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RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR
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We consider random walks on the line given by a sequence of indepen-
dent identically distributed jumps belonging to the strict domain of attraction
of a stable distribution, and first determine the almost sure exponential di-
vergence rate, as ε → 0, of the return time to (−ε, ε). We then refine this
result by establishing a limit theorem for the hitting-time distributions of
(x − ε, x + ε) with arbitrary x ∈ R.

1. Introduction and results. We consider a recurrent random walk on R,
S0 := 0 and Sn := X1 + · · · + Xn, n ≥ 1, where the Xi are i.i.d. random variables
on (�, F ,P) such that Sn

An
converges, for positive real numbers An, in distribu-

tion to a stable random variable X with index α. Necessarily (due to recurrence),
α ∈ [1,2], and the sequence (An)n≥1 is regularly varying of index 1

α
, satisfying∑

n≥1
1

An
= ∞.

To capture the speed at which recurrence appears, it is possible to specify, for
such a walk, some deterministic sequences (εn) such that Sn ∈ (−εn, εn) infinitely
often, or Sn /∈ (−εn, εn) eventually, almost surely. This classical question was ad-
dressed, for example, in [5] and [3], the results of which have recently been ex-
tended in [4].

Here, we are going to study the number of steps it takes to return to some small
neighborhood of the origin (or to hit a different small interval for the first time).
For related work on random walks in the plane, intimately related to the α = 1 case
of the present paper, we refer to [8].

As an additional standing assumption on our walk, we will always require the
distribution of the jumps Xi to satisfy the Cramér condition

lim sup
|t |→∞

|E[eitX1]| < 1.(1)

This readily implies, in particular, that the event �∗ := {Sn �= 0 ∀n ≥ 1} has pos-
itive probability, and �∗ has probability one if and only if no individual path re-
turning to the origin has positive probability.
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As a warm-up we first determine the a.s. rate at which the variables

Tε := min{n ≥ 1 : |Sn| < ε}, ε > 0,

diverge on �∗ as ε → 0. Let β ∈ [2,∞] be the exponent conjugate to α, that is,
α−1 + β−1 = 1.

THEOREM 1. In the present setup,

lim
ε→0

log Tε

log ε
= −β a.s. on �∗.(2)

Our main objective then is to determine the precise order of magnitude and
to study the asymptotic distributional behavior, as ε → 0, of the more general
hitting times of ε-neighborhoods of arbitrary given points x on the line. We shall,
in fact, do so for the walk S ′

n := S′
0 + Sn, n ≥ 0, with random initial position S′

0,
independent of (Sn)n≥0 and having an arbitrary fixed distribution P on R. For any
x ∈ R we thus let

Tx
ε := inf{m ≥ 1 : |S′

m − x| < ε}
and �∗

x := {S′
n �= x ∀n ≥ 1}. Outside �∗

x we clearly have limε→0 Tx
ε = min{m ≥

1 :S′
m = x}.

It is convenient to state the results in terms of, and work with, the strictly
increasing continuous function G : [0,+∞) → [0,+∞) with G(0) = 0 which
affinely interpolates the values G(n) = ∑n

k=1
1

Ak
, n ≥ 1. We denote by G−1 its

inverse function. Evidently, G(n) = o(n). Moreover, by the direct half of Kara-
mata’s theorem (cf. Propositions 1.5.8 and 1.5.9a of [1]), G is regularly varying
with index 1

β
, and satisfies

n

An

= o(G(n)) if α = 1 while
n

An

∼ G(n)

β
in case α ∈ (1,2].(3)

We establish a result on convergence in distribution for εG(Tx
ε ) conditioned on

�∗
x [while εG(Tx

ε ) → 0 outside this set]. In the case α = 1, the limit distribution
is the same as for square integrable random walk on the plane; cf. [8]. Recall that
X has a density fX . For simplicity we set γ := 2fX(0)P(�∗).

THEOREM 2. Assume that α = 1, and fix any x ∈ R. Conditioned on �∗
x , the

variables εG(Tx
ε ) converge in law,

lim
ε→0

P
(
γ εG(Tx

ε ) ≤ t |�∗
x

) = t

1 + t
∀t > 0.

For α ∈ (1,2], different limit distributions arise, and we obtain convergence in
law of Tx

ε to the 1
β

-stable subordinator at an independent exponential time:
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THEOREM 3. Assume that α ∈ (1,2], and fix any x ∈ R. Conditioned on �∗
x ,

the variables εG(Tx
ε ) converge in law,

lim
ε→0

P

(
�

(
1

β

)
γ

β
εG(Tx

ε ) ≤ t
∣∣∣�∗

x

)
= Pr(E G 1/β

1/β ≤ t) ∀t > 0

or, equivalently,

lim
ε→0

P

((
�

(
1

β

)
γ

β

)β Tx
ε

G−1(1/ε)
≤ t

∣∣∣�∗
x

)
= Pr(E β G1/β ≤ t) ∀t > 0,

where E and G1/β are independent random variables, Pr(E > t) = e−t and G1/β

having the one-sided stable law of index 1
β

with Laplace transform E[e−sG1/β ] =
e−s1/β

, s > 0.

In particular, we have:

COROLLARY 1. If (Xn)n≥1 is an i.i.d. sequence of centered random variables
with variance 1, satisfying the Cramér condition, and x ∈ R, then

lim
ε→0

P
(
2P(�∗)ε

√
Tx

ε ≤ t |�∗
x

) = Pr
( E

|N | ≤ t

)
∀t > 0

or, equivalently,

lim
ε→0

P
(
4P(�∗)2ε2Tx

ε ≤ t |�∗
x

) = Pr
(( E

|N |
)2

≤ t

)
∀t > 0,

where E and N are independent variables, N having a standard Gaussian distri-
bution N (0,1).

As Cheliotis does in [4], we will use the following extension of Stone’s local
limit theorem [9].

PROPOSITION 1. Let θ be such that lim sup|t |→∞ |E[eitX1]| < θ < 1, and let
c > 1. Then there exists a real number h0 > 0 and an integer n0 ≥ 1 such that, for
any n ≥ n0, for any interval I contained in [−h0, h0], of length larger than θn, we
have

c−1fX(0)|I | < P

(
Sn

An

∈ I

)
< cfX(0)|I |.

2. Almost sure convergence: Proof of Theorem 1.

PROOF OF THEOREM 1. To begin with, choose θ , c and h0 as in Proposition 1.
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To first establish an estimate from below, we fix any ξ > 1 and set εn := G(n)−ξ .
This makes the series

∑
n P(|Sn| < εn) summable: Indeed, by regular variation

and (3), we have εn

An
> θn for n large, while

εn

An

= O

(
G(n) − G(n − 1)

G(n − 1)ξ

)
= O

(∫ n

n−1

G′(t)
G(t)ξ

dt

)
,

which is summable since
∫ ∞

1
G′(t)
G(t)ξ

dt = [G(t)1−ξ

1−ξ
]∞1 < ∞. In particular, (−εn

An
,

εn

An
) ⊆ [−h0, h0] for large n. Proposition 1 therefore applies to these intervals

and shows that P(|Sn| < εn) = O( εn

An
) is summable as well. Hence, by the Borel–

Cantelli lemma, P(|Sn| < εn i.o.) = 0. Since εn ↘ 0, we can conclude that Tεn > n

eventually, almost surely on �∗, and we get lim infn→∞ logG(Tεn )

−log εn
≥ 1

ξ
a.s. on �∗.

Using monotonicity of logG(Tε) and the fact that εn+1 ∼ εn, this extends from
the εn to the full limit as ε → 0, and since ξ > 1 was arbitrary, we conclude that

lim inf
ε→0

logG(Tε)

−log ε
≥ 1 a.s. on �∗.(4)

To control the corresponding lim sup, we now fix any ξ ∈ (0,1). From Proposi-
tion 1, using intervals (−εn

An
, εn

An
) and regular variation of (An)n≥1, we see that there

exists a constant c′ > 0 such that for every ε ∈ (0,1) there is some mε satisfying

P(|Sk| < ε) ≥ c′ε
Ak

for k ≥ mε.

More precisely, the dependence of mε on ε comes from the requirement 2ε/Ak >

θk for k ≥ mε on the length of intervals, which is met by taking mε := κ(−log ε)

with a suitable constant κ > 0. Next, choose integers nε in such a way that
G(nε) ≤ ε−1/ξ < G(nε + 1). Inspired by a decomposition used by Dvoretski
and Erdös [6], we consider the pairwise disjoint events Eε

k := {|Sk| < ε and
∀j = k + 1, . . . , nε : |Sj − Sk| > 2ε}, 1 ≤ k ≤ nε . By independence and station-
arity we have

1 ≥
nε∑

k=mε

P(Eε
k) ≥

nε∑
k=mε

P(|Sk| < ε)P(T2ε > nε − k) ≥ c′εP(T2ε > nε)

nε∑
k=mε

1

Ak

.

Combining this with G(mε) = o(G(nε)) [note that G(mε) is slowly varying], we
obtain

P
(
G(T2ε) > ε−1/ξ ) ≤ P

(
G(T2ε) > G(nε)

) = P(T2ε > nε)

≤ 1

c′ε(G(nε) − G(mε))
∼ ε1/ξ−1

c′ .

Therefore, if we let εp := p−2/(1−ξ), p ≥ 1, the Borel–Cantelli lemma implies

G(T2εp) ≤ ε
−1/ξ
p eventually almost surely, showing that

lim sup
p→+∞

logG(T2εp )

−log(2εp)
≤ 1

ξ
.
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Using monotonicity as before, we can extend this from the εp to the full limit
ε → 0, and since this is true for any ξ ∈ (0,1), we obtain

lim sup
ε→0

logG(Tε)

−log(ε)
≤ 1 a.s. on �.(5)

To conclude the proof, we note that for any α ∈ [1,2] we have

lim
n→∞

logG(n)

logn
= 1

β
,

which follows readily from regular variation of G; compare Fact 2 in [4]. Together
with (4) and (5), this entails

lim
ε→0

log Tε

−log ε
= lim

ε→0

log Tε

logG(Tε)
· logG(Tε)

−log ε
= β a.s. on �∗

as required. �

The first argument can easily be adapted to prove the lower bound (4) also for
Tx

ε with x �= 0.

3. Convergence in distribution for auxiliary processes. We need to intro-
duce auxiliary processes. Let (Mε

0 )ε>0 be a family of random variables, indepen-
dent of (Sn)n≥0, such that Mε

0 has uniform distribution on the interval (−ε, ε). For
each ε > 0 we define the walk (Mε

n)n≥0 with random initial position Mε
0 , that is,

Mε
n := Mε

0 + Sn.
A major step toward Theorems 2 and 3 will be to prove a version which applies

to the variables

τε := min{n ≥ 1: |Mε
n| < ε}, ε > 0.

That is, we are interested in the limiting behavior, as ε → 0, of the first return time
distribution of the walk (Mε

n)n≥0 to the interval (−ε, ε). The goal of the present
section is to establish:

THEOREM 4. Assume that α = 1. Conditioned on �∗, the variables εG(τε)

converge in law,

lim
ε→0

P
(
γ εG(τε) ≤ t |�∗) = t

1 + t
∀t > 0.(6)

THEOREM 5. Assume that α ∈ (1,2]. Conditioned on �∗, the variables
εG(τε) converge in law,

lim
ε→0

P

(
�

(
1

β

)
γ

β
εG(τε) ≤ t

∣∣∣�∗
)

= Pr(E G 1/β
1/β ≤ t) ∀t > 0.(7)

Equivalently,

lim
ε→0

P

((
�

(
1

β

)
γ

β

)β τε

G−1(1/ε)
≤ t

∣∣∣�∗
)

= Pr(E β G1/β ≤ t) ∀t > 0.



624 F. PÈNE, B. SAUSSOL AND R. ZWEIMÜLLER

Again we start with considerations valid for any α ∈ [1,2]. To begin with, we
define, for ε > 0, R > 0, and integers K > 0, auxiliary events

�ε,R,K := {∀i = 1, . . . ,K :Si �= 0 and |Mε
i | ≤ R},

which asymptotically exhaust �∗, and on which we can work conveniently. As
ε → 0 we have P(�ε,R,K) → P(�R,K) and P(�ε,R,K \ �∗) → P(�R,K \ �∗),
where �R,K := {∀i = 1, . . . ,K : 0 < |Si | ≤ R} (except, perhaps, for a countable
set of R’s which we are going to avoid). Let n ∈ N. Using again a decomposition
similar to that of Dvoretski and Erdös in [6], we find, for ε ∈ (0, 1

2),

P(�ε,R,K) =
n∑

k=0

p−
k =

n∑
k=0

p+
k(8)

with p±
k = p±

k,n,ε,R,K := P(�ε,R,K ∩ {|Mε
k | < ε ± 2ε2 and ∀
 = k + 1, . . . , n :

|Mε

 | ≥ ε ± 2ε2}) for 1 ≤ k ≤ n, and p±

0 = p±
0,n,ε,R,K := P(�ε,R,K ∩ {∀
 =

1, . . . , n : |Mε

 | ≥ ε±2ε2}). In the sequel, we will use the following notation: given

two functions a and b, the notation

a(ε,R,K) = oε,R,K(1) and b(R,K) = oR,K(1)

will mean that

lim sup
K→+∞

lim sup
R→+∞

lim sup
ε→0

|a(ε,R,K)| = 0 and lim sup
K→+∞

lim sup
R→+∞

|b(R,K)| = 0.

We will also write mε := (log ε)4. The following estimates are the basis of the
argument to follow.

LEMMA 1. Let c > 0 and let, for every ε > 0, nε be the integer such that
G(nε) ≤ c

ε
< G(nε + 1).

For arbitrary γ ′ and γ ′′ such that 0 < γ ′ < 2fX(0) < γ ′′, we have

P(�ε,R,K) ≥ P(τε > nε) + P(�ε,R,K)γ ′ε
nε∑

k=mε

P(τε > nε − k)

Ak

+ oε,R,K(1)

and

P(�ε,R,K) ≤ P(τε > nε) + P(�ε,R,K)γ ′′ε
nε∑

k=mε

P(τε > nε − k)

Ak

+ oε,R,K(1).

PROOF. For the course of this proof, we simplify notation by suppressing the
parameters ε, R, and K in mε , nε , Mε

i , and �ε,R,K . We will apply (8) with n = nε .
Also, let ν := ε2.
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(i) Starting with the k = 0 term, we see that

p−
0 ≥ P(� ∩ {∀
 = 1, . . . , n : |M
| ≥ ε}) ≥ P(� ∩ {τε > n}).

We now consider the case where m ≤ k ≤ n. Let A := (2νZ) ∩ (−ε + 3ν, ε − 3ν).
Notice that the sets Qa := (a − ν, a + ν) with a ∈ A are disjoint and contained in
(−ε + 2ν, ε − 2ν). Therefore the kth term in (8) satisfies

p−
k ≥ ∑

a∈A
P(� ∩ {Mk ∈ Qa and ∀
 = k + 1, . . . , n : |M
| ≥ ε − 2ν})

≥ ∑
a∈A

P(� ∩ {Mk ∈ Qa and ∀
 = k + 1, . . . , n : |S
 − Sk + a| ≥ ε − ν})(9)

= ∑
a∈A

P(� ∩ {Mk ∈ Qa})P(∀
 = 1, . . . , n − k : |S
 + a| ≥ ε − ν)

by independence [where we assume that ε is so small that (log ε)4 > K]. Note that

P(� ∩ {Mk ∈ Qa})
=

∫
{∀i : xi �=x0,|xi |≤R}

P(Sk−K ∈ Qa − xK)dP(M0,...,MK)(x0, . . . , xK)

with dP(M0,...,MK) denoting the distribution of (M0, . . . ,MK). Now fix θ as in
Proposition 1, and c ∈ (0,1) such that γ ′ < 2fX(0)/c. Elementary considerations
show that Proposition 1 applies to I = 1

Ak−K
(Qa − xK) if ε is sufficiently small,

and in this case gives

P(� ∩ {Mk ∈ Qa}) ≥ P(�)
γ ′ν
Ak

.(10)

Using this, plus the observation that conditioning on {M0 ∈ Qa} amounts to look-
ing at M∗

n := M∗
0 + Sn, n ≥ 0, with M∗

0 uniformly distributed on Qa , we can
continue to estimate, for small ε,

p−
k ≥ P(�)

γ ′ν
Ak

∑
a∈A

P(∀
 = 1, . . . , n − k : |S
 + a| ≥ ε − ν)

≥ P(�)
γ ′ν
Ak

∑
a∈A

P({∀
 = 1, . . . , n − k : |M
| ≥ ε}|{M0 ∈ Qa})

≥ P(�)
γ ′ε
Ak

∑
a∈A

P({∀
 = 1, . . . , n − k : |M
| ≥ ε} ∩ {M0 ∈ Qa})(11)

≥ P(�)
γ ′ε
Ak

(
P(∀
 = 1, . . . , n − k : |M
| ≥ ε) − P(ε − 4ν ≤ |M0| ≤ ε)

)

= P(�)
γ ′ε
Ak

(
P(τε > n − k) − 8ν

)
.
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Putting together these estimates via equation (8) gives

P(� ∩ {τε > n}) + P(�)γ ′ε
n∑

k=m

P(τε > n − k)

Ak

≤ P(�) + P(�)8γ ′εν
(
G(n) − G(m)

)
.

We observe that �c ∩ {τε > n} ⊆ ⋃K
i=1{|Mi | > R} for ε so small that n =

nε > K . Since lim supK→+∞lim supR→+∞lim supε→0P(
⋃K

i=1{|Mi | > R}) = 0
and limε→0 ε3(G(n) − G(m)) = 0, this proves the first assertion of the lemma.

(ii) We only provide a sketch of the proof of the second point since the argu-
ments are very similar to the above. Using (8) gives

P(�) ≤ P(� ∩ {τε > n}) + P(� \ �∗) + P(�∗ ∩ {τ3ε ≤ m}) +
n∑

k=m

p+
k

since
∑m

k=1 p+
k ≤ P(� ∩ {τ3ε ≤ m}). Next, take Ā := (2νZ) ∩ (−ε − 3ν, ε + 3ν)

and intervals Q̄a := [a − ν, a + ν], a ∈ Ā, which cover (−ε − 2ν, ε + 2ν). We can
then use arguments parallel to those of part (i) to obtain

n∑
k=m

p+
k ≤

n∑
k=m

∑
a∈Ā

P
(
� ∩ {Mk ∈ Q̄a and ∀
 = k + 1, . . . , n : |M
| > ε + 2ν})

...

≤ P(�)γ ′′ε
n∑

k=m

P(τε > n − k)

Ak

+ P(�)8γ ′′εν
(
G(n) − G(m)

)
,

which proves our claim since limε→0 P(�∗ ∩ {τ3ε ≤ m}) = 0 as a consequence of
Theorem 1 and since P(� \ �∗) = oε,R,K(1). �

This enables us to derive an asymptotic bound for the tails of the distributions
of the εG(τε) as ε → 0.

LEMMA 2. For all α ∈ [1,2] and any t > 0 we have

lim sup
ε→0

P
(
γ εG(τε) > t

) ≤ P(�∗)
1 + t

.

PROOF. Fix t , R, K and 0 < γ ′ < 2fX(0). For ε > 0 choose nε so that
G(nε) ≤ t

γ ε
≤ G(nε + 1), whence P(εγG(τε) > t) ∼ P(τε > nε). Recall that

mε := (log ε)4. As in the proof of Theorem 1 we see that G(mε) = o(G(nε)).
Therefore

ε

nε∑
k=mε

P(τε > nε − k)

Ak

≥ ε
(
G(nε) − G(mε)

)
P(τε > nε) ∼ t

γ
P(τε > nε).(12)
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Together with the first part of Lemma 1, this yields

lim sup
ε→0

P
(
εγG(τε) > t

) ≤ P(�R,K) + oR,K(1)

1 + (tγ ′/γ )P(�R,K)
.

Taking successively R → ∞, then K → ∞ and finally γ ′ → 2fX(0), we obtain
the lemma. �

When α = 1, this upper bound actually is the limit:

LEMMA 3. If α = 1, then for any t > 0 we have

lim inf
ε→0

P
(
γ εG(τε) > t

) ≥ P(�∗)
1 + t

.

PROOF. Fix t , R, K and γ ′′ > 2fX(0), and choose mε and nε as in the previ-
ous proof.

Since α = 1 means that G is slowly varying, we have G(2nε) − G(nε) =
o(G(nε)). Hence

P(τε > 2nε) + P(�ε,R,K)γ ′′ε
2nε∑

k=mε

P(τε > 2nε − k)

Ak

≤ P(τε > nε) + P(�ε,R,K)γ ′′ε
(

nε∑
k=mε

P(τε > nε)

Ak

+
2nε∑

k=nε

1

Ak

)

(13)
≤ P(τε > nε) + P(�ε,R,K)γ ′′εG(nε)[P(τε > nε) + o(1)]

≤ P(τε > nε) + t
γ ′′

γ
P(�ε,R,K)P(τε > nε) + o(1).

Combining these observations with the second estimate of Lemma 1 (replacing nε

by 2nε) entails

lim inf
ε→0

P(τε > nε) ≥ P(�R,K) − oR,K(1)

1 + (tγ ′′/γ )P(�R,K)
.

We conclude by successively taking R → ∞, K → ∞ and γ ′′ → 2fX(0). �

PROOF OF THEOREM 4. Immediate from Lemmas 2 and 3, as εG(τε) → 0
outside �∗. �

When α ∈ (1,2], Lemma 1 does not yet give the limit distribution. Still, it imme-
diately implies the tightness of the family of distributions with the normalization
given there:
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LEMMA 4. The family of distributions of the random variables εG(τε), ε ∈
(0,1), is tight.

Hence it will be enough to prove that the advertised limit law is the only possible
accumulation point of our distributions. We henceforth abbreviate

Zε := γ

β
εG(τε), ε > 0.

LEMMA 5. Suppose that α ∈ (1,2]. Let (εp)p≥1 be a positive sequence with
limp→∞ εp = 0, and such that the conditional distributions of the Zεp on �∗ con-
verge to the law of some random variable Y . Then its tail satisfies the integral
equation

1 = Pr(Y > t) + t

∫ 1

0

Pr(Y > t(1 − u)1/β)

u1/α
du ∀t > 0.

PROOF. (i) We write f (t) := Pr(Y > t), and first prove that

∀t > 0 1 ≥ f (t) + t

∫ 1

0
u−1/αf

(
t (1 − u)1/β)

du.

Let us only consider ε belonging to {εp,p ≥ 1}. Note that by monotonicity and
right continuity of f it suffices to prove the inequality for all t ∈ (0,∞) such that,
for all N ≥ 1 and all r = 0, . . . ,N −1, the function f is continuous at t (1− r

N
)1/β .

Henceforth such a t will be fixed.
Now take some δ > 0. We claim that one can choose Nδ > 1 such that for all

N ≥ Nδ , ∣∣∣∣∣
∫ 1

0

f (t (1 − u)1/β)

u1/α
du − 1

N

N−1∑
r=1

f (t (1 − (r/N))1/β)

((r + 1)/N)1/α

∣∣∣∣∣ ≤ δ.(14)

Indeed, take � ∈ (0,1) such that β�1/β < δ/4. For any N we have

1

N

��N�∑
r=1

(
r + 1

N

)−1/α

≤
∫ �

0
u−1/α du = β�1/β < δ/4.

Since f is bounbed by one this implies that both the integral in (14) restricted to
[0,�] and the sum from r = 1 to ��N� are bounded by δ/4. The claim follows by
taking Nδ so large that the approximation of the Riemann integral on the interval
[�,1] by the Riemann sum with step 1/N has a precision at least δ/2.

Now fix integers N ≥ Nδ , K ≥ 1, and some 0 < γ ′ < 2fX(0). For ε > 0 small
enough take nε such that G(nε) ≤ βt

γ ε
< G(nε + 1) [and hence G(nε) ∼ βt

γ ε
].

According to the first point of Lemma 1, since nε

N
≥ mε , we have

P(�ε,R,K) ≥ P(Zε > t) + P(�ε,R,K)γ ′ε
nε∑

k=nε/N

P(τε > nε − k)

Ak

+ oε,R,K(1).
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Due to our assumption on the Zεp and t , we see that P(Zε > t) → P(�∗)f (t) as
εp → 0. Next, by monotonicity,

nε∑
k=nε/N

P(τε > nε − k)

Ak

≥
N−1∑
r=1

nε/N−1∑
k=0

P(τε > nε − k − (rnε/N))

Ak+(rnε/N)

≥
N−1∑
r=1

(
G

(
r + 1

N
nε

)
− G

(
r

N
nε

))
P

(
τε >

(
1 − r

N

)
nε

)
.

By regular variation, the first term of the product is asymptotically equivalent to

G(nε)

[(
r + 1

N

)1/β

−
(

r

N

)1/β]
≥ G(nε)

βN((r + 1)/N)1/α

as εp → 0. On the other hand, the second term is equal to

P

(
Zε > ε

γ

β
G

((
1 − r

N

)
nε

))
→ P(�∗)f

(
t

(
1 − r

N

)1/β)
,

since G((1 − r
N

)nε) ∼ (1 − r
N

)1/βG(nε). As a consequence, we see that

lim inf
p→∞ εp

nεp∑
k=nεp /N

P(τεp > nεp − k)

Ak

≥ P(�∗) t

γ

1

N

N−1∑
r=1

f (t (1 − r/N)1−1/α)

((r + 1)/N)1/α
(15)

≥ P(�∗) t

γ

(∫ 1

0

f (t (1 − u)1−1/α)

u1/α
du − δ

)
.

Combining all these asymptotic estimates and taking the limit εp → 0, we end
then up with

P(�R,K) ≥ P(�∗)
[
f (t) + P(�R,K)γ ′t

γ

(∫ 1

0

f (t (1 − u)1−1/α)

u1/α
du − δ

)]

+ oR,K(1).

Successively letting R → ∞, K → ∞, γ ′ → 2fX(0) and δ → 0 we obtain the
desired inequality.

(ii) The converse inequality is proved analogously, using the other half of
Lemma 1 with the following adaptation: we have

P(�ε,R,K) ≤ P(Zε > t) + P(�ε,R,K)γ ′′ε
nε∑

k=mε

P(τε > nε − k)

Ak

+ oε,R,K(1).
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Since, G(nε/N) ∼ G(nε)N
−1/β as ε goes to 0, we have, for ε small enough,

ε

nε/N∑
k=mε

P(τε > nε − k)

Ak

≤ εG

(
nε

N

)
≤ 2εG(nε)N

−1/β ≤ 2
βt

γ
N−1/β

and so

P(�ε,R,K) ≤ P(Zε > t) + P(�ε,R,K)γ ′′ε
nε∑

k=nε/N

P(τε > nε − k)

Ak

+ oε,R,K(1)

+ 2γ ′′ βt

γ
N−1/β. �

Now let us identify the limit distribution satisfying the equality given by Lem-
ma 5. To this end we consider the variables

Z′
ε :=

(
γ

β

)β τε

G−1(1/ε)
, ε > 0.

LEMMA 6. The conditional distributions of the Zεp converge to a random
variable Y iff the conditional distributions of the Z′

εp
converge to Yβ . The latter

then satisfies

1 = Pr(Y β > t) +
∫ t

0

Pr(Y β > t − v)

v1/α
dv ∀t > 0.

PROOF. The equivalence of the two conditional distributional convergence
statements follows from regular variation of G−1; see, for example, Lemma 1
of [2]. Suppose that they hold. Then, according to Lemma 5, for any t > 0, we
have

1 = Pr(Y β > t) + t1/β
∫ 1

0

Pr(Y β > t(1 − u))

u1/α
du,

and the conclusion follows by a change of variables, v = tu. �

LEMMA 7. Let W be a random variable with values in [0,∞) satisfying

Pr(W ≤ t) =
∫ t

0

Pr(W > t − v)

v1/α
dv ∀t > 0.(16)

Then

E[e−sW ] = 1

1 + cβs1/β
∀s > 0

with cβ := �( 1
β
)
−1

. In particular, the distribution of W coincides with that of

c
β
β E β G1/β , where the independent variables E and G1/β are as in the statement

of Theorem 3.
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PROOF. Let s > 0. We have

E[e−sW ] =
∫ +∞

0
Pr(e−sW ≥ u)du

=
∫ +∞

0
Pr

(
W ≤ − log(u)

s

)
du

=
∫ +∞

0
Pr(W ≤ v)se−sv dv.

Hence, for any s > 0, we find

E[e−sW ] =
∫ +∞

0

[∫ v

0

Pr(W ≥ v − w)

w1/α
dw

]
se−sv dv

=
∫ +∞

0

1

w1/α

[∫ +∞
w

Pr(W ≥ v − w)se−sv dv

]
dw

=
∫ +∞

0

e−sw

w1/α

[∫ +∞
0

Pr(W ≥ z)se−sz dz

]
dw

=
∫ +∞

0

e−sw

w1/α

[
1 −

∫ +∞
0

Pr(W ≤ z)se−sz dz

]
dw

=
∫ +∞

0

e−sw

w1/α
dw · [

1 − E[e−sW ]],
and our claim about the Laplace transform of W follows since∫ +∞

0

e−sw

w1/α
dw = β

s1/β

∫ +∞
0

e−zβ

dz = 1

cβs1/β
with cβ := 1

�(1/β)
.

Given this, a routine calculation (cf. Problem XIII.11.10 of [7]) shows that W

indeed has the same Laplace transform as c
β
β E β G1/β . �

PROOF OF THEOREM 5. According to Lemma 4 the family of distributions of
the Zε , ε ∈ (0,1), is tight. By Lemmas 5, 6 and 7, the law of cβ E G 1/β

1/β is the only
possible accumulation point of these distributions. �

4. Convergence in distribution for Tx
ε . To complete the proof of Theorems 2

and 3 we now utilize Theorems 4 and 5. Note first that it suffices to prove Theorems
2 and 3 under the additional assumption that S′

0 = 0, in which case

Tx
ε = T̂x

ε := inf{n ≥ 1 : |Sn − x| < ε} and �∗
x = �̂∗

x := {Sn �= x ∀n}.
Indeed, in the situation of Theorem 2, with arbitrary distribution P of S′

0, we then
have

P
(
γ εG(Tx

ε ) ≤ t
) =

∫
R

P
(
γ εG(T̂x−y

ε ) ≤ t
)
dP (y) →

∫
R

P(�̂∗
x−y) dP (y) · t

1 + t
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by the P = δ0 case of Theorem 2 and dominated convergence and analogously for
Theorem 3.

Therefore, for the remainder of this section we assume that S′
0 = 0.

Next, we observe that our key lemma (Lemma 1) can be adapted as follows. Let
�x

R,K be the event defined by

�x
R,K := {∀i = 1, . . . ,K :Si �= x and |Si | ≤ R}.

LEMMA 8. Let c > 0, and let, for every ε > 0, nε be the integer such that
G(nε) ≤ c

ε
< G(nε + 1).

For arbitrary γ ′ and γ ′′ such that 0 < γ ′ < 2fX(0) < γ ′′ we have

P(�x
R,K) ≥ P(Tx

ε > nε) + P(�x
R,K)γ ′ε

nε∑
k=mε

P(τε > nε − k)

Ak

+ oε,R,K(1)

and

P(�x
R,K) ≤ P(Tx

ε > nε) + P(�x
R,K)γ ′′ε

nε∑
k=mε

P(τε > nε − k)

Ak

+ oε,R,K(1).

PROOF. We have the following analog of formula (8):

P(�x
R,K) =

nε∑
k=0

p
x,−
k =

nε∑
k=0

p
x,+
k(17)

with

p
x,±
0 := P(�x

R,K ∩ {∀
 = 1, . . . , nε : |S
 − x| ≥ ε ± 2ε2})
and

p
x,±
k := P(�x

R,K ∩{|Sk −x| < ε±2ε2 and ∀
 = k+1, . . . , nε : |S
−x| ≥ ε±2ε2}).
We follow the proof of Lemma 1.

(i) Observe first that

p
x,−
0 ≥ P(�x

R,K ∩ {Tx
ε > nε}).

Now consider indices with mε ≤ k ≤ nε . With the same set A as in the proof of
Lemma 1, we find, arguing as in (9), that

p
x,−
k ≥ ∑

a∈A
P(�x

R,K ∩ {Sk − x ∈ Qa and ∀
 = k + 1, . . . , nε : |S
 − x| ≥ ε − 2ν})

≥ ∑
a∈A

P(�x
R,K ∩ {Sk − x ∈ Qa})P(∀
 = 1, . . . , nε − k : |S
 + a| ≥ ε − ν).

A proof parallel to that of (10) shows that

P(�x
R,K ∩ {Sk − x ∈ Qa}) ≥ P(�x

R,K)
γ ′ν
Ak

,
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if ε is sufficiently small. Therefore,

p
x,−
k ≥ P(�x

R,K)
γ ′ν
Ak

∑
a∈A

P(∀
 = 1, . . . , nε − k : |S
 + a| ≥ ε − ν})

≥ P(�x
R,K)

γ ′ε
Ak

(
P(τε > nε − k) − 8ν

)
,

where the second step uses an estimate contained in (11). Continuing as in the
proof of Lemma 1, we obtain the first assertion of our lemma.

(ii) Similar adaptations give the second assertion of the lemma. �

We can now complete the proofs of our main distributional limit theorems:

PROOF OF THEOREM 2. We go back to Lemmas 2 and 3, observing that we
already have (6) at our disposal. Take t ∈ (0,∞), R,K ≥ 1 and γ ′ < 2fX(0) < γ ′′.
For ε > 0 let mε := (log ε)4 and choose nε , such that G(nε) ≤ t

γ ε
≤ G(nε + 1),

meaning that P(εγG(Tx
ε ) > t) ∼ P(Tx

ε > nε).
In view of (6), the estimate (12) of Lemma 2 becomes

lim inf
ε→0

ε

nε∑
k=mε

P(τε > nε − k)

Ak

≥ P(�∗)
γ

t

1 + t
.

Combining this with the first part of Lemma 8 leads to

lim sup
ε→0

P(Tx
ε > nε) ≤ P(�∗

R,K)

(
1 − γ ′

2fX(0)

t

1 + t

)
+ oR,K(1).

Successively letting R → ∞, then K → ∞ and finally γ ′ → 2fX(0), we obtain

lim sup
ε→0

P(Tx
ε > nε) ≤ P(�∗

x)

1 + t
.

To get the corresponding lower bound, parallel to (13), we have

P(Tx
ε > 2nε) + P(�x

R,K)γ ′′ε
2nε∑

k=mε

P(τε > 2nε − k)

Ak

≤ P(Tx
ε > nε) + t

γ ′′

γ
P(�x

R,K)P(τε > nε) + o(1).

Together with the second part of Lemma 8 (with nε replaced by 2nε) and (6), this
implies

lim inf
ε→0

P(Tx
ε > nε) ≥ P(�∗

x)

1 + t

completing the proof. �
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PROOF OF THEOREM 3. We fix t ∈ (0,∞), and choose nε such that G(nε) ≤
βt
γ ε

< G(nε + 1).
According to the proof of Theorem 5 [see, in particular, (15) in Lemma 5], we

know that for mε with mε = o(nε),

lim
ε→0

ε

nε∑
k=mε

P(τε > nε − k)

Ak

= P(�∗)
γ

Pr(Y ≥ t) =: ψ,

where Y = �( 1
β
)−1E G 1/β

1/β is the limiting random variable of the γβ−1εG(τε).
Therefore, Lemma 8 implies that for R,K ≥ 1 and γ ′ < 2fX(0) < γ ′′,

lim sup
ε→0

P(Tx
ε > nε) ≤ P(�x

R,K)(1 − γ ′ψ) + oR,K(1)

and

lim inf
ε→0

P(Tx
ε > nε) ≥ P(�x

R,K)(1 − γ ′′ψ) + oR,K(1).

Since limK→+∞ limR→+∞ P(�x
R,K) = P(�∗

x), we get

P(�∗
x)(1 − γ ′′ψ) ≤ lim inf

ε→0
P(Tx

ε > nε) ≤ lim sup
ε→0

P(Tx
ε > nε) ≤ P(�∗

x)(1 − γ ′ψ)

and hence

lim
ε→0

P(Tx
ε > nε) = P(�∗

x)
(
1 − 2fX(0)ψ

) = P(�∗
x)Pr(Y > t)

as required. �

PROOF OF COROLLARY 1. This is an α = 2 case with An = √
n and fX(0) =

1√
2π

. Recalling that G1/2 = 1
2N 2 in distribution (cf. Example XIII.3.b of [7]) proves

our claim. �
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