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SPIN GLASS MODELS FROM THE POINT OF VIEW OF SPIN
DISTRIBUTIONS

BY DMITRY PANCHENKO1

Texas A&M University

In many spin glass models, due to the symmetry among sites, any
limiting joint distribution of spins under the annealed Gibbs measure ad-
mits the Aldous–Hoover representation encoded by a function σ : [0,1]4 →
{−1,+1}, and one can think of this function as a generic functional order
parameter of the model. In a class of diluted models, and in the Sherrington–
Kirkpatrick model, we introduce novel perturbations of the Hamiltonian
that yield certain invariance and self-consistency equations for this generic
functional order parameter and we use these invariance properties to ob-
tain representations for the free energy in terms of σ . In the setting of the
Sherrington–Kirkpatrick model, the self-consistency equations imply that the
joint distribution of spins is determined by the joint distributions of the over-
laps, and we give an explicit formula for σ under the Parisi ultrametricity
hypothesis. In addition, we discuss some connections with the Ghirlanda–
Guerra identities and stochastic stability and describe the expected Parisi
ansatz in the diluted models in terms of σ .

1. Introduction and main results. In various mean-field spin glass models,
such as the Sherrington–Kirkpatrick model and diluted p-spin and p-sat models
that we will focus on in this paper, one considers a random Hamiltonian HN(σ ) in-
dexed by spin configurations σ ∈ �N = {−1,+1}N and defines the corresponding
Gibbs measure GN as a random probability measure on �N given by

GN(σ ) = 1

ZN

exp(−HN(σ )),(1.1)

where the normalizing factor ZN is called the partition function. Let (σ l)l≥1 be an
i.i.d. sequence of replicas from measure GN . Let μN denote the joint distribution
of the array of all spins on all replicas, (σ l

i )1≤i≤N,1≤l , under the annealed product
Gibbs measure EG⊗∞

N which means that for any choice of signs al
i ∈ {−1,+1},

and for any n ≥ 1,

μN({σ l
i = al

i : 1 ≤ i ≤ N,1 ≤ l ≤ n})
(1.2)

= EG⊗n
N ({σ l

i = al
i : 1 ≤ i ≤ N,1 ≤ l ≤ n}).
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In most mean-field spin glass models this distribution has the following two sym-
metries. Clearly, it is always invariant under the permutation of finitely many
replica indices l ≥ 1, but in most models μN is also invariant under the permutation
of coordinates i ∈ {1, . . . ,N} since the distribution of HN(σ ) is symmetric under
the permutation of coordinates of σ , and this invariance of μN is called symmetry
among sites. Let us think of μN as a distribution on (σ l

i ) for all i, l ≥ 1 simply by
setting σ l

i = 0 for i > N . It is usually not known how to prove that the sequence
(μN) converges (in the sense of convergence of finite-dimensional distributions)
and, in fact, even the answer to a much less general question whether the distribu-
tion of one overlap N−1 ∑

i≤N σ 1
i σ 2

i under EG⊗2
N converges is known only in the

Sherrington–Kirkpatrick model with all p-spin interaction terms present, the proof
of which relies on the Parisi formula for the free energy; see [27, 28]. As a result,
we will consider a family M of all possible limits over the subsequences of (μN).
Whenever we have symmetry among sites, any limiting distribution μ ∈ M will
be invariant under the permutations of both row and column coordinates l and i.
Such two-dimensional arrays are called exchangeable arrays and the representa-
tion result of Aldous [2] and Hoover [15] (see also [5]) states that there exists a
measurable function σμ : [0,1]4 → R such that the distribution μ coincides with
the distribution of the array (sl

i ) given by

sl
i = σμ(w,ul, vi, xi,l),(1.3)

where random variables w, (ul), (vi), (xi,l) are i.i.d. uniform on [0,1]. This func-
tion σμ is defined uniquely up to some measure-preserving transformations (The-
orem 2.1 in [16]) so we can identify the distribution μ of array (sl

i ) with the func-
tion σμ. Since we only consider the case when spins and thus σμ take values in
{−1,+1}, the distribution μ is completely encoded by the function

σ̄μ(w,u, v) = Exσμ(w,u, v, x),(1.4)

where Ex is the expectation in x only and we can think of this last coordinate as a
dummy variable that generates a Bernoulli r.v. with expectation σ̄μ(w,u, v). How-
ever, keeping in mind that a function of three variables σ̄μ encodes the distribution
of the array (1.3), for convenience of notation we will sometimes not identify a
Bernoulli distribution with its expectation (especially, in the diluted models) and
work with the function σμ(w,u, v, x).

One can think of a function σμ (or σ̄μ) as what physicists might call a generic
“functional order parameter” of the model, and it is easy to see that information
encoded by σμ is equivalent to the limiting joint distribution of all multi-overlaps

RN
l1,...,ln

= N−1
∑

1≤i≤N

σ
l1
i · · ·σ ln

i(1.5)

for all n ≥ 1 and all l1, . . . , ln ≥ 1 under μN , which may be a more familiar ob-
ject than the joint distribution of spins. Indeed, by expanding the powers of (1.5)
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in terms of products of spins and using symmetry among sites, in the limit one
can express the joint moments of multi-overlaps in terms of the joint moments of
spins and vice versa. By comparing these moments, the asymptotic joint distribu-
tion of (1.5) over a subsequence of μN converging to μ coincides with the joint
distribution of

R∞
l1,...,ln

= Evσ̄ (w,ul1, v) · · · σ̄ (w,uln, v)(1.6)

for σ̄ = σ̄μ, for all n ≥ 1 and all l1, . . . , ln ≥ 1, where Ev is the expectation in the
last coordinate v only. For n = 2, the corresponding quantity

R∞
l,l′ = Evσ̄ (w,ul, v)σ̄ (w,ul′, v)(1.7)

is the asymptotic version of the overlap N−1 ∑
i≤N σ l

i σ
l′
i . With these notations it

is clear that the famous Parisi ultrametricity conjecture, which says that R∞
2,3 ≥

min(R∞
1,2,R

∞
1,3) with probability one, can be expressed in terms of σ̄μ by saying

that for all w ∈ [0,1] the family of functions v → σ̄μ(w,u, v) parametrized by
u ∈ [0,1] is ultrametric in L2([0,1], dv).

An ultimate goal would be to show that the set of possible limits μ ∈ M
and their representations σμ are described by the Parisi ultrametric ansatz. Even
though this goal is out of reach at the moment, in the setting of the Sherrington–
Kirkpatrick and diluted models we will obtain several results which demonstrate
that the point of view based on the Aldous–Hoover representation (1.3) provides
a useful framework for studying the asymptotic behavior of these models. First,
we will narrow down possible limits M to some well-defined class of distribu-
tions Minv that will be described via invariance and self-consistency equations
on σμ. The proof of these invariance properties will be based on some standard
cavity computations; however, justification of these computations will rely on cer-
tain properties of convergence of measures μN that are not intuitive or, at least, do
not easily follow from known results. In both types of models we will introduce a
novel perturbation of the Hamiltonian that will force the sequence (μN) to satisfy
these properties, and the ideas behind these perturbations will constitute the main
technical contribution of the paper.

Besides giving some constructive description of possible limits M, the invari-
ance equations will play a significant role in other ways. First, using these equa-
tions we will be able to prove representations for the limit of the free energy
FN = N−1

E logZN in terms of σμ for μ ∈ Minv which will automatically coin-
cide with the corresponding Parisi formulas for the free energy if one can show that
all measures in Minv satisfy the predictions of the Parisi ansatz. These representa-
tions, proved in Sections 2.2, 2.3 for diluted models and in Sections 3.2, 3.3 for the
Sherrington–Kirkpatrick model, will arise from an application of the Aizenman–
Sims–Starr scheme introduced in [1] and, what is crucial, thanks to the invariance
equations we will only use this scheme with one cavity coordinate whereas all pre-
vious applications of this scheme (e.g., in [1, 10] or [17]) only worked when the
number of cavity coordinates goes to infinity.
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In the setting of the Sherrington–Kirkpatrick model we will utilize a Gaussian
nature of the Hamiltonian to give other important applications of the invariance
properties of μ ∈ M. First, we will prove in Theorem 5 below that the joint dis-
tributions of all spins, and thus measure μ, are completely determined by the joint
distribution of the overlaps (1.7). Then in Section 1.3 we will show that all limits
μ ∈ M that satisfy the Parisi ultrametricity hypothesis correspond to σμ given by
certain specific realizations of the Ruelle probability cascades. This means that, un-
der ultrametricity, we obtain a more detailed asymptotic description of the model
which includes the joint distribution of all spins or multi-overlaps and not only
overlaps, as in the usual description of the Parisi ansatz. Motivated by this special
form of σμ in the Sherrington–Kirkpatrick model, in the second part of Section 1.3
we will try to formulate a more general Parisi ansatz expected to hold in the diluted
models in terms of the Aldous–Hoover representation (1.3).

Finally, we would like to mention recent work [4] where the authors study
asymptotic behavior of spin glass models in the framework of random overlap
structures, or ROSts, which in our notation correspond to the L2([0,1], dv) struc-
ture of the family of functions v → σ̄μ(w,u, v). They obtain a number of inter-
esting properties of ROSts and prove several results which are similar in spirit to
ours, for example, the Parisi formula in the Sherrington–Kirkpatrick model under
the assumption of ultrametricity.

1.1. Diluted models. To illustrate the main new ideas we will start with the
case of the diluted models where many technical details will be simpler. We will
consider the following class of diluted models as in [22]. Let p ≥ 2 be an even
integer, and let α > 0. Consider a random function θ : {−1,+1}p → R and a se-
quence (θk)k≥1 of independent copies of θ . Consider an i.i.d. sequence of indices
(il,k)l,k≥1 with uniform distribution on {1, . . . ,N}, and let π(αN) be a Poisson r.v.
with mean αN . Let us define the Hamiltonian HN(σ ) on �N by

−HN(σ ) = ∑
k≤π(αN)

θk(σi1,k
, . . . , σip,k

).(1.8)

Clearly, any such model has symmetry between sites. We will make the follow-
ing assumptions on the random function θ . We assume that there exists a random
function f : {−1,+1} → R [i.e., f (σ) = f ′ + f ′′σ for some random (f ′, f ′′)]
such that

exp θ(σ1, . . . , σp) = a
(
1 + bf1(σ1) · · ·fp(σp)

)
,(1.9)

where f1, . . . , fp are independent copies of f , b is a r.v. independent of f1, . . . , fp

that satisfies the condition

∀n ≥ 1 E(−b)n ≥ 0,(1.10)

and a is an arbitrary r.v. such that E|loga| < ∞. Finally, we assume that

|bf1(σ1) · · ·fp(σp)| < 1 a.s.,(1.11)
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and θ satisfies some mild integrability conditions

−∞ < E min
σ

θ(σ1, . . . , σp), E max
σ

θ(σ1, . . . , σp) < +∞.(1.12)

Two well-known models in this class of models are the p-spin and K-sat models.

EXAMPLE 1 (p-spin model). Consider β > 0 and a symmetric r.v. J . The
p-spin model corresponds to the choice of

θ(σ1, . . . , σp) = βJσ1 · · ·σp.

Equation (1.9) holds with a = ch(βJ ), b = th(βJ ) and f (σ) = σ and condition
(1.10) holds since we assume that the distribution of J is symmetric. Equation
(1.12) holds if E|J | < ∞.

EXAMPLE 2 (K-sat model). Consider β > 0 and a sequence of i.i.d. Bernoulli
r.v. (Jl)l≥1 with P(Jl = ±1) = 1/2. The K-sat model (with K = p) corresponds
to

θ(σ1, . . . , σp) = −β
∏
l≤p

1 + Jlσl

2
.

Equation (1.9) holds with a = 1, b = e−β −1 and fl(σl) = (1+Jlσl)/2, and (1.10)
holds since b < 0.

It is well known that under the above conditions the sequence NFN is super-
additive, and, therefore, the limit of FN exists; see, for example, [10]. If we knew
that (μN) has a unique limit, that is, M = {μ}, then computing the limit of the
free energy in terms of σμ in (1.3) would be rather straightforward as will become
clear in Section 2.2. However, since we do not know how to prove that (μN) con-
verges, this will create some obstacles. Moreover, if (μNk

) converges to μ over
some subsequence (Nk) we do not know how to show that (μNk+n) converges to
the same limit for a fixed shift n ≥ 1, even though we can show that it does con-
verge simply by treating n of the coordinates as cavity coordinates. Even if we
knew that μN converges, we would still like to have some description of what the
limit looks like. To overcome some of these obstacles, we will utilize the idea of
adding a “small” perturbation to the Hamiltonian (1.8) that will not affect the limit
of the free energy but at the same time ensure that (μNk+n) and (μNk

) converge to
the same limit. In some sense, this is similar to the idea of adding p-spin perturba-
tion terms in the Sherrington–Kirkpatrick model to force the overlap distribution
to satisfy the Ghirlanda–Guerra identities [13]; see also [11]. The perturbation for
diluted models will be defined as follows.

Consider a sequence (cN) such that cN → ∞, cN/N → 0 and |cN+1 −cN | → 0.
Consider an i.i.d. sequence of indices (ij,k,l)j,k,l≥1 with uniform distribution on
{1, . . . ,N}, let π(cN) be a Poisson r.v. with mean cN , (πl(αp)) be i.i.d. Poisson
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with mean αp and (θk,l) be a sequence of i.i.d. copies of θ . All these random
variables are assumed to be independent of each other and of everything else.
Whenever we introduce a new random variable, by default it is assumed to be
independent of all other random variables. Let us define the perturbation Hamilto-
nian H

p
N(σ ) on �N by

−H
p
N(σ ) = ∑

l≤π(cN )

log Avε exp
∑

k≤πl(αp)

θk,l(ε, σi1,k,l
, . . . , σip−1,k,l

),(1.13)

where Avε will denote uniform average over ε ∈ {−1,+1} as well as replicas (εl)

below. Let us redefine the Hamiltonian in (1.8) by

−HN(σ ) = ∑
k≤π(αN)

θk(σi1,k
, . . . , σip,k

) − H
p
N(σ ),(1.14)

and from now on we assume that (μN) and M are defined for this perturbed
Hamiltonian. Obviously, condition (1.12) implies that the perturbation term does
not affect the limit of free energy since cN = o(N). The benefits of adding this
perturbation term will first appear in Lemma 3 below where it will be shown that
thanks to this term (μNk

) and (μNk+n) converge to the same limit for any fixed shift
n ≥ 1. Another important consequence will appear in Theorem 1 below where the
perturbation will force the limiting distributions μ ∈ M to satisfy some important
invariance properties that will play crucial role in the proof of the representation
for the free energy in Theorem 2.

Let us introduce some notations. We will usually work with σμ for a fixed dis-
tribution μ ∈ M so for simplicity of notation we will omit subscript μ and simply
write σ . Let (vi1,...,in), (xi1,...,in) be i.i.d. sequences uniform on [0,1] for n ≥ 1 and
i1, . . . , in ≥ 1, and let

si1,...,in = σ(w,u, vi1,...,in, xi1,...,in).(1.15)

The role of multi-indices (i1, . . . , in) will be simply to select various subsets of
array (1.3) with disjoint coordinate indices i without worrying about how to enu-
merate them. Let (θi1,...,in) be the copies of random function θ independent over
different sets of indices. In addition, let v̂, x̂, θ̂ be independent copies of the above
sequences, and let

ŝi1,...,in = σ(w,u, v̂i1,...,in, x̂i1,...,in).(1.16)

Notice that we keep the same w and u in both s and ŝ. Throughout the paper let
us denote by π(λ) Poisson random variables with mean λ which will always be
independent from all other random variables and from each other. For example, if
we write π(α) and π(β), we assume them to be independent even if α = β . Let
(πj (λ)) be independent copies of these r.v. for j ≥ 1. Let

Ai(ε) = ∑
k≤πi(pα)

θk,i(ε, s1,i,k, . . . , sp−1,i,k)(1.17)
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for i ≥ 1 and ε ∈ {−1,+1}, and let

Bi = ∑
k≤πi((p−1)α)

θ̂k,i(ŝ1,i,k, . . . , ŝp,i,k).(1.18)

We will express invariance and self-consistency properties of distributions μ ∈ M
in terms of equations for the joint moments of arbitrary subset of spins in the
array (1.3). Take arbitrary n,m,q, r ≥ 1 such that n ≤ m. In the equations below,
the index q will correspond to the number of replicas selected, m will be the total
number of coordinates and n the number of cavity coordinates considered and r

will be the number of perturbation terms of certain type. For each replica index
l ≤ q we consider an arbitrary subset of coordinates Cl ⊆ {1, . . . ,m} and split
them into the cavity and noncavity coordinates

C1
l = Cl ∩ {1, . . . , n}, C2

l = Cl ∩ {n + 1, . . . ,m}.(1.19)

Let E
′ denote the expectation in u and in sequences x and x̂, and let

Ul = E
′ Avε

∏
i∈C1

l

εi exp
∑
i≤n

Ai(εi)
∏

i∈C2
l

si exp
∑
k≤r

θ̂k(ŝ1,k, . . . , ŝp,k)(1.20)

and

V = E
′ Avε exp

∑
i≤n

Ai(εi) exp
∑
k≤r

θ̂k(ŝ1,k, . . . , ŝp,k).(1.21)

Then the following holds.

THEOREM 1. For any limiting distribution μ ∈ M and σ = σμ, we have

E

∏
l≤q

∏
i∈Cl

sl
i = E

∏
l≤q

E
′ ∏
i∈Cl

si = E

∏
l≤q Ul

V q
.(1.22)

We will say a few words about various interpretations of (1.22) below, but first
let us describe the promised representation for the free energy. Let Minv denote
the set of distributions of exchangeable arrays generated by functions σ : [0,1]4 →
{−1,+1} as in (1.3) that satisfy invariance equations (1.22) for all possible choices
of parameters. Theorem 1 proves that M ⊆ Minv. Let

A(ε) = ∑
k≤π(pα)

θk(ε, s1,k, . . . , sp−1,k)

for ε ∈ {−1,+1},
B = ∑

k≤π((p−1)α)

θk(s1,k, . . . , sp,k)

and let

P(μ) = log 2 + E log E
′ Avε expA(ε) − E log E

′ expB.(1.23)

The following representation holds.
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THEOREM 2. We have

lim
N→∞FN = inf

μ∈M
P(μ) = inf

μ∈Minv
P(μ).(1.24)

One can simplify the last term in (1.23) since we will show at the end of Sec-
tion 2.3 that

E log E
′ expB = (p − 1)αE log E

′ exp θ(s1, . . . , sp)(1.25)

for μ ∈ Minv. To better understand (1.22) let us describe several special cases. Let
us define

Ai = log Avε expAi(ε).(1.26)

First, if we set r = 0 and let sets Cl be such that Cl ⊆ {n + 1, . . . ,m} for all l ≤ q ,
then (1.22) becomes

E

∏
l≤q

E
′ ∏
i∈Cl

si = E

∏
l≤q E

′ ∏
i∈Cl

si exp
∑

i≤n Ai

(E′ exp
∑

i≤n Ai)q
.(1.27)

On the other hand, if we set n = 0, then (1.22) becomes

E

∏
l≤q

E
′ ∏
i∈Cl

si = E

∏
l≤q E

′ ∏
i∈Cl

si exp
∑

i≤r θ̂i(ŝ1,i , . . . , ŝp,i)

(E′ exp
∑

i≤r θ̂i(ŝ1,i , . . . , ŝp,i))q
.(1.28)

These equations can be interpreted as the invariance of the distribution of (sl
i )

under various changes of density, and they will both play an important role in
the proof of Theorem 2. Another consequence of (1.22) are the following self-
consistency equations for the distribution of spins. Let us set r = 0 and n = m.
Let

sA
i = Avε ε expAi(ε)

Avε expAi(ε)
.

Then (1.22) becomes

E

∏
l≤q

E
′ ∏
i∈Cl

si = E

∏
l≤q E

′ ∏
i∈Cl

sA
i exp

∑
i≤n Ai

(E′ exp
∑

i≤n Ai)q
.(1.29)

This means that the distribution of spins (sl
i ) coincides with the distribution of

“new” spins (s
A,l
i ) under a certain change of density. Even though we cannot

say more about the role (1.29) might play in the diluted models, its analog in
the Sherrington–Kirkpatrick model will play a very important role in proving that
the joint overlap distribution under μ determines μ and in constructing the explicit
formula for σ̄ under the Parisi ultrametricity hypothesis.

It will become clear from the arguments below that, in essence, the representa-
tion (1.24) is the analog of the Aizenman–Sims–Starr scheme in the Sherrington–
Kirkpatrick model [1] with one cavity coordinate. Previous applications of this
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scheme (e.g., in [1, 10] or [17]) only worked when the number of cavity coor-
dinates goes to infinity, since considering one cavity coordinate in general yields
only a lower bound on the free energy. This lower bound expressed in terms of
the generic functional order parameter σμ will be proved in Section 2.2. Then the
main new ideas of the paper—the roles played by the perturbation Hamiltonian
(1.13) and the consequent invariance in (1.22)—will help us justify that this lower
bound is exact and, moreover, represent it via a well-defined family Minv. First,
following the arguments in [12, 22], in Section 2.3 we will prove a correspond-
ing Franz–Leone type upper bound which will depend on an arbitrary function σ

that defines an exchangeable array as in (1.3). For a general σ , this upper bound
will depend on N . However, we will show that for σμ for μ ∈ Minv the invari-
ance of Theorem 1 implies that the upper bound is independent of N and matches
the lower bound. This is the main point where the invariance properties will come
into play. The same ideas will work in the Sherrington–Kirkpatrick model with the
appropriate choice of the perturbation Hamiltonian.

1.2. The Sherrington–Kirkpatrick model. Let us consider mixed p-spin
Sherrington–Kirkpatrick Hamiltonian

−HN(σ ) = − ∑
p≥1

βpHN,p(σ ),(1.30)

where

−HN,p(σ ) = 1

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip ,(1.31)

the sum is over p = 1 and even p ≥ 2 and (gi1,...,ip ) are standard Gaussian inde-
pendent for all p ≥ 1 and all (i1, . . . , ip). The covariance of (1.30) is given by

EHN(σ 1)HN(σ 2) = Nξ(R1,2),(1.32)

where ξ(x) = ∑
p≥1 β2

pxp , and we assume that the sequence (βp) satisfies∑
p≥1 2pβ2

p < ∞. Let us start by introducing the analog of the perturbation Hamil-
tonian (1.13) for the Sherrington–Kirkpatrick model. Consider independent Gaus-
sian processes Gξ ′(σ ) and Gθ(σ ) on �N = {−1,+1}N with covariances

EGξ ′(σ 1)Gξ ′(σ 2) = ξ ′(R1,2), EGθ(σ
1)Gθ(σ

2) = θ(R1,2),(1.33)

where θ(x) = xξ ′(x) − ξ(x), and let Gξ ′,k(σ ) and Gθ,k(σ ) be their independent
copies for k ≥ 1. For (cN) as above, let us add the following perturbation to the
Hamiltonian (1.30):

−H
p
N(σ ) = ∑

k≤π(cN )

log chGξ ′,k(σ ) + ∑
k≤π ′(cN )

Gθ,k(σ ),(1.34)

where π(cN) and π ′(cN) are independent Poisson random variables with
means cN . Clearly, this Hamiltonian does not affect the limit of the free energy
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since cN = o(N). We will see that this choice of perturbation ensures the same nice
properties of convergence as the perturbation (1.13) in the setting of the diluted
models. As a consequence, we will get the following analog of the invariance of
Theorem 1. Given a measurable function σ̄ : [0,1]3 → [−1,1], for any w ∈ [0,1],
let gξ ′(σ̄ (w,u, ·)) be a Gaussian process indexed by functions v → σ̄ (w,u, ·) for
u ∈ [0,1] with covariance

Cov(gξ ′(σ̄ (w,u, ·)), gξ ′(σ̄ (w,u′, ·))) = ξ ′(Evσ̄ (w,u, v)σ̄ (w,u′, v))(1.35)

and gθ (σ̄ (w,u, ·)) be a Gaussian process independent of gξ ′(σ̄ (w,u, ·)) with co-
variance

Cov(gθ (σ̄ (w,u, ·)), gθ (σ̄ (w,u′, ·))) = θ(Evσ̄ (w,u, v)σ̄ (w,u′, v)).(1.36)

Let us consider independent standard Gaussian random variables z and z′ and de-
fine

Gξ ′(σ̄ (w,u, ·)) = gξ ′(σ̄ (w,u, ·)) + z
(
ξ ′(1) − ξ ′(Evσ̄ (w,u, v)2)

)1/2(1.37)

and

Gθ(σ̄ (w,u, ·)) = gθ (σ̄ (w,u, ·)) + z′(θ(1) − θ(Evσ̄ (w,u, v)2)
)1/2

.(1.38)

For simplicity of notation we will keep the dependence of Gξ ′ and Gθ on z or
z′ implicit. Let Gξ ′,i and Gθ,i be independent copies of these processes. Random
variables z, and z′ will play the role of replica variables similarly to u and for this
reason in the Sherrington–Kirkpatrick model we will denote by E

′ the expectation
in u, z and z′. The main purpose of introducing the second term in (1.37) and (1.38)
is to match the variances of these Gaussian processes, ξ ′(1) and θ(1), to variances
in (1.33) for σ 1 = σ 2.

As in the setting of diluted models, consider arbitrary n,m,q, r ≥ 1 such that
n ≤ m. For each l ≤ q consider an arbitrary subset Cl ⊆ {1, . . . ,m}, and let C1

l and
C2

l be defined as in (1.19). Let σ̄i = σ̄ (w,u, vi). For l ≤ q define

Ul = E
′ ∏
i∈C1

l

thGξ ′,i(σ̄ (w,u, ·)) ∏
i∈C2

l

σ̄i En,r ,(1.39)

where

En,r = exp
(∑

i≤n

log chGξ ′,i(σ̄ (w,u, ·)) + ∑
k≤r

Gθ,k(σ̄ (w,u, ·))
)
,(1.40)

and let V = E
′En,r . If M denotes the set of possible limits of μN corresponding

to the Hamiltonian (1.30) perturbed by (1.34), then the following holds.

THEOREM 3. For any μ ∈ M and σ̄ = σ̄μ we have

E

∏
l≤q

E
′ ∏
i∈Cl

σ̄i = E

∏
l≤q Ul

V q
.(1.41)
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Let Minv be the family of distributions defined by the invariance properties
(1.41), so that Theorem 3 proves that M ⊆ Minv. If we define

P(μ) = log 2 + E log E
′ chGξ ′(σ̄μ(w,u, ·))

(1.42)
− E log E

′ expGθ(σ̄μ(w,u, ·)),
then we have the following representation for the free energy in the Sherrington–
Kirkpatrick model.

THEOREM 4. We have

lim
N→∞FN = inf

μ∈M
P(μ) = inf

μ∈Minv
P(μ).(1.43)

As in the case of diluted models above, let us describe several special cases of
(1.41). If r = 0 and sets Cl are such that Cl ⊆ {n + 1, . . . ,m} for all l ≤ q , then
(1.41) becomes

E

∏
l≤q

E
′ ∏
i∈Cl

σ̄i = E

∏
l≤q E

′ ∏
i∈Cl

σ̄i

∏
i≤n chGξ ′,i(σ̄ (w,u, ·))

(E′ ∏
i≤n chGξ ′,i(σ̄ (w,u, ·)))q .(1.44)

If we set n = 0, then (1.41) becomes

E
∏
l≤q

E
′ ∏
i∈Cl

σ̄i = E

∏
l≤q E

′ ∏
i∈Cl

σ̄i exp
∑

k≤r Gθ,k(σ̄ (w,u, ·))
(E′ exp

∑
k≤r Gθ,k(σ̄ (w,u, ·)))q .(1.45)

Again, these equations can be interpreted as the invariance of the spin distributions
under various random changes of density. Finally, if we set r = 0 and n = m, then
(1.41) becomes

E

∏
l≤q

E
′ ∏
i∈Cl

σ̄i

(1.46)

= E

∏
l≤q E

′ ∏
i∈Cl

thGξ ′,i(σ̄ (w,u, ·))∏
i≤n chGξ ′,i(σ̄ (w,u, ·))

(E′ ∏
i≤n chGξ ′,i(σ̄ (w,u, ·)))q .

The meaning of this self-consistency equation is that the joint distribution of spins
generated by a function σ̄ (w,u, v) coincides with the distribution of spins gener-
ated by thGξ ′(σ̄ (w,u, ·)) under a properly interpreted random change of density,
and we will discuss this interpretation in more detail below under the Parisi ultra-
metricity hypothesis. The choice of parameters in (1.46), most importantly n = m,
will be the key to the following special property of the Sherrington–Kirkpatrick
model.

THEOREM 5. For any μ ∈ Minv, the joint distribution of (R∞
l,l′)l,l′≥1 defined

in (1.7) for σ̄ = σ̄μ uniquely determines μ and thus the joint distribution of all
multi-overlaps.



1326 D. PANCHENKO

The fact that the joint distribution of overlaps determines μ leads to a natural
addition to the statement of Theorem 4. It will be clear early in the proof of Theo-
rem 4 that P(μ) for μ ∈ M depends only on the distribution of the array (1.7) for
σ̄ = σ̄μ, and, as a result, one can express the free energy in (1.43) as the infimum
over a family of measures M′

inv defined completely in terms of the invariance of
the joint overlap distribution and such that Minv ⊆ M′

inv. For this purpose one
does not need the self-consistency part of the equations (1.41), so we will only use
the case when C2

l = Cl in (1.19) for all l. Let us consider processes Gξ ′ and Gθ in
(1.37), (1.38) defined in terms of replicas (ul), (zl) and (z′

l) of u, z and z′, namely,

Gξ ′(σ̄ (w,ul, ·)) = gξ ′(σ̄ (w,ul, ·)) + zl

(
ξ ′(1) − ξ ′(Evσ̄ (w,ul, v)2)

)1/2(1.47)

and

Gθ(σ̄ (w,ul, ·)) = gθ (σ̄ (w,ul, ·)) + z′
l

(
θ(1) − θ(Evσ̄ (w,ul, v)2)

)1/2
.(1.48)

Let F = F((R∞
l,l′)l,l′≤q) be an arbitrary continuous function of the overlaps on q

replicas. Let

U = E
′F

∏
l≤q

exp
(∑

i≤n

log chGξ ′,i (σ̄ (w,ul, ·)) + ∑
k≤r

Gθ,k(σ̄ (w,ul, ·))
)
.(1.49)

Then the condition

EF = E(U/V q)(1.50)

for all q,n, r and all continuous bounded functions F defines the family M′
inv.

Equation (1.50) is obviously implied by (1.41) which contains the case of poly-
nomial F simply by making sure that C2

l = Cl , so Minv ⊆ M′
inv. Then one can

add

lim
N→∞FN = inf

μ∈M′
inv

P(μ)(1.51)

to the statement of Theorem 4. This together with Theorem 5 shows that in the
Sherrington–Kirkpatrick model the role of the order parameter is played by the
joint distribution of overlaps rather than the joint distribution of all multi-overlaps
or the generic functional order parameter σ̄μ. This gives an idea about how close
this point of view takes us to the Parisi ansatz [24] where the order parameter is
the distribution of one overlap. Since we can always ensure that the Ghirlanda–
Guerra identities [13] hold by adding a mixed p-spin perturbation term [see (1.52)
below], the remaining gap is the ultrametricity of the overlaps, since it is well
known that the Ghirlanda–Guerra identities and ultrametricity determine the joint
distribution of overlaps from the distribution of one overlap; see, for example, [6]
or [8]. If one can generalize the results in [19] and [29] to show that the Ghirlanda–
Guerra identities always imply ultrametricity, (1.43) would coincide with the Parisi
formula proved in [27].
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The Ghirlanda–Guerra identities and stochastic stability. Let us mention that
the Ghirlanda–Guerra identities and stochastic stability can also be expressed in
terms of the generic functional order parameter σ̄ . We will use a version of both
properties in the formulation proved in [29]. Let us now consider a different per-
turbation term

Hδ
N(σ ) = δN

∑
p≥1

βN,pH ′
N,p(σ ),(1.52)

where

−H ′
N,p(σ ) = 1

N(p−1)/2

∑
1≤i1,...,ip≤N

g′
i1,...,ip

σi1 · · ·σip(1.53)

are independent copies of (1.31). When δN → 0 this perturbation term is of smaller
order than (1.30) and does not affect the limit of the free energy. However, the ar-
guments in the proof of the Ghirlanda–Guerra identities and stochastic stability
in [29] require that δN does not go to zero too fast; for example, the choice of
δN = N−1/16 works. Then, Theorem 2.5 in [29] states that one can choose a se-
quence βN = (βN,p) such that |βN,p| ≤ 2−p for all N and such that the following
properties hold. First of all, if 〈·〉 is the Gibbs average corresponding to the sum

−H ′
N(σ ) = −HN(σ ) − Hδ

N(σ )(1.54)

of the Hamiltonians (1.30) and (1.52), and F is a continuous function of finitely
many multi–overlaps (1.5) on replicas σ 1, . . . ,σ n, then the Ghirlanda–Guerra
identities

lim
N→∞

∣∣∣∣∣E〈FR
p
1,n+1〉 − 1

n
E〈F 〉E〈Rp

1,2〉 − 1

n

n∑
l=2

E〈FR
p
1,l〉

∣∣∣∣∣ = 0(1.55)

hold for all p ≥ 1. Now, for p ≥ 1, let Gp(σ ) be a Gaussian process on �N with
covariance

EGp(σ 1)Gp(σ 2) = R
p
1,2,(1.56)

and for t > 0 let 〈·〉t denote the Gibbs average corresponding to the Hamiltonian

−H ′
N,t (σ ) = −H ′

N(σ ) − tGp(σ ).

Then, in addition to (1.55), the following stochastic stability property holds for any
t > 0:

lim
N→∞|E〈F 〉t − E〈F 〉| = 0.(1.57)

This property was also proved in [4] without perturbation (1.52) under the condi-
tion of differentiability of the limiting free energy. Let μN be the joint distribution
of spins (1.2) corresponding to the Hamiltonian H ′

N(σ ) and M be the set of all
limits of (μN). Then both (1.55) and (1.57) can be expressed in the limit in terms
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of σ̄ = σ̄μ for any μ ∈ M as follows. First of all, (1.55) becomes the exact equality
in the limit by comment above (1.6),

EF(R∞
1,n+1)

p = 1

n
EFE(R∞

1,2)
p + 1

n

n∑
l=2

EF(R∞
1,l)

p.(1.58)

Stochastic stability (1.57) can be expressed as follows. For w ∈ [0,1], let
gp(σ̄ (w,u, ·)) be a Gaussian process indexed by u ∈ [0,1] with covariance

Cov(gp(σ̄ (w,u, ·)), gp(σ̄ (w,u′, ·))) = (Evσ̄ (w,u, v)σ̄ (w,u′, v))p(1.59)

and, as in (1.37), let

Gp(σ̄ (w,u, ·)) = gp(σ̄ (w,u, ·)) + z
(
1 − (Evσ̄ (w,u, v)2)p

)1/2
.(1.60)

Then (1.57) implies the following analog of Theorem 3.

THEOREM 6. For any μ ∈ M and σ̄ = σ̄μ we have for all p ≥ 1 and t > 0,

E

∏
l≤q

E
′ ∏
i∈Cl

σ̄i = E

∏
l≤q E

′ ∏
i∈Cl

σ̄i exp tGp(σ̄ (w,u, ·))
(E′ exp tGp(σ̄ (w,u, ·)))q .(1.61)

The proof that (1.57) implies (1.61) will not be detailed since it follows exactly
the same argument as the proof of Theorem 3 (we will point this out at the ap-
propriate step in Section 3.4). Note that (1.61) is more general than (1.45), which
shows that the invariance of Theorem 3 is related to the stochastic stability (1.57).
It is interesting to note, however, that the size of the perturbation (1.34) that ensures
the invariance in (1.41) was of arbitrarily smaller order than the original Hamilto-
nian (1.30) since cN could grow arbitrarily slowly while perturbation (1.52) must
be large enough since δN cannot go to zero too fast. Moreover, the form of the
perturbation (1.34) plays a crucial role in the proof of the self-consistency part
(1.46) of equations (1.41) which will allow us to give an explicit construction of
the functional order parameter σ̄ below under the Parisi ultrametricity hypothe-
sis. The special case of the stochastic stability (1.61) for the overlaps [rather than
multi-overlaps as in (1.61)] was the starting point of the main result in [3] under
certain additional assumptions on σ̄ .

Let us make one more comment about the Ghirlanda–Guerra identities (1.58)
from the point of view of the generic functional order parameter σ̄ . Equation (1.55)
always arises as a simple consequence of the following concentration statement
either for the perturbation Hamiltonian (1.53) (see [29]),

lim
N→∞ E

〈∣∣∣∣H
′
N,p

N
− E

〈H ′
N,p

N

〉∣∣∣∣
〉
= 0(1.62)

or for the Hamiltonian in (1.31),

lim
N→∞ E

〈∣∣∣∣HN,p

N
− E

〈
HN,p

N

〉∣∣∣∣
〉
= 0,(1.63)
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which was proved in [21] for any p such that βp �= 0 in (1.30) (the case of
p = 1 was first proved in [9]). One can similarly encode the limiting Ghirlanda–
Guerra identities (1.58) as a concentration statement for the Gaussian process
Gp(σ̄ (w,u, ·)) in (1.60) as follows.

THEOREM 7. Assuming (1.61), the following are equivalent:

(1) the Ghirlanda–Guerra identities (1.58) hold;
(2) for all p ≥ 1,

E
Gp(σ̄ (w,u, ·))2 exp tGp(σ̄ (w,u, ·))

E′ exp tGp(σ̄ (w,u, ·))
(1.64)

−
(

E
Gp(σ̄ (w,u, ·)) exp tGp(σ̄ (w,u, ·))

E′ exp tGp(σ̄ (w,u, ·))
)2

is uniformly bounded for all t > 0, in which case it is equal to 1.

The result will follow from a simple application of the Gaussian integration by
parts and the main reason behind this equivalence will be very similar to the proof
of the Ghirlanda–Guerra identities for Poisson–Dirichlet cascades in [30].

1.3. Connections to the Parisi ansatz. We will now discuss how the functional
order parameter σ̄ (w,u, v) fits into the picture of the “generic ultrametric Parisi
ansatz” expected to hold in the Sherrington–Kirkpatrick and diluted models and
believed to represent some kind of general principle in other models as well. We
will begin with the case of the Sherrington–Kirkpatrick model where the joint
distribution of the overlap array (1.7) under the Parisi ultrametricity conjecture is
well understood, and we will use it to give an explicit construction of σ̄ (w,u, v).
This will serve as an illustration of a more general case that will appear in the
diluted models.

Parisi ansatz in the Sherrington–Kirkpatrick model. Let us go back to the self-
consistency equations (1.46) and show that they can be used to give an explicit for-
mula for the function σ̄ , or the distribution of spins, under the Parisi ultrametricity
hypothesis and the Ghirlanda–Guerra identities. In this section we will assume that
the reader is familiar with the Ruelle probability cascades [25] and refer to exten-
sive literature on the subject for details. Equation (1.7) defines some realization
of the directing measure of the overlap array in the following sense. If we think
of σ̄ (w,u, ·) as a function in H = L2([0,1], dv), then the image of the Lebesgue
measure on [0,1] by the map u → σ̄ (w,u, ·) defines a random probability mea-
sure ηw on H . Equation (1.7) states that the overlaps can be generated by scalar
products in H of an i.i.d. sequence from this random measure. Any such mea-
sure ηw defined on an arbitrary Hilbert space is called the directing measure of
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the overlap array (R∞
l,l′). It is defined uniquely up to a random isometry; see, for

example, Lemma 4 in [20], or in the case of discrete overlap the end of the proof of
Theorem 4 in [19]. By Theorem 2 in [19], the Ghirlanda–Guerra identities imply
that

Evσ̄ (w,u, v)2 = q∗ a.s.,(1.65)

where q∗ is the largest point in the support of the distribution of R∞
1,2, and, there-

fore, equation (1.46) can be slightly simplified by getting rid of the last term
in (1.37),

E

∏
l≤q

E
′ ∏
i∈Cl

σ̄i

(1.66)

= E

∏
l≤q E

′ ∏
i∈Cl

thgξ ′,i(σ̄ (w,u, ·))∏
i≤n chgξ ′,i(σ̄ (w,u, ·))

(E′ ∏
i≤n chgξ ′,i(σ̄ (w,u, ·)))q .

The key observation now is that the right-hand side of (1.66) does not depend on
the particular realization of the directing measure since the Gaussian process gξ ′ is
defined by its covariance function (1.35) which depends only on the L2([0,1], dv)

structure of the family σ̄ (w,u, ·). Let us first interpret the right-hand side of (1.66)
when the overlap distribution is discrete,

P(R∞
1,2 = ql) = ml+1 − ml(1.67)

for some 0 ≤ q1 < q2 < · · · < qk = q∗ ≤ 1 and 0 = m1 < · · · < mk < mk+1 = 1. In
this case it is well known that one directing measure of the overlaps is given by the
Ruelle probability cascades, of course, assuming the Ghirlanda–Guerra identities
and ultrametricity (see, e.g., [3, 19, 29] or [30]) and, therefore, (gξ ′,i) are the usual
Gaussian fields associated with the cascades. The Ruelle probability cascades is
a discrete random measure with Poisson–Dirichlet weights (wα) customarily in-
dexed by α ∈ N

k , where k is the number of atoms in (1.67), so that the Gaussian
fields are also indexed by α, (gξ ′,i(α)). By definition of the directing measure ηw ,
the expectation E

′ in u plays the role of averaging with respect to these weights,
so that the right-hand side of (1.66) can be rewritten as

E

∏
l≤q

∑
α wα

∏
i∈Cl

thgξ ′,i(α)
∏

i≤n chgξ ′,i(α)

(
∑

α wα

∏
i≤n chgξ ′,i(α))q

.(1.68)

This in its turn can be rewritten using well-known properties of the Ruelle proba-
bility cascades, in particular, Lemma 1.2 in [23] which is a recursive application
of Proposition A.2 in [7]. If we denote

w′
α = wα

∏
i≤n chgξ ′,i(α)∑

α wα

∏
i≤n chgξ ′,i(α)

,

then the point processes

(w′
α, (gξ ′,i(α))i≤n)α∈Nk

d= (wα, (g′
ξ ′,i(α))i≤n)α∈Nk(1.69)
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have the same distribution, where (g′
ξ ′,i(α)) is a random field (no longer Gaussian)

associated with the Ruelle probability cascades defined from the Gaussian field
(gξ ′,i(α)) by an explicit change of density; see equation (7) in [23]. Therefore,
(1.66) can be rewritten as

E

∏
l≤q

E
′ ∏
i∈Cl

σ̄i = E

∏
l≤q

∑
α

wα

∏
i∈Cl

thg′
ξ ′,i(α),(1.70)

which can now be interpreted as the explicit construction of σ̄ (w,u, v). The first
coordinate w corresponds to generating the weights (wα)α∈Nk of the Ruelle prob-
ability cascade with the parameters 0 = m1 < · · · < mk < 1, the second coordinate
u plays the role of sampling an index α according to the weights (wα) and the
last coordinate v corresponds to generating the random field (g′

ξ ′(α)), so that the

directing measure ηw carries weight wα at the point thg′
ξ ′(α) in L2([0,1], dv). An-

other way to write this is to consider a partition (Cα)α∈Nk of [0,1] into intervals of
length |Cα| = wα and let

σ̄ (w,u, v) = ∑
α∈Nk

I (u ∈ Cα) thg′
ξ ′(α),(1.71)

where we keep the dependence of (Cα) on w and (g′
ξ ′(α)) on v implicit. In par-

ticular, (1.70) implies that the limiting distribution of the Gibbs averages 〈σi〉 of
finitely many spins 1 ≤ i ≤ n coincides with the distribution of∑

α

wα thg′
ξ ′,i(α) for 1 ≤ i ≤ n.(1.72)

This can be thought of as the generalization of the high temperature result (The-
orem 2.4.12 in [26]) under the assumption of the Parisi ultrametricity. It will be
clear from the proof of Theorem 3 that the right-hand side of (1.66) is continuous
with respect to the distribution of the overlap array (1.7) and, on the other hand,
it is well known that ultrametricity allows one to approximate any overlap array
by a discretized overlap array satisfying (1.67) uniformly while preserving ultra-
metricity and the Ghirlanda–Guerra identities. Therefore, one can think of the case
of an arbitrary distribution of the overlap simply as the limiting case of the above
construction for discrete overlaps.

Parisi ansatz in the diluted models. To make a transition to the case of diluted
models let us look more closely at equation (1.71). Original Gaussian field (gξ ′(α))

indexed by α = (α1, . . . , αk) ∈ N
k associated to the Ruelle probability cascades is

of the form [3]

gξ ′(α) = gξ ′(α1) + gξ ′(α1, α2) + · · · + gξ ′(α1, . . . , αk),

where random variables gξ ′(α1, . . . , αl) are Gaussian with variances ξ ′(ql) −
ξ ′(ql−1) independent for different 1 ≤ l ≤ k and different (α1, . . . , αl). The field
(g′

ξ ′(α)) on the right-hand side of (1.69) is again of the form

g′
ξ ′(α) = g′

ξ ′(α1) + g′
ξ ′(α1, α2) + · · · + g′

ξ ′(α1, . . . , αk),
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and for each l ≤ k the sequence (g′
ξ ′(α1, . . . , αl))αl≥1 is i.i.d. from distribution

defined by the explicit change of density (equation (7) in [23]) which depends on
g′

ξ ′(α1), . . . , g
′
ξ ′(α1, . . . , αl−1), and these sequences are independent for different

(α1, . . . , αl−1) conditionally on the sequences (g′
ξ ′(α1)), . . . , (g

′
ξ ′(α1, . . . , αl−1)).

This means that one can generate the process (g′
ξ ′(α)) recursively as follows. Let

v(α1, . . . , αl) be random variables uniform on [0,1] independent for different 1 ≤
l ≤ k and different (α1, . . . , αl). Then for 1 ≤ l ≤ k we can define

g′
ξ ′(α1, . . . , αl) = Ql(g

′
ξ ′(α1), . . . , g

′
ξ ′(α1, . . . , αl−1), v(α1, . . . , αl)),(1.73)

where Ql as a function of the last variable is the quantile transform of the distribu-
tion defined by the aforementioned change of density. Combining all the steps of
the recursion we get

g′
ξ ′(α) = Q(v(α1), . . . , v(α1, . . . , αk))(1.74)

for some specific function Q. Equation (1.71) becomes

σ̄ (w,u, v) = ∑
α∈Nk

I (u ∈ Cα)ϕ(v(α1), . . . , v(α1, . . . , αk)),(1.75)

where ϕ = th◦Q, and again, as in (1.71), we keep the dependence of (Cα) on
w and (v(α1, . . . , αl)) on v implicit. Let us emphasize that the change of density
that defines Ql in (1.73) and, therefore, the functions Q,ϕ and σ̄ are completely
determined by the parameters of the distribution of one overlap in (1.67) which is
the functional order parameter of the Parisi ansatz in the Sherrington–Kirkpatrick
model. What seems to be the main (and only) difference in the Parisi ansatz for
diluted models is that this function ϕ is allowed to be an arbitrary (−1,1) valued
function, which we will now explain.

The Parisi functional order parameter in the diluted models appears in the de-
scription of the free energy, and one can make the connection to the generic func-
tional order parameter σ̄ by comparing the Parisi formula for the free energy to
the representation (1.23), (1.24). For example, in the notation of [22] where the
order parameter was encoded by the Ruelle probability cascade weights (wα) and
associated random field (x(α)) for α ∈ N

k , it is easy to see that in order for (1.23)
to match the Parisi formula in [22], σ̄ should be defined exactly as in (1.71),

σ̄ (w,u, v) = ∑
α∈Nk

I (u ∈ Cα) thx(α).(1.76)

The only difference from (1.71) is how the random field (x(α)) is generated com-
pared to (g′

ξ ′(α)), and once we recall how (x(α)) is generated according to the
Parisi ansatz, we will realize that one can write exactly the same representation
as (1.74),

x(α) = Q(v(α1), . . . , v(α1, . . . , αk)),(1.77)
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only now Q is allowed to be arbitrary. The field (x(α)) is customarily generated as
follows. Let P1 be the set of probability measures on R, and by induction on l ≤ k

we define Pl+1 as the set of probability measures on Pl . Let us fix η ∈ Pk (the basic
parameter) and define a random sequence (η(α1), . . . , η(α1, . . . , αk−1), x(α1, . . . ,

αk)) as follows. Given η, the sequence (η(α1))α1≥1 of elements of Pk−1 is i.i.d.
from distribution η. For 1 ≤ l ≤ k − 1, given all the elements η(α1, . . . , αs) for all
values of the integers α1, . . . , αs and all s ≤ l−1, the sequence (η(α1, . . . , αl))αl≥1
of elements of Pk−l is i.i.d. from distribution η(α1, . . . , αl−1), and these se-
quences are independent of each other for different values of (α1, . . . , αl−1). Fi-
nally, given all the elements η(α1, . . . , αs) for all values of the integers α1, . . . , αs

and all s ≤ k − 1 the sequence (x(α1, . . . , αk))αk≥1 is i.i.d. on R with distribu-
tion η(α1, . . . , αk−1) and these sequences are independent for different values of
(α1, . . . , αk−1). The process of generating x’s can be represented schematically as

η → η(α1) → ·· · → η(α1, . . . , αk−1) → x(α1, . . . , αk).(1.78)

Now, as above, let v(α1, . . . , αl) be random variables uniform on [0,1] indepen-
dent for different 1 ≤ l ≤ k and different (α1, . . . , αl). First, random variables
(η(α1))α1≥1 are i.i.d. from probability measure η on Pk−1 and, therefore, can be
generated as

η(α1) = Qk−1(v(α1))(1.79)

for some function Qk−1 : [0,1] → Pk−1. Next, random variables (η(α1, α2))α2≥1
are i.i.d. from probability measure η(α1) on Pk−2 and, therefore, can be generated
as

η(α1, α2) = Q̃k−2(η(α1), v(α1, α2))

for some function Q̃k−2(η(α1), ·) : [0,1] → Pk−2. Combining with (1.79), we can
write

η(α1, α2) = Qk−2(v(α1), v(α1, α2))(1.80)

for some function Qk−2 : [0,1]2 → Pk−2. We can continue this construction recur-
sively and at the end we will get

x(α1, . . . , αk) = Q(v(α1), . . . , v(α1, . . . , αk))(1.81)

for some function Q : [0,1]k → R, which is exactly (1.77). This representation
gives some choice of Q for a given η ∈ Pk , but any choice of Q corresponds to
some η, which is obvious by reverse induction and identifying a function of uni-
form r.v. on [0,1] with the distribution on its image.

To summarize, the Parisi ansatz can be expressed in terms of σ̄ by saying that
equation (1.75) must hold for some choice of (−1,1) valued function ϕ. Of course,
in general this statement should be understood in the limiting sense when the num-
ber (k − 1) of replica-symmetry breaking steps goes to infinity. Precise statement
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should be that in the diluted models any limiting distribution μ ∈ M of the ar-
ray (1.3) over a subsequence of (μN) can be approximated by the distribution of
the array generated by σ̄ (w,u, v) as in (1.75) for large enough k, some function
ϕ : [0,1]k → (−1,1) and some parameters 0 = m1 < · · · < mk < 1 of the distribu-
tion of weights (wα) in the Ruelle probability cascades.

This formulation clarifies another statement of the physicists, namely, that
multi-overlap R∞

1,...,n in (1.6) is the function of the overlaps R∞
l,l′ in (1.7) for

1 ≤ l < l′ ≤ n. According to (1.75) the choice of u1, . . . , un corresponds to the
choice of indices α1, . . . , αn ∈ N

k so that

R∞
1,...,n = Eϕ(v(α1

1), . . . , v(α1
1, . . . , α1

k )) · · ·ϕ(v(αn
1 ), . . . , v(αn

1 , . . . , αn
k )).

On the other hand, if we denote α1 ∧ α2 = min{i :α1
i �= α2

i } and α1 ∧ α2 = k + 1
if α1 = α2, then the overlap takes finitely many values

R∞
1,2 = Eϕ(v(α1

1), . . . , v(α1
1, . . . , α1

k ))ϕ(v(α2
1), . . . , v(α2

1, . . . , α2
k ))

= qα1∧α2

for some 0 ≤ q1 ≤ · · · ≤ qk+1 ≤ 1. This means that the values of the overlaps
(R∞

l,l′) determine (αl ∧αl′) for 1 ≤ l < l′ ≤ n. It is also clear that the multi-overlap

R∞
1,...,n is the same for two sets of indices (α1, . . . , αn) and (β1, . . . , βn) for which

(αl ∧αl′) = (βρ(l) ∧βρ(l′)) for some permutation ρ the set {1, . . . , n}. In this sense,
given representation (1.75), the overlaps indeed determine the value of the multi-
overlap. At the moment we have no idea how (1.75) can be proved, but it is helpful
to have a point of view that formulates precisely the predictions of the Parisi ansatz.

While many technical details will be quite different, the main line of the ar-
guments in the setting of the Sherrington–Kirkpatrick model in Section 3 will be
parallel to the arguments in Section 2 for diluted models. A reader only interested
in the Sherrington–Kirkpatrick model should read Lemma 2 before skipping to
Section 3.

2. Diluted models.

2.1. Properties of convergence. Let us first record a simple consequence of
the fact that the distribution of the array in (1.3) is the limit of the distribution of
spins (σ l

i ) under the annealed product Gibbs measure. As usual, 〈·〉 will denote the
expectation with respect to the random Gibbs measure. Also, recall the definition
of E

′ before Theorem 1.

LEMMA 1. Let h1, . . . , hm : {−1,+1}n → [−K,K] be some bounded func-
tions of n spins, and let h be a continuous function on [−K,K]m. Let σ =
(σi)1≤i≤n, and let s = (s1

i )1≤i≤n defined in (1.3) for some μ ∈ M. If μN converges
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to μ over subsequence (Nk), then

lim
Nk→∞ Eh(〈h1(σ )〉, . . . , 〈hm(σ )〉) = Eh(E′h1(s), . . . ,E

′hm(s)).(2.1)

PROOF. Since it is enough to prove this for polynomials h and since each hl is
a polynomial in its coordinates, this statement is simply a convergence of moments

lim
Nk→∞E

〈∏
σ l

i

〉
= E

∏
sl
i ,

where the product is over a finite subset of indices (i, l). �

We will often use this lemma for random functions h, (hl) independent of all
other randomness, simply by applying (2.1) conditionally on the randomness of
these functions. Justifications of convergence will always be omitted because of
their triviality.

Another simple property of convergence of spin distributions under the annealed
Gibbs measure in diluted models is that adding or removing a finite number of
terms to the Poisson number of terms π(αN) or π(cN) in (1.14) does not affect
the limit of these distribution over any subsequence for which the limit exists. Let
(Nk)k≥1 be any such subsequence, and let n,m be fixed integers. In fact, it will be
clear from the proof that one can let n,m grow with Nk , but we will not need this.
Let H ′

N be defined exactly as (1.14) only with π(αN)+n terms instead of π(αN)

in the first sum and π(cN) + m instead of π(cN) in the perturbation term, and let
〈·〉′ denote the corresponding Gibbs measure.

LEMMA 2. For any bounded function h of finitely many spins in array (σ l
i )

we have

lim
N→∞|E〈h〉′ − E〈h〉| = 0.(2.2)

PROOF. For certainty, let us assume that n,m ≥ 0 and |h| ≤ 1. If we denote
by 〈·〉i,j the Gibbs average conditionally on π(αN) = i and π(cN) = j , then

E〈h〉 = ∑
i,j≥0

π(αN, i)π(cN, j)E〈h〉i,j ,

where from now on π(λ, k) = λke−λ/k! and

E〈h〉′ = ∑
i,j≥0

π(αN, i)π(cN, j)E〈h〉i+n,j+m

= ∑
i≥n,j≥m

π(αN, i − n)π(cN, j − m)E〈h〉i,j .
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Therefore,

|E〈h〉′ − E〈h〉| ≤ ∑
i<n

π(αN, i) + ∑
j<m

π(cN, j)

+ ∑
i≥n,j≥m

|π(αN, i − n)π(cN, j − m) − π(αN, i)π(cN, j)|

≤ ∑
i<n

π(αN, i) + ∑
j<m

π(cN, j) + ∑
i≥n

|π(αN, i − n) − π(αN, i)|

+ ∑
j≥m

|π(cN, j − m) − π(cN, j)|.

The first two sums obviously go to zero. One can see that the third sum goes to zero
as follows. Poisson distribution with mean αN is concentrated inside the range

αN −
√

N logN ≤ i ≤ αN +
√

N logN.(2.3)

If we write

|π(αN, i − n) − π(αN, i)| = π(αN, i)

∣∣∣∣1 − i!
(i − n)!(αN)−n

∣∣∣∣,(2.4)

then it remains to note that

i!
(i − n)!(αN)−n = i(i − 1) · · · (i − n + 1)

(αN)n
→ 1

uniformly inside the range (2.3). Similarly, the last sum goes to zero which finishes
the proof. �

REMARK. Lemma 2 implies that (2.2) holds even if n is a random variable.
We will use this observation in the case when H ′

N is defined exactly as (1.14) only
with π(αN + n) terms instead of π(αN). In fact, in this case one can write

E〈h〉′ = ∑
i,j≥0

π(αN + n, i)π(cN, j)E〈h〉i,j+m

and instead of (2.4) use

|π(αN + n, i) − π(αN, i)| = π(αN, i)

∣∣∣∣1 −
(

1 + n

αN

)i

e−n

∣∣∣∣
and notice that again the last factor goes to zero uniformly over range (2.3). Sim-
ilarly, one can have π(cN + n) instead of π(cN) terms in the perturbation Hamil-
tonian without affecting convergence.

Due to the perturbation term (1.13) the following important property of conver-
gence holds.
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LEMMA 3. If μN converges to μ over subsequence (Nk) then it also converges
to μ over subsequence (Nk + n) for any n ≥ 1.

PROOF. We will show that the joint moments of spins converge to the same
limit over subsequences that differ by a finite shift n. Let h = ∏

j≤q hj where

hj = ∏
i∈Cj

σ
j
i over some finite sets of spin coordinates Cj . Let us denote by 〈·〉N

the Gibbs average with respect to the Hamiltonian (1.14) defined on N coordinates.
We will show that

lim
N→∞|E〈h〉N+n − E〈h〉N | = 0.

Let us rewrite E〈h〉N+n by treating the last n coordinates as cavity coordinates.
Let us separate the π(α(N + n)) terms in the first sum∑

k≤π(α(N+n))

θk(σi1,k
, . . . , σip,k

)(2.5)

of the Hamiltonian HN+n(σ ) in (1.14) into several groups:

(1) terms for k such that all indices i1,k, . . . , ip,k ≤ N ;
For 1 ≤ l ≤ n:
(2l) terms with exactly one of indices i1,k, . . . , ip,k equal to N + l and all oth-

ers ≤ N ;
(3) terms with at least two of indices i1,k, . . . , ip,k ≥ N .

The probabilities that a term is of these three type are

p1 =
(

N

N + n

)p

, p2,l = p
1

N + n

(
N

N + n

)p−1

, p3 = 1 − p1 − ∑
l≤n

p2,l .

Therefore, the number of terms in these groups are independent Poisson random
variables with means

α(N + n)p1 = α(N + n − np) + O(N−1),

α(N + n)p2,l = αp + O(N−1),

α(N + n)p3 = O(N−1).

We can redefine the number of terms in each group to be exactly of means α(N +
n − np),αp and 0 since asymptotically it does not affect E〈h〉N+n as in Lemma 2
or using assumption (1.12). Thus, if we write σ = (ρ,ε) ∈ �N+n for the first N

coordinates ρ = (ρ1, . . . , ρN) and the last n cavity coordinates ε = (ε1, . . . , εn),
then (2.5) can be replaced with∑

k≤π(α(N+n−np))

θk(ρi1,k
, . . . , ρip,k

)

(2.6)
+ ∑

l≤n

∑
k≤πl(αp)

θk,l(εl, ρi1,k,l
, . . . , ρip−1,k,l

),
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where indices i1,k, . . . , ip,k and i1,k,l, . . . , ip−1,k,l are all uniformly distributed on
{1, . . . ,N}. Let us now consider the perturbation term in (1.14)∑

l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, σj1,k,l
, . . . , σjp−1,k,l

),(2.7)

where j1,k,l, . . . , jp−1,k,l are uniformly distributed on {1, . . . ,N + n}. Here, we
used independent copies π̂l and θ̂k,l since πl and θk,l were already used in (2.6).
The expected number of all such indices in (2.7) that belong to {N +1, . . . ,N +n}
is cN+nαp(p − 1)n/(N + n) → 0 which means that with high probability all in-
dices belong to {1, . . . ,N}. As a result, asymptotically E〈h〉N+n will not be af-
fected if we replace the perturbation term (2.7) with∑

l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, ρj1,k,l
, . . . , ρjp−1,k,l

),(2.8)

where j1,k,l, . . . , jp−1,k,l are uniformly distributed on {1, . . . ,N}. Thus, we can
assume from now on that E〈h〉N+n is computed with respect to the Hamiltonian
which is the sum of (2.6) and (2.8). If 〈·〉′N denotes the Gibbs average on �N with
respect to the Hamiltonian

−H ′
N(ρ) = ∑

k≤π(α(N+n−np))

θk(ρi1,k
, . . . , ρip,k

)

+ ∑
l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, ρj1,k,l
, . . . , ρjp−1,k,l

),

then each factor in

〈h〉N+n = ∏
j≤q

〈hj 〉N+n = ∏
j≤q

〈 ∏
i∈Cj

σi

〉
N+n

= ∏
j≤q

〈 ∏
i∈Cj

ρi

〉
N+n

can be written as

〈hj 〉N+n = 〈∏i∈Cj
ρi Avε exp

∑
l≤n

∑
k≤πl(αp) θk,l(εl, ρi1,k,l

, . . . , ρip−1,k,l
)〉′N

〈Avε exp
∑

l≤n

∑
k≤πl(αp) θk,l(εl, ρi1,k,l

, . . . , ρip−1,k,l
)〉′N

=
〈 ∏
i∈Cj

ρi

〉′′
N

,

where 〈·〉′′N is the Gibbs average on �N corresponding to the Hamiltonian

−H ′′
N(ρ) = −H ′

N(ρ) + ∑
l≤n

log Avε exp
∑

k≤πl(αp)

θk,l(ε, ρi1,k,l
, . . . , ρip−1,k,l

).

But this Hamiltonian differs from the original Hamiltonian (1.14) only in that the
first sum has π(α(N +n−np)) terms instead of π(αN), and the perturbation term
has π(cN+n) + n terms instead of π(cN). Therefore, appealing to Lemma 2 and
remark after it shows that E〈h〉′′N is asymptotically equivalent to E〈h〉N and this
finishes the proof. �
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2.2. Lower bound.

LEMMA 4. There exists μ ∈ M such that limN→∞ FN ≥ P(μ).

PROOF. We will obtain the lower bound using the well-known fact that

lim
N→∞FN ≥ lim inf

N→∞
(
(N + 1)FN+1 − NFN

) = lim inf
N→∞ E log

ZN+1

ZN

.(2.9)

Suppose that this lower limit is achieved over subsequence (Nk), and let μ ∈ M
be a limit of (μN) over some subsubsequence of (Nk). Let σ = σμ. The consider-
ations will be very similar to the proof of Lemma 3. Let us consider E logZN+1,
and let us start by separating the π(α(N + 1)) terms in the first sum in the Hamil-
tonian HN+1 in (1.14) into three groups: (1) terms for k such that all indices
i1,k, . . . , ip,k ≤ N ; (2) terms with exactly one of indices i1,k, . . . , ip,k equal to
N + 1; (3) terms with at least two of indices i1,k, . . . , ip,k equal to N + 1. The
probabilities that a term is of these three types are

p1 =
(

N

N + 1

)p

, p2 = p
1

N + 1

(
N

N + 1

)p−1

, p3 = 1 − p1 − p2

correspondingly. Therefore, the number of terms in these three groups are inde-
pendent Poisson random variables with means

α(N + 1)p1 = α(N − p + 1) + O(N−1),

α(N + 1)p2 = αp + O(N−1),

α(N + 1)p3 = O(N−1).

For simplicity of notation, let us pretend that the number of terms in each group
is exactly of means α(N − p),αp and 0 since it will be clear from considerations
below that asymptotically it does not affect the limit in (2.9). If we write σ =
(ρ, ε) ∈ �N+1 for ρ ∈ �N and ε ∈ {−1,+1}, then we can write the first term in
HN+1(σ ) as ∑

k≤π(α(N−p+1))

θk(ρi1,k
, . . . , ρip,k

) + ∑
k≤π(αp)

θ̂k(ε, ρj1,k
, . . . , ρjp−1,k

),(2.10)

where indices i1,k, . . . , ip,k and j1,k, . . . , jp−1,k are uniformly distributed on
{1, . . . ,N}. Similarly, we could split the π(cN+1) terms in the perturbation Hamil-
tonian (1.13) into indices l for which all i1,k,l, . . . , ip−1,k,l ≤ N and indices l

for which at least one of these indices equals N + 1. However, as in the proof
of Lemma 3, since with high probability all these indices will be ≤ N and
|cN+1 − cN | → 0, we can simply replace the perturbation term with∑

l≤π(cN )

log Avε exp
∑

k≤πl(αp)

θk,l(ε, ρi1,k,l
, . . . , ρip−1,k,l

),(2.11)
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where i1,k,l, . . . , ip−1,k,l are uniformly distributed on {1, . . . ,N}. Let 〈·〉′ be the
Gibbs average on �N corresponding to the Hamiltonian

−H ′
N(ρ) = ∑

k≤π(α(N−p+1))

θk(ρi1,k
, . . . , ρip,k

)

+ ∑
l≤π(cN )

log Avε exp
∑

k≤πl(αp)

θk,l(ε, ρi1,k,l
, . . . , ρip−1,k,l

)

and Z′
N be the corresponding partition function. Then

E log
ZN+1

Z′
N

= E log
〈 ∑
ε=±1

exp
∑

k≤π(αp)

θ̂k(ε, ρj1,k
, . . . , ρjp−1,k

)

〉′
.(2.12)

Conditionally on π(αp) and (θ̂k) and on the event that all indices j1,k, . . . , jp−1,k

are different, Lemmas 1 and 2 imply that (2.12) converges to

E log E
′ ∑
ε=±1

exp
∑

k≤π(αp)

θ̂k(ε, s1,k, . . . , sp−1,k).

For large N , indices j1,k, . . . , jp−1,k will all be different for all k ≤ π(αp) with
high probability and, therefore, this convergence holds unconditionally. Similarly,
one can analyze E log(ZN/Z′

N). Let us split the first sum in the definition of
−HN(ρ) in (1.14) into two sums∑

k≤π(α(N−p+1))

θk(ρi1,k
, . . . , ρip,k

) + ∑
k≤π(α(p−1))

θ̂k(ρj1,k
, . . . , ρjp,k

),

where indices i1,k, . . . , ip,k and j1,k, . . . , jp,k are uniformly distributed on {1, . . . ,

N}. Therefore,

E log
ZN

Z′
N

= E log
〈
exp

∑
k≤π(α(p−1))

θ̂k(ρj1,k
, . . . , ρjp,k

)

〉′
.(2.13)

Again Lemmas 1 and 2 imply that this converges to

E log E
′ exp

∑
k≤π(α(p−1))

θ̂k(s1,k, . . . , sp,k),

and this finishes the proof of the lower bound. �

If we knew that μ ∈ M is the unique limit of the sequence (μN), this
would finish the proof of the first half of Theorem 2, since limN→∞ FN =
limN→∞ E logZN+1/ZN when the limit on the right exists. However, the proof
of the general case and the second half of Theorem 2 will require more work.
Before we move to the upper bound, let us record one more consequence of the
argument in Lemma 4. For n ≥ 1, let us define

Pn(μ) = log 2 + 1

n
E log E

′ Avε exp
∑
i≤n

Ai(εi) − 1

n
E log E

′ exp
∑
i≤n

Bi.(2.14)
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The following holds.

LEMMA 5. For all μ ∈ M, Pn(μ) = P(μ) for all n ≥ 1.

PROOF. We will only give a brief sketch since this will be proved for all μ ∈
Minv in Lemma 7 below. What we showed in the proof of Lemma 4 is that if μN

converges to μ over subsequence (Nk), then E logZN+1/ZN converges to P(μ)

over the same subsequence. Similarly, one can show that, given n ≥ 1, over the
same subsequence

1

n
(E logZN+n − E logZN) → Pn(μ).

The only difference is that we split the terms in the Hamiltonian HN+n(σ ) into
groups as in Lemma 3, that is, instead of group (2) we will have n groups each
consisting of the terms with exactly one of the indices i1,k, . . . , ip,k equal to N + l

for l = 1, . . . , n. On the other hand, if we write

1

n
(E logZN+n − E logZN) = 1

n

n∑
l=1

(E logZN+l − E logZN+l−1),

then repeating the proof of Lemma 4 one can show that for each term on the right-
hand side

lim
Nk→∞E log

ZNk+l

ZNk+l−1
= P(μ),

where instead of μNk
→ μ one has to use that μNk+l−1 → μ which holds by

Lemma 3. This finishes the proof. �

2.3. Upper bound and free energy. Since the perturbation term in (1.14) does
not affect the limit of free energy, we will now ignore it and consider free energy
FN defined for the original unperturbed Hamiltonian (1.8). Recall Ai(ε) and Bi

defined in (1.17) and (1.18).

LEMMA 6. For any function σ : [0,1]4 → {−1,+1} we have

FN ≤ log 2 + 1

N
E log E

′ Avε exp
∑
i≤N

Ai(εi) − 1

N
E log E

′ exp
∑
i≤N

Bi.(2.15)

REMARK. In general, this upper bound does not decouple and depends on N

since all si,k,l and ŝi,k,l defined in (1.15) and (1.16) depend on the same variable
u in the second coordinate. We will see that the proof of the upper bound (2.15)
does not to work if one tries to replace u by independent copies ui in the definition
of Ai(ε) and Bi . For σ = σμ for μ ∈ M, Lemma 5 implies that this upper bound
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does not depend on N and, thus, FN ≤ P(μ). Together with the lower bound of
Lemma 4 this proves that

lim
N→∞FN = inf

μ∈M
P(μ).

To prove the second part of Theorem 2, we will show in Lemma 7 below that the
invariance properties in (1.22) imply that Pn(μ) = P(μ) for μ ∈ Minv as well
which will finish the proof of Theorem 2.

PROOF OF LEMMA 6. A proof by interpolation is a slight modification of the
proof in [22]. For t ∈ [0,1], let us define similarly to (1.17) and (1.18)

At
i(ε) = ∑

k≤πi((1−t)pα)

θk,i(ε, si,k,1, . . . , si,k,p−1)(2.16)

and

Bt
i = ∑

k≤πi(t (p−1)α)

θ̂k,i(ŝi,k,1, . . . , ŝi,k,p).(2.17)

Consider an interpolating Hamiltonian

−HN,t (σ ) = ∑
k≤π(tαN)

θk(σi1,k
, . . . , σip,k

) + ∑
i≤N

At
i(σi) + ∑

i≤N

Bt
i(2.18)

and let

ϕ(t) = 1

N
E log E

′ ∑
σ∈�N

exp(−HN,t (σ )).

Since, clearly,

ϕ(1) = FN + 1

N
E log E

′ exp
∑
i≤N

Bi

and

ϕ(0) = log 2 + 1

N
E log E

′ Avε exp
∑
i≤N

Ai(εi),

it remains to prove that ϕ′(t) ≤ 0. Let us consider the partition function

Z = ∑
σ∈�N

exp(−HN,t (σ ))

and define

Zm = Z|π(tαN)=m, ZA
i,m = Z|πi((1−t)pα)=m and ZB

i,m = Z|πi(t (p−1)α)=m.

If we denote the Poisson p.f. as π(λ, k) = (λk/k!)e−λ, then

E log E
′Z = ∑

m≥0

π(tαN,m)E log E
′Zm
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and, for any i ≤ N ,

E log E
′Z = ∑

m≥0

π
(
(1 − t)pα,m

)
E log E

′ZA
i,m

and

E log E
′Z = ∑

m≥0

π
(
t (p − 1)α,m

)
E log E

′ZB
i,m.

Therefore, we can write

ϕ′(t) = ∑
m≥0

∂π(tαN,m)

∂t

1

N
E log E

′Zm

+ ∑
i≤N

∑
m≥0

∂π((1 − t)pα,m)

∂t

1

N
E log E

′ZA
i,m

+ ∑
i≤N

∑
m≥0

∂π(t (p − 1)α,m)

∂t

1

N
E log E

′ZB
i,m

= α
∑
m≥0

(
π(tαN,m − 1)I (m ≥ 1) − π(tαN,m)

)
E log E

′Zm

− pα
1

N

∑
i≤N

∑
m≥0

(
π

(
(1 − t)pα,m − 1

)
I (m ≥ 1)

− π
(
(1 − t)pα,m

))
E log E

′ZA
i,m

(2.19)

+ (p − 1)α
1

N

∑
i≤N

∑
m≥0

(
π

(
t (p − 1)α,m − 1

)
I (m ≥ 1)

− π
(
t (p − 1)α,m

))
E log E

′ZB
i,m

= α
∑
m≥0

π(tαN,m)E log(E′Zm+1/E
′Zm)

− pα
1

N

∑
i≤N

∑
m≥0

π
(
(1 − t)pα,m

)
E log(E′ZA

i,m+1/E
′ZA

i,m)

+ (p − 1)α
1

N

∑
i≤N

∑
m≥0

π
(
t (p − 1)α,m

)
E log(E′ZB

i,m+1/E
′ZB

i,m)

= αE log
E

′Z+1

E′Z
− pα

1

N

∑
i≤N

E log
E

′ZA
i,+1

E′Z
+ (p − 1)αE log

E
′ZB+1

E′Z
,
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where Z+1, ZA
i,+1 and ZB+1 contain one extra term in the Hamiltonian in the corre-

sponding Poisson sum. Namely,

Z+1 = ∑
σ∈�N

exp θ(σi1, . . . , σip) exp(−HN,t (σ )),

ZA
i,+1 = ∑

σ∈�N

exp θ(σi, s1, . . . , sp−1) exp(−HN,t (σ )),

ZB+1 = ∑
σ∈�N

exp θ(s1, . . . , sp) exp(−HN,t (σ )),

where random function θ and indices i1, . . . , ip uniform on {1, . . . ,N} are inde-
pendent of the randomness of the Hamiltonian HN,t . If, for a function f of σ , u

and (x), we denote by 〈f 〉t the Gibbs average

〈f 〉t = 1

E′Z
E

′ ∑
σ∈�N

f exp(−HN,t (σ )),

then (2.19) can be rewritten as

αE log〈exp θ(σi1, . . . , σip)〉t
− pα

1

N

∑
i≤N

E log〈exp θ(σi, s1, . . . , sp−1)〉t(2.20)

+ (p − 1)αE log〈exp θ(s1, . . . , sp)〉t .
By assumptions (1.9) and (1.11) we can write

log〈exp θ(σi1, . . . , σip)〉t = loga + log
(
1 + b〈f1(σi1) · · ·fp(σip)〉t )

= loga − ∑
n≥1

(−b)n

n
〈f1(σi1) · · ·fp(σip)〉nt .

Using replicas σ l , ul and (xl), we can write

〈f1(σi1) · · ·fp(σip)〉nt =
〈∏
l≤n

f1(σ
l
i1
) · · ·fp(σ l

ip
)

〉
t

and thus

1

Np

∑
i1,...,ip≤N

〈f1(σi1) · · ·fp(σip)〉nt =
〈 ∏
j≤p

Aj,n

〉
t

,

where

Aj,n = Aj,n(σ
1, . . . ,σ n) = 1

N

∑
i≤N

∏
l≤n

fj (σ
l
i ).
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Denote by E0 the expectation in f1, . . . , fp . Since f1, . . . , fp are i.i.d. and inde-
pendent of the randomness in 〈·〉t ,

E0

〈 ∏
j≤p

Aj,n

〉
t

=
〈
E0

∏
j≤p

Aj,n

〉
t

= 〈Bp
n 〉t ,

where Bn = E0Aj,n. Therefore, since we also assumed that b is independent of
f1, . . . , fp ,

E0
1

Np

∑
i1,...,ip≤N

log〈exp θ(σi1, . . . , σip)〉t = E0 loga − ∑
n≥1

(−b)n

n
〈Bp

n 〉t .(2.21)

A similar analysis applies to the second term in (2.20),

log〈exp θ(σi, s1, . . . , sp−1)〉t
= loga − ∑

n≥1

(−b)n

n

〈
fp(σi)

∏
j≤p−1

fj (sj )

〉n
t

= loga − ∑
n≥1

(−b)n

n

〈∏
l≤n

fp(σ l
i )

∏
l≤n

∏
j≤p−1

fj (s
l
j )

〉
t

,

where in the last equality we again used replicas σ l , ul and (xl); for example,
compared to (1.15), sl

j is now defined by sl
j = σ(w,ul, vj , x

l
j ). Thus,

1

N

∑
i≤N

log〈exp θ(σi, s1, . . . , sp−1)〉t = loga − ∑
n≥1

(−b)n

n

〈
Ap,n

∏
j≤p−1

∏
l≤n

fj (s
l
j )

〉
t

.

[Note: It was crucial here that sl
j do not depend on i through independent copies

ui rather than the same u. It is tempting to define the interpolation (2.18) by using
independent ui for i ≤ N since this would make the upper bound in (2.15) decou-
ple, but the proof would break down at this step.] In addition to f1, . . . , fp , let E0

also denote the expectation in (vj ) and (xl
j ) in sl

j , but not in sequences (v), (x) in
the randomness of 〈·〉t . Then,

E0
1

N

∑
i≤N

log〈exp θ(σi, s1, . . . , sp−1)〉t
(2.22)

= E0 loga − ∑
n≥1

(−b)n

n
〈Bn(Cn)

p−1〉t ,

where

Cn = Cn(w,u1, . . . , un) = E0
∏
l≤n

fj (s
l
j ) = E0

∏
l≤n

fj (σ (w,ul, vj , x
l
j ))
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obviously does not depend on j . Finally, in an absolutely similar manner

E0 log〈exp θ(s1, . . . , sp)〉t = E0 loga − ∑
n≥1

(−b)n

n
〈(Cn)

p〉t .(2.23)

Combining (2.21), (2.22) and (2.23) we see that (2.20) can be written as

−α
∑
n≥1

E(−b)n

n
E〈Bp

n − pBnC
p−1
n + (p − 1)(Cn)

p〉t ≤ 0,(2.24)

which holds true using condition (1.10) and the fact that xp − pxyp−1 + (p −
1)yp ≥ 0 for all x, y ∈ R for even p ≥ 2. This finishes the proof of the upper
bound. �

Before proving the invariance properties of Theorem 1 let us finish the proof of
Theorem 2 by showing that for invariant measures Minv the upper bound decou-
ples.

LEMMA 7. For all μ ∈ Minv, Pn(μ) = P(μ) for all n ≥ 1.

PROOF. If we recall Ai defined in (1.26), then we can rewrite (2.14) as

Pn(μ) = log 2 + 1

n
E log E

′ exp
∑
i≤n

Ai − 1

n
E log E

′ exp
∑
i≤n

Bi.(2.25)

The result will follow if we show that for any n ≥ 1,

E log
E

′ exp
∑

i≤n+1 Ai

E′ exp
∑

i≤n Ai

= E log E
′ expAn+1(2.26)

and

E log
E

′ exp
∑

i≤n+1 Bi

E′ exp
∑

i≤n Bi

= E log E
′ expBn+1.(2.27)

To prove this we will use the invariance properties (1.27) and (1.28). If in (1.28)
we choose r to be a Poisson r.v. with mean n(p − 1)α, then it becomes

E
∏
l≤q

E
′ ∏
i∈Cl

si = E

∏
l≤q E

′ ∏
i∈Cl

si exp
∑

i≤n Bi

(E′ exp
∑

i≤n Bi)q
.(2.28)

We will only show how (1.27) implies (2.26) since the proof that (2.28) implies
(2.27) is exactly the same. We only need to prove (2.26) conditionally on the Pois-
son r.v. πn+1(pα) and functions (θk,n+1) in the definition of An+1,

expAn+1 = Avε exp
∑

k≤πn+1(pα)

θk(ε, s1,n+1,k, . . . , sp−1,n+1,k),(2.29)
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since we can control these functions uniformly with high probability using condi-
tion (1.12). Approximating the logarithm by polynomials, in order to prove (2.26),
it is enough to prove that

E

(
E

′ expAn+1 exp
∑

i≤n Ai

E′ exp
∑

i≤n Ai

)q

= E(E′ expAn+1)
q(2.30)

for all q ≥ 1. Condition (1.9) implies that the right-hand side of (2.29) is a polyno-
mial of spins (sj,n+1,k) for k ≤ πn+1(pα) and j ≤ p − 1, and, therefore, (2.30) is
obviously implied by (1.27) if we simply enumerate spins (sj,n+1,k) as spins (si)

for n+ 1 ≤ i ≤ m by choosing m large enough. Averaging over random πn+1(pα)

and (θk,n+1) proves (2.30) and finishes the proof. �

Let us note that, similarly, (1.28) implies

E log
E

′ exp
∑

i≤n+1 θ̂i (ŝ1,i , . . . , ŝp,i)

E′ exp
∑

i≤n θ̂i(ŝ1,i , . . . , ŝp,i)
= E log E

′ exp θ̂1(ŝ1,1, . . . , ŝp,1),

which obviously implies (1.25), that is,

E log E
′ expB = E log E

′ exp
∑

k≤π((p−1)α)

θk(s1,k, . . . , sp,k)

= (p − 1)αE log E
′ exp θ(s1, . . . , sp).

2.4. Invariance and self-consistency equations.

PROOF OF THEOREM 1. Let h = ∏
l≤q hl where hl = ∏

j∈Cl
σ l

j . Consider μ ∈
M which is a limit of μN over some subsequence (Nk). Using Lemma 3, the left-
hand side of (1.22) is the limit of E〈h〉N+n over subsequence (Nk). The right-hand
side of (1.22) will appear as a similar limit once we rewrite this joint moment of
spins using cavity coordinates and “borrowing” some terms in the Gibbs measure
from the Hamiltonian (1.14). The spins with coordinates i ≤ n will play the role
of cavity coordinates. Let us separate the π(α(N + n)) terms in the first sum∑

k≤π(α(N+n))

θk(σi1,k
, . . . , σip,k

)(2.31)

in (1.14) in the Hamiltonian HN+n into three groups:

(1) terms for k such that all indices i1,k, . . . , ip,k > n;
For 1 ≤ j ≤ n:
(2j ) terms with exactly one of indices i1,k, . . . , ip,k equal to j and all oth-

ers > n;
(3) terms with at least two of indices i1,k, . . . , ip,k ≤ n.
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The probabilities that a term is of these three type are

p1 =
(

N

N + n

)p

, p2,j = p
1

N + n

(
N

N + n

)p−1

, p3 = 1 −p1 −∑
l≤n

p2,l .

Therefore, the number of terms in these groups are independent Poisson random
variables with means

α(N + n)p1 = α(N + n − np) + O(N−1),

α(N + n)p2,j = αp + O(N−1),

α(N + n)p3 = O(N−1).

We can redefine the number of terms in each group to be exactly of means α(N +
n − np),αp and 0 since asymptotically it does not affect E〈h〉N+n. Thus, if we
write σ = (ε,ρ) ∈ �N+n for the first the first n cavity coordinates ε = (ε1, . . . , εn)

and the last N coordinates ρ = (ρ1, . . . , ρN), then (2.31) can be replaced with∑
k≤π(α(N+n−np))

θk(ρi1,k
, . . . , ρip,k

)

(2.32)
+ ∑

j≤n

∑
k≤πj (αp)

θk,j (εj , ρi1,k,j
, . . . , ρip−1,k,j

),

where indices i1,k, . . . , ip,k and i1,k,j , . . . , ip−1,k,j are all uniformly distributed on
{1, . . . ,N}. Let us now consider the perturbation term in (1.14),∑

l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, σj1,k,l
, . . . , σjp−1,k,l

),(2.33)

where j1,k,l, . . . , jp−1,k,l are uniformly distributed on {1, . . . ,N + n}. Here, we
used independent copies π̂l and θ̂k,l since πj and θk,j were already used in (2.32).
The expected number of these indices that belong to {1, . . . , n} is cN+nαp(p −
1)n/N → 0 which means that with high probability all indices belong to {n +
1, . . . ,N + n}. As a result, asymptotically E〈h〉N+n will not be affected if we
replace the perturbation term (2.33) with∑

l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, ρj1,k,l
, . . . , ρjp−1,k,l

),(2.34)

where j1,k,l, . . . , jp−1,k,l are uniformly distributed on {1, . . . ,N}. Thus, we can
assume from now on that E〈h〉N+n is computed with respect to the Hamiltonian
which is the sum of (2.32) and (2.34). If 〈·〉′N denotes the Gibbs average on �N

with respect to the Hamiltonian

−H ′
N(ρ) = ∑

k≤π(α(N+n−np))

θk(ρi1,k
, . . . , ρip,k

)

(2.35)
+ ∑

l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, ρj1,k,l
, . . . , ρjp−1,k,l

),
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then we can write

E〈h〉N+n = E

∏
l≤q UN,l

V
q
N

,(2.36)

where

UN,l =
〈
Avε hl(ε,ρ) exp

∑
j≤n

∑
k≤πj (αp)

θk,j (εj , ρi1,k,j
, . . . , ρip−1,k,j

)

〉′
N

and

VN =
〈
Avε exp

∑
j≤n

∑
k≤πj (αp)

θk,j (εj , ρi1,k,j
, . . . , ρip−1,k,j

)

〉′
N

.

Finally, given r ≥ 1, let us borrow r terms from the first sum in (2.35) by splitting
the last r terms and replacing the first sum in (2.35) with∑

k≤π(α(N+n−np))−r

θk(ρi1,k
, . . . , ρip,k

) + ∑
k≤r

θ̂k(ρj1,k
, . . . , ρjp,k

).

Here we ignore the negligible event when π(α(N + n − np)) < r . If we define

−H ′′
N(ρ) = ∑

k≤π(α(N+n−np))−r

θk(ρi1,k
, . . . , ρip,k

)

(2.37)
+ ∑

l≤π(cN+n)

log Avε exp
∑

k≤π̂l (αp)

θ̂k,l(ε, ρj1,k,l
, . . . , ρjp−1,k,l

)

and let 〈·〉′′N denote the Gibbs average on �N with respect to this Hamiltonian then
UN,l/VN = U ′

N,l/V ′
N where

U ′
N,l =

〈
Avε hl(ε,ρ) exp

∑
j≤n

∑
k≤πj (αp)

θk,j (εj , ρi1,k,j
, . . . , ρip−1,k,j

)

× exp
∑
k≤r

θ̂k(ρj1,k
, . . . , ρjp,k

)

〉′′
N

and

V ′′
N =

〈
Avε exp

∑
j≤n

∑
k≤πj (αp)

θk,j (εj , ρi1,k,j
, . . . , ρip−1,k,j

)

× exp
∑
k≤r

θ̂k(ρj1,k
, . . . , ρjp,k

)

〉′′
N

.

By Lemma 2, the distribution of spins under the annealed Gibbs measure E〈·〉′′N
corresponding to the Hamiltonian H ′′

N(ρ) still converges to μ over the subse-
quence (Nk). Conditionally on (πj (αp)), (θk,j ), (θ̂k) and on the event that all
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indices i1,k,j , . . . , ip−1,k,j and j1,k, . . . , jp,k are different, Lemma 1 implies that
the right-hand side of (2.36) converges over subsequence (Nk) to E

∏
l≤q Ul/V q

where (Ul) and V are defined in (1.20) and (1.21) only now conditionally on the
above sequences. Since asymptotically all indices are different with high proba-
bility, the same convergence holds unconditionally, and this completes the proof.

�

3. Sherrington–Kirkpatrick model.

3.1. Properties of convergence. Of course, Lemma 1 still holds since it
does not really depend on the model. However, the role of this lemma in the
Sherrington–Kirkpatrick model will be played by the statement that we made at
the beginning of the introduction which we now record for the reference.

LEMMA 8. The joint distribution of spins (σ l
i ) and multi-overlaps (1.5) con-

verges to the joint distribution of spins (1.3) and multi-overlaps (1.6) over any
subsequence along which μN converges to μ.

Lemma 2 also has a straightforward analog for the Sherrington–Kirkpatrick
model. Let 〈·〉 denote the Gibbs average with respect to the sum of an arbitrary
Hamiltonian on �N and a perturbation term (1.34), and let 〈·〉′ denote the Gibbs
average corresponding to the sum of the same arbitrary Hamiltonian and a pertur-
bation as in (1.34), only with the number of terms replaced by π(cN) + n instead
of π(cN) in the first sum and π ′(cN) + m instead of π ′(cN) in the second sum, for
any finite m,n ≥ 1. Then the following holds.

LEMMA 9. For any bounded function h of finitely many spins, or finitely many
multi-overlaps, we have

lim
N→∞|E〈h〉′ − E〈h〉| = 0.(3.1)

The proof is exactly the same as in Lemma 2. The role of the perturbation (1.34)
will finally start becoming clear in the following exact analog of Lemma 3.

LEMMA 10. If μN converges to μ over subsequence (Nk), then it also con-
verges to μ over subsequence (Nk + n) for any n ≥ 1.

PROOF. We will show that the joint moments of spins converge to the same
limit over subsequences that differ by a finite shift n. Let h = ∏

j≤q hj where

hj = ∏
i∈Cj

σ
j
i over some finite sets of spin coordinates Cj . Let us denote by 〈·〉N

the Gibbs average with respect to the Hamiltonian (1.14) defined on N coordinates.
We will show that

lim
N→∞|E〈h〉N+n − E〈h〉N | = 0.
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Let us rewrite E〈h〉N+n by treating the last n coordinates as cavity coordinates.
Let us write σ = (ρ,ε) ∈ �N+n for the first N coordinates ρ = (ρ1, . . . , ρN) and
the last n cavity coordinates ε = (ε1, . . . , εn) and rewrite (1.30) as

−HN+n(ρ) + ∑
i≤n

εiZi(ρ) + δ(σ ),(3.2)

where we define (slightly abusing notations)

−HN+n(ρ) := ∑
p≥1

βp

(N + n)(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipρi1 · · ·ρip;(3.3)

the term εiZi(ρ) consists of all terms in (1.30) with only one factor εi from ε
present, and the last term δ is the sum of terms with at least two factors in ε. It is
easy to check that

EZi(ρ
1)Zi(ρ

2) = ξ ′(R(ρ1,ρ2)) + oN(1)

uniformly over all ρ1,ρ2, and the covariance of δ(σ ) is also of small order uni-
formly over σ 1,σ 2. By the usual Gaussian interpolation one can therefore redefine
the Hamiltonian HN+n(σ ) by

−HN+n(σ ) = −HN+n(ρ) + ∑
i≤n

εiZi(ρ),(3.4)

where Gaussian processes Zi(ρ) have covariance ξ ′(R(ρ1,ρ2)). We can replace
the perturbation term −H

p
N+n(σ ) by

−H
p
N(ρ) = ∑

k≤π(cN )

log chGξ ′,k(ρ) + ∑
k≤π ′(cN )

Gθ,k(ρ)(3.5)

without affecting E〈h〉N+n asymptotically, since by Lemma 9 we can slightly
modify the Poisson number of terms using that |cN+n − cN | → 0 and then re-
place Gξ ′,i(σ ) and Gθ,i(σ ) by Gξ ′,i(ρ) and Gθ,i(ρ) by interpolation using that
cN = o(N). If 〈·〉′N denotes the Gibbs average on �N with respect to the Hamilto-
nian

−H ′
N(ρ) = −HN+n(ρ) − H

p
N(ρ),(3.6)

then each factor in

〈h〉N+n = ∏
j≤q

〈hj 〉N+n = ∏
j≤q

〈 ∏
i∈Cj

σi

〉
N+n

= ∏
j≤q

〈 ∏
i∈Cj

ρi

〉
N+n

(in the last equality we used that for large N all sets Cj will be on the first N

coordinates) can be written as

〈hj 〉N+n = 〈∏i∈Cj
ρi Avε exp

∑
i≤n εiZi(ρ)〉′N

〈Avε exp
∑

i≤n εiZi(ρ)〉′N
=

〈 ∏
i∈Cj

ρi

〉′′
N

,
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where 〈·〉′′N is the Gibbs average on �N corresponding to the Hamiltonian

−H ′′
N(ρ) = −H ′

N(ρ) + ∑
i≤n

log chZi(ρ).

Thus, E〈h〉N+n = E〈h〉′′N . Since Zi(ρ) are independent copies of Gξ ′(ρ), in distri-
bution

−H ′′
N(ρ) = −HN+n(ρ) − H

p,1
N (ρ),

where

−H
p,1
N (ρ) = ∑

k≤π(cN )+n

log chGξ ′,k(ρ) + ∑
k≤π ′(cN )

Gθ,k(ρ).(3.7)

Let us now consider E〈h〉N . It is easy to check that, in distribution, the Hamiltonian
HN(ρ) can be related to the Hamiltonian HN+n(ρ) in (3.3) by

−HN(ρ) = −HN+n(ρ) + ∑
i≤n

Yi(ρ),(3.8)

where (Yi(ρ)) are independent Gaussian processes with covariance

EYi(ρ
1)Yi(ρ

2) = θ(R(ρ1,ρ2)) + oN(1).

Again, without affecting E〈h〉N asymptotically, one can assume that the covariance
of Yi(ρ) is exactly θ(R(ρ1,ρ2)) which means that they are independent copies of
Gθ(ρ). Therefore, we can assume that E〈h〉N is taken with respect to the Hamil-
tonian

−H ′′′
N (ρ) = −HN+n(ρ) − H

p,2
N (ρ),

where

−H
p,2
N (ρ) = ∑

k≤π(cN )

log chGξ ′,k(ρ) + ∑
k≤π ′(cN )+n

Gθ,k(ρ).(3.9)

Lemma 9 then implies that both perturbation terms (3.7) and (3.9) can be re-
placed by the original perturbation term (1.34) without affecting E〈h〉′′N and E〈h〉N
asymptotically and this finishes the proof. �

3.2. Lower bound.

LEMMA 11. There exists μ ∈ M such that limN→∞ FN ≥ P(μ).

PROOF. We again use (2.9). Suppose that this lower limit is achieved over
subsequence (Nk) and let μ ∈ M be a limit of (μN) over some subsubsequence
of (Nk). Let Z′

N and 〈·〉 be the partition function and the Gibbs average on �N
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corresponding to the Hamiltonian H ′
N defined in (3.6), and let us compute the

limit of

E log
ZN+1

Z′
N

− E log
ZN

Z′
N

along the above subsubsequence. Using (3.4) and (3.8) for n = 1 and the fact
that, as in (3.5), the perturbation Hamiltonian H

p
N+1(σ ) in ZN+1 can be replaced

by H
p
N(ρ), the above limit is equal to the limit of

log 2 + E log〈chGξ ′(ρ)〉 − E log〈expGθ(ρ)〉.
It remains to show that

lim
N→∞ E log〈chGξ ′(ρ)〉 = E log E

′ chGξ ′(σ̄μ(w,u, ·))(3.10)

and

lim
N→∞ E log〈expGθ(ρ)〉 = E log E

′ expGθ(σ̄μ(w,u, ·)),(3.11)

where for simplicity of notations we will write limits for N → ∞ rather than over
the above subsubsequence. The proof of this is identical to Talagrand’s proof of
the Baffioni–Rosati theorem in [30]. First of all, if Eg denotes the expectation in
the randomness of Gξ ′(ρ) conditionally on the randomness in 〈·〉, then standard
Gaussian concentration implies that (see, e.g., Lemma 3 in [18])

Pg

(|log〈chGξ ′(ρ)〉 − Eglog〈chGξ ′(ρ)〉| ≥ A
) ≤ e−cA2

for some small enough constant c, and since

0 ≤ Eg log〈chGξ ′(ρ)〉 ≤ log〈Eg chGξ ′(ρ)〉 ≤ ξ ′(1)/2

for large enough A > 0, we get

P
(|log〈chGξ ′(ρ)〉| ≥ A

) ≤ e−cA2
.(3.12)

Therefore, if we denote logA x = max(−A,min(logx,A)), then for large enough
A,

|E log〈chGξ ′(ρ)〉 − E logA〈chGξ ′(ρ)〉| ≤ e−cA2
.(3.13)

Next, if we define chA x = min(chx, chA), then using that

|logA x − logA y| ≤ eA|x − y| and |chx − chA x| ≤ chxI (|x| ≥ A)

we can write

|E logA〈chGξ ′(ρ)〉 − E logA〈chA Gξ ′(ρ)〉| ≤ eA
E〈| chGξ ′(ρ) − chA Gξ ′(ρ)|〉

≤ eA
E

〈
chGξ ′(ρ)I

(|Gξ ′(ρ)| ≥ A
)〉
.
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By Hölder’s inequality we can bound this by

eA(E〈Eg ch2 Gξ ′(ρ)〉)1/2(
E

〈
Pg

(|Gξ ′(ρ)| ≥ A
)〉)1/2 ≤ e−cA2

for large enough A since Pg(|Gξ ′(ρ)| ≥ A) ≤ e−cA2
. Combining with (3.13)

proves that

|E log〈chGξ ′(ρ)〉 − E logA〈chA Gξ ′(ρ)〉| ≤ e−cA2
.(3.14)

Approximating logarithm by polynomials on the interval [e−A, eA] we can approx-
imate E logA〈chA Gξ ′(ρ)〉 by some linear combinations of the moments

E〈chA Gξ ′(ρ)〉q = E

〈∏
l≤q

chA Gξ ′(ρl)

〉
= E

〈
Eg

∏
l≤q

chA Gξ ′(ρl)

〉

for q ≥ 1. Since

Eg

∏
l≤q

chA Gξ ′(ρl) = F((Rl,l′)l,l′≤q)(3.15)

for some continuous bounded function F of the overlaps (Rl,l′)l,l′≤q , Lemma 8
implies that

lim
N→∞ E

〈
Eg

∏
l≤q

chA Gξ ′(ρl)

〉
= EF((R∞

l,l′)l,l′≤q).

Let us rewrite the right-hand side in terms of the process Gξ ′ in (1.37). Recall
the definition of the processes in (1.37) and (1.38). If EG is the expectation in the
Gaussian randomness of these processes, then the definition of the function F in
(3.15) implies that

EF((R∞
l,l′)l,l′≤q) = EEG

∏
l≤q

chA Gξ ′(σ̄μ(w,ul, ·)) = E(E′ chA Gξ ′(σ̄μ(w,u, ·)))q

and, therefore,

lim
N→∞ E logA〈chA Gξ ′(ρ)〉 = E logA E

′ chA Gξ ′(σ̄μ(w,u, ·)).

[Notice that this approximation by moments depended on functions of the overlaps
only which justifies the comment leading to (1.51).] One can show similarly to
(3.14) that

|E log E
′ chGξ ′(σ̄μ(w,u, ·)) − E logA E

′ chA Gξ ′(σ̄μ(w,u, ·))| ≤ e−cA2
,(3.16)

which finishes the proof of (3.10). Equation (3.11) is proved similarly. �
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3.3. Upper bound and free energy. Since the perturbation term in (1.14) does
not affect the limit of free energy, we will now ignore it and consider free energy
FN defined for the original unperturbed Hamiltonian (1.30).

LEMMA 12. For any function σ̄ : [0,1]3 → [−1,+1] we have

FN ≤ log 2 + 1

N
E log E

′ ∏
i≤N

chGξ ′,i(σ̄ (w,u, ·))
(3.17)

− 1

N
E log E

′ exp
∑
i≤N

Gθ,i(σ̄ (w,u, ·)).

PROOF. This is proved by the Guerra type interpolation as in [14]. If, for t ∈
[0,1], we consider the interpolating Hamiltonian

−HN,t (σ ) = −√
tHN(σ ) + √

1 − t
∑
i≤N

σiGξ ′,i(σ̄ (w,u, ·))

+ √
t

∑
i≤N

Gθ,i(σ̄ (w,u, ·))

and interpolating free energy

ϕ(t) = 1

N
E log E

′ ∑
σ∈�N

exp(−HN,t (σ )),

then to prove (3.17) it is enough to show that ϕ′(t) ≤ 0. This is done by the usual
Gaussian integration by parts as in [14]. �

Before proving invariance properties of Theorem 3 let us finish the proof of
Theorem 4 by showing that if we let

Pn(μ) = log 2 + 1

n
E log E

′ ∏
i≤n

chGξ ′,i(σ̄μ(w,u, ·))

− 1

n
E log E

′ exp
∑
i≤n

Gθ,i(σ̄μ(w,u, ·)),

then the invariance of Theorem 3 implies the following.

LEMMA 13. For all μ ∈ Minv, Pn(μ) = P(μ) for all n ≥ 1.

PROOF. The result will follow if we show that for σ̄ = σ̄μ for any n ≥ 1,

E log
E

′ ∏
i≤n+1 chGξ ′,i(σ̄ (w,u, ·))

E′ ∏
i≤n chGξ ′,i(σ̄ (w,u, ·)) = E log E

′ chGξ ′,n+1(σ̄ (w,u, ·))(3.18)
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and

E log
E

′ exp
∑

i≤n+1 Gθ,i(σ̄ (w,u, ·))
E′ exp

∑
i≤n Gθ,i(σ̄ (w,u, ·)) = E log E

′ expGθ,n+1(σ̄ (w,u, ·)).(3.19)

To prove this we will use invariance properties (1.44) and (1.45). Using truncation
and Gaussian concentration as in Lemma 11, to prove (3.18) it is enough to show
that

E

(
E

′ chA Gξ ′,n+1(σ̄ (w,u, ·))∏
i≤n chGξ ′,i(σ̄ (w,u, ·))

E′ ∏
i≤n chGξ ′,i(σ̄ (w,u, ·))

)q

= E(E′ chA Gξ ′,n+1(σ̄ (w,u, ·)))q .
Using replicas as in (1.47), the left-hand side can be written as

E
E

′F ∏
l≤q

∏
i≤n chGξ ′,i(σ̄ (w,ul, ·))

(E′ ∏
i≤n chGξ ′,i(σ̄ (w,u, ·)))q ,(3.20)

where

F = F((R∞
l,l′)l,l′≤q) = EG

∏
l≤q

chA Gξ ′,n+1(σ̄ (w,ul, ·))

is a bounded continuous function of the overlaps defined in (1.7). Approximating
F by polynomials of overlaps and using (1.44) proves that (3.20) is equal to

EF = EEG

∏
l≤q

chA Gξ ′,n+1(σ̄ (w,ul, ·)) = E(E′ chA Gξ ′,n+1(σ̄ (w,u, ·)))q,

and this finishes the proof of (3.18). Equation (3.19) is proved similarly using
(1.45) instead. �

3.4. Invariance and self-consistency equations.

PROOFS OF THEOREMS 3 AND 5. Let h = ∏
l≤q hl where hl = ∏

i∈Cl
σ l

i .
Consider μ ∈ M which is a limit of μN over some subsequence (Nk). By Lem-
ma 10, the left-hand side of (1.41) is the limit of E〈h〉N+n over subsequence (Nk).
The right-hand side of (1.41) will appear as a similar limit once we rewrite this
joint moment of spins using cavity coordinates. The beginning of the proof will
be identical to the proof of Lemma 10, only the spins with coordinates i ≤ n

will now play the role of cavity coordinates instead of spins with coordinates
N + 1 ≤ i ≤ N + n. Let us write σ = (ε,ρ) ∈ �N+n for the first n cavity co-
ordinates ε = (ε1, . . . , εn) and the last N coordinates ρ = (ρ1, . . . , ρN). Let us
consider sequences of Gaussian processes (Zi(ρ)) and (Yi(ρ)) which are indepen-
dent copies of Gξ ′(ρ) and Gθ(ρ), correspondingly. First of all, we can replace the
perturbation term −H

p
N+n(σ ) with

−H
p
N(ρ) = ∑

k≤π(cN )

log chGξ ′,k(ρ) + ∑
k≤π ′(cN )

Gθ,k(ρ) + ∑
k≤r

Yk(ρ)(3.21)
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for a fixed r ≥ 1 without affecting E〈h〉N+n asymptotically, since by Lemma 9 we
can slightly modify the Poisson number of terms, and then we can replace Gξ ′,i(σ )

and Gθ,i(σ ) with Gξ ′,i(ρ) and Gθ,i(ρ) by interpolation using that cN = o(N).
Then, as in (3.4), we can redefine the Hamiltonian −HN+n(σ ) by

−HN+n(σ ) = −HN+n(ρ) + ∑
i≤n

εiZi(ρ),(3.22)

where HN+n(ρ) is defined in (3.3). Let 〈·〉 denote the Gibbs average corresponding
to the Hamiltonian

−H ′
N(ρ) = −HN+n(ρ) + ∑

k≤π(cN )

log chGξ ′,k(ρ) + ∑
k≤π ′(cN )

Gθ,k(ρ).(3.23)

Recalling the relationship (3.8) between HN(ρ) and HN+n(ρ), let us note that
Lemma 9 implies, as in the proof of Lemma 10, that the joint distribution of spins
μ′

N corresponding to the Hamiltonian (3.23) converges to the same limits (over
subsequences) as the original sequence μN . Let us write the function hl(σ ) in
terms of ε and ρ as

hl(σ ) = ∏
i∈Cl

σi = ∏
i∈C1

l

σi

∏
i∈C2

l

σi = ∏
i∈C1

l

εi

∏
i∈C2

l

ρi,

where we will abuse the notations and still write C2
l to denote the set of coordinates

ρi corresponding to the original coordinates σn+i . Then we can write

E〈h〉N+n = E

∏
l≤q UN,l

V
q
N

,(3.24)

where

UN,l =
〈
Avε

∏
i∈C1

l

εi exp
∑
i≤n

εiZi(ρ)
∏

i∈C2
l

ρi exp
∑
k≤r

Yk(ρ)

〉

and

VN =
〈
Avε exp

∑
i≤n

εiZi(ρ) exp
∑
k≤r

Yk(ρ)

〉
= 〈expX(ρ)〉,

where we introduced

X(ρ) = ∑
i≤n

log chZi(ρ) + ∑
k≤r

Yk(ρ).

It remains to show that

lim
N→∞ E

∏
l≤q UN,l

V
q
N

= E

∏
l≤q Ul

V q
,(3.25)
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where

Ul = E
′ Avε

∏
i∈C1

l

εi exp
∑
i≤n

εiGξ ′,i(σ̄ (w,u, ·)) ∏
i∈C2

l

σ̄i exp
∑
k≤r

Gθ,k(σ̄ (w,u, ·))

for σ̄i = σ̄ (w,u, vi) and

V = E
′ Avε exp

∑
i≤n

εiGξ ′,i(σ̄ (w,u, ·)) exp
∑
k≤r

Gθ,k(σ̄ (w,u, ·)),

which is, of course, the same equation as (1.41). [The proof that (1.57) implies
(1.61) is exactly the same of the proof of (3.25).] The proof of (3.25) is nearly
identical to the proof of (3.10) using truncation and Gaussian concentration, only
instead of approximating a truncated version of logx by polynomials we now need
to approximate a truncated version of 1/x by polynomials. If we denote

Y = logVN = log〈expX(ρ)〉,
then, as in (3.12), one can show that for large enough A > 0

P(|Y | ≥ A) ≤ e−cA2
.(3.26)

For A > 0 let (x)A = max(−A,min(x,A)) so that

|exp(−qx) − exp(−q(x)A)| ≤ max(e−qA, exp(−qx))I (|x| > A).

If we denote Z = ∏
l≤q UN,l , then, obviously, EZ2 ≤ L for some large enough

L > 0 that depends on q,n, r and function ξ , and (3.26) implies that

|EZ exp(−qY ) − EZ exp(−q(Y )A)|
(3.27)

≤ E|Z|max(e−qA, exp(−qY ))I (|Y | > A) ≤ e−cA2

for large enough A. Next, let expA x = max(e−A,min(expx, eA)), and let Y ′ =
log〈expA X(ρ)〉. Since for all x, y ∈ R

|exp(−q(x)A) − exp(−q(y)A)| ≤ qe(q+1)A|expx − expy|,
we get

|exp(−q(Y )A) − exp(−q(Y ′)A)| ≤ qe(q+1)A〈|expX(ρ) − expA X(ρ)|〉.
Next, since for all x ∈ R

|expx − expA x| ≤ max(e−A, expx)I (|x| ≥ A),

we obtain the following bound:

|exp(−q(Y )A − exp(−q(Y ′)A)| ≤ qe(q+1)A〈
max(e−A, expX(ρ))I

(|X(ρ)| ≥ A
)〉
.
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It is easy to see that P(|X(ρ)| ≥ A) ≤ e−cA2
for large enough A, and using

Hölder’s inequality,

|EZ exp(−q(Y )A) − EZ exp(−q(Y ′)A)|
≤ qe(q+1)A(EZ2)1/2(E〈max(e−4A, exp 4X(ρ))〉)1/4

× (
E

〈
I
(|X(ρ)| ≥ A

)〉)1/4

≤ e−cA2
.

Combining this with (3.27) we prove that

|EZ exp(−qY ) − EZ exp(−q(Y ′)A)| ≤ e−cA2

for large enough A. We can now approximate exp(−q(Y ′)A) = 〈expA X(ρ)〉−q

uniformly by polynomials of 〈expA X(ρ)〉, and therefore EZ exp(−q(Y ′)A) can
be approximated by a linear combination of terms

E

∏
l≤q

UN,l〈expA X(ρ)〉s .(3.28)

If we write the product of the Gibbs averages using replicas and take expectation
with respect to the Gaussian processes (Xi(ρ)) and (Yi(ρ)) inside the Gibbs aver-
age, we will get a Gibbs average of some bounded continuous function of finitely
many overlaps in addition to the spin terms

∏
i∈C2

l
ρi that appear in the defini-

tion of UN,l . Observe that if, from the beginning, we chose m = n, then factors∏
i∈C2

l
ρi would not be present, which means that the linear combination of (3.28)

gives an approximation of E〈h〉N+n (and thus E〈h〉N ) by the annealed Gibbs av-
erage of some functions of overlaps only. In particular, this proves Theorem 5. In
the general case, Lemma 8 implies that (3.28) converges to E

∏
l≤q Ul(VA)s where

VA = E
′ expA

(∑
i≤n

log chGξ ′,i(σ̄ (w,u, ·)) + ∑
k≤r

Gθ,k(σ̄ (w,u, ·))
)
.

Since the same truncation and approximation arguments can be carried out in par-
allel for the right-hand side of (3.25), this proves (3.25) and finishes the proof of
Theorem 3. �

PROOF OF THEOREM 7. Using Gaussian integration by parts and invariance
in (1.61), (1.64) can be rewritten as

1 − t2(
E(R∞

1,2)
2p − 2E(R∞

1,2)
p(R∞

1,3)
p + (E(R∞

1,2)
p)2)

,

and the second term disappears whenever the Ghirlanda–Guerra identities (1.58)
hold. On the other hand, if (1.64) is uniformly bounded for all t > 0, then for any
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bounded continuous function F of multi-overlaps (1.6) on n replicas,

E
FGp(σ̄ (w,u1, ·)) exp t

∑
l≤n Gp(σ̄ (w,ul, ·))

(E′ exp tGp(σ̄ (w,u, ·)))n
(3.29)

− EFE
Gp(σ̄ (w,u, ·)) exp tGp(σ̄ (w,u, ·))

E′ exp tGp(σ̄ (w,u, ·))
is also uniformly bounded by invariance in (1.61) and Hölder’s inequality. Using
Gaussian integration by parts and invariance in (1.61), this is equal to

t

(
n∑

l=2

EF(R∞
1,l)

p − nEF(R∞
1,n+1)

p + EFE(R∞
1,2)

p

)
,(3.30)

which can be bounded only if (1.58) holds. �
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