J (0, t)dt—/ J(L,t)dt:/ ur(x) — pno(x)dx.
0 0 0
Now, since limy _, o0 fOT J(L,t)dt =0, we obtain (1.5) and (1.6). O

2.4. First estimates on J and I. 'We develop some first bounds on J and I, and
at the end show they are rate functions.

Recall o,(x) = 2mt)~/? exp{—x2 /2t}, and consider a C* smooth function,
supported on [—1, 1], say

Yo(x) =exp{—1/(1 — x?)}.
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Define the smooth, anti-symmetric function

_ [ =Yo(2(x +1/2)),  forx <0,
Wx)_{z/fo(zoc— 1/2)), for x >0

and also the anti-derivative ¥ (x) = ffl ¥ (y)dy, both supported on [—1, 1].

Let y € M1 (p«, p*) be a profile associated to an initial (LEM) local equilibrium
measure or a (DIC) deterministic configuration. Recall, when 7, (1) < oo, it has
explicit representation; cf. 1.4. Recall, also that vy and ur are the LLN speeds
associated to y; cf. (1.1).

Since J and I are given through infima, it is natural to look for explicit densities
where computations can be made. Consider the density

(s, x) = o5 %y (x) + (ke (s/T)) ¥ (x/L),

where €(¢) is a smooth, increasing function which vanishes for 0 <7 < 1/10, and
€e(l)=1,and L #0. At time s =T/10, 0 < yx < o5, *y < y* < 1 for some
constants vy, y*. We will take 0 < A < min{y,, 1 — y*}/2, small enough so that
Vel2<pu=(1—y*/2forT/10<t <T.

Then, as u follows the heat equation for [0, T /10], u satisfies (1.2) with respect
to H,, supported on [T /10, T] x [—|L|, |L|], given by

il o (@) )

T
for — <s<T,|x| <|L|,
10

H, =

0, otherwise.

Also, as o =y, we have h(ug; y) =0, and

fo(w) = %/leo./ (1 1— ) [KE(ZSL/T) 1ﬁ/(%) B wq](%ﬂzdx ds

(2.4)
4e” MT ol ML) ! 2
EE— v

where €* =1+ ||6/||%oo. Compute now
00 1
/0 7 (%) — po(x)]dix = AL /O @) dx +vr

1 ur
=)LL_/O w(x)dx+/0 or xy(x)dx,

and, for c e R,
cl/IL|

¢ ¢ |
/ ;LT(x)dxzf GT*y(x)dx+ALf Y(x)dx.
0 0 0
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Then, the restriction specified in the definition of J(c), fOT J(0,t)dt =c, is the
same as

1
(2.5) AL/ Y(x)dx =c—vr,
0

and the restriction listed in I(c),

[

T [e%)
/J(o,ndr:f MT(X)—MO(X)dx=f wr () dx,
0 0 0

is equivalent to

1 c

(2.6) AL Y(x)dx :f or xy(x)dx.
lel/IL] ur

LEMMA 2.7. ForceRR, J(c), I(c) < 0o and in particular J(vr) = T(ur) = 0.
Moreover, on any interval [a, b] C R, sup ¢4 p) J(¢), Sup [, 51 1(c) < 00.

PROOF. For ¢ € R, given bound (2.4), we need only demonstrate that restric-
tions (2.5) and (2.6), with respect to J and I, hold with respective choices of A
and L. If ¢ = vr or ur, we may take A =0, and so clearly J(vr) =I(ur) =0.

For ¢ # v, let A > 0, and note the left-hand side of (2.5) can be made equal to
the right-hand side vy — ¢ with a proper choice of L. Similarly, when ¢ # ur, let
A > 0, and note that the left-hand side of (2.6) vanishes for |L| < |¢| and diverges
to 00 as L — F00. Hence, a proper choice of L allows us to verify (2.6) also.

In particular, we can see, by varying L, with respect to ¢ € [a, D] in any finite
interval, we obtain sup ¢, 51 J(€), sup.efq 7 I(c) <00. U

LEMMA 2.8. With respect to local equilibrium measures or deterministic ini-
tial configurations, J and I are lower semi-continuous.

PROOF. We give the proof for [; the argument for J is analogous. We first
consider when starting from a local equilibrium measure and 1, = I]fE . Let {a,}
be a convergent sequence a, — a. From Proposition 2.7, we have sup, I(a,) < oo.
Then, by Propositions 2.1 and 2.6, we can find densities {i+"} so that |1yLE (u") —
I(a™)| <n~and | fy J*(0,1)dr — [§" u(x)dx| <n'.

As I}fE is a good rate function and {I)fE (u™)} is uniformly bounded, a subse-
quence can be found where u”* converges to a density & in D([0, T]; M;) and
liminfl(a") = limI(a"™) = lim [XF (™).

By Proposition 2.6, we have fOT J™(0,t)dt — fOT J(0,1)dt. Also, as wrt —
Ar, and a, — a, we have [y w7 (x)dx — [§ fir(x)dx. Then, fOT JO,t)dt =
Jo AT (x)dx, and hence & satisfies the infimum restriction in the definition of I(a).

By lower semi-continuity of I]fE, the desired lower semi-continuity of I follows
as liminfI(a,) =lim 125 (u") > 115 (1) = 1(a).
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Starting from a deterministic configuration, we can repeat the steps with I),LE
replaced by Io. The densities {x"}, by Proposition 2.1, also are such that " con-
verges to y. Hence, the limit [ satisfies fio = ¢ and so Ip({t) = IVDC([L). There-
fore, I is also lower semi-continuous in this case. [

COROLLARY 2.9. With respect to local equilibrium measures or deterministic
initial conditions, J and 1 are finite-valued rate functions. In addition, J(a') = 0
and I(a) = 0 exactly when a’ = vy and a = ur.

PROOF. We concentrate on the proof with respect to I, as a similar argument
holds for J. First, that [: IR — R, I(u7) = 0, and 1 is a rate function follows from
Lemmas 2.7 and 2.8. We need only show that u7 is the only zero of L.

When a # u7, if I(a) vanishes, out of a minimizing sequence of densities,
through Propositions 2.1 and 2.6, one can find a subsequence converging to a min-
imizing p satisfying the restriction fj J(0,1)dr = [ wr(x)dx.

With respect to local equilibrium measures, by lower semi-continuity of z(-; y)
and Io(-), we have h(ug; y) = Io() = 0. Under deterministic initial conditions,
since the subsequence at time O converges to y, we have puo = y, and by lower
semi-continuity, Iop(n) = 0.

Then, in either case, o = y a.s. and, noting (1.4), sz,u(l —wu)=0as. In
particular, u; = oy * y is the unique bounded solution of the weak heat equation
with initial data . However, then fOT J(O,1)dt = 6’ T wr(x)dx which does not
equal fy 7 (x)dx since wr is positive and a # ur. This is a contradiction. [

3. Proof of Theorem 1.5. The proofs follow in several steps which are di-
vided into subsections. The first step is to describe key relations between a tagged
particle and the current across the bond (—1, 0), which will allow us later to invoke
large deviations of the empirical density. Next, a super-exponential inequality is
given. Then, exponential tightness is established, and weak upper and lower large
deviation bounds are proved. Finally, Theorem 1.5 is shown.

3.1. Tagged particle and current relations. For x € 7 and t > 0, define
Jx.x+1(t) as the integrated current up to time ¢ across the bond (x, x + 1), that
is, the number of particles which crossed from x to x 4+ 1 up to time ¢ minus the
number of particles which moved from x + 1 to x in time ¢. It is well known (cf.
Liggett [23], DeMasi and Ferrari [8]) that for integers r > 0,

r—1
3.1 {Xe=r}= {J—l,o(t) >y nz(X)}-

x=0

Similarly, for r < 0,

-1
3.2) X, <r}= !J_l,om <- Zm(X)}

xX=r
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and
{Xi =0} ={J-1,0() =0}.
Also, from a moment’s thought, we have
Jem1x(N?1) = Jx et (N20) = g2, () = 170 ().

We would like to make a summation-by-parts,

J_LoN?*) =Y T 1 (N?1) = e a1 (NP =Y iy, (x) — o (),

x>0 x>0

to write the current across the bond (—1, 0) in terms of the empirical process. How-
ever, the above display is only formal as the sum on the right may not converge. To
treat it carefully, we introduce a “cutoff” function as in Rost and Vares [32]. For
n>1,let

Gn(u) = lio,n)@)(1 —u/n).
Also, denote for a function G € CF (R),
1
YNG) = ~ > G /Ny, (x).
Then

1
YN (Gr) = Y5 (Gu) = 5 32 Gn (/N (et o (N0 = Tt (N71)

1
= 3 2 (Gn(x/N) = Gulx = 1/N)) i1 s (N*1)

1 2 1 2
=—J_ N°t) — — —J N<t).
N 1,0(N"1) N}:l N 1,x(N71)

This implies
1 2 N N RS 2
/LoD =Y (Ga) = Y5 (G) + N; — o1 (D).

Hence, for a > 0,

{Xn2,/N > a}

. | laN]
(33) = {NJ—I,O(Nzl) = D w2 ()
x=0
1 nN 1 laN]
- {Y,N(Gn) — Y (G + — Y Tk (NP1 = 5 Yy ()¢
n x=1 x=0
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A similar statement holds for a < 0, namely,

{Xy2/N <a} =1YN(G,) — Y (Gy)

fo 1X<N2z)<—ﬁ Z N2 () 1,
x=laN |

where for a = 0, we take Z —onn2z(x) =
Therefore, heuristically, the tagged partlcle large deviations should be given in
terms of the rate for the empirical density I, under a certain restriction, as long as

the contribution from the term (1/nN 2) Z -1 Jx—1x(N 2t) is superexponentially
small as n, N 1 oo.

3.2. Superexponential estimate. In relation to (3.3), the superexponential esti-
mate needed is implied by the following estimate.

PROPOSITION 3.1. For each A > 0, starting from (LEM) or (DIC) initial
states,

1
lim lim — log E
Moo Nioe N o P

AN nN
N2 Z Jx—l,x(Nzt)
x=1

PROOF. By the inequality e/l < ¢* 4+ ¢™*, we can remove the absolute value
in the last display. Now, note that

AN N 2 & A/nN N
exp vz 2o ootV = -0 [ = ds
xX= X=

nN N2t
=Y (e — 1)/0 N (1 —nxl)(s>ds}
x=1

is a martingale with mean 1. Then together, the second and third terms in the
exponent equal

nN

Z[(e”"N —i/nN =1 [ M et (1= 1)) ds
0

x=1

4 (e ™ fa/nN — 1)/N2t (1— d
, Nx—1)(s)ds

N2t
—N/ (Mo — nan)(s)ds

2ek/nN)L2
~ n2N?

(nN)(N?1) + 5 (N2 1) < w
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which gives the result with standard manipulations. [

3.3. Exponential tightness estimate. We now show that the scaled tagged par-
ticle positions are exponential tight.

LEMMA 3.2. Starting from (LEM) or (DIC) initial states, we have

11Tm lim —logP{|J 1Lo(N?T)|/N > a}
a

1
= lim lim —log P{|X N>a}=-—
alTrélo Nle og P{| X y2rl/ a}=
PROOF. We give the argument for the tagged particle, as the proof for the cur-
rent is similar, and somewhat easier. From (3.3), we need only super-exponentially
estimate, for a positive (as a similar argument works for @ < 0) and » fixed,

1 nN
P{Y;V(Gn) — Y (Gn) + —7 Y Jeo1x(N?T) > Y;V(l[o,u])}.

x=1

We need only estimate

1 nN
E|:6XP{N|:Y71"V(Gn) — Y (Gn) + N2 Y L1 (N?T) - Y%V(I[O,a]):| }:|

x=1

= E[e91e2293094]

with Q1 = NY7(Gn), Q2= =NY3'(Gn), Q3 = (nN)™' 220, Jx—1 x(N?1) and
Q4 =— ZL@(I)J ny2r(x). By Chebyshev, we can estimate the exponentlal terms
separately. For fixed n, lim N~! log E[¢*?3] is bounded from Proposition 3.1, and
as Q1 < nN by properties of G, lim N ~!log E[¢*?1] is also bounded. In addition,
as exp{4 0>} < 1, this term can be neglected.

Finally, by Borcea, Branden and Liggett [6], Theorem 5.2, as the initial measure
of type (LEM) or (DIC) is a product measure [of degenerate Bernoulli’s under
(DIC) initial configurations], the coordinates {ny27(x)} are negatively associated.
Hence, E[e*24] < ]_[)LC“:A]’J E[e 2™ and using log(1 —x) < —xfor0<x <1,
we write

laN]

ilogE[eélQ4 1 Z log E[e~ w21 (™))
x=1
1 laN]
<— Zlog “_DP(pyar(x) =1)+1]

—4

e " —1 lal]
=— LZlnNZT(x)}e(e —1)] m(T, x)dx,
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where m(T, x) = ot * y(x) is the solution of the hydrodynamic equation (Propo-
sition 1.1). Since o710 * Y (x) = y5x > 0 as y € M (px, p*) for py, p* > 0, the
right-hand side is bounded above by (¢™* — 1)y,a | —oo asa t co. [

3.4. Weak LDP upper bounds. The weak upper bound for the tagged particle
deviations, starting from local equilibrium measures or deterministic initial con-
figuration, follows in several steps and is stated in Step 6. As the same argument
works for the current, we also state its associated weak upper bound in Step 6,
below. For the convenience of the reader, we indicate the modifications needed in
Step 1; the other steps involve similar changes.

Step 1. Consider an interval [a, b] for 0 < a < b; subsequent arguments carry
over straightforwardly to all intervals [a, b] C R using (3.2) by splitting at the
origin if necessary. Now, divide [a, b] into m equal intervals Ay = [ck, cx+1]- Then,
by the union of events estimate,

1 1
limsupﬁlog P(Xp2r/N €la, b)) fml?xlimsupﬁlog P(Xp2r/N € Ap).

N—oo N—oo

Then, from (3.3) and Proposition 3.1, we have that

1
limsup —log P(X n27/N € la, b])
Ntoo N

< limsuplimsuplimsup max limsup —
mtoo 810  ntoo l=k=m Npeo

x log P(Y7' (Gu) = Y3 (Gn) € [Y7 (1j0,11) — 8. Y7 (Lj0.crp11) + 8])-

Since the maps u +— [GxX)urdx, [ G(x)puodx, [y irdx, for compactly
supported G and constants ¢, are continuous in the Skorohod topology on
D([0, T]; My), from Corollary 1.4, we conclude, for fixed k, n and § that

. 1
lim sup = log p(Y7 (Gn) = ¥g' (Ga)ds € [¥7' (110.6:1) = 8, ¥7' (T0,011) +9])

N—o0

G4 = —inf{ly(u);/Gn(X)[MT(x) — po(x)]dx

e [/Ok oy (x)dx — 8, /OCHI oy (x) dx +5“.

We now indicate the modifications needed for the current in this step. For 0 <
a < b, from (3.3) and Proposition 3.1, we have

1
lim sup — log P(J_lyo(NzT)/N € [a, b))
Nto N

1
<limsuplimsuplimsup max limsup I log P(Y%V(Gn) — YdV(Gn)

mtoo 80  ntoo lsk=m Npoo

€ [ck — 8, ck+1 + 81).
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From continuity of the maps u — [Gurdx and u — [ Guodx, and Corol-
lary 1.4, we further bound

1
lim sup - log P(YN(G,) — YN (Gy)ds € [cx — 8, cry1 +8))

N—o0

< —inf{ly(u); /Gn(x)[MT(x) — no(x)]dx € [ck — 8, cr+1 +5]}-

Step 2. Next, we give a uniform upper bound of the infimum in (3.4). We exhibit
a density u* satisfying, for each § > 0 and all large n,

[ Gty 0 = wsndr e | [(uscodn . [ ugedx+s|

and sup¢, p) Iy (%) < Bo < 00 where By is independent of n and §.

This is accomplished by the constructions in Section 2.4, namely one takes u* =
o ¥y + Ae(t/T)y(x/L) with A, L chosen so that AL fli/Ll Y(x)dx = fucT oT *
y(x)dx. Let J© be its current, and H{ be the associated function with respect to
(1.2).

Proposition 2.7 gives I, (1°) is uniformly bounded for ¢ € [a, b]. Now compute

/ G (O[5 (x) — ()] dx

T
= [ [ Gal1/280ust = 0. Hipe (1 = u) dx di
(3.5) 0

T
= [ =200 + B (1 = 0. 00

Lt m c ¢, c1 _ ¢
+;/O /()[(1/2)8x,u — HEpS (1 — p&]dx dr.

Since [y pu5(x)dx = fOT J0,t)dt and J(0,1) = —(1/2)0, (¢, 0) + Hipn (1 —
) (t,0), we have

¢

sup ‘ [ Gutotus o) = ionax = [ s oo dx

cela,b]
<l Tnl28 c_HCCI_Cdd
= (1/2)0x (1 —u)dxdt
nlJo Jo
= sup i/T(M‘W—/L‘<0>)clt]+iuH‘u‘a—u‘)an 0.7IxR)-
" cefa,p)l2n Jo ! ! ﬁ X ([0,TTxR)

Since | HEuS (1 — u9)|2, < 20o(u), the right-hand side is O(n~"/%) by Lem-
ma 2.7.

Step 3. As I, is a good rate function, by the uniform bounds in step 2, out of
minimizers v¥"™% over k = k(m), and n, § in the infimum in (3.4), by the uniform
bound on /7, (VK-8 we can extract a subsequence, on which the limsup of (3.4)
is attained as § | 0 and n, m 1 oo, and which converges in D([0, T']; M) toa .
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By Proposition 2.1, the subsequence, labeled vF™9 itself for simplicity, may

be approximated by {u*"?} so that %" is smooth, strictly bounded between

0 and 1, HK™ € C>([0, T] x R), Skorohod distance d(u*"?, vkm%) | 0,

[Io(vF-n-8) — Io(,uk .8y 4 0 and when y € M{(px, p*) is piecewise continuous

and 0 < p(x) < 1 for x € R, [h(vy"™?; 7) — h(ug™ 5, 7)1 4 0. Also, as [a, b] is

compact, the subsequence can be chosen so that cx4 converges to a ¢ € [a, b].
Given V59 satisfies the restriction in (3.4), we may also arrange

fck "”“(x)dx—28<fG Wk () — k™ (o)l dx
(3.6) 0
<‘/-Ck+1 k”‘s(x)dx+28
0

With these specifications, by lower semi-continuity, we have that (3.4) is less
than, in the case of starting from a local equilibrium measure,

lim lim lim max —IZE (u5mdy < —JLE (7).
mioo §,0ntoo k y W =070

When starting from a deterministic configuration, noting vg o no=1y,(3.4)is

less than

lim lim lim max —Io(u*"™%) < —1 —I1PC ().
m Lo him max — o(u™%) < —=Io(p) = =1, ()

Step 4. We now show that {1 satisfies
T _ c
3.7 / J(O,1)dt = / nr(x)dx.

As convergence in D([0, T]; M) implies MT i AT, Ck+1 —cr =m ™~ and

0< ,uk -3 (x) < 1, we have both

Ck an Ch+1 kn5
'/0 (x)dx/(; (x)dx—>/ mr(x)dx.

Also, following sequence (3.5),
[ Gau ) = b e ax

= / JEm8(0, 1) dt
0

1 T rn
+Z/0 /()[(l/z)axﬂf“ HEm8 o8 (1 om0yl dxdt.

Since [|HF™0 k2 (1 — pkm9) |12, < 20o(u*™9) is uniformly bounded, the last

term is bounded uniformly by n =T + (nT)~/2,/2I(j4*7-%). On the other hand,
Jo& gm0, 1y dt — [ J(0, ) dt by Proposition 2.6.
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Hence, noting (3.6), we obtain (3.7) immediately.
Step 5. Therefore,

lim sup lim sup lim sup max
mfoo 810 ntoo lsk=m

—inf{lyw); [ Grrr @ — potnax

Ck Ck+1
e[/ preds =5, | MT(x)dx-l-(S“
0 0
—I,() < — min I(c).
<-I,(n) =< cg[lf};] (c)

Step 6. The weak LDP upper bound, with respect to the tagged particle, for
compact K C R,

1
(3.8) limsup — P(XNzt/N eK)<-— 1nf I(a),
Ntoo
is now standard, given that I is lower semi-continuous (Lemma 2.8).
Similarly, we have the weak upper bound for the current

1
(3.9) limsup — P(J_1 o(N*t)/N € K) < — inf J(a).
Ntoo N

3.5. LDP lower bound. As before, we concentrate on the tagged particle de-
viations, as the proof for the current is analogous. For the first step, the scheme for
the weak upper bound is used. Let O C R be a nonempty open set, and suppose
a € 0. We also assume a > 0 as a similar argument works for a < 0 by focusing
on a subinterval to the left of the origin. Let € > 0 be such that a — € > 0 and
(a—e€,a+¢€)CO.

Then, for 6 > 0,

1
lim —log P(X
NITIEON og P(Xn27/N € O)

1
> lim —P(X -
m (Xy27/N €(a—€,a+¢€))

1
(3.10) > 1le lim NlogP(YT (1{0.a—e1) < YN (Gn) — Y (G))
n

1 nN
N : Z Jeo1x(N*T) < Y7 (1j0,ate1)

and Y (1ja—c.ate)) > 0).
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From Proposition 3.1 and Corollary 1.4, the left-hand side of (3.10) is greater
than

1111—1PY1 s <YNG YNNG
eliga%ln#glozvgnoo og P(YY (110.a—e]) +8 < YN (Gp) — YN (Gy)

< Y7 (lp.ater) =8, and Y7 (Ija—c.ate) > 6)

(3.11) =>Ilimlim lim
64080 ntoo

—int{ 1,05 [ wredr 45 < [ Gu@lir () - oo dx

a+e a+e
</ ur(x)dx — 6, and/ ,uT(x)dx>9}.
0 a—e

Now, for a > 0, let & be a density such that |1, (i) — [(a)| < o, and

/OT J_(O,t)dtzfoa;lr(x)dx.

By the method used for (3.5) and (3.8) in the last section, through approximations
of & with smooth " by Proposition 2.1, we can show that

o0 T
(3.12) lir{n‘/o Gn(x)[,:LT(x)—;zo(x)]dx=/0 J(0,1)dt.

We will need now to approximate i as follows to ensure a certain positivity.
Let x =0y xy + Ae(t/T)Y¥ (x/L) from Section 2.4 where X, L are chosen so that
fOT JX(0,1)dt = [ xr(x)dx.Recall I,,(x) < 0o, and note (3.12), with x and JX
replacing i and J, also holds by the explicit construction. For 0 < b < 1, define
1 = (1 — b)x + bji. Clearly, limpy; 1” = f1 uniformly, and so in D([0, T]; M).
In fact, limpqq I, (ub) = I, (i1): By lower semi-continuity, liminf 7, (,uf’) >1,(pn)
and, by convexity, limsup /7, (,ub) < I,,(1). Now, for given B > 0, let b be such
that |1, (u”) — I, ()| < B.

With 6 > 0, noting

tim [~ Gl () — ol dx = [ dx.

we have forn > N (6, i, x) that
a—e b a a
/0 MT(x)dx—i-b/ /:LT(x)dx+(1—b)/ xT(x)dx —0
a—e a—e
< [ Gu@lh () = b dx

a-+te a-+te a+e€
5/0 Ml;(x)dx—b/ /lT(x)dx—(l—b)/ x7(x)dx +6.
a a
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By the construction of x, [ . x7(x)dx, f;“ x7 (x)dx > ce for a constant ¢ > 0.

Hence, we can choose 8 = 6 (e, b, x) so that for all small 6,
a+e a
(l—b)/ XT(x)dx—G,(l—b)/ xr(x)dx —6 > 6.
a a—e

Therefore, as i is nonnegative, u? satisfies the restriction in the infimum in
(3.11). In particular, we have

.1 b -
Al,lTrgo NP(XNzt/N €0)>~-1,(u”)=>~1,(n) — p>~-la) —a—p.
Hence,
.1 :
_ >
(3.13) 1\1/1¢Holo NP(XNZt/N €0)> alg(f) I(a).
Analogously, we have weak lower bound large deviations for the current

o1 2 )
(3.14) Jim 5 PU-L0oN?D/N € 0) = = inf J(a).

PROOF OF THEOREM 1.5. First, the functions J and I are finite-valued rate
functions which vanish exactly at vy and ur, respectively, by Corollary 2.9.

Next, a “weak” LDP is found from (3.9) and (3.14) with respect to rate func-
tion J, and (3.8) and (3.13) with respect to I. Standard arguments, given expo-
nential tightness (Lemma 3.2), extend the “weak” LDP to the full large deviation
principle.

Finally, given the LDP and exponential tightness, it follows that (1) J and I
are good rate functions by Lemma 1.2.18 [9], and also that (2) lim,|100 J(a) =
lim\alToo H(a) =o00. U

4. Asymptotic evaluations. We prove Theorems 1.6, 1.7 and 1.8 in succeed-
ing subsections.

4.1. Proof of Theorem 1.6. We first prove the upper bounds which are implied
by the following lemma, and then the lower bounds.

LEMMA 4.1. Starting from (DIC) or (LEM) initial conditions, there are
constants cg, c1, c2, c3 depending only on y, such that when, respectively, |a —
vr|/~T > coand |a —ur|/~T > co, we have, in turn,

cila —vr|? cila —ur|?

Ja) s ———— and l@) =

Also, when, respectively, |a — vﬂ/ﬁ <c¢ and |la — url/ﬁ < ¢p, we have,
correspondingly,
c3(a —vr)? c3(a—ur)?

J(a) < T and I(a) < Nia
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PROOF. We prove the estimates for the current rate function, and deduce cor-
responding bounds for the tagged particle rate function. Let also a > vr as the
argument for a < vr is analogous. For the reader’s convenience, we recall esti-
mate (2.4) and write

I < 4e* [AZT /1 V) d +A2|L|3/1 W(old }
a x)“dx x)“dx|.
T (L =y*)L4IL] J 1 T Ja

Recall also the restriction equation (2.6) when ¢ = a,

a—uvr
A=—7—,
L[y ydx
subject to 0 < A < min{yy, | — y*}/2. The requirement on A holds when

1 1
L=>la— vr|/[§min{y*, (1— y*)}fo wdx] = kola — vr .

Now take L in the form L = k+/T. Substituting into the bound for J(a), we obtain

(a—vr)?  4de*x | 1 )
J@a) < JT y*(l_y*)[m/lw(x) dx—}—/fﬁl%x) dx]

Hence, when a is large, say x = |a — UT|K0/«/T > 1, we have J(a) <c(y)|a —
vr|3/T. Correspondingly, when a is such that |a — vr|ko/~/T < 1, we choose
k =1toget J(a) <c(y)la —vr|*/V/T.

The bounds on the tagged particle rate function I follow from the current rate
function bounds. First, by (1.7), IL£(a) < H;’C (a). Also, by (1.8), with y/(x) =
y(x +a), ]Ifc(a) = J)l/)/c(f(jl y dx). For fixed a, let now vr(y’) be the LLN inte-
grated current through the origin starting from y’. Then

a a o0
/J/dx—vr(y’)=/ de—/ orxy' —y'dx
0 0 0

a o0 a
=/ GT*ydx—/ JT*y—ydx=f or xydx.
0 0 u

T

Hence, yila —ur| < | [§ y dx —vr(y")| < y*|la — ur|. Since yx, y* are uniform
lower and upper bounds on o7/10 * ¥ (and hence on o7/1¢ * y'), the desired esti-
mates on [(a) are derived from the bounds on J,,/( fovdx). O

The lower bounds in Theorem 1.6 are implied by the following two estimates.

LEMMA 4.2. Starting from a (DIC) condition with profile y, there are con-
stants co = co(y, T), c1 = c1(y) such that for |a| > cg, we have

cilal®

J(a), Il(a) > i
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LEMMA 4.3. Starting from a (DIC) condition with profile y, there is a con-
stant c1(y), such that for a € R, we have

ci(a —vr)? ci(a —ur)?

VT VT

PROOF OF LEMMA 4.2.  We concentrate first on the current calculation. Sup-
pose a > 0, as the argument for a < 0 is similar. Let y € M|(p4, p*) be a
smooth density, strictly bounded away from O and 1, such that A(y;y) < oo.
For € > 0, by Proposition 2.1, let i be a smooth density such that pg = o, * y,
|h(o; 7) — h(y; 7)| < € and |Ip(n) — J(a)| < €. Noting Proposition 2.6, we can,
in addition, impose on the approximating density that | fOT J(O,1)dt —al <e.

Now, noting (2.2) in Proposition 2.4, we have the Lipschitz bound,

J(a) > and I(a) >

T T X
|/ rendi- [ J(o,r>dt]=]/ 11 () — o2 dz| < Ix].
0 0 0

Then, for 0 < x Sa—e,wehavefOT J(x,t)dtzfoTJ(O,t)dt—xZa—e—x o)
that

P a—e__zd
(a—e)/ /0 [a —e —x]"dx

a—e T 2 T
5/ U J(x,t)dt} dng/f J2dtdx.
0 0 0

Hence, as u(1 — ), 7(1 — y) < 1/4, from the formula for Ip(u) in Proposition
2.4 and simple computations,

B > 1 O
oz ez [ [ Parax— Snu ) - TfAz(l_y)zdx ¢
(a—e)3 1 (axy)z 3

For the tagged particle rate function, from (1.8), we have ]I)l,) C(a) =] }BC ( fél ydx)
where y’(x) =y (x + a). Since y (x) > min{py, p*} for all large |x|, | [y ydx| >
c(y)|a| for all large |a| where c(y) > 0. Also, as y', y € Mi(px, p*), by calcula-
tion A(y’; 7) = O(|a|). Hence, plugging into (4.1), we obtain the desired estimate
onl(a). U

PROOF OF LEMMA 4.3.  We focus first on the current rate function computa-
tion. By Proposition 2.1 and 2.6, let i be a smooth density with properties (i)—(viii)
such that jo = oy * v, |J(@) — Io(u)| < € and | fy J(r,0)dt —a| < €. Let vy ()
be the LLN speed starting from profile oy * y, and note limy o [vy — v7 ()| = 0.

Consider solutions of d;p = (1/2)0xx and 9,4 = (1/2)0xxpt — 05 (Hypt (1 — 1)),
both with initial value o, * y. The difference U = p — u satisfies equation



LDP FOR CURRENT AND TAGGED PARTICLE IN 1D SSEP 1491

0tU = (1/2)0xxU — 0y (Hy (1 — w)) with U (0, x) = 0. Integrating once in the
space variable, noting properties of u, S(r,x) = [*  U(z, y)dy satisfies 9,5 =
(1/2)0xxS — Hy (1 — ). Hence, we have

S(t,x) =0 %S0, x)

RO Hopu(1 = )] (s, y) dy ds

+/ot/¢zn<lz7—s>e

! 1 2
— (x—y)=/@21)
= e H.u(l t—s,y)dyds.
/0 / P i ( w)( y)dy

Now, the difference in integrated macroscopic currents across x up to time ¢
with respect to p and u is —S(¢, x); cf. above (1.5). Therefore, by the Schwarz
inequality and 0 < u <1, when x = 0, we have for small « that

(vr —a + O(e))*

</ T( / o?(y)dy)l/z( [ 2 - w0, t)dy>1/2 dr]z.

As ||at2||%2(R) < Ct!/2, a further bound of the right-hand side is 2CVT () <

2C/TJ(a) + O(e)) for some universal constant C.

We now use relations (1.8) to analyze the tagged particle rate function. Indeed,
let ur () be the corresponding tagged particle LLN speed starting from profile
Po = 0g * ¥, and note limy | o ur () = ur. As before, by Proposition 2.1, let u be
a smooth density such that puo = po, |I(a) — Ip(u)| < € and by Proposition 2.6,
| Jo J(a,t)ydt — [§ po(x)dx| <e.

Note, with respect to density p, the current across a equals | aoo oT * po — Podx,
and the current across the origin equals fooo or % pg — podx = f(;”(“) or * podx.
Then, for small «, the square of the difference in integrated currents with respect to
o and w across a equals (fuar orxy(x)dx+ 0(€))? > y*z(a —ug + 0(€))? where

or * Y > vy, > 0. But, on the other hand, as before, |o;(- — a)||i2(R) < Ct'/2, and

the square current difference is still bounded by 2C VT Iy(r) < 2CVT{(a) +
O (¢)). This finishes the proof. [J

4.2. Proof of Theorem 1.7. Starting from a (DIC) state, since y (x) = p, noting
(1.8), we observe that y'(x) = p, fél y dx = ap, and [(a) = J(ap). Hence, we need
only give the argument for the current rate function J, as the estimate for the tagged
particle rate function I follows directly.

We now make some useful reductions. Recall, when starting under a determin-
istic configuration with profile y (x) = p, in order for Ifc(v) < 00, v must satisfy
vo(x) = p and I]]/)C(v) = Ip(v) < oco. By Proposition 2.1 and Proposition 2.6, for
each € > 0, we can find a smooth density u, such that po(x) = p and

2
a
J(a) = Ip(p) — e —=.

VT
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In addition, we may also impose that

T
‘/ J(O,t)dt —a
0

< de.

For such a density p, by Proposition 2.4 [applied with y (x) = p],

T (x,u)z 1 .
Io(pn) = 8// (I_M)dtdx+5h(MTap)

+1ff 7 dtd
- s —— X.
2 Jo u(d—p)

Consider now a sequence {114} of such €a?/~/T-minimizers of J(a) as |a| | 0.
The upper and lower bounds in Lemmas 4.1 and 4.3, as vy =0, gives Ip(u?) =
O(az/ﬁ). Then, by Lemma 2.3, we have u — p in L2([0, T] x R), and in fact

4.2)

sup [ (u“(t.x) — p)*dx = O (a).

0<t<T

We now deduce that there are functions (¢, x) and j (¢, x) on [0, T] x R such
that 7(0, x) =0, 8,7 + 3, j = 0 weakly in L>([0, T] x R), fOT j(,0)dt =1, and

o(1—p) x limi inf J(a) Ja*

4.3)
1 T 2 1 2 1 T .2
Z—/ /(8xr) dxdt+—/|r(T,x)| dx—l——/ /] (t,x)dx dt.
8 Jo 4 2 Jo

Consider a function A%(z, x) = ¥ (u®(f, x)) where ¥/ (x) = min{(x (1 —x)) /2,
M} for some M > 2(p(1 — p))~'/2. Then, A% = ¢/ (u)dp® < (n(1 —
©) 123,14, and so

f/(aka) dxdt<// (?’{M_)z dxdr.

At this point, let us take weak L2([0, T] x R) limits of a~19,19, a ' (u - p)
and a—1J%, and label them as u, r and J, respectively. Also, take a weak LZ(R)
limit of a='(u?(T, x) — p) and call it g. Using suitable truncations, and Fatou’s
Lemma, given u% — p strongly, we have

/ /u dx dt < liminf — / f(a 22 dx dt,

W/V](x)l dx <liminf — /hd(MT(x) p)dx,

(1_ )/ /] dxdt<hm1nf—/ /M (lja)z dxdt.



LDP FOR CURRENT AND TAGGED PARTICLE IN 1D SSEP 1493

We may identify (a) 0,7 = +/p(1 — p)u, ®) r(T,x) =qg(x),and (c) d;r + 95 j =
0 weakly in L?([0, T] x R). The last two (b), (c) follow from weak limits and
properties of u%. However, (a) also holds given the weak limits since d,u? =
v () 19A and ¥/ (u®) ' — /p(I — p) strongly in L.

Now, define

K(t,x)z/otj(s,x)ds.

Then, the right-hand side of (4.3) becomes
1 2 1 (T 5
K= 1 / [0 K (T, x)|"dx + 5/ / |0, K (t, x)|“dx dt
0

1 T
+—/ /|8xxK(t,x)|2dxdt.
8 Jo

By scaling, M(t,x) = K (T, x~/T), we obtain
JT
liminf ~—-J(a) > [p(1 — p)]~" inf M,
lall0 a

where the infimum is over M € C1%([0, 1] x R), such that M(0,x) = 0 and
M(,0)=1, and

1 1 [l
M:Z/|Mx(1,x)|2dx+§/ /lMt(t,x)Idedt
0

1 1
+—/ /|Mxx(t,x)|2dxdt.
8 Jo

On the other hand, the upper bound

T
4.4) lim sup £

msup - 5 J@ = [p(1 — )~ inf M

also follows by a similar strategy: In Proposition 4.4 below, we evaluate inf M
and find a minimizer. One can find a smooth €, approximating M with bounded
derivatives, and trace back to obtain the corresponding density u? satisfying
a ' (u — p) =K, a” ' U = 8,K, a "9, u = 8., K with [ J90,0)dr =a
and g (x) = p. Given [|3y M || Lo (0, 71xR) < 00, We have [|[u? — pllLo (0, 7]xR) <
lal|a, K ||z = (la|/~T)||dx M ||z~ = O(|a|). The argument to derive (4.4) now
follows from standard approximations with respect to (4.2).

Hence, the proof of Theorem 1.7 will follow from evaluations infy; M = /7 /2,
a)%,dyn = (1 —p)/(p+/7) and a}’dyn = p(1 — p)/+/7 in Propositions 4.4 and 4.5
below.



1494 S. SETHURAMAN AND S. R. S. VARADHAN

PROPOSITION 4.4.  We have

JT

5

where the infimum is over M € Cl’z([O, 1] x R) such that M(0,x) = 0 and
M(,0)=1.

inf M =
M

PROOF. The argument is in three steps. (A) We first minimize
4.5) / / —|M,(t 0P +—|Mxx(t 0P dx dt

when M(0,x) =0 and M (1, x) is a given compactly supported C 4(R) function.
The Euler equation is

1
(4.6) My = ZMXXXX

with the boundary conditions at r =0, 1.

One can verify the solution of (4.6), which is smooth and classical, in terms of
Fourier transform with respect to the x variable but not transforming the ¢ variable,
is given by

2
ety 22 _ e~ /2

4.7 Mt y) =M1y~

where
~ 1 .
M, y)= —— / Y M(1, x) dx.
Y 21
The corresponding value of (4.5), through Plancherel’s formula, is expressed as

f_ IR Pk dy,

where

| ‘<

dt

[e! 2 T+t /2]2 T [e 2 fly2/2]2
k
)= / 8 (0722 — o2 /2]2

ty _|_ e_ty
/ y— —
4 [2/2 — ¢V 22
ey —e y y2 ey2/2+e_y2/2
4 [ey —e )’2/2]2 - Z ey2/2 — e—y2/2 '

Given that the integrand in (4.5) is a strict convex function of M; and M, solution
(4.7) is the unique minimizer of (4.5) (by say straightforward modifications of the
proof of [7], Theorem 2.1).
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(B) Now, we consider the term
1 oo 2 L 2
1] o= [Py
and minimize, over M € L2([O, 1] x R),
eV /2 4 V)2
m] g
)

=3 [ ey
T2 ) N i T

| 2.2
—/ |M(1,y>|y[1+
4) -

dy

subject to

1 [ .
S M, y)dy=1.
Tn/m (1, y)dy

Recall that the minimizer of
[ 1P ay

when [ g(y)dy =ais givenby g(y) =cK(y) ' and c = a[ [ K (y)~'dy]~', with
minimum value az[f K (y)~'dy]~'. Hence, with a = v/27 and
y2 ey /2
K =5 on e
we identify M (1, y) through its transform M(l, y) = cK(y)_l. Denote M as the
function in (4.7) with this choice of M (1, y).

(C) Let now M™* be a compactly supported C24([0, 1] x R) function such that
M*(0,x) =0 and M*(1,0) = 1 whose M-value approximates infy; M. From
steps (A) and (B), we obtain a lower bound of the infimum value which is actually
achieved by the smooth C 2’4([0, 1] x R) function M. Therefore, M is a minimizer.

Finally, given

_1 l—e'_y2
/K(y) dy=2/Tdy

1 2 I
=2/ /e_’y dydt:Z/ ‘/7dt:4ﬁ,
0 0

we obtain the infimum, infy; M =27 /(4/7) = /7 /2, as desired. [

PROPOSITION 4.5.  Starting under initial distribution v, the dynamical parts
of the limiting variances of T_1/4J,1,0(T) and T—Y*x(T) under v, are

1 _
[(Jo1.0(T) = EylJ_1.0(T)])*] = %

2
07 dyn *= 1M

1
—F
T—oo /T i
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and
1—p 1

1
O dyn = M —=Ey, [(x(T) = Ey[x(1))’] = =

0 JT

PROOEF. First, we note the limit distribution and variance of both 7~1/4x(T)
and p~!T=V4J_| o(T) are the same, namely N(0,0?) with 02 = /2/m (1 —
p)/p; cf. [1]. Moreover, lim7 o0 Ev, [(TV4X(T) — p~' T4, o(T))*1 =0,
since (T~ V4X(T)—p~! T_1/4J_1,0(T))2 vanishes in probability, and also is uni-
formly integrable; cf. [8], equation (28), or [1], page 368, and [26], Proposition 4.2
and proof of Lemma 3.2.

Then we need only show

.1 V2-1
Jim ﬁEvpKEn[J_l,o(T)])Z] =p(l=p)= =

which, given the form of the limiting variance of the scaled current, and

Ey [(J_1,0(T)H = Ey, [(J=1,0(T) = EylJ—1,0(T)N)*] + Ev, [(Ey[J_1,0(T)]?]

implies the desired results.
Now, the current J_; ¢ has martingale decomposition (cf. Section 2 [26]),

1 t
Jo10@=M©+3 [ 1D =n©ads
Also, for x € Z, from “duality” (cf. Liggett [23], Section VIII.1, page 363),
Eyln (0] = ) p(t,i —x)n(D),

where p(t, j) = P(S; = j) is the probability a continuous time random walk, start-
ing from the origin, travels to j in time ¢. Then,

1 T
Eyl-10(T)] = 5 fo Eyln(—1)] — Eyln ()] dr

1 T
_ EZ”(i)/() Pl i+ 1) — p(e,i)de

1 T
= — ni)—p pt,1 —p(t,1)at.
5 2 (@ )fo i+ 1) —p@t.ird

Therefore, from independence of coordinates {1 (i)},

1 (T 2
Q0(T) = Ey, [(EylJ-1,0(T)D*1 = p(1 — p) Z‘E/o pt,i+1)— p(t,i)dt
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Now, as a priori the variance Qg(u) < Evp[JELO(u)] = O(y/u), we need only
find the limit of
2

oy =L1=P Z’ p(l‘,i—i— 1) — p(,i)dr

(4.8)
p(1
= ;f Z/TT]Z[p(t i+1)—p(t,D)llpGs,i+1)— p(s,i)ldsdt.

To estimate the integrand, from Doob’s inequality, note

p,x) =E[P(Sy, = x)]
4.9)
=E[P(Sy,=x), sup [N/t —1|<e|+ 0T,
teleT,T]

where N; is a Poisson process with rate 1 independent of the discrete time random
walk {Si}, N;/t — 1 is a martingale and [E refers to expectation with respect to N;.
Further (since we could not find an appropriate continuous time version), from the
local limit theorem (Petrov [27], Theorem VII.13; page 205), uniformly over x,
with respect to the discrete time walk, we have for N; > 1 that

1 e [ q2(x//Ni) —3/2
P(Sy =x)= XTJ@ND 4 Xt/ 2N +o(N,
(S, = x) T Wi TN ( )
(4.10) |
2 —3/2
=——e /PN Lo,
V27N, (Ne )

where g2(y) = (v4/240%) (y* — 6y? + 3), y; is the kth order cumulant and 62 is
the variance of the symmetric Bernoulli variable. [In our case, in Petrov’s formula,
q1() = (y3/66°)(y* =3y) =0as y3 =0.]

Let pN(t,x) = P(Sy, = x) and p®(s, x) = P(Sg, = x) where Ry is an inde-
pendent Poisson process also with rate 1. We now argue that only the leading terms
in (4.9) and (4.10) are significant.

Since >, p(u,x), >, pN(u, x) <1, the error term on order O(T_IO) in (4.9)
can be neglected in estimating (4.8). Indeed,

—10 —10
%f Zp(s,i)dsdt:%/ SN, iydsde = o(1).
[eT.T1* -

[eT,T1* 7

Also, note the error term of order O(N,_3/ 2) in (4.10) is not significant with
respect to (4.8). Indeed,

|~ D/ @ND) _ o2/ QN

—e

|~ @x+D/2N: _ 1|e—x2/(2N,)

=L
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_ I x| _pe
<Ce VN4 L P —x*/2N,
=re +C 2 SN N, €

x| <N/

c
<

N;

for some constants C. Then, given |N;/t — 1|, |Rs/s — 1| <efors,t €[eT,T], a
product of ), (2nN,)_1/2|e_(i+1)2/2Nf — e‘iz/ZNfl and the error term with respect
to the s-integration, for instance, leads to bounding

1 1 1 2 5
- - = ,mG+HDT/@2Ny) i/ (2Ny)
T /[eT TJZZRE/Z /—27TN,’8 i 1) _ el ' |det
’ 1
1 C —12
<— — —  _dsdt <o(T™'?).
=T (eT.T] Rs/z ,—NI < 0( )

Therefore, focusing on the leading order terms,

— Z/ PN i+1) — pN @, DIpRGs.i+ 1) — pR(s, i) dsdt
4T — JleT. TR ’ ’ ’ )
1 1 - ,
—o(l) + —— / L 02N _ 2N
Snﬁzi: [eT.T]? «/RSNt[ ]
s [em(HD2Rs _ o=i%/2Rs] g5 gy

Now, using again |N;/t — 1], |Rs/s — 1| < e fors,t € [eT, T], we further evaluate
the integral on the right-hand side as

i i2/2)[1/N;+1/R
(T /DNNi+1/RS] g 4y

77 orr o
Snﬁ|i|§3/4 [T.T]2 RyNiA/RyN;

1 o x? (—x2/2)[1/N,+1/R;]
=o(l)+ / f — = DWNAYR gy ds di
[eT,T1? J—oo RyN;

877\/7 VRsNt

V2 3
N; + R) 32 dsdt =: Qx(T, ¢).
v [eT,T]z( ' ) 02(T, €)

Finally, we have that O, (T, €) satisfies

o(l) +

=o(l) +

<c(e),

V2-1
li T, e)—
TITTO ‘ 02(T, €) N ’
where c(€) vanishes as e || 0. [

4.3. Proof of Theorem 1.8. We concentrate on the argument for the tagged
particle, as a similar proof holds for the current. By symmetry,

P(IX(N?T)|/N = a) =2P(X(N*T)/N > a).
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. N
From (3.1, and noting J_1,0(t) — Jian . lanj+1(0) = S L% 1, (x) — no(x) by the
development of Section 3.1, we have
laN]
{X(N?1) = aN} = {Jian).lan)+1 (N1 = Y no(x) ¢
x=0
We now rewrite currents in terms of the standard Harris stirring process {&}.
Namely, at time ¢t = 0, a particle is put at each x € Z. Then, to bonds (x, x + 1) in
Z, associate independent Poisson clocks with parameter 1/2. When the clock rings
at a bond, interchange the positions of the particles at the bond’s vertices. Let &
be the position at time 7 of the particle initially at x. Then the exclusion process,
starting from initial configuration 7, satisfies n;(x) = 1{x € {§/ : n(i) = 1}}. More
details and constructions can be found in Chapter VIII [23].
Then, for0 <a <1,
Jany laNj 1 (N?D = ) no() 1gr) ~1any) — > no() gr, <janj-
x<laN] x>|aN ] !
Write, given the initial profile ng is deterministic, by Chebyshev, that

laN|
1 ) 1
Nlog P(X(N°t)>aN) < NlogEexp{—)\ XXZE) no(x)}
4.11) 1
+ N10gEGXP{ULaNJ,LaNJH(Nzt)}-

The first term on the right-hand side tends to —Aa as N 1 oco. The second
term is bounded, by Chebyshev and Liggett [23], Proposition VIII.1.7, noting

e Yick lxpeal is positive definite for any o € R, and log(l + x) < x for x > 1,
by

1
7 log Eexpi2a > N0 1[ex, >1an )]
x<laN]

1
+ﬁlogEexp{—2)\ Z no(x)l[g;,z[gLaNJ]}

x>|aN |
1
= Y (e — 1) P(EY,, > [aN])
x<laN]
1
toy 2 (€Y —1)PEL, < laN .

x>|aN]
Given no(x) = lxj<n] and 51)\6/21 marginally is the position of a simple random
walk, started at x at time N2z¢; as N 1 oo, we have
1 » 82)"
— > (MW —1)P(Er,, > laN]) —

2N x<laN|

/alP(N(O,t) >a—x)dx
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and

! -
ov 2 (€T —1)PEL,, < laN])
x>|aN |

e—Z)\ -1 r!
~ S [ PO =a-x)dx
a

where N (0, ¢) is a normal distribution with mean 0 and variance .
Hence, combining the estimates, we have that (4.11) is less than

21 _ a e_2)h_1 1
/ P(N(O,t)>a—x)dx+T/ P(N(0,t) <a—x)dx.
-

a

—la+

Choosing A = €a for small € > 0, we obtain further that (4.11) is bounded by
1 1+a
—eaz[l — —/ P(N(0,1) > y) dyi| + 0(%*d®) < —Cd?
aJl—a

for a constant C, noting 1 > a! lljaa P(N@©,t) >y)dyforO<a<1.
For a > 1, we write

JaN),laN|+1(F) = Z 770(x)1[§1’\‘/2t>LaNJ]~
[x|<N

Then, as above,

laN ]
P(X(N?t) > aN) < e *2u=0 ""OC)E@XP{)M Z no(x) Lgx ) >LaNJ]}
N4t
[x|<N

<N H Eexp{)»l[g;ﬂﬂam]}‘
|x|<N [

Taking the logarithm, dividing by N and taking the limit, we obtain

1
limsup — log P(X (N°t) > aN)
Ntoo N

1
<—i+limsup— Y (" = DP(&y,, > [aN])
Ntoo ¥ ix|<N

<—A+ (- 1)/11 P(N(0,1) >a — x)dx.
Optimizing on A, the right-hand side of the above display is bounded by
10gf_11 P(N(@©,t) >a—x)dx+1 _,/;11 P(N(,t) >a —x)dx <O0.
However, for a large, this expression is bounded by —Ca?.

Working with the 0 <a <1 and a > 1 bounds, we obtain the desired quadratic
order estimate.
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5. Proofs of approximations. We give the proofs of Propositions 1.3 and 2.1,
and Lemmas 2.2 and 2.3.

5.1. Proofs of Propositions 1.3 and 2.1. The proofs are through a series of
lemmas inspired by the scheme in [20] (see also Oelschlager [25], and Bertini,
Landim and Mourragui [5]). As several of the steps are different, we give some
details.

To this end, let u be a density such that /o(u) < oo. The first lemma states that
finite rate densities i, when integrated against smooth test functions, are uniformly
continuous in time; cf. Lemma 4.4 [5].

LEMMA 5.1. Letn € D([0, T]; My) be a density such that Io(n) < oo, and let
Je CIZ( (R). Then, s — (n5,3) = [ J(x)ns(x)dx is a uniformly continuous func-
tion.

PROOF. Let G € Cx*([0,T] x R). As Ip(n) < 0o, from (1.3), we infer

T
2o 6) =200 [ [ G2 mm( =) dxdr.

Let F® be a smooth approximations of the indicator 1(s ,j(«). Then, by applying
the previous inequality with G® = F®J, we obtain

\fmmu—fmmu

completing the proof. [

1 (T
:%iil&{l(n;G‘s)-i-E/(; /Gixnu(x)dxdu}

<1t — s3I+ 2lot — " 2131l 2,

For the remainder of the subsection, let © € D([0, T']; M) be a density with
finite rate, Io(i) < 0o. We now build a succession of approximating densities in
the next lemmas with special properties.

LEMMA 5.2. For each € > 0, there exists a density [i, smooth in the space
variable, such that: (1) the Skorohod distance d({1; u) < €; (2) there is 0 < . < 1
such that 8. < j1(t,x) <1 — 8¢ for (t,x) € [0, T] x R; (3) [Io() — Ip(n)| < €.

In addition, (4) if y € M1 (px, p*) is piecewise continuous, 0 < y(x) < 1 for
x € R, and h(uo; y) < 00, then also |h(fio; V) — h(o; V)| < €.

PROOF. For 0 < py, p* < 1,let y € Mi(p4, p*) be a function. Consider

(5.1) U =01pq %y +b(0g * L — 01 e ¥ V)

for0 <b < 1and « > 0. Clearly, u?¢ is smooth in the space variable when o > 0.
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Next, for fixed « >0 and 0 < b < 1, there is 0 < § < 1 such that § < ,ub’“ <
1 — 8 as o744 * y is strictly bounded between 0 and 1 for # € [0, T'].

Now, u?% — uh® as b4 1 in D([0, T] x R). Also, noting limg 0 [|og * G —
Gllpyry =0forG € L'(R), we have also have the Skorohod convergence 1'% —
nasalO.

By lower semi-continuity of Iy,

liminf Io(u”) > To().
On the other hand, by convexity of Ip(v), we have
To(”®) < (1 = b)Io(0r1a * V) + bIo(0g * ).

Note that Ip(0;44 * ) =0, and by translation-invariance and convexity, the right-
hand side in the display is less than

b [ ouIoltr,x =) dy =bloG) 11 asb i1,

Similarly, if y € M| (p«, p*) is piecewise continuous, 0 < y < 1 and h(ug; y) <
00, then, by lower semi-continuity and convexity of 4(-; 7), we have

~ .. b,a, ~
h ; <1 fh(pu,";
(o V)_blTrEériO (o5 Y)
and

h(ug,a; );) < (1 _ b)h(Ua *Y; );) +bh(0a * LO; )9)

Also, once more by convexity,
h(oq * po; 7) < fdyaa(y)/dxhd(uo(X); P (x = ).

The right-hand side, since | (uo(-); (- — y)) — h(wo; )| < C|y| by properties of
¥, converges to 2(uo; ¥) as « | 0. By the same argument, limg o h (0 * ¥ V) =
h(y: ). Hence limpp1.ay0 h(1g: 9) = h(po: ).

Therefore, statements (1)—(4) hold for ft = u”* whenb~ 1,0 ~0. O

LEMMA 5.3. Let [1 be the density constructed in Lemma 5.2. Then: (1) for
each € > 0, there exists a smooth density ji such that fig = [io; (2) the Skorohod
distance d(fi; i) < €; (3) [Io() — Io()| < €. Also, (4) all partial derivatives of
i are uniformly bounded in [0, T] x R.

PROOF. To obtain a smooth density, we need only approximate (i by smooth-
ing in the time variable. Define for 8 > 0 a density which is constant in time on a
short time interval.

B _ o), for0<t <p,
’ (t’X)_{ll(f—ﬁ,x), forB<t<T+B.
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Let k, € CF(R) be smooth approximations of the identity in LY(R) such that

ke >0, [ke(x)dx =1, Supp(x,) C (0, ¢) and for f € LI(R), f*xKke— faselO0
in L'. Form the convolution, for 0 < & < 8,

T
Vet x) = / VB (1 + 5, x)ke(s) ds.
0

It is clear, by continuity of /i in time (Lemma 5.1), that limg o lim, o vPe = [l in
D([0, T]; My). By construction, vP-€ is smooth, and also vg"s = [io.
From lower semi-continuity and convexity

T
lir/rjlinflo(vﬂ’e) > Iop() and Io(vP?) < / /cg(s)lo(vﬁ (t+s,x))ds
,€ 0

Using the variational definition of Iy, noting fig = oy * (¥ + b(g — y)), the rate
of v# on the interval [0, B] is bounded by

(3:i10)?
up 5/ | Gaduio - G2 Mo(l—uo)dxdt—ﬂ/mdx’

which vanishes as B | 0. On the other hand, by formula (1.4), the rate of v/
on the interval [B, T'] converges to Ip(j1) as B | 0. We can conclude then that

limg ¢ 0 lo(WP*) = Io().
Moreover, by differentiating the convolutions, since VP 1 < 1, we have
k) o(l) ~ k

1829 o < 19 ol 19 kel 1 < o0,
Hence to find the desired density, we can take ft = v#¢ for B, & small. [J

We now continue to adjust the approximation so that the associated function
“H,” of the approximating density has desired properties.

LEMMA 5.4.  Let [i be the density constructed in Lemma 5.3, and H, be asso-
ciated to it via (1.2). Then: (1) Hy € C*°([0, T] x R); (2) | Hell 220, 77xR) < 0©3

(3) 1 Hyll Lo (10, 71xR) < 0.

PROOF. By construction, we recall, for a § > 0, that 6 < ft <1 —§, [t is
smooth with uniformly bounded derivatives on [0, T] x R of all orders, and

(52) atﬂ - zaxxﬂ a [ x,u(l - M)]

Then as 2Ip(i1) = fo f(H Y2i(1 — i) dx dt < oo, we obtain the L2 bound on
H,, and, by solving for H in (5.2), we have that H is smooth.
We now deduce that H, is bounded in L°°. This bound will follow from the L2
bound on qu(l — ) and § < 1 < 1—346, if we show that Hx,u(l — f1) is Lipschitz
in both space and time variables with uniform constant over [0, 7] x R. However,



1504 S. SETHURAMAN AND S. R. S. VARADHAN

from (5.2), I:Ix (1 — 1) is Lipschtiz in the space variable with uniform constant
as 0; 1 and 0yt are bounded on [0, T'] x R.

To show H,ji(1 — ji) is also Lipschitz in the time variable ¢ uniformly over
[0, T] x R, write

Hy (1 — fi)(x, 1)
= Hefi(1 — (0, 1) 4+ (1/2)8y i (x, 1) — (1/2)3,i(0, 1) — /0 " ady.

The first three terms on the right-hand side are clearly uniformly Lipschitz in ¢ as
their partial derivatives in time are bounded on [0, T'].

To treat the last term, consider a smooth G compactly supported in [—¢, x + €]
which equals 1 on [0, x]. Since 9/t is bounded, we have

X
“/(; O ft(u,y)dy

< ‘ [ o, y)dy} +2ce.

Now, by construction in the proof of Lemma 5.3, it = «, * vB, and so
T
[ 60w ydy= [ [ G w+s.y)dyds

As Ip(v#) < oo, we can associate via (1.2) an Hf to the density v#. From the
weak formulation (1.3), and «/(0) = k/(T) = 0, the right-hand side equals

1 T
- / G" ()P (u + s, y) dy ds,
0

-/ ' [ GO HE Q= Pyt 5, ) dy ds.

The first integral, because v# is bounded and G’ # 0 on a set of width at most
2¢ is uniformly bounded in time u and space x. Similarly, the second integral, as

||va/3(1 - vﬂ)||Lz < 2Ip(vP) < o0, is also both uniformly bounded in u and x.
a

The function ﬁx associated to g in Lemma 5.4, although smooth, does not
necessarily have compact support. Let H" € C((0, T] x R) be smooth approxi-

mations of H, with the following properties:

3 -1 7 —1
”H;n _HX”LZ([O,T]XR) <m and sup |H;n —Hx| <m .
t€[0,T]
xe€[—m,m]

Denote w™ € D([0, T']; M) as the smooth density with initial condition wg' =
fLo which satisfies the equation

9v = (1/2)dxxv — 3 (H v(1 — v)).
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Existence, for instance, follows from the hydrodynamic limit for weakly asymmet-
ric exclusion processes in [18] using the replacement estimates Theorem 6.1 and
Claims 1, 2 [22], Section 6; see also Theorem 3.1 [20]. Uniqueness in the class of
bounded solutions follows by the method of Proposition 3.5 [25].

We now show that w™, whose associated function H" € C¢, is close to fi.
Hence, w™ will turn out to be a suitable candidate with respect to Proposition 2.1.
In addition, we will be able to deduce that 1« € A under (LEM) initial distributions.

LEMMA 5.5. The sequence w™ converges uniformly to i on compact subsets
of [0, T] x R, and hence in D([0, T'|; My). Also, Io(w™) — Io(i1).

PROOF. Suppose that we have proven w” — [ uniformly on compact sub-
sets. As ||H" — FIxHLz — 0, we would then conclude Ip(w™) — Iy(i1). In the
following, the constant C may change line to line.

Now, given 0;0:(x) = (1/2)0xx0:(x), we have for ¢, h > 0 that

op * Wi (¥) — orpn * wp ()

—/ /H'" " w™) (s, 2) fh Y o inz— y)dzds.

By properties of w”, H™ and (|z — y|/+/u) exp(—(z — )2 /4u) < 1,

| yl
[H w™ (1 —w™)|(s, z) ~Or+h— s(2—y)

<Clt =517 o (z —y) e L'([0,1] x R).
Hence, taking 4 | 0, we obtain

wy' (y) = o % wg ()

+f me "= w™) (s, 2) E y)a, (2 — y)dzds.

Equation (5.3) also holds with respect to fi.
Let now |y| < m/2. We have then, using again (|z — y|//u)exp(—(z —
y)?/4u) <1, and w{ = fio, that
Wi () — i ()]
<opx|wg — fiol ()

t R _
6o+ [ 1 —wm = Ao - pie oS @ - v dzas

t ~
< Cfo /|H,Tw"1(1 —w™) — Hea(l— ))(s,2)

X (t — 5)71/202(;_S)(z —y)dzds.
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We now estimate the last line in two parts, noting
|Hw™ (1 —w™) — Heu(1 — 1) (s, 2)
< |H!" = Hy|(s,2) + [ Hel (1 — 1) — w™ (1 = w™)|(s, 2).
The first part, noting |y| < m /2, by properties of H", [loy (x)I| 120, 71xr) < CT /%,

and SUP; (0,77 t_1/2c74t(1) < C, is bounded for large m, as

t ~
/0 /'H;‘n_HXKS’Z)(I_S)_]/szz(z—s)(z—y)dzds
t ~
5/0 /II |H™ — H,|(s,2)(t —5) Y 20o0_5)(z — y)dzds + m™ 't
Zlzm

z ~
s [ [ Hr = Al Do - v deds £ m7 Vi
0 J|z|=m

<Cm™ 'V 4 IVT.

The second part is decomposed as the sum of three terms,
t ind ~ ~ [—
[ [ 11 = ) = w1 = w5 2 =) o = ) dzds

=D+ Dy + D3,

where D1, Dy, D3 is the integral over [0, ¢] x {|z| > m/2 4+ €}, [0,¢] x {m/2 <
|z] <m/2 + €} and [0, 1] x {|z| < m/2}, respectively, for € > 0.
The term D, noting sup; ¢, 7} t=1264,(¢) < C., is bounded by

l ~
2 / / (s, 2)(t — 5)~ oy (z — y) dzds
0 Jiz|=m/24€

= C(e. D Hxll 220,712 |212m/2))-
The second term D; is bounded by

t -
2 [ f Al =517 o2y (2 — y)dzds
0 Jm/2<|z|<m[2+€
B t €
< C|l I f s34 / o142 4 ds
0 0

< C||HyllL=T"*Ve.
The third term D3 is bounded, with respect to a T > ¢, by

t ~ ~ J—
2// ALl — w™ (5, DI — 51" 2os—sy (@ — y) dzds
0 Jiz|l<m/2

(5.5) -
<2Vt Hyllz sup |fis(z) — wi (2)].

|zl<m/2
S<T
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Hence, f0r~ 7 > 0 small enough but fixed, which satisfies 2./ ||Hx [Le =1/2, or
7 = (16||Hy||z>~)"", and L < m /2, we have

sup |ft(z, 1) —w™(z,t)| < sup |ii(z,t) —w"(z,1)]
|z|<L lz|l<m/2
<t 1<t

< C(T)m™' +2C¢e, T)”I:IXHLZ([O,T]x{z: |z|=m/2})
+2C|| Hy |l LT .

Here, we absorbed the right-hand side of (5.5) into the left-hand side above.
We may repeat the same scheme, starting from time t, where now the initial
difference (5.4) is taken into account:

sup o7 [wy — fic|(y)
lyl<m/3

< sup |w! —fic|(z) + sup or(y —2)dz
z|<m/2 [yl<m/3/1z|>m/2

< sup [w! — fie|(2) +e T,
lz|<m/2
With a finite number of iterations of such type, say N; = [T/t] + 1 iterations,
when L < m/N;, we obtain uniform convergence, as m 1 oo, for |z| < L and
O<s<T. O

PROOF OF PROPOSITION 2.1. The proof follows by applying Lemmas 5.2,
5.3 and 5.5 to build a density ™ = w™, which satisfies specifications (i)—(viii).
We remark property (v) is shown as follows: When o = y, by construction in
(5.1), we have wg' = fig = flo = MS’“ =0y * Y. When y (x) = p, this reduces to
fo(x)=p. 0

Starting under (DIC) initial conditions, however, to prove Proposition 1.3, we
will need to specify that w™ can be approximated by a suitable density with initial
value equal to o =y € M1(px, p*).

LEMMA 5.6. Recall w™ from Lemma 5.5. Suppose o =y € M{(px, p*).
Then, for € > 0, AM such that Ym > M, there is a density x € C*°((0,T] x R),
such that: (1) equation (1.2) is satisfied with respect to H, € CZ (0, T] x R);
(2) initial value xo = v; (3) the Skorohod distance d(x,w™) < €; (4) |Io(x) —
Io(wm)| <E€.

PROOF. Consider wy from Lemma 5.5. From the assumption o =y, we
have wg' = jig = 0y * y from (5.1). Form the density x as follows:

- forxy, for0 <t <a«,
X= w,, fora <t <T.
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Since H," is supported on a compact subset of (0, T] x R, x € C®((0,T] x R),
and satisfies (1.2) with respect to Hy € C ([0, T'] x R) given by

i _{0, for (t,x) € [0,a] x R,
* H!'(t — o, x), for (¢, x) € [, T] x R.

Now, 2I0(3) = fy [H?>3(1 — g)dxdt = [} =% [(H™)*w" (1 — w™)dxdt.
Then, the difference

T
210(7) — 2Ip(w™) = /T / (H™2w™ (1 — w™) dx dt.

—

To estimate the right-hand side, recall from Lemma 5.5 that || H" — H, || ;2 <m ™!,

and w™ — [ uniformly on compact subsets. Then
T
/ /(Hf)zwm(l —w"ydxdt
T—«a

T
712 72

x|>L
T - T -
+4/f sz|wm—,&|dxdt+2/ foz[L(l—;l)dxdt
0 Jix|<L T—a

=B+ By + B3 + Bs.

Choose L = L(ﬁx) large so that By < €/4, and take m = m(I:Ix, L) large enough
so that both By, B3 <¢€/4.

The term B4/4 is the rate of i on the time interval [T — «, T']. Since & and le
depend on «, we bound By in terms of H, (which does not depend on «) to show
that it is small when « is small. By the construction of j in Lemma 5.3, convexity
of the the rate, translation-invariance and that the rate of 0,44 * y vanishes, we
estimate

T T
By §2bfao,(z)f0 /cg(s)/T /sz,u(l —w)(t+s—B,x —2)dxdtdsdz

T
< 2/ /szu(l — ) dxdt,
T—2a

when 8 <o <T — «. Then, as Ip(u) <00, B4 { Oasa | 0.

Hence, with « small enough, there is M so that for m > M, we have |Ip(x) —
Ip(w™)| < €. Also, by Lemma 5.5, Ip(w™) < Ip() + 1, and so by uniform conti-
nuity (Lemma 5.1), the Skorohod distance d(x; w™) <e. [

PROOF OF PROPOSITION 1.3. Let y be a profile associated to an (LEM)
or (DIC) measure, and let u be such that 7, (1) < oo. By successively applying
Lemmas 5.2, 5.3, 5.5 and 5.6, we can approximate i by an appropriate den-
sity ut to verify u € A. Specifically, under an (LEM) initial measure, when
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I,(n) = IVLE(M), wT = w™ in Lemma 5.5 with appropriate choice of parame-
ters b, a, B, ¢ and m. Under a (DIC) initial configuration, when 1, (u) = I]f) S,
ut = x in Lemma 5.6 again with suitable parameters. [J

5.2. Proof of Lemmas 2.2,2.3. We prove the lemmas in succession.

PROOF OF LEMMA 2.2. Note that

s (x) — p(x)| = }}?3 lon % (r — P)(x)]
<1 .
< hli% lorn * (Lo — ¥)(X)|

t
+/0 /|Hx|u(1 (s, D015 41z — X)| dzds.

Since H, has compact support in [0, T'] x R, the second term on the right-hand

side is bounded by
! X—z
en [ [ Bt - xdzds
0 Jjzl<My t—S

. 2
for some constants Cz, My. Since (|y|//s)e™> /% <1, when |x| > My, we can

bound it further by 4CH«/Te_(x_MH)2/8T, which vanishes as |x| 1 oo.
The first term, however, is bounded as follows:

014 * (o — V) ()]

< sup I/Ao—?l(z—x)-/ll lat(z)dz+\/§e_lz/4T/| 02(2)dz
ZI=<

lzl=l z|=l

< sup o — Pl(z — x) + V2 /4T

lz|<l

Now, since h(ug; y) < 00, 7 € Mi(04, p*), |0xpollLe < 00, we conclude, for
fixed /, that limx| 100 SUP| </ |40 — 71(z — x) = 0. This completes the proof. [J

PROOF OF LEMMA 2.3. Consider Hellinger’s inequality (o — +/B)? <

ha(o; B). [Let H(a; B) = (Va — /B)? + (V1 —a — /T = B)%. By Jensen’s in-
equality and log(l —x) < —x for 0 <x < 1, hg(a; B) > —2log[1 — (1/2)H («;

B)1 = H(a; B).] We write then (i, (x) — p)* < 2(\/1t — \/P)* < 2ha((x); p).
Hence, by Proposition 2.4 (with respect to the density on [0, 7] x R with y = p),

[ a0 = 0 dx =2 [ hatua; praa

t
=4 [ [anPua —wadxds <8

uniformly in0<¢ <7. [0
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