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STOCHASTIC GEOMETRIC WAVE EQUATIONS WITH VALUES IN
COMPACT RIEMANNIAN HOMOGENEOUS SPACES

BY ZDZISŁAW BRZEŹNIAK AND MARTIN ONDREJÁT1

University of York and Institute of Information Theory
and Automation of the ASCR

Let M be a compact Riemannian homogeneous space (e.g., a Euclidean
sphere). We prove existence of a global weak solution of the stochastic wave
equation Dt ∂t u =∑d

k=1 Dxk ∂xk u + fu(Du) + gu(Du)Ẇ in any dimension
d ≥ 1, where f and g are continuous multilinear maps, and W is a spatially
homogeneous Wiener process on Rd with finite spectral measure. A nonstan-
dard method of constructing weak solutions of SPDEs, that does not rely on
martingale representation theorem, is employed.

1. Introduction. Wave equations subject to random perturbations and/or
forcing have been a subject of deep and extensive studies in the last forty years.
One of the reasons for this is that they find applications in physics, relativistic
quantum mechanics or oceanography; see, for instance, Cabaña [9], Carmona and
Nualart [10, 11], Chow [15], Dalang [18–20], Marcus and Mizel [36], Maslowski
and Seidler [37], Millet and Morien [38], Ondreját [43, 46], Peszat and Zabczyk
[51, 52], Peszat [50], Millet and Sanz-Sole [39] and references therein. All these
research papers are concerned with equations whose solutions take values in Eu-
clidean spaces. However, many theories and models in modern physics, such as
harmonic gauges in general relativity, nonlinear σ -models in particle systems,
electro-vacuum Einstein equations or Yang–Mills field theory, that require the so-
lutions to take values are a Riemannian manifold; see, for instance, Ginibre and
Velo [26] and Shatah and Struwe [57]. Stochastic wave equations with values in
Riemannian manifolds were first studied by the authors of the present paper in [6];
see also [7], where the existence and the uniqueness of global strong solutions was
proven for equations defined on the one-dimensional Minkowski space R1+1 and
arbitrary target Riemannian manifold. In the present paper, we strive to obtain a
global existence result for equations on general Minkowski space R1+d , d ∈ N,
however, for the price that the target space is a particular Riemannian manifold—
a compact homogeneous space, for example, a sphere.

Let us first briefly compare our results (obtained in this paper as well as in
the earlier one [6]) with those for the deterministic equations. For more details
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on the latter, we refer the reader to nice surveys on geometric wave equations by
Shatah and Struwe [57] and Tataru [58]. Existence and uniqueness of global so-
lutions is known for the wave equations for an arbitrary target manifold provided
that the Minkowski space of the equation is either R1+1 or R1+2; see Ladyzhen-
skaya and Shubov [35], Ginibre and Velo [26], Gu [27], Shatah [56], Zhou [60],
Christodoulou and Tahvildar-Zadeh [16] and Müller and Struwe [41]. In the for-
mer case, depending on the regularity of the initial conditions, the global solutions
are known to exist in the weak [60], respectively, the strong, sense; see [26, 27]
and [56]. In the latter case the existence of global weak solutions has been estab-
lished in [16] and [41]. In the more interesting and difficult case of R1+d with
d ≥ 3, counterexamples have been constructed (see, e.g., [13, 56] and [57]), show-
ing that smooth solutions may explode in a finite time and that weak solutions can
be nonunique. Notwithstanding, existence of global solutions can be proven for
particular target manifold; for example, for compact Riemannian homogeneous
spaces, see Freire [23]. The aim of the current paper is to consider a stochastic
counterpart of Freire’s result. In other words, we will prove existence of global
solutions for the wave equation with values a compact Riemannian homogeneous
space even if it is subject to particular (however quite general) random perturba-
tions.

Toward this end, we assume that M is a compact Riemannian homogeneous
space (see Sections 2 and 5 for more details), and we consider the initial value
problem for the following stochastic wave equation:

Dt ∂tu =
d∑

k=1

Dxk
∂xk

u + f (u, ∂tu, ∂x1u, . . . , ∂xd
u)

(1.1)
+ g(u, ∂tu, ∂x1u, . . . , ∂xd

u)Ẇ

with a random initial data (u0, v0) ∈ T M . Here D is the connection on the pull-
back bundle u−1T M induced by the Riemannian connection on M ; see, for exam-
ple, [6] and [57]. In a simpler way (see [6]),

[Dt ∂tγ ](t) = ∇∂t γ (t)(∂tγ )(t), t ∈ I,(1.2)

is the acceleration of the curve γ : I → M , I ⊂ R, at t ∈ I . Note, however, that
deep understanding of the covariant derivative D is not necessary for reading this
paper. We will denote by T kM , for k ∈ N, the vector bundle over M whose fibre
at p ∈ M is equal to (TpM)k , the k-fold cartesian product of TpM . The nonlinear
term f (and analogously g) in equation (1.1) will be assumed to be of the following
form (see Section 4):

f :T d+1M � (p, v0, . . . , vk)
(1.3)

�→ f0(p)v0 +
d∑

k=1

fk(p)vk + fd+1(p) ∈ T M,
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where fd+1 and gd+1 are continuous vector fields on M , f0, g0 :M → R are con-
tinuous functions and fk, gk :T M → T M , k = 1, . . . , d , are continuous vector
bundles homomorphisms; see Definition 4.1. Finally, we assume that W is a spa-
tially homogeneous Wiener process.

Equation (1.1) is written in a formal way, but we showed in [6] that there are
various equivalent rigorous definitions of a solution to (1.1). In the present paper
we are going to use the one in which, in view of the Nash isometric embedding
theorem [42], M is assumed to be isometrically embedded into a certain euclidean
space Rn (and so we can identify M with its image). Hence, M is assumed to be
a submanifold in Rn, and in this case, we study, instead of (1.1), the following
classical second order SPDE:

∂ttu = �u + Su(∂tu, ∂tu) −
d∑

k=1

Su(uxk
, uxk

) + fu(Du) + gu(Du)Ẇ ,(1.4)

where S is the second fundamental form of the submanifold M ⊆ Rn.
We could summarize our proof in the following way. We introduce an approx-

imation of problem (1.4) via penalization. We find a sufficiently large space in
which the laws of the approximated sequence are tight. This space has also to be
small enough so that, after using the Skorokhod embedding theorem, the conver-
gence in that space is strong enough for the sequences of approximated solutions,
as well as some auxiliary processes, to be convergent. Finally, we use the symme-
try of the target manifold to identify the limit with a solution to problem (1.4). Let
us also point out that our proof of the main theorem is based on a method (recently
introduced by the authors) of constructing weak solutions of SPDEs, that does not
rely on any kind of martingale representation theorem.

2. Notation and conventions. We will denote by BR(a), for a ∈ Rd and
R > 0, the open ball in Rd with center at a, and we put BR = BR(0). If X is a
normed vector space, then by BX

R we will denote the ball in X centered at 0 of
radius R. Now we will list notations used throughout the whole paper.

• N = {0,1, . . .} denotes the set of natural numbers, R+ = [0,∞), Leb denotes the
Lebesgue measure, Lp = Lp(Rd;Rn), Lp

loc = L
p
loc(R

d;Rn), Lp
loc is a metrizable

topological vector space equipped with a natural countable family of seminorms
(pj )j∈N defined by

pj (u) := ‖u‖Lp(Bj ), u ∈ L
p
loc, j ∈ N.(2.1)

• W
k,p
loc = W

k,p
loc (Rd;Rn), for p ∈ [1,∞] and k ∈ N, is the space of all elements

u ∈ L
p
loc whose weak derivatives up to order k belong to L

p
loc. W

k,p
loc is a metriz-

able topological vector space equipped with a natural countable family of semi-
norms (pj )j∈N,

pj (u) := ‖u‖Wk,p(Bj ), u ∈ W
k,p
loc , j ∈ N.(2.2)
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The spaces Wk,2 and W
k,2
loc are denoted by Hk and Hk

loc, respectively.
• HO = H 1(O;Rn) ⊕ L2(O;Rn) if O is an open subset of Rd and, for R > 0,

HR = HBR
.

• H = H 1(Rd;Rn) ⊕ L2(Rd;Rn) and Hloc = H 1
loc(R

d) ⊕ L2
loc(R

d;Rn).
• D = D(Rd;Rn) is the class of all compactly supported C∞-class functions

ϕ : Rd → Rn.
• Whenever Y denotes a certain class of functions defined on Rd , by Ycomp we

will denote the space of those elements of Y whose support is a compact subset
of Rd . For instance, L2

comp(R
d) and Hk

comp(R
d).

• If Z is a topological space equipped with a countable system of pseudometrics
(ρm)m∈N, then, without further reference, we will assume that the topology of
Z is metrized by a metric

ρ(a, b) =
∞∑

m=0

1

2m
min{1, ρm(a, b)}, a, b ∈ Z.(2.3)

• By T2(X,Y ) we will denote the class of Hilbert–Schmidt operators from a sep-
arable Hilbert space X to Y . By L (X,Y ) we will denote the space of all linear
continuous operators from a topological vector space X to Y ; see [54], Chap-
ter I. Both these spaces will be equipped with the strong σ -algebra, that is,
the σ -algebra generated by the family of maps T2(X,Y ) � B �→ Bx ∈ Y or
L (X,Y ) � B �→ Bx ∈ Y , x ∈ X.

• If (X,ρ) is a metric space, then we denote by C(R+;X) the space of continuous
functions f : R+ → X. The space C(R+;X) in endowed with the metric ρC ,
defined by the following formula:

ρC(f, g) =
∞∑

m=1

2−m min
{
1, sup

t∈[0,m]
ρ(f (t), g(t))

}
, f, g ∈ C(R+,X).(2.4)

• If X is a locally convex space, then by Cw(R+;X) we denote the space of
all weakly continuous functions f : R+ → X, endowed with the locally convex
topology, generated by the a family ‖ · ‖m,ϕ of pseudonorms, defined by

‖f ‖m,ϕ = sup
t∈[0,m]

|ϕ(f (t))|, m ∈ N, ϕ ∈ X∗.(2.5)

• By πR we will denote various restriction maps to the ball BR , for example,
πR :L2

loc � v �→ v|BR
∈ L2(BR) or πR :Hloc � z �→ z|BR

∈ HR . In the danger
of ambiguity we will make this precise.

• ζ is a smooth symmetric density on Rd supported in the unit ball. If m ∈ R+,
then we put ζm(·) = mdζ(m·). The sequence (ζm)∞m=1 is called an approxima-
tion of identity.

• By S (see, e.g., [54]) we will denote the Schwartz space of R-valued rapidly
decreasing C∞-class functions on Rd . By S ′ we will denote the space of tem-
pered distributions on Rd , the dual of the space S . The Fourier transform, in
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the cases of S , S ′ as well as L2, we will denote by .̂ For example, ϕ̂ ∈ S
will denote the Fourier transform of a function ϕ ∈ S .

• Given a positive measure μ on Rd , we will denote by L2
(s)(R

d,μ) the subspace

of L2(Rd,μ;C) consisting of all ψ such that ψ = ψ(s), where ψ(s)(·) = ψ(−·).
As mentioned in the Introduction, throughout the whole paper we will assume

that M is a compact Riemannian homogeneous space; see Section 5 for details.
We put:

• Hloc(M) = {(u, v) ∈ Hloc :v(x) ∈ Tu(x)M for a.e. x ∈ M}. The strong, respec-
tively, weak, topologies on Hloc(M), are by definition the traces of the strong
(resp., weak) topologies on Hloc. In particular, a function u : [0,∞) → Hloc(M)

is weakly continuous if and only if u is weakly continuous viewed as a Hloc-
valued function.

3. The Wiener process. Given a stochastic basis (�,F ,F,P), where F =
(Ft )t≥0 is a filtration, an S ′-valued process W = (Wt)t≥0 is called a spatially
homogeneous Wiener process with a spectral measure μ which, throughout the
paper we always assume to be positive, symmetric and to satisfy μ(Rd) < ∞, if
and only if the following three conditions are satisfied:

• Wϕ := (Wtϕ)t≥0 is a real F-Wiener process, for every ϕ ∈ S ;
• Wt(aϕ +ψ) = aWt(ϕ)+Wt(ψ) almost surely for all a ∈ R, t ∈ R+ and ϕ,ψ ∈

S ;
• E{Wtϕ1Wtϕ2} = t〈ϕ̂1, ϕ̂2〉L2(μ) for all t ≥ 0 and ϕ1, ϕ2 ∈ S , where L2(μ) =

L2(Rd,μ;C).

REMARK 3.1. The reader is referred to the works by Peszat and Zabczyk
[51, 52] and Brzeźniak and Peszat [8] for further details on spatially homogeneous
Wiener processes.

Let us denote by Hμ ⊆ S ′ the reproducing kernel Hilbert space of the S ′-
valued random vector W(1); see, for example, [17]. Then W is an Hμ-cylindrical
Wiener process. Moreover, see [8] and [51]; then the following result identifying
the space Hμ is known.

PROPOSITION 3.2.

Hμ = {
ψ̂μ :ψ ∈ L2

(s)(R
d,μ)

}
,

〈ψ̂μ, ϕ̂μ〉Hμ =
∫

Rd
ψ(x)ϕ(x) dμ(x), ψ,ϕ ∈ L2

(s)(R
d,μ).

See [43] for a proof of the following lemma that states that under some assump-
tions, Hμ is a function space and that multiplication operators are Hilbert–Schmidt
from Hμ to L2.
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LEMMA 3.3. Assume that μ(Rd) < ∞. Then the reproducing kernel Hilbert
space Hμ is continuously embedded in the space Cb(R

d), and for any g ∈
L2

loc(R
d,Rn) and a Borel set D ⊆ Rd , the multiplication operator mg = {Hμ �

ξ �→ g · ξ ∈ L2(D)} is Hilbert–Schmidt. Moreover, there exists a universal con-
stant cμ such that

‖mg‖T2(Hμ,L2(D)) ≤ cμ‖g‖L2(D).(3.1)

4. The main result. Roughly speaking our main result states that for each
reasonable initial data equation (1.4) has a weak solution both in the PDE and in
the Stochastic Analysis senses. By a weak solution to equation (1.4) in the PDE
sense, we mean a process that satisfies a variational form identity with a certain
class of test functions. By a weak solution in the Stochastic Analysis sense to
equation (1.4), we mean a stochastic basis, a spatially homogeneous Wiener pro-
cess (defined on that stochastic basis) and a continuous adapted process z such that
(1.4) is satisfied; see the formulation of Theorem 4.4 below. We recall that S is the
second fundamental tensor/form of the isometric embedding M ⊆ Rn.

DEFINITION 4.1. A continuous map λ :T M → T M is a vector bundles ho-
momorphisms if and only if, for every p ∈ M , the map λp :TpM → TpM is linear.

In our two previous papers [6, 7] we found two equivalent definitions of a solu-
tion to the stochastic geometric wave equation (1.1): intrinsic and extrinsic. Con-
trary to those papers, in the present article, we only deal with the extrinsic solutions
(as they refer to the ambient space Rn). Hence, since we do not introduce (neither
use) an alternative notion of an intrinsic solution, we will not use the adjective
“extrinsic.” We will discuss these issues in a subsequent publication.

ASSUMPTION 4.2. We assume that f0, g0 are continuous functions on M ,
f1, . . . , fd , g1, . . . , gd are continuous vector bundles homomorphisms and fd+1,
gd+1 are continuous vector fields on M . For b ∈ {f,g}, we set

b(p, ξ0, . . . , ξd) = b0(p)ξ0 +
d∑

k=1

bk(p)ξk + bd+1(p), p ∈ M,

(4.1)
(ξi)

d
i=0 ∈ [TpM]d+1.

DEFINITION 4.3. Suppose that � is a Borel probability measure on Hloc(M).
A system U = (�,F ,F,P,W, z) consisting of (1) a stochastic basis (�,F ,F,P),
(2) a spatially homogeneous Wiener process W and (3) an adapted, weakly-
continuous Hloc(M)-valued process z = (u, v) is called a weak solution to equa-
tion (1.1) if and only if for all ϕ ∈ D(Rd), the following equalities holds P-a.s., for
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all t ≥ 0:

〈u(t), ϕ〉 = 〈u(0), ϕ〉 +
∫ t

0
〈v(s), ϕ〉ds,(4.2)

〈v(t), ϕ〉 = 〈v(0), ϕ〉 +
∫ t

0

〈
Su(s)(v(s), v(s)), ϕ

〉
+
∫ t

0
〈f (z(s),∇u(s)), ϕ〉ds +

∫ t

0
〈u(s),�ϕ〉ds

(4.3)

−
d∑

k=1

∫ t

0

〈
Su(s)(∂xk

u(s), ∂xk
u(s)), ϕ

〉
+
∫ t

0
〈g(z(s),∇u(s)) dW,ϕ〉,

where we assume that all integrals above are convergent, and we use notation (4.1).
We will say that the system U is a weak solution to the problem (1.1) with the

initial data �, if and only if it is a weak solution to equation (1.1), and

the law of z(0) is equal to �.(4.4)

THEOREM 4.4. Assume that μ is a positive, symmetric Borel measure on Rd

such that μ(Rd) < ∞. Assume that M is a compact Riemannian homogeneous
space. Assume that � is a Borel probability measure on Hloc(M) and that the
coefficients f and g satisfy Assumption 4.2. Then there exists a weak solution to
problem (1.1) with the initial data �.

REMARK 4.5. We do not claim uniqueness of a solution in Theorem 4.4; cf.
Freire [23] where uniqueness of solutions is not known in the deterministic case
either.

REMARK 4.6. Note that the solution from Theorem 4.4 satisfies only
u(t,ω, ·) ∈ H 1

loc(R
d,Rn), t ≥ 0, ω ∈ �. Hence, for d ≥ 2, the function u(t,ω, ·)

need not be continuous in general.

REMARK 4.7. In the above theorem we assume that f0 and g0 are real func-
tions and not general vector bundles homomorphisms. We do not know whether
our result is true under these more general assumptions.

Theorem 4.4 states the mere existence of a solution. The next result tells us that,
among all possible solutions, there certainly exists one that satisfies the “local
energy estimates.”
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In order to make this precise, we define the following family of energy func-
tions: ex,T (t, ·, ·), where x ∈ Rn, T > 0 and t ∈ [0, T ],

ex,T (t, u, v) =
∫
B(x,T −t)

{
1

2
|u(y)|2 + 1

2
|∇u(y)|2 + 1

2
|v(y)|2 + s2

}
dy,

(4.5)
(u, v) ∈ Hloc.

In the above the constant s2 is defined by

s2 = max
{‖fd+1‖L∞(M),‖fd+1‖2

L∞(M) + ‖gd+1‖2
L∞(M)

}
.(4.6)

THEOREM 4.8. Assume that μ, M , �, f and g satisfy the assumptions of
Theorem 4.4. Then there exists a weak solution (�,F ,F,P, z,W) of (1.1) with
initial data � such that

E
{
1A(z(0)) sup

s∈[0,t]
L(ex,T (s, z(s)))

}
≤ 4eCtE{1A(z(0))L(ex,T (0, z(0)))}(4.7)

holds for every T ∈ R+, x ∈ Rd , t ∈ [0, T ], A ∈ B(Hloc) and every nonnegative
nondecreasing function L ∈ C[0,∞) ∩ C2(0,∞) satisfying (for some c ∈ R+)

tL′(t) + max{0, t2L′′(t)} ≤ cL(t), t > 0.(4.8)

The constant C in (4.7) depends only on c, cμ and on the L∞(M)-norms of
(fi, gi)i∈{0,...,d+1}.

5. The target manifold M . Let M be a compact Riemannian manifold, and
let the following hypotheses be satisfied:

(M1) There exists a metric-preserving diffeomorphism of M to a submanifold
in Rn for some n ∈ N (and from now on we will identify M with its image).

(M2) There exists a C∞-class function F : Rn → [0,∞) such that M =
{x :F(x) = 0}, and F is constant outside some large ball in Rn.

(M3) There exists a finite sequence (Ai)Ni=1 of skew symmetric linear operators
on Rn such that for each i ∈ {1, . . . ,N},

〈∇F(x),Aix〉 = 0 for every x ∈ Rn,(5.1)

Aip ∈ TpM for every p ∈ M.(5.2)

(M4) There exists a family (hij )1≤i,j≤N of C∞-class R-valued functions on M

such that

ξ =
N∑

i=1

N∑
j=1

hij (p)〈ξ,Aip〉RnAjp, p ∈ M,ξ ∈ TpM.(5.3)
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REMARK 5.1. Let us assume that M is a compact Riemannian manifolfd with
a compact Lie group G acting transitively by isometries on M ; that is, there exists a
smooth map π :G×M � (g,p) �→ gp ∈ M such that, with e being the unit element
in G, for all g0, g1 ∈ G and p ∈ M , π(e,p) = p and π(g0g1,p) = g0π(g1,p),
there exists (equivalently, for all) p0 ∈ M such that {π(g,p0) :g ∈ G} = M , and
for every g ∈ G, the map πg :M � p �→ π(g,p) ∈ M is an isometry. We will show
that M satisfies conditions (M1)–(M4). By [33], Theorem 2.20 and Corollary 2.23
(see also [49], Theorem 3.1), for every p ∈ M the set Gp = {g ∈ G :π(g,p) = p}
is a closed Lie subgroup of G, and the map πp :G � g �→ gp ∈ M is a locally
trivial fiber bundle over M with fibre Gp . In particular, for every p ∈ M , the map
πp is a submersion. Moreover, by the Moore–Schlafly theorem [40], there ex-
ists an isometric embedding � :M ↪→ Rn and an orthogonal representation, that
is, a smooth Lie group homomorphism, ρ :G → SO(n), where SO(n) is the or-
thogonal group, such that �(gp) = ρ(g)�(p), for all p ∈ M,g ∈ G. Each matrix
A ∈ SO(n) we identify with a linear operator on Rn (with respect to the canon-
ical ONB of Rn). Let {Xi : i ∈ I } be a basis in TeG, and let us denote, for each
i ∈ I , Ai = deρ(Xi) ∈ so(n). Then, for each i ∈ I , Ai is identified with a skew-
self-adjoint linear map in Rn. Let us also put N = �(M). Then, since as observed
earlier πp is a submersion for each p ∈ M , we infer that

linspan{Aix : i} = TxN for every x ∈ N.(5.4)

Let us choose a smooth function h : Rn → R+ such that N = h−1({0}) and h − 1
has compact support. Let us denote by νG a probability measure on G that is
invariant with respect to the right multiplication. Then a function F : Rn � x �→∫
G h(ρ(g)x)νG(dg) has the following properties: (i) F is of C∞-class; (ii) the

function F − 1 has compact support; (iii) N = F−1({0}); (iv) the function F

is ρ-invariant, that is, F(ρ(g)x) = F(x) for all g ∈ G and x ∈ Rn. Hence,
for every i ∈ I , if γ : [0,1] → G is a smooth curve such that γ (0) = e and
γ̇ (0) = Xi , then by property (iv) above and the chain rule, for every x ∈ Rn, 0 =
d
dt

F (ρ(γ (t))x)|t=0 = dxF (Aix). This proves the first one of the two additional
properties of the function F : (v) for every i ∈ I and x ∈ Rn, 〈∇F(x),Aix〉 = 0,
(vi) for every i ∈ I and each x ∈ N , Aix ∈ TxN and for each x ∈ N , the set
{Aix : i ∈ I } spans the tangent space TxN . To prove the first part of (vi) it is suf-
ficient to observe that if x ∈ N , i is fixed, and γ is as earlier, then ρ(γ (t))x ∈ N

for every t ∈ [0,1], and so Aix = d
dt

ρ(γ (t))x|t=0 ∈ TxN . The second part of (vi)
is simply (5.4).

In view of (5.4) for each x ∈ N we can find i1, . . . , idimM and a neighborhood
Ux of x in N such that Ai1y, . . . ,AidimM

y is a basis of TyN for each y ∈ Ux .
By the Gram–Schmidt orthogonalization procedure, we can find C∞-class func-
tions αjk :Ux → R, j, k = 1, . . . ,dimM , such that for each y ∈ Ux , the vec-
tors Zj(y) =∑dimM

k=1 αjk(y)Aiky, 1, . . . ,dimM form an ONB of TyN . Hence, if
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hikil :=∑dimM
j=1 αjkαjl and hkl := 0 for all other indices, then

ξ =
dimM∑
j=1

〈ξ,Zj (y)〉Zj(y) =∑
α

∑
β

hαβ(y)〈ξ,Aαy〉Aβy,

(5.5)
ξ ∈ TyN,y ∈ Ux.

This local equality can be extended to a global one by employing the partition
of unity argument. Hence we have shown that M satisfies all four assumptions
(M1)–(M4).

REMARK 5.2. Let us note here that condition (5.2) is a consequence of con-
dition (5.1) if the normal space (TpM)⊥ is one-dimensional (which is not assumed
here), for example, if M = Sn−1 ⊂ Rn.

REMARK 5.3. Let us denote by h̃ij a smooth compactly supported extension
of the function hij to Rn. For k ∈ {1, . . . ,N} let us define a map Y k : Rn � x �→∑N

j=1 h̃kj (x)Ajx ∈ Rn. For each k ∈ {1, . . . ,N} and for all x ∈ Rn, Ỹ k(x) is a

skew symmetric linear operator in Rn. Let us also denote by Y k the restriction
of Ỹ k , that is,

Y k(p) =
N∑

j=1

hkj (p)Ajp, p ∈ M.(5.6)

In view of assumption (M3), for each p ∈ M , Y k(p) ∈ TpM , and hence Y k , can be
viewed as a vector field on M . Moreover, identity (5.3) from assumption (M4) can
be equivalently expressed in terms of the vector fields Y k , with 〈·, ·〉 = 〈·, ·〉Rn , as
follows:

ξ =
N∑

k=1

〈ξ,Akp〉Y kp, p ∈ M,ξ ∈ TpM.(5.7)

Identity (5.7) is a close reminiscence of formula (7) in [30], Lemma 2.

The following lemma will prove most useful in the identification part of the
proof of the existence of a solution. Let us recall that by S we denote the second
fundamental form of the submanifold M ⊂ Rn.

LEMMA 5.4. For every (p, ξ) ∈ T M , we have

Sp(ξ, ξ) =
N∑

k=1

〈ξ,Akp〉dpY k(ξ),(5.8)

where dpY k(ξ) := dpỸ k(ξ), and dpỸ k is the Frèchet derivative of the map Ỹ k at p.
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PROOF. Let us denote in this proof by i :M ↪→ Rn the natural embedding of
M into Rn. Let us take p ∈ M and ξ ∈ TpM . Let I ⊂ R be an open interval such
that 0 ∈ I . Let γ : I → M be a curve such that γ (0) = p and γ̇ (0) = (i ◦ γ )·(0) =
ξ . Then by identity (5.7) we get

(i ◦ γ )·(t) =
N∑

k=1

〈(i ◦ γ )·,Akγ (t)〉Y k(γ (t)), t ∈ I.(5.9)

By taking the standard Rn-valued derivative of (5.9), we get

(i ◦ γ )··(t) =
N∑

k=1

〈(i ◦ γ )··(t),Akγ (t)〉Y k(γ (t))

+
N∑

k=1

〈(i ◦ γ )·(t),Ak(i ◦ γ )·(t)〉Y k(γ (t))(5.10)

+
N∑

k=1

〈(i ◦ γ )··(t),Akγ (t)〉(dγ (t)Y
k)((i ◦ γ )·(t)

)
, t ∈ I.

On the other hand, by formula ([7], (2.5)) (see also [48], Corollary 4.8), we have

(i ◦ γ )··(t) = ∇γ̇ (t)γ̇ (t) + Sγ (t)(γ̇ (t), γ̇ (t)), t ∈ I.(5.11)

In other words, for t ∈ I , the tangential part of (i ◦ γ )··(t) is equal to ∇γ̇ (t)γ̇ (t)

while the normal part of γ̈ (t) is equal to Sγ (t)(γ̇ (t), γ̇ (t)). Since Akγ (t) ∈ Tγ (t)M

by part (5.2) of assumption (M3), in view of identity (5.7), we infer that

N∑
k=1

〈(i ◦ γ )··(t),Akγ (t)〉Y k(γ (t)) =
N∑

k=1

〈∇γ̇ (t)γ̇ (t),Akγ (t)
〉
Y k(γ (t))

(5.12)
= ∇γ̇ (t)γ̇ (t), t ∈ I.

Since Ak are skew-symmetric, the middle term on the RHS of (5.11) is equal to 0,
and thus in view of (5.11), (5.12) and (5.10), we infer that

Sγ (t)(γ̇ (t), γ̇ (t))
(5.13)

=
N∑

k=1

〈(i ◦ γ )·(t),Akγ (t)〉(dγ (t)Y
k)((i ◦ γ )·(t)

)
, t ∈ I.

Putting t = 0 in equality (5.13) we get identity (5.8). The proof is now complete.
�
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6. Outline of the proof of the main theorem. The main idea of the proof of
Theorem 4.4 can be seen from the following result. The proof of this result follows
by applying the Itô formula from [5] and using the material discussed in Section 5.
The proof of the converse part can be reproduced from the proof of Lemma 9.10.

PROPOSITION 6.1. Assume that M is a compact Riemannian homogeneous
space and that the coefficients f and g satisfy Assumption 4.2. Suppose that a
system

(�,F ,F,P,W, (u, v))(6.1)

is a weak solution of (1.1). Assume that A : Rd → Rd is a skew-symmetric linear
operator satisfying condition (5.2). Define a process M by the following formula:

M(t) := 〈v(t),Au(t)〉Rn, t ≥ 0.(6.2)

Then for every function ϕ ∈ H 1
comp, the following equality holds almost surely:

〈ϕ,M(t)〉 = 〈ϕ,M(0)〉 −
d∑

k=1

〈
∂xk

ϕ,

∫ t

0
〈∂xk

u(s), u(s)〉Rn ds

〉

+
〈
ϕ,

∫ t

0
〈f (u(s), v(s),∇u(s)),Au(s)〉ds

〉
(6.3)

+
〈
ϕ,

∫ t

0
〈g(u(s), v(s),∇u(s)),Au(s)〉dW(s)

〉
, t ≥ 0.

Conversely, assume that a system (6.1) satisfies all the conditions of Definition 4.3
of a weak solution to equation (1.1) but (4.3). Suppose that a finite sequence
(Ai)Ni=1 of skew symmetric linear operators in Rn satisfies conditions (5.1), (5.2)
and (M4). For each i ∈ {1, . . . ,N} define a process Mi by formula (6.2) with
A = Ai . Suppose that for every function ϕ ∈ H 1

comp each Mi satisfies equality

(6.3) with A = Ai . Then the process (u, v) satisfies the equality (4.3).

The first step of the proof of Theorem 4.4 consists of introducing a penalized
and regularized stochastic wave equation (7.5)–(7.6), that is,

∂ttU
m = �Um − m∇F(Um) + f m(Um,∇(t,x)U

m)
(6.4)

+ gm(Um,∇(t,x)U
m)dWm

law of (Um(0), ∂tU
m(0)) = �.(6.5)

Had we assumed that the coefficients f and g were sufficiently regular, we would
have simply put f m = f and gm = g above. The existence of a unique global
solution Zm = (Um,V m) to the problem (6.4)–(6.5) is more or less standard. In
Section 8, by using uniform energy estimates, we will show that the sequence
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(Zm)m∈N is tight on an appropriately chosen Fréchet space, and by employing
Jakubowski’s generalization [31] of the Skorokhod embedding theorem, we con-
struct a version zm of Zm such that it converges in law to a certain process z. In
order to prove that z is a weak solution of (1.4), we construct processes Mi

k defined
by a formula analogous to formula (6.1); see formula (9.4). We prove that the se-
quence Mi

k is convergent and denote the limit by Mi . Moreover, we show that z

takes values in the tangent bundle T M . The proof is concluded by constructing
an appropriate Wiener process (see Lemma 9.9) and showing, by employing the
argument needed to prove the converse part of Proposition 6.1, that the process
z is indeed a weak solution of (1.4). We remark that our method of constructing
weak solutions to stochastic PDEs does not employ any martingale representation
theorem (and we are not aware of such results in the Fréchet spaces anyway).

7. Preparation for the proof of the main theorem.

7.1. Approximation of coefficients. Let (ζm)∞m=1 be the approximation of iden-
tity introduced in Section 2. Let us assume that J is a continuous vector field
on M , h a continuous real function on M and λ a continuous vector bundle homo-
morphisms from T M to T M . Let π : Rn → L (Rn,Rn) be a smooth compactly
supported function such that for every p ∈ M , π(p) is the orthogonal projection
from Rn onto TpM . The vector field J , the function h and the L(Rn,Rn)-valued
function λ◦π |M (all defined on M) can be extended to continuous compactly sup-
ported functions, all denoted again by the same symbols, J : Rn → Rn, h : Rn → R

and λ : Rn → L (Rn,Rn). By a standard approximation argument (invoking the
convolution with functions ζm) we can find sequences of C∞-class functions
Jm : Rn → Rn, hm : Rn → R, λm : Rn → L (Rn,Rn) supported in a compact set
in Rn such that Jm → J , hm → h and λm → λ uniformly on Rn.

When we specify the above to our given data, continuous vector fields fd+1,
gd+1 on M , continuous functions f0, g0 on M and continuous vector bundle
homeomorphisms f1, . . . , fd , g1, . . . , gd on T M , we can construct the following
sequences of approximating smooth functions, with i ∈ {1, . . . , d}:

f m
0 , gm

0 : Rn → R, f m
i , gm

i : Rn → L (Rn,Rn),
(7.1)

f m
d+1, g

m
d+1 : Rn → Rn, m ∈ N,

such that for some R0 > 0 and every i ∈ {0, . . . , d + 1},⋃
m∈N

[supp(f m
i ) ∪ supp(gm

i )] ⊂ B(0,R0) ⊂ Rn,(7.2)

|f m
d+1|L∞(Rn,Rn) ≤ |fd+1|L∞(M,Rn),

(7.3)
|gm

d+1|L∞(Rn,Rn) ≤ |gd+1|L∞(M,Rn), m ∈ N,

f m
i → fi and gm

i → gi as m → ∞, uniformly on Rn.(7.4)
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7.2. Solutions to an approximated problem. Let the Borel probability measure
� on Hloc(M) be as in Theorem 4.4. It follows from known results (see, e.g., [47])
that for each m ∈ N there exists a weak solution of the following problem:

∂ttU
m = �Um − m∇F(Um) + f m(Um,∇(t,x)U

m)
(7.5)

+ gm(Um,∇(t,x)U
m)dWm

law of (Um(0), ∂tU
m(0)) = �,(7.6)

where the coefficients f m (resp., gm) are defined by (1.3), with fi being replaced
by f m

i (resp., by gm
i ). In other words for every m ∈ N, there exists:

(i) a complete stochastic basis (�m,Fm,Fm,Pm), where Fm = (Fm
t )t≥0;

(ii) a spatially homogeneous Fm-Wiener process Wm with spectral measure μ;
and

(iii) an Fm-adapted Hloc-valued weakly continuous process Zm = (Um,V m)

such that � is equal to the law of Zm(0), and for every t ≥ 0 and ϕ ∈ D(Rd,Rn)

the following equalities hold almost surely:

〈Um(t), ϕ〉Rn = 〈Um(0), ϕ〉Rn +
∫ t

0
〈V m(s), ϕ〉Rn ds,(7.7)

〈V m(t), ϕ〉Rn = 〈V m(0), ϕ〉Rn

+
∫ t

0
〈−m∇F(Um(s)) + f m(Zm(s),∇Um(s)), ϕ〉Rn ds

(7.8)

+
∫ t

0
〈Um(s),�ϕ〉Rn ds

+
∫ t

0
〈gm(Zm(s),∇Um(s)) dWm

s ,ϕ〉Rn.

The processes Zm need not take values in the tangent bundle T M , and since
the diffusion nonlinearity is not Lipschitz, it only exists in the weak probabilis-
tic sense.

REMARK 7.1. Let us point out that for each m ∈ N, Zm(0) is Fm
0 -measurable

Hloc(M)-valued random variables whose law is equal to �. In particular, our ini-
tial data satisfy Um

0 (ω) ∈ M and V m
0 (ω) ∈ TUm

0 (ω)M a.e. for every ω ∈ �.

8. Tightness of the approximations. Lemma 8.1 below constitutes the first
step toward proving Theorem 4.8. In its formulation we use the following gener-
alized family of energy functions ex,T ,mF , where x ∈ Rn, T > 0, m ∈ N and the
constant s2 was defined in (4.6) [compare with (4.5)],

ex,T ,mF (t, u, v) =
∫
B(x,T −t)

{
1

2
|∇u|2 + 1

2
|u|2 + 1

2
|v|2 + mF(u) + s2

}
dy,

(8.1)
t ∈ [0, T ], (u, v) ∈ Hloc.
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LEMMA 8.1. There exists a weak solution (�m,Fm, (Fm
t ),Pm,Zm =

(Um,V m),Wm) to (7.5)–(7.6) such that

Em
[
1A(Zm(0)) sup

s∈[0,t]
L(ex,T ,mF (s,Zm(s)))

]
(8.2)

≤ 4eCtEm[1A(Zm(0))L(ex,T ,mF (0,Zm(0)))]
holds for every T ≥ 0, t ∈ [0, T ], A ∈ B(Hloc), m ∈ N whenever L ∈ C[0,∞) ∩
C2(0,∞) is a nondecreasing function such that, for some c > 0,

tL′(t) + max{0, t2L′′(t)} ≤ cL(t), t > 0.(8.3)

The constant C depends on c, cμ and on ‖f j‖L∞ , ‖gj‖L∞ , j = 0,1, . . . , d + 1.

PROOF. This is a direct application of Theorems 5.1 and 5.2 in [47]. We use
bound (7.3) according to which the ‖f m

d+1‖L∞ norm is bounded by ‖fd+1‖L∞(M).
�

In the following lemma we use the notions introduced in Appendices B and C.

LEMMA 8.2. Assume that r < min{2, d
d−1}. Then:

(1) the sequence {Um} is tight on Cw(R+;H 1
loc);

(2) the sequence {V m} is tight on L = L∞
loc(R+;L2

loc);
(3) and, for every i ∈ {1, . . . ,N}, the sequence 〈V m,AiUm〉Rd is tight on

Cw(R+;Lr
loc).

PROOF OF CLAIM (1). Let us now take and fix ε > 0. In view of Corollary C.1
it is enough to find a sequence {ak}k∈N such that

Pm

( ∞⋃
k=1

{‖Um‖L∞((0,k);H 1(Bk))
+ ‖Um‖C1([0,k];L2(Bk))

> ak

})≤ ε,

(8.4)
m ∈ N.

If we denote, for δ > 0 and k,m ∈ N, Qm,k,δ = {‖Zm(0)‖H2k
≤ δ}, then by defini-

tion (8.1) of the function e we can find a constant c > 0 such that

Em[1Qm,k,δ

[‖Um‖L∞((0,k);H 1(Bk))
+ ‖Um‖C1([0,k];L2(Bk))

]]
≤ cEm

[
1Qm,k,δ

sup
s∈[0,k]

L(e0,2k,m(s,Zm(s)))
]

(8.5)

for all δ > 0 and k,m ∈ N.
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On the other hand, since the sequence {sm} in (8.1) is bounded, by applying
Lemma 8.1 with function L(·) = √

2·, we infer that for δ > 0 and k ∈ N, we can
find Ck,δ > 0 such that

cEm
[
1Qm,k,δ

sup
s∈[0,k]

L(e0,2k,m(s,Zm(s)))
]
≤ Ck,δ for every m ∈ N.(8.6)

If we put ak = Ck,δk
ε−12k+1, for k ∈ N, then by (8.5) and (8.6) in view of the

Chebyshev inequality we infer that

Pm[1Qm,k,δk

{‖Um‖L∞((0,k);H 1(Bk))
+ ‖Um‖C1([0,k];L2(Bk))

> ak

}]
(8.7)

≤ ε2−k−1.

Since the measure � is Radon, for k ∈ N, we can find δk > 0 such that �({z ∈
Hloc :‖z‖H2k

≥ δk}) < ε
2k+1 . Hence, since the law of Zm under Pm is equal to �

we infer that

Pm(Qm,k,δk
) > 1 − ε

2k+1 , k ∈ N.(8.8)

Summing up, (8.4) follows from inequalities (8.7) and (8.8). �

PROOF OF CLAIM (2). As far as the sequence {V m} is concerned, let us ob-
serve that by Lemma 8.1, in the same way as in inequalities (8.5) and (8.6), we get
also the following one

Em[1Qm,k,δ
‖V m‖L∞((0,k);L2(Bk))

]
≤ Em

[
1Qm,k,δ

sup
s∈[0,k]

L(e0,2k,m(s,Zm(s)))
]
≤ Ck,δ.

Hence for each k ∈ N, Pm{‖V m‖L∞((0,k);L2(Bk))
> ak} ≤ ε2−k and arguing as

above, but now using Corollary B.2, we infer that the sequence {V m} is tight on
L = L∞

loc(R+;L2
loc). �

PROOF OF CLAIM (3). Since the assumptions of the Itô lemma from [5] [with
q = 2, k = n, w = v and Y(y) = Aiy] are satisfied, by the properties of function F

and operators Ai listed in Section 5, we infer that for every t ≥ 0 and ϕ ∈ D(Rd),
the following equality:

b(V m(t),AiUm(t), ϕ)

= b(V m(0),AiUm(0), ϕ) −
d∑

k=1

∫ t

0
b(∂xk

Um(s),AiUm(s), ∂xk
ϕ) ds

+
∫ t

0
b(f m(Zm(s),∇Um(s)),AiUm(s), ϕ) ds

+
∫ t

0
b(gm(Zm(s),∇Um(s)) dWm,AiUm(s), ϕ)
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holds almost surely. Hence, in view of Appendix C, for every R > 0, the equality

〈V m(t),AiUm(t)〉Rn

= 〈V m(0),AiUm(0)〉Rn +
d∑

k=1

∂xk

[∫ t

0
〈∂xk

Um(s),AiUm(s)〉Rn ds

]
(8.9)

+
∫ t

0
〈f m(Zm(s),∇Um(s)),AiUm(s)〉Rn ds

+
∫ t

0
〈gm(Zm(s),∇Um(s)),AiUm(s)〉Rn dWm

holds in W
−1,r
R for every t ≥ 0, almost surely. Indeed, by the Gagliardo–Nirenberg

inequality (G–NI) and the Hölder inequality, we get

‖ab‖Lr(Rd ) ≤ ‖a‖L2(Rd )‖b‖L2r/(2−r)(Rd )
(8.10)

≤ c‖a‖L2(Rd )‖b‖H 1(Rd ), a ∈ L2(Rd), b ∈ H 1(Rd).

Therefore, the first deterministic integral in (8.9) converges in Lr
loc. But the the map

∂xk
:Lr

loc → W
−1,r
loc is continuous, and so the first term in (8.9) is a well defined

W
−1,r
R -valued random variable for each R > 0.
Since the functions f m

i , gm
i have compact support, we can find T > 0, c > 0

such that

|〈f m(y,w),Aiy〉| + |〈gm(y,w),Aiy〉|
(8.11)

≤ c1[−T ,T ](|y|)(1 + |w|), (y,w) ∈ Rn × [Rn]d+1.

Therefore, the stochastic and the second deterministic integrals are convergent
in L2

loc. Since r < d
d−1 , by the G–NI

L2
loc ↪→ W

−1,r
R , R > 0.(8.12)

Thus the stochastic and the second deterministic integrals are convergent in W
−1,r
R ,

R > 0.
Next let us choose p > 4 and γ > 0 such that γ + 2

p
< 1

2 . Let us denote

I (2)(t) =
∫ t

0
〈∂xl

Um(s),AiUm(s)〉Rn ds, t ≥ 0.(8.13)

I (3)(t) =
∫ t

0
〈f m(Zm(s),∇Um(s)),AiUm(s)〉Rn ds, t ≥ 0.(8.14)

I (4)(t) =
∫ t

0
〈gm(Zm(s),∇Um(s)),AiUm(s)〉Rn dWm, t ≥ 0.(8.15)
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Then, if we denote Qm,k,δ = {‖Zm(0)‖H2k
≤ δ}, by (8.12), the Garsia–Rumsey–

Roedemich lemma [25] and the Burkholder inequality, we have

Em[1Qm,k,δ

∥∥I (4)
∥∥p
Cγ ([0,k];W−1,r

k )

]
≤ ck,rE

m
∥∥1Qm,k,δ

I (4)
∥∥p
Cγ ([0,k],L2(Bk))

(8.16)

≤ c̃k,r,pEm

[
1Qm,k,δ

∫ k

0
‖〈gm(Zm(s),∇Um(s)),

AiUm(s)〉Rn‖p

T2(Hμ,L2(Bk))
ds

]
.

Applying Lemma 3.3, inequality (8.11) and Lemma 8.1 we infer that for a
generic constant C > 0, ‖〈gm(Z,∇U),AiU〉Rn‖p

T2(Hμ,L2(Bk))
≤ C‖〈gm(Z,∇U),

AiU〉Rn‖p

L2(Bk)
≤ C(1+‖Zm(s)‖p

Hk
) ≤ C[1+ep/2

0,2k,m(s,Zm(s))]. Hence the RHS
of inequality (8.16) is bounded by

Em[1Qm,k,δ

∥∥I (4)
∥∥p
Cγ ([0,k];W−1,r

k )

]
≤ c0

k,r,pEm

[
1Qm,k,δ

∫ k

0
[1 + ep/2

0,2k,m(s,Zm(s))]ds

]
≤ Ck,r,p,δ.

Analogously, by the Hölder inequality and Lemma 8.1,

Em[1Qm,k,δ

∥∥I (3)
∥∥p
Cγ ([0,k];W−1,r

k )

]
≤ ck,rE

m
∥∥1Qm,k,δ

I (3)
∥∥p
Cγ ([0,k],L2(Bk))

(8.17)

≤ c0
k,r,pEm

[
1Qm,k,δ

∫ k

0
[1 + ep/2

0,2k,m(s,Zm(s))]ds

]
≤ Ck,r,p,δ.

Concerning the process I (2), an analogous argument yields

∥∥∂xl
I (2)

∥∥p
Cγ ([0,k],W−1,r

k )
≤ ck,p

∫ k

0
‖〈∂xl

Um(s),AiUm(s)〉Rn‖p
Lr(Bk)

ds

≤ c̃k,r,p

∫ k

0
ep

0,2k,m(s,Zm(s)) ds.

Hence, by Lemma 8.1, we infer that

Em[1Qm,k,δ

∥∥∂xl
I (2)
m

∥∥p
Cγ ([0,k],W−1,r

k )

]≤ Ck,p,δ.(8.18)
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Moreover, since W
−1,r
k ↪→ Lr(Bk) continuously, by (8.10) we have

Em
[
1Qm,k,δ

sup
s∈[0,k]

‖〈V m(s),AiUm(s)〉Rn‖p

W
−1,r
k

]
≤ c̃rE

m
[
1Qm,k,δ

sup
s∈[0,k]

ep
0,2k,m(s,Zm(s))

]
≤ ck,r,p,δ.

Summing up, we proved that there exists a constant Ck,r,p,δ > 0 such that

Em{1Qm,k,δ

[‖〈V m,AiUm〉Rn‖
L∞([0,k];Lr(Bk))∩Cγ ([0,k],W−1,r

k )

]p}
(8.19)

≤ Ck,r,p,δ.

Let ε > 0 be fixed. Define a sequence (ak)
∞
k=1 of positive real numbers by

Ck,r,p,δk
= a

p
k ε2−k−1, k ∈ N. Then by (8.19) and (8.8), for each k ∈ N,

Pm{‖〈V m,AiUm〉Rn‖L∞([0,k];Lr(Bk))

+ ‖〈V m,AiUm〉Rn‖
Cγ ([0,k],W−1,r

k )
> ak

}
(8.20)

≤ ε2−k.

Hence, by Proposition C.1 the sequence 〈V m,AiUm〉Rn is tight on Cw(R+;Lr
loc).

�

9. Proof of the main result. Let us consider the approximating sequence of
processes (Zm)m∈N, where Zm = (Um,V m) for m ∈ N, introduced Lemma 8.1.
Let us also consider the following representation of Wiener processes Wm:

Wm
t =∑

i

βm
i (t)ei, t ≥ 0,(9.1)

where β = (β1, β2, . . .) are independent real standard Wiener processes, and
{ei : i ∈ N} is an orthonormal basis in Hμ; see Proposition 3.2.

Assume that r < min{2, d
d−1} is fixed. Then Lemma 8.2, Corollary B.3, Propo-

sition C.2 and Corollary A.2 yield2 that there exists:

• a probability space (�,F ,P),
• a subsequence mk ,
• the following sequences of Borel measurable functions:

(uk)k∈N with values in C(R+,H 1
loc)

(vk)k∈N with values in C(R+,L2
loc)

(wk)k∈N with values in C(R+,RN)

(9.2)

2Let us recall that we used there to denote by L the space L∞
loc(R+;L2

loc).
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• the following Borel random variables:

v0 with values in L2
loc

u with values in Cw(R+;H 1
loc)

v̄ with values in L∞
loc(R+;L2

loc)

w with values in C(R+,RN)

Mi , i = 1, . . . ,N with values in Cw(R+;Lr
loc)

(9.3)

such that, with the notation zk = (uk, vk), k ∈ N and

Mi
k := 〈vk,Aiuk〉Rn, i = 1, . . . ,N, k ∈ N,(9.4)

the following conditions are satisfied:

(R1) for every k ∈ N, the law of (Zmk ,βmk) coincides with the law of (zk,wk)

on B(C(R+,Hloc) × C(R+,RN));
(R2) pointwise on � the following convergences hold:

uk → u in Cw(R+;H 1
loc),

vk → v̄ in L∞
loc(R+;L2

loc),

vk(0) → v0 in L2
loc,(9.5)

Mi
k → Mi in Cw(R+;Lr

loc),

wk → w in C(R+,RN);
(R3) the law of (u(0), v0) is equal to �.

In particular, the conclusions of Lemma 8.1 hold for this new system of processes.
This is summarized in the proposition below.

PROPOSITION 9.1. If ρ is the constant from Lemma 8.1, then inequality (8.2)
holds. Thus, for any nondecreasing function L ∈ C[0,∞) ∩ C2(0,∞) satisfying
condition (8.3), we have

E
[
1A(zk(0)) sup

s∈[0,t]
L(ex,T ,mk

(s, zk(s)))
]

(9.6)
≤ 4eρtE[1A(zk(0))L(ex,T ,mk

(0, zk(0)))]
for every k ∈ N, t ∈ [0, T ], x ∈ Rd , A ∈ B(Hloc).

Before we continue, let us observe that the compactness of the embedding
H 1

loc ↪→ L2
loc and properties (9.3) and (9.5) imply the following auxiliary result.

PROPOSITION 9.2. In the above framework, all the trajectories of the process
u belong to C(R+,L2

loc) and for every t ∈ R+, uk(t) → u(t) in L2
loc.
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We also introduce a filtration F = (Ft )t≥0 of σ -algebras on the probability
space (�,F ,P) defined by Ft = σ {σ {v0, u(s),w(s) : s ∈ [0, t]} ∪ {N : P(N) =
0}}, t ≥ 0.

Our first result states, roughly speaking, that the limiting process u takes values
in the set M . To be precise, we have the following.

PROPOSITION 9.3. There exists a set Qu ∈ F such that P(Qu) = 1 and, for
every ω ∈ Qu and t ≥ 0, u(t,ω) ∈ M almost everywhere on Rd .

PROOF. Let us fix T > 0 and δ > 0. In view of the definition (8.1) of the
function e0,T ,m, inequality (9.6) yields that for some finite constant CT,δ ,

E

[
1
B

HT
δ

(zk
0)

∫
BT −t

mkF (uk(t)) dx

]
≤ CT,δ, t ∈ [0, T ].(9.7)

Since ‖zk(0)‖HT
→ ‖(u(0), v0)‖HT

and by Proposition 9.2 for every t ∈ [0,
T ], uk(t) → u(t) in L2(BT −t ), by applying the Fatou lemma we infer that

E

[
1
B

HT
δ

(z0)

∫
BT −t

F (u(t)) dx

]
(9.8)

≤ lim inf
k→∞ E

[
1
B

HT
δ

(zk
0)

∫
BT −t

F (uk(t)) dx

]
.

On the other hand, since mk ↗ ∞, by (9.7) we get lim infk→∞ E[1
B

HT
δ

(zk
0) ×∫

BT −t
F (uk(t)) dx] = 0 and so E[1

B
HT
δ

(z0)
∫
BT −t

F (u(t)) dx] = 0. Taking the lim-

its as δ ↗ ∞ and T ↗ ∞, we get that for any t ≥ 0, E
∫
Rd F (u(t)) dx = 0. Since

F ≥ 0 and M = F−1({0}) we infer that for each t ∈ R+, u(t, x) ∈ M for Leb a.a.
x ∈ Rd , P-almost surely. Hence there exists a set �u of full measure such that

Leb
({x ∈ Rd :u(q,ω, x) /∈ M})= 0 for every q ∈ Q+ and every ω ∈ �u.

Let us take t ∈ R+, ω ∈ �∗. Obviously we can find a sequence (qn)
∞
n=1 ⊂ Q+

such that qn → t . Hence, by Proposition 9.2, there exists a subsequence (nk)
∞
k=1

such that for Leb-almost every x, u(qnk
,ω, x) → u(t,ω, x) as k → ∞. Hence by

closedness of the set M we infer that also u(t,ω, x) ∈ M for Leb-almost every x.
The proof is complete. �

The last result suggests the following definition.

DEFINITION 9.4. Set

u(t,ω) =
{

u(t,ω), for t ≥ 0 and ω ∈ Qu,
p, for t ≥ 0 and ω ∈ � \ Qu,

(9.9)

where p(x) = p, x ∈ Rd for some fixed (but otherwise arbitrary) point p ∈ M .
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Let v̄ be the L-valued random variable as in (9.3) and (9.5). In view of Proposi-
tion B.4 there exits a a measurable L2

loc-valued process v such that for every ω ∈ �,
the function v(·,ω) is a representative of v̄(ω).

LEMMA 9.5. There exists an F-progressively measurable L2
loc-valued process

V such that Leb ⊗ P-a.e., V = v and, P-almost surely,

u(t) = u(0) +
∫ t

0
V(s) ds in L2

loc for all t ≥ 0.(9.10)

Moreover V(t,ω) ∈ Tu(t,ω)M , Leb-a.e. for every (t,ω) ∈ R+ × �. Finally, there
exists an F0-measurable L2

loc-valued random variable v0 such that

v0 = v0, P almost surely(9.11)

and, for every ω ∈ �,

v0(ω) ∈ Tu(0,ω)M, Leb-a.e.(9.12)

PROOF. Let us fix t > 0. Since the map

C(R+,H 1
loc) × C(R+,L2

loc) � (u, v) �→ u(t) − u(0) −
∫ t

0
v(s) ds ∈ L2

loc

is continuous, by identity (7.7) and property (R1) on page 1957, we infer that P-
almost surely

uk(t) = uk(0) +
∫ t

0
vk(s) ds, t ≥ 0.

Here we used the following simple rule. If R is a Borel map such that R(X) = 0
a.s., X and Y have equal laws, then R(Y ) = 0 a.s. Hence, if ϕ ∈ L2

comp then P-
almost surely

〈ϕ,u(t)〉 − 〈ϕ,u(0)〉 −
∫ t

0
〈ϕ,v(s)〉ds

(9.13)

= lim
k→∞

[
〈ϕ,uk(t)〉 − 〈ϕ,uk(0)〉 −

∫ t

0
〈ϕ,vk(s)〉ds

]
= 0.

Let us define an L2
loc-valued process q by

q(t,ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim

j→∞ j

[
u(t,ω) − u

(
max

{
t − 1

j
,0
}
,ω

)]
,

if the L2
loc-limit exists,

0, otherwise.

Then q is an L2
loc-valued F-progressively measurable and by (9.13), q = v

Leb ⊗ P̄-almost everywhere. In particular, there exists a P-conegligible set N ⊂ �

such that q(·,ω) = v(·,ω) a.e. for every ω ∈ N . Hence all the paths of the process
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1Nq belong to the space L∞
loc(R+;L2

loc). Hence (9.10) follows provided we define
the process V to be equal 1Nq .

Concerning the 2nd and the 3rd issue, let us observe that by [28], page 108, there
exists a smooth compactly supported function H : Rn → Rn such that, for every
p ∈ M , H(p) = p and, with H ′(p) = dpH ∈ L(Rn,Rn) is the Fréchet derivative
of H at p,

H ′(p)ξ = ξ ⇐⇒ ξ ∈ TpM.(9.14)

Since by (9.4), P-almost surely, the following identity is satisfied in L2
loc, for every

t ≥ 0:∫ t

0
H ′(u(s))v(s) ds = H(u(t)) − H(u(0)) = u(t) − u(0) =

∫ t

0
v(s) ds,

we may conclude that v = H ′(u)v for Leb ⊗ P-almost every (t,ω). Hence, V =
H ′(u)(V) on a F-progressively measurable and Leb ⊗ P-conegligible set. This, in
view of (9.14), implies inclusion (9.12).

Finally, in order to prove (9.3), let us observe that since the following map
L2

loc × L2
loc → L2

loc : (u, v) �→ H ′(u)v − v is continuous, H ′(uk(0))vk(0) = vk(0),
for every k ∈ N, almost surely. Therefore, almost surely, H ′(u(0))v0 = v0. �

Before we formulate the next result let us define process v by

v(t,ω) :=
N∑

i,j=1

hij (u(t,ω))Mi(t,ω)Aj u(t,ω), ω ∈ �, t ≥ 0.(9.15)

LEMMA 9.6. There exists a P-conegligible set Q ∈ F such that if the process
Mi is defined by Mi = 1QMi , i ∈ {1, . . . ,N}, then the following properties are
satisfied:

(i) For every i ∈ {1, . . . ,N} the process Mi is an L2
loc-valued F-adapted and

weakly continuous.
(ii) The following three identities hold for every ω ∈ Q:

Mi (t,ω) = 〈V(t,ω),Aiu(t,ω)〉Rn for a.e. t ≥ 0,(9.16)

v0(ω) =
N∑

i,j=1

hij (u(0,ω))Mi(0,ω)Aj u(0,ω),(9.17)

V(t,ω) = v(t,ω) for a.e. t ≥ 0,(9.18)

v(t,ω) ∈ Tu(t,ω)M, t ≥ 0.(9.19)
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Moreover, with z = (u,v), for every ω ∈ Q, for almost every t ≥ 0,

lim
k→∞〈f mk(zk(t,ω)),Aiuk(t,ω)〉Rn

(9.20)
= 〈f (z(t,ω),∇u(t,ω)),Aiu(t,ω)〉Rn,

lim
k→∞〈gmk(zk(t,ω)),Aiuk(t,ω)〉Rn

(9.21)
= 〈g(z(t,ω),∇u(t,ω)),Aiu(t,ω)〉Rn,

where the limits are with respect to the weak topology on L2
loc.

PROOF. Since by (9.5) vk → v̄ in L∞
loc(R+;L2

loc) on �, we infer that for ev-
ery R > 0 and ω ∈ � the sequence ‖vk(ω)‖L∞((0,R),L2(BR)), k ∈ N is bounded.
Since, by (9.2), vk is a continuous L2

loc-valued process, ‖vk(ω)‖L∞((0,R),L2(BR)) =
‖vk(ω)‖C([0,R],L2(BR)), and hence also the following sequence(‖vk(ω)‖C([0,R],L2(BR))

)
k∈N

is bounded.
Let us now fix t ≥ 0 and ω ∈ �. Since then for every R > 0 the sequence

‖vk(t,ω)‖L2(BR) is bounded, by employing the diagonalization procedure, we can
find an element θ(t,ω) ∈ L2

loc and a subsequence (kj )
∞
j=1, depending on t and ω,

such that

vkj (t,ω) → θ(t,ω) weakly in L2
loc.(9.22)

Since by Proposition 9.2 ukj (t,ω) → u(t,ω) strongly in L2
loc, we infer that

〈Aiukj (t,ω), vkj (t,ω)〉Rn converges to 〈Aiu(t,ω), θ(t,ω)〉Rn in the sense of dis-
tributions and hence for any ϕ ∈ D

〈Mi(t,ω),ϕ〉 = lim
j→∞〈Mi

kj
(t,ω),ϕ〉

= lim
j→∞〈〈Aiukj (t,ω), vkj (t,ω)〉Rn, ϕ〉(9.23)

= 〈〈Aiu(t,ω), θ(t,ω)〉Rn, ϕ〉,
where the 1st identity above follows from (9.5)4, the 2nd follows from (9.4) the
3rd follows from (9.22) and Proposition 9.2. Summarizing, we proved that

Mi(t,ω) = 〈Aiu(t,ω), θ(t,ω)〉Rn, (t,ω) ∈ R+ × �.(9.24)

Let Q := Qu be the event introduced in Proposition 9.3 and let u be the process
introduced in Definition 9.4. Let us assume that ω ∈ Q. Then, since u is an M-
valued process and hence uniformly bounded, it follows from (9.24) and (9.22)
that for every R > 0, we have

sup
t∈[0,R]

‖Mi(t,ω)‖L2(BR) ≤ c sup
k≥0

‖vk(ω)‖C([0,R];L2(BR)) < ∞.(9.25)
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So we conclude that the process Mi := 1QuM
i takes values in the space L2

loc. Con-
sequently, in view of Lemma D.4, as Mi ∈ Cw(R+;Lr

loc), and by (9.25), Mi has
weakly continuous paths in L2

loc. In this way the proof of one part of claim (i) is
complete. Later on we will deal with the adaptiveness of the process 1QuM

i .
In the next part of the proof we shall deal with (9.16). For this aim let us observe

that for any ϕ ∈ D and (t,ω) ∈ R+ × �, by (9.5)1,2 and Proposition B.4, we infer
that ∫ t

0
〈ϕ,Mi(s)〉ds = lim

k→∞

∫ t

0
〈ϕ, 〈vk(s),Aiuk(s)〉Rn〉ds

= lim
k→∞

∫ t

0
〈ϕ, 〈vk(s),Aiu(s)〉Rn〉ds

=
∫ t

0
〈ϕ, 〈v(s),Aiu(s)〉Rn〉ds.

Hence we infer that for every ω ∈ �

〈v(t,ω),Aiu(t,ω)〉Rn = Mi(t,ω) for almost every t ≥ 0(9.26)

that proves (9.16).
Concerning the proofs of (9.20) and (9.21), let us observe that we only need to

prove the former one, as the proof of the latter is identical. Moreover, in view of
formulae (1.3) and (9.26) we need to deal with the following three limits, weakly
in L2

loc, on R+ × �:

lim
k→∞〈f mk

0 (uk)vk,Aiuk〉Rn = f0(u)Mi,(9.27)

lim
k→∞〈f mk

l (uk)∂xl
uk,Aiuk〉Rn = 〈fl(u)∂xl

u,Aiu〉Rn,(9.28)

lim
k→∞〈f mk

d+1(u
k),Aiuk〉Rn = 〈fd+1(u),Aiu〉Rn.(9.29)

The last of these three follows easily from Proposition 9.2 [according to which
for every t ∈ R+ and every R > 0 uk(t) → u(t) in L2(BR)] and the conver-
gence (7.4). The proofs of the middle ones are more complex but can be done
in a similar (but simpler) way than the proof of the first (which we present below).

To prove (9.27) let us choose R > 0 such that (7.2) holds, in particular⋃
m∈N supp(f m

0 ) ⊂ B(0,R). Since f m
0 → f0 uniformly f m

0 (u)Mi ∈ L2
loc by

(9.25), by (9.5)4 and

|f mk

0 (uk)〈vk,Aiuk〉Rn | ≤ cR1BR
(uk)|vk|Rn,

and by the Lebesgue dominated convergence theorem, we infer that for every
ϕ ∈ L2

comp

lim
k→∞

∫
Rd

ϕf
mk

0 (uk)Mi
k dx =

∫
Rd

ϕf0(u)Mi dx on R+ × �,(9.30)
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which proves (9.27). As mentioned earlier, this proves (9.20).
To prove that the process Mi is adapted, let us first notice that, by (9.26)

and Lemma 9.5, for almost every t ≥ 0, Mi(t) = 〈V(t),Aiu(t)〉Rn almost surely,
hence Mi(t) :� → Lr

loc is Ft -measurable for almost every t ≥ 0. Also, since
〈v0,A

iu(0)〉 = Mi(0) on �, the random variable Mi(0) :� → Lr
loc is F0-

measurable. Now, if ϕ ∈ Lr
comp, then 〈ϕ,Mi〉 is continuous; hence Mi is F-adapted

in Lr
loc.

Finally we will prove the 2nd and 3rd identities in claim (ii). For this aim let
H be the function introduced in the proof of Lemma 9.5. Then by (9.15) for every
q ∈ Q+,

H ′(u(q,ω))v(q,ω) = v(q,ω) almost surely.

Since both the left-hand side and the right-hand side of the last equality are weakly
continuous in L2

loc, the proof of both identities (9.17) and (9.18) is complete. In
conclusion, the proof of Lemma 9.6 is complete. �

The proof of the following lemma will be given jointly with the proof of Lem-
ma 9.8.

LEMMA 9.7. The processes (wl)
∞
l=1 are i.i.d. real F-Wiener processes.

To formulate the next result let us define a distribution-valued process P i by
formula

P i(t) = Mi(t) − Mi (0) −
d∑

j=1

∂xj

[∫ t

0
〈∂xj

u(τ ),Aiu(τ )〉Rn dτ

]
(9.31)

−
∫ t

0
〈f (u(τ ),V(τ ),∇u(τ )),Aiu(τ )〉Rn dτ, t ≥ 0.

Since the integrals in (9.31) are convergent in L2
loc, the process P i takes values in

W
−1,2
R for every R > 0; see Appendix C. Moreover, we have the following result.

LEMMA 9.8. For any ϕ ∈ W 1,r
comp the process 〈ϕ,P i〉 is an F-martingale, and

its quadratic and cross variations satisfy, respectively, the following:

〈〈ϕ,P i〉〉 =
∫ ·

0
‖[〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn]∗ϕ‖2

Hμ
ds,(9.32)

〈〈ϕ,P i〉,wl〉 =
∫ ·

0
〈[〈g(u(s),V(s),∇u(s)),Ai,u(s)〉Rn]∗ϕ, el〉Hμ ds,(9.33)

where g∗ϕ denotes the only element in Hμ such that 〈gξ,ϕ〉 = 〈ξ, g∗ϕ〉Hμ , ∀ξ ∈
Hμ.
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PROOF. Let us fix a real number p ∈ [2,∞) and R > 0, and a function
ϕ ∈ W 1,r

comp such that suppϕ ⊂ BR ⊂ Rd . Then, by employing the argument used

earlier in the paragraph between (8.9) and (8.11), the maps 1
RNi

k :C(R+,Hloc) →
C(R+,W

−1,r
R ), 2

ϕNi
k :C(R+,Hloc) → C(R+) and 3

ϕ,l N
i
k :C(R+,Hloc) → C(R+)

defined by, for t ∈ R+,

[1
RNi

k(u, v)](t) = 〈v(t),Aiu(t)〉Rn − 〈v(0),Aiu(0)〉Rn

−
d∑

j=1

∂xj

[∫ t

0
〈∂xj

u(s),Aiu(s)〉Rn ds

]

−
∫ t

0
〈f mk(z(s),∇u(s)),Aiu(s)〉Rn ds,

[2
ϕNi

k(u, v)](t) =
∫ t

0
‖[〈gmk(z(s),∇u(s)),Aiu(s)〉Rn]∗ϕ‖2

Hμ
ds,

[ 3
ϕ,l N

i
k(u, v)](t) =

∫ t

0
〈[〈gmk(z(s),∇u(s)),Aiu(s)〉Rn]∗ϕ, el〉Hμ ds

are continuous. Thus, if we set zk = (uk, vk), the laws of the random variables
(1
RNi

k(z
k), 2

ϕNi
k(z

k), 3
ϕ,l N

i
k(z

k), zk,wk) and (1
RNi

k(Z
mk), 2

ϕNi
k(Z

mk), 3
ϕ,l N

i
k(Z

mk),
Zmk,βmk) are equal on

B(C(R+;W
−1,r
R )) ⊗ B(C(R+)) ⊗ B(C(R+))

⊗ B(C(R+;Hloc)) ⊗ B(C(R+;RN)).

Since by identity (8.9),

1
RNi

k(Z
mk)(t) =

∫ t

0
〈gmk(Zmk(s),∇Umk(s)),AiUmk(s)〉Rn dWmk ds

for t ∈ R+ in W
−1,r
R , by the Burkholder–Gundy–Davis inequality and Lemmata

3.3 and 8.1, we infer that for any δ > 0,

E1
B

H2R
δ

(zk(0))
[

sup
t∈[0,R]

|〈ϕ, 1
RNi

k(z
k)(t)〉|p

+ sup
t∈[0,R]

|2
ϕNi

k(z
k)(t)|p/2 + sup

t∈[0,R]
| 3
ϕ,l N

i
k(z

k)(t)|p
]

= Emk 1
B

H2R
δ

(Zmk(0))

(9.34)
×
[

sup
t∈[0,R]

|〈ϕ, 1
RNi

k(Z
mk)(t)〉|p

+ sup
t∈[0,R]

|2
ϕNi

k(Z
mk)(t)|p/2 + sup

t∈[0,R]
| 3
ϕ,l N

i
k(Z

mk)(t)|p
]

≤ cp,R,δ‖ϕ‖p

L2(BR)
.



STOCHASTIC GEOMETRIC WAVE EQUATIONS 1965

Moreover, by property (R1) on page 1957 we have

Emk |βmk

l (r)|p = E|wk
l (r)|p = cp,r , r ≥ 0.(9.35)

Let us consider times s, t ∈ R+ such that s < t . We can always assume that
t < R. Let us choose numbers s1, . . . , sK such that 0 ≤ s1 ≤ · · · ≤ sK ≤ s.
Let h : RK × RK×K × [C(R+;RN)]K → [0,1] be a continuous function and
ϕ1, . . . , ϕK ∈ L2

comp. Let us denote

ãk = h(〈ϕi1,V
mk(0)〉i1≤K, 〈ϕi2,U

mk(si3)〉i2,i3≤K, (βmk(si4))i4≤K),

ak = h(〈ϕi1, v
k(0)〉i1≤K, 〈ϕi2, u

k(si3)〉i2,i3≤K, (wk(si4))i4≤K),

a = h(〈ϕi1, v0〉i1≤K, 〈ϕi2,u(si3)〉i2,i3≤K, (w(si4))i4≤K),

q̃k = ãk1
B

H2R
δ

(Zmk(0)), qk = ak1
B

H2R
δ

(zk(0)),

q = a1
B

H2R
δ

((u(0),v0)).

Then Emk ãk(β
mk

l (t) − β
mk

l (s)) = Eak(w
k
l (t) − wk

l (s)) = 0 and similarly,

Emk q̃k[〈ϕ, 1
RNi

k(Z
mk)(t)〉 − 〈ϕ, 1

RNi
k(Z

mk)(s)〉](9.36)

= Eqk[〈ϕ, 1
RNi

k(z
k)(t)〉 − 〈ϕ, 1

RNi
k(z

k)(s)〉] = 0,

Emk q̃k[〈ϕ, 1
RNi

k(Z
mk)(t)〉2 −2

ϕ Ni
k(Z

mk)(t)

− 〈ϕ, 1
RNi

k(Z
mk)(s)〉2 + 2

ϕNi
k(Z

mk)(s)] = 0,

Emk ãk[βmk

l (t)β
mk

j (t) − tδlj − β
mk

l (s)β
mk

j (s) + sδlj ] = 0,

Emk q̃k[〈ϕ, 1
RNi

k(Z
mk)(t)〉βmk

l (t) − 3
ϕ,l N

i
k(Z

mk)(t)]
− Emk q̃k[〈ϕ, 1

RNi
k(Z

mk)(s)〉βmk

l (s) − 3
ϕ,l N

i
k(Z

mk)(s)] = 0.(9.37)

Next, since by Lemma 3.3 ‖(gmk)∗ϕ‖2
Hμ

=∑
l〈gmk ,ϕel〉2 and∑

l

‖ϕel‖2
L2(BR)

≤ c‖ϕ‖2
L2(BR)

by applying the compactness of the embedding of H 1(BR) in L2r/(r−2)(BR),
Lemma 9.6, property (R2) from page 1957 and the Lebesgue dominated conver-
gence theorem, we infer that the following three limits in C(R+) exist almost
surely:

lim
k→∞〈ϕ, 1

RNi
k(z

k)〉 = 〈ϕ,P i〉,

lim
k→∞N2i,k

ϕ (zk) =
∫ ·

0
‖[〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn]∗ϕ‖2

Hμ
ds

=: P 2i
ϕ ,
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lim
k→∞

3
ϕ,l N

i
k(z

k) =
∫ ·

0
〈[〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn]∗ϕ, el〉Hμ ds

=: P 3i
ϕ,l .

So, in view of the uniform boundedness (9.34) and (9.35) in Lp(�) for
p large enough, the integrals (9.36)–(9.37) converge as k ↗ ∞ provided that
P{‖(u(0),v0)‖H2R

= δ} = 0, and so we obtain

Eq〈ϕ,P i(t)〉 = Eq〈ϕ,P i(s)〉,
Eq[〈ϕ,P i(t)〉2 − P 2i

ϕ (t)] = Eq[〈ϕ,P i(s)〉2 − P 2i
ϕ (s)],

Ea[wl(t)wj (t) − tδlj ] = Ea[wl(s)wj (s) − sδlj ],
Eawl(t) = Eawl(s),

Eq[〈ϕ,P i(t)〉wl(t) − P 3i
ϕ,l(t)] = Eq[〈ϕ,P i(s)〉wl(s) − P 3i

ϕ,l(s)].
Hence in view of Corollary E.1, with aδ = 1

B
H2R
δ

((u(0),v0)),

E[aδ〈ϕ,P i(t)〉|Fs] = aδ〈ϕ,P i(s)〉,
E{aδ[〈ϕ,P i(t)〉2 − P 2i

ϕ (t)]|Fs} = aδ[〈ϕ,P i(s)〉2 − P 2i
ϕ (s)],

E[wl(t)wj (t) − tδlj |Fs] = wl(s)wj (s) − sδlj ,

E[wl(t)|Fs] = wl(s),

E{aδ[〈ϕ,P i(t)〉wl(t) − P 3i
ϕ,l(t)]|Fs} = aδ[〈ϕ,P i(s)〉wl(s) − P 3i

ϕ,l(s)].
Therefore w1,w2, . . . are i.i.d. F-Wiener processes, aδ〈ϕ,P i〉 is an F-martingale
on [0, T ] and the quadratic and the cross variations satisfy 〈aδ〈ϕ,P i〉〉 = aδP

2i
ϕ

and 〈aδ〈ϕ,P i〉,wl〉 = aδP
3i
ϕ,l on [0,R]. In order to finish the proof we introduce

the following F-stopping times:

τl = inf
{
t ∈ [0,R] : sup

s∈[0,t]
|〈ϕ,P i〉(t)|

+
∫ t

0
‖[〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn]∗ϕ‖2

Hμ
ds ≥ l

}
.

By letting δ ↗ ∞ we deduce that (τl)
∞
l=1 localizes 〈ϕ,P i〉, P 2i

ϕ and P 3i
ϕ,l on [0,R].

The result now follows by letting R ↗ ∞. �

PROPOSITION 9.9. Let (el)
∞
l=1 be an ONB of the RKHS Hμ, and let us set

Wψ =
∞∑
l=1

wlel(ψ), ψ ∈ S (Rd).(9.38)
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Then W is a spatially homogeneous F-Wiener process with spectral measure μ,
and for every function ϕ ∈ H 1

comp the following equality holds almost surely:

〈ϕ,Mi (t)〉 = 〈ϕ,Mi (0)〉

−
d∑

k=1

〈
∂xk

ϕ,

∫ t

0
〈∂xk

u(s),Aiu(s)〉Rn ds

〉

+
〈
ϕ,

∫ t

0
〈f (u(s),V(s),∇u(s)),Aiu(s)〉ds

〉
(9.39)

+
〈
ϕ,

∫ t

0
〈g(u(s),V(s),∇u(s)),Aiu(s)〉dW(s)

〉
,

t ≥ 0.

PROOF. By Lemma 9.7 we infer that Wϕ is an F-Wiener process and
E|Wtϕ|2 = t

∑
l |el(ϕ)|2 = t‖ϕ̂‖2

L2(μ)
. Hence W is a spatially homogeneous F-

Wiener process with spectral measure μ.
Let now P i be the process defined by formula (9.31). Let ϕ ∈ W 1,r

comp. In order
to prove equality (9.39) it is enough to show that〈

〈ϕ,P i〉 −
∫

〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn dW,ϕ〉
〉
= 0.(9.40)

The following sequence of equalities concludes the proof of (9.40):〈
〈ϕ,P i〉,

∫
〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn dW,ϕ〉

〉
=∑

l

〈
〈ϕ,P i〉,

∫
〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rnel, ϕ〉dwl

〉

=∑
l

∫
〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rnel, ϕ〉d〈〈ϕ,P i〉,wl〉

=∑
l

∫
〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rnel, ϕ〉2 ds

=
∫

‖[〈g(u(s)V(s),∇u(s)),Aiu(s)〉Rn]∗ϕ‖2
Hμ

ds

= 〈〈ϕ,P i〉〉 =
〈∫

〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉Rn dW,ϕ〉
〉
. �

LEMMA 9.10. The L2
loc-valued process v introduced in (9.15) is F-adapted

and weakly continuous. Moreover, v(t) ∈ Tu(t)M for every t ≥ 0 almost surely and
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for every ϕ ∈ D(Rd)

〈v(t), ϕ〉 = 〈v(0), ϕ〉 +
∫ t

0
〈u(s),�ϕ〉ds

+
∫ t

0

〈
Su(s)(v(s),v(s)), ϕ

〉
−

d∑
k=1

∫ t

0

〈
Su(s)(∂xk

u(s), ∂xk
u(s)), ϕ

〉
(9.41)

+
∫ t

0
〈f (u(s),v(s),∇u(s)), ϕ〉ds

+
∫ t

0
〈g(u(s),v(s),∇u(s)) dW,ϕ〉

almost surely for every t ≥ 0.

PROOF. Obviously the process v is L2
loc-valued. The F-adaptiveness and the

weak continuity of v follow from the definition (9.15) and Lemma 9.6.
In order to prove the equality (9.41) let us take a test function ϕ ∈ D(Rd)

and functions hij as in assumption (M4). Then we consider vector fields Y i ,
i = 1, . . . , n, defined by formula (5.6), that is, Y i(x) =∑N

j=1 hij (x)Ajx. Let Mi

be the process introduced in Lemma 9.6 and which satisfies the identity (9.41).
Then by applying the Itô lemma from [5] to the processes u and Mi and the vector
field Y i , we get the following equality:

N∑
i=1

〈Mi (t)Y i(u(t)), ϕ〉

=
N∑

i=1

〈Mi (0)Y i(u(0)), ϕ〉 +
N∑

i=1

∫ t

0

〈
Mi (s)

(
du(s)Y

i)(V(s)), ϕ
〉
ds

−
N∑

i=1

d∑
l=1

∫ t

0
〈〈∂xl

u(s),Aiu(s)〉RnY i(u(s)), ∂xl
ϕ〉ds

(9.42)

−
N∑

i=1

d∑
l=1

∫ t

0

〈〈∂xl
u(s),Aiu(s)〉Rn

(
du(s)Y

i)(∂xl
u(s)), ϕ

〉
ds

+
N∑

i=1

∫ t

0
〈〈f (u(s),V(s),∇u(s)),Aiu(s)〉RnY i(u(s)), ϕ〉ds

+
N∑

i=1

∫ t

0
〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉RnY i(u(s)) dW,ϕ〉
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P-almost surely for every t ≥ 0.
Next, by identity (9.15) in Lemma 9.6, we have, for each t ≥ 0 and ω ∈ �,

〈v(t,ω),ϕ〉 = ∑N
i=1〈Mi (t)Y i(u(t)), ϕ〉 and by identity (5.7) we have, for each

s ≥ 0 and ω ∈ �,
N∑

i=1

d∑
l=1

〈〈∂xl
u(s),Aiu(s)〉RnY i(u(s)), ∂xl

ϕ〉 =
d∑

l=1

〈∂xl
u(s), ∂xl

ϕ〉.(9.43)

Furthermore, from Lemma 5.4 we infer that for each s ≥ 0 and ω ∈ �,
N∑

i=1

d∑
l=1

〈〈∂xl
u(s),Aiu(s)〉Rn

(
du(s)Y

i)(∂xl
u(s)), ϕ

〉
(9.44)

=
d∑

l=1

〈
Su(s)(∂xl

u(s), ∂xl
u(s)), ϕ

〉
.

Similarly, by the identities (5.8) and (9.16) in Lemmata 5.4 and 9.6, we infer that
for a.e. s ≥ 0,

N∑
i=1

〈
Mi(s)

(
du(s)Y

i)(V(s)), ϕ
〉= N∑

i=1

〈〈V(s),Aiu(s)〉Rn

(
du(s)Y

i)(V(s)), ϕ
〉

= 〈
Su(s)(V(s),V(s)), ϕ

〉
(9.45)

= 〈
Su(s)(v(s),v(s)), ϕ

〉
holds a.s. Moreover, by a similar argument based on (5.7) we can deal with the
integrands of the last two terms on the RHS of (9.42). Indeed by (5.6) we get

N∑
i=1

〈〈f (u(s),V(s),∇u(s)),Aiu(s)〉RnY i(u(s)), ϕ〉
(9.46)

= 〈f (u(s),V(s),∇u(s)), ϕ〉,
N∑

i=1

〈〈g(u(s),V(s),∇u(s)),Aiu(s)〉RnY i(u(s)), ϕ〉
(9.47)

= 〈g(u(s),V(s),∇u(s)), ϕ〉.
Summing up, we infer from equality (9.42), and the other equalities which follow
it, that for every t ≥ 0 almost surely

〈v(t), ϕ〉 = 〈v(0), ϕ〉 −
∫ t

0

d∑
l=1

〈∂xl
u(s), ∂xl

ϕ〉ds

−
∫ t

0

d∑
l=1

〈
Su(s)(∂xl

u(s), ∂xl
u(s)), ϕ

〉
ds
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+
∫ t

0
〈f (u(s),v(s),∇u(s)), ϕ〉

+
∫ t

0
〈g(u(s),v(s),∇u(s)) dW(s), ϕ〉.

This concludes the proof of Lemma 9.10. �

To complete the proof of the existence of a solution, that is, the proof of Theo-
rem 4.4, let us observe that the above equality is nothing else but (4.3). Moreover,
(4.2) follows from (9.10) and (9.15). This proves that if the process z := (u,v) then
(�,F ,F,P,W, z) a weak solution to equation (1.1).

APPENDIX A: THE JAKUBOWSKI’S VERSION OF THE SKOROKHOD
REPRESENTATION THEOREM

THEOREM A.1. Let X be a topological space such that there exists a se-
quence {fm} of continuous functions fm :X → R that separate points of X. Let us
denote by S the σ -algebra generated by the maps {fm}. Then:

(j1) every compact subset of X is metrizable;
(j2) every Borel subset of a σ -compact set in X belongs to S ;
(j3) every probability measure supported by a σ -compact set in X has a unique

Radon extension to the Borel σ -algebra on X;
(j4) if (μm) is a tight sequence of probability measures on (X,S ), then there

exists a subsequence (mk), a probability space (�,F ,P) with X-valued Borel
measurable random variables Xk , X such that μmk

is the law of Xk and Xk con-
verge almost surely to X. Moreover, the law of X is a Radon measure.

PROOF. See [31]. �

COROLLARY A.2. Under the assumptions of Theorem A.1, if Z is a Polish
space and b :Z → X is a continuous injection, then b[B] is a Borel set whenever
B is Borel in Z.

PROOF. See Corollary A.2 in [47]. �

APPENDIX B: THE SPACE L∞
loc(R+;L2

loc)

Let L = L∞
loc(R+;L2

loc) be the space of equivalence classes [f ] of all measur-
able functions f : R+ → L2

loc = L2
loc(R

d;Rn) such that ‖f ‖L2(Bn) ∈ L∞(0, n) for
every n ∈ N. The space L is equipped with the locally convex topology generated
by functionals

f �→
∫ n

0

∫
Bn

〈g(t, x), f (t, x)〉Rn dx dt,(B.1)
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where n ∈ N and g ∈ L1(R+,L2(Rd)).
Let us also define a space

Ym = L1((0,m),L2(Bm)).(B.2)

Let us recall that L∞((0,m),L2(Bm)) = Y ∗
m. Consider the following natural re-

striction maps:

πm :L2(Rd) � g �→ g|Bm ∈ L2(Bm),(B.3)

lm : L � f �→ (πm ◦ f )|[0,m] ∈ (Y ∗
m,w∗).(B.4)

The following results describe some properties of the space L.

LEMMA B.1. A map l = (lm(f ))m∈N : L →∏
m∈N(Y ∗

m,w∗) is a homeomor-
phism onto a closed subset of

∏
m∈N(Y ∗

m,w∗).

PROOF. The proof is straightforward. �

COROLLARY B.2. Given any sequence (am)∞m=1 of positive numbers, the set{
f ∈ L :‖f ‖L∞((0,m),L2(Bm)) ≤ am,m ∈ N

}
(B.5)

is compact in L.

PROOF. The proof follows immediately from Lemma B.1 and the Banach–
Alaoglu theorem since a product of compacts is a compact by the Tychonov theo-
rem. �

COROLLARY B.3. The Skorokhod representation Theorem A.1 holds for ev-
ery tight sequence of probability measures defined on (L, σ (L∗)), where the σ -
algebra σ(L∗) is the σ -algebra on L generated by L∗.

PROOF. Since each Ym is a separable Banach space, there exists a sequence
(jm,k)

∞
k=1, such that each jm,k : (Y ∗

m,w∗) → R is a continuous function, and
(jm,k)

∞
k=1 separate points of Y ∗

m. Consequently, such a separating sequence of con-
tinuous functions exists for product space

∏
(Y ∗

m,w∗), and, by Lemma B.1, for the
L as well. Existence of a separating sequence of continuous functions is sufficient
for the Skorokhod representation theorem to hold by the Jakubowski theorem [31].

�

PROPOSITION B.4. Let ξ̄ be an L-valued random variable. Then there exists
a measurable L2

loc-valued process ξ such that for every ω ∈ �,

[ξ(·,ω)] = ξ̄ (ω).(B.6)
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PROOF. Let (ϕn)
∞
n=1 be an approximation of identity on R. Let us fix t ≥ 0

and n ∈ N∗. Then the linear operator

In(t) : L � f �→
∫ ∞

0
ϕn(t − s)f (s) ds ∈ L2

loc(R
d)(B.7)

is well defined, and for all ψ ∈ (L2
loc(R

d))∗ = L2
comp(R

d) and t ≥ 0, the function
ψ ◦ In(t) : L → R is continuous. Hence in view of Corollary E.1 the map In(t) is
Borel measurable. We put

I (t) : L � f �→
{

lim
n→∞ In(t)(t), provided the limit in L2

loc(R
d) exists,

0, otherwise.
(B.8)

Then (by employing the Lusin theorem [53] in case (ii)) we infer that given f ∈ L:

(i) the map R+ � t �→ In(t)f ∈ L2
loc is continuous, and

(ii) limn→∞ In(t)f exists in L2
loc for almost every t ∈ R+ and [I (·)f ] = f .

If we next define L2
loc-valued stochastic processes ξn, for n ∈ N∗, and ξ by

ξn(t,ω) = In(t)(ξ̄ (ω)) and ξ(t,ω) = I (t)(ξ̄ (ω)) for (t,ω) ∈ R+ × �, then by (i)
above we infer that ξn is continuous and so measurable. Hence the process ξ is
also measurable, and by (ii) above, given ω ∈ �, the function {R+ � t �→ ξ(t,ω)}
is a representative of ξ̄ (ω). The proof is complete. �

APPENDIX C: THE SPACE Cw(R+;Wk,p
loc ), k ≥ 0, 1 < p < ∞

Let us introduce the spaces, for l ≥ 0, R > 0 and p,p′ ∈ (1,∞) satisfying 1
p′ +

1
p

= 1, W
l,p
R = {f ∈ Wl,p(Rd;Rn) :f = 0 on Rd \ BR}, W

l,p
R = Wl,p(BR;Rn)

and W
−l,p
R = (W

l,p′
R )∗. Let us recall that by (Wk,p(BR),w) we mean the space

Wk,p(BR) endowed with the weak topology. We now formulate the first of the
two main results in this Appendix. The proofs of them can be found in [47]; see
Corollary B.2 and Proposition B.3.

COROLLARY C.1. Assume that γ > 0, 1 < r,p < ∞, −∞ < l ≤ k sat-
isfy 1

p
− k

d
≤ 1

r
− l

d
. Then for any sequence a = (am)∞m=1 of positive numbers,

the set K(a) := {f ∈ Cw(R+;Wk,p
loc ) :‖f ‖L∞([0,m],Wk,p(Bm)) +‖f ‖

Cγ ([0,m],Wl,r
m )

≤
am,m ∈ N} is a metrizable compact subset of Cw(R+;Wk,p

loc ).

PROPOSITION C.2. The Skorokhod representation Theorem A.1 holds for ev-
ery tight sequence of probability measures defined on the σ -algebra generated by
the following family of maps:

{Cw(R+;Wk,p
loc ) � f �→ 〈ϕ,f (t)〉 ∈ R} :ϕ ∈ D(Rd,Rn), t ∈ [0,∞).
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APPENDIX D: TWO ANALYTIC LEMMATA

LEMMA D.1. Suppose that (D, S,μ) is a finite measure space with μ ≥ 0.
Assume that a Borel measurable function f : R → R is of linear growth. Then the
following functional:

F(u) :=
∫
D

f (u(x))μ(dx), u ∈ L2(D,μ),(D.1)

is well defined. Moreover, if f is of C1 class such that f ′ is of linear growth, then
F is also of C1 class and

duF (v) = F ′(u)(v) =
∫
D

f ′(u(x))v(x)μ(dx), u, v ∈ L2(D,μ).(D.2)

PROOF. The measurability and the linear growth of f , together with the as-
sumption that μ(D) < ∞ [what implies that L2(D,μ) ⊂ L1(D,μ)], imply that F

is well defined.
Let us fix for each u ∈ L2(D,μ). The linear growth of f ′ and the Cauchy–

Schwarz inequality imply that the functional � defined by the RHS of the inequal-
ity D.2 is a bounded linear functional on L2(D,μ). It is standard to show that F

is Fréchet differentiable at u and that dF = �. �

LEMMA D.2. Suppose that an L2(D,μ)-valued sequence vk converges
weakly in L2(D,μ) to v ∈ L2(D,μ). Suppose also that an L2(D,μ)-valued
sequence uk converges strongly in L2(D,μ) to u ∈ L2(D,μ). Then for any
ϕ ∈ L∞(D,μ), ∫

D
uk(x)vk(x)ϕ(x) dx →

∫
D

u(x)v(x)ϕ(x) dx.(D.3)

PROOF. We have the following inequality:∣∣∣∣∫
D

uk(x)vk(x)ϕ(x) dx −
∫
D

u(x)v(x)ϕ(x) dx

∣∣∣∣
≤
∣∣∣∣∫

D

(
vk(x) − v(x)

)
u(x)ϕ(x) dx

∣∣∣∣(D.4)

≤
(∫

D
|uk(x) − u(x)|2 dx

)1/2(∫
D

|vk(x)|2 dx

)1/2

|ϕ|L∞ .

Since on the one hand, by the first assumption the sequence, (
∫
D |vk(x)|2 dx)1/2 =

|vk|L2 is bounded, and
∫
D(vk(x) − v(x))u(x)ϕ(x) dx converges to 0, and on the

other hand, by the second assumption
∫
D |uk(x) − u(x)|2 dx converges to 0, the

result follows by applying (D.4). �

The same proof as above applies to the following result.
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LEMMA D.3. Suppose that an L2
loc(R

d)-valued sequence vk converges
weakly in L2

loc(R
d) to v ∈ L2

loc(R
d). Suppose also that an L2

loc(R
d)-valued se-

quence uk converges strongly in L2
loc(R

d) to u ∈ L2
loc(R

d). Then for any function
ϕ ∈ L∞

comp(R
d), ∫

D
uk(x)vk(x)ϕ(x) dx →

∫
D

u(x)v(x)ϕ(x) dx.(D.5)

PROOF. The set D in the proof of Lemma D.2 has to be chosen so that
suppϕ ⊂ D. �

LEMMA D.4. Suppose that an L2(D,μ)-valued bounded sequence vk con-
verges weakly in L1(D,μ) to v ∈ L2(D,μ). Then vk → v weakly in L2(D,μ).

APPENDIX E: A MEASURABILITY LEMMA

Let X be a separable Fréchet space (with a sequence of seminorms (‖ · ‖k)k∈N,
let Xk be separable Hilbert spaces and ik :X → Xk linear maps such that
‖ik(x)‖Xk

= ‖x‖k , k ≥ 1. Let (ϕk,j )j∈N ⊂ X∗
k separate points of Xk . Then (see

Appendix C in [47]) the maps (ϕk,j ◦ ik)k,j∈N generate the Borel σ -field on X.
This implies the following important result.

COROLLARY E.1. There exists a countable system (ϕk)k∈N ⊂ D such that
for every m ≥ 0 the maps Hm

loc � h �→ 〈h,ϕk〉L2 ∈ R, k ∈ N generate the Borel
σ -algebra on Hm

loc.
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[8] BRZEŹNIAK, Z. and PESZAT, S. (1999). Space–time continuous solutions to SPDE’s driven
by a homogeneous Wiener process. Studia Math. 137 261–299. MR1736012

[9] CABAÑA, E. M. (1972). On barrier problems for the vibrating string. Z. Wahrsch. Verw. Gebiete
22 13–24. MR0322974

[10] CARMONA, R. and NUALART, D. (1988). Random nonlinear wave equations: Propagation of
singularities. Ann. Probab. 16 730–751. MR0929075

[11] CARMONA, R. and NUALART, D. (1988). Random nonlinear wave equations: Smoothness of
the solutions. Probab. Theory Related Fields 79 469–508. MR0966173

[12] CARROLL, A. (1999). The stochastic nonlinear heat equation. Ph.D. thesis, Univ. Hull.
[13] CAZENAVE, T., SHATAH, J. and TAHVILDAR-ZADEH, A. S. (1998). Harmonic maps of the

hyperbolic space and development of singularities in wave maps and Yang–Mills fields.
Ann. Inst. H. Poincaré Phys. Théor. 68 315–349. MR1622539

[14] CHOJNOWSKA-MICHALIK, A. (1979). Stochastic differential equations in Hilbert spaces. In
Probability Theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, War-
saw, 1976). Banach Center Publications 5 53–74. Polish Acad. Sci., Warsaw. MR0561468

[15] CHOW, P.-L. (2002). Stochastic wave equations with polynomial nonlinearity. Ann. Appl.
Probab. 12 361–381. MR1890069

[16] CHRISTODOULOU, D. and TAHVILDAR-ZADEH, A. S. (1993). On the regularity of spheri-
cally symmetric wave maps. Comm. Pure Appl. Math. 46 1041–1091. MR1223662

[17] DA PRATO, G. and ZABCZYK, J. (1992). Stochastic Equations in Infinite Dimensions. En-
cyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge.
MR1207136

[18] DALANG, R. C. (1999). Extending the martingale measure stochastic integral with appli-
cations to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4 29 pp. (electronic).
MR1684157

[19] DALANG, R. C. and FRANGOS, N. E. (1998). The stochastic wave equation in two spatial
dimensions. Ann. Probab. 26 187–212. MR1617046

[20] DALANG, R. C. and LÉVÊQUE, O. (2004). Second-order linear hyperbolic SPDEs driven by
isotropic Gaussian noise on a sphere. Ann. Probab. 32 1068–1099. MR2044674

[21] ELWORTHY, K. D. (1982). Stochastic Differential Equations on Manifolds. London Mathemat-
ical Society Lecture Note Series 70. Cambridge Univ. Press, Cambridge. MR0675100

[22] FLANDOLI, F. and GATAREK, D. (1995). Martingale and stationary solutions for stochastic
Navier–Stokes equations. Probab. Theory Related Fields 102 367–391. MR1339739

[23] FREIRE, A. (1996). Global weak solutions of the wave map system to compact homogeneous
spaces. Manuscripta Math. 91 525–533. MR1421290

[24] FRIEDMAN, A. (1969). Partial Differential Equations. Holt, Rinehart and Winston, New York.
MR0445088

[25] GARSIA, A. M., RODEMICH, E. and RUMSEY, H. JR. (1970). A real variable lemma and
the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20 565–578.
MR0267632

[26] GINIBRE, J. and VELO, G. (1982). The Cauchy problem for the O(N),CP(N − 1), and
GC(N,p) models. Ann. Physics 142 393–415. MR0678488

[27] GU, C. H. (1980). On the Cauchy problem for harmonic maps defined on two-dimensional
Minkowski space. Comm. Pure Appl. Math. 33 727–737. MR0596432

[28] HAMILTON, R. S. (1975). Harmonic Maps of Manifolds with Boundary. Lecture Notes in
Math. 471. Springer, Berlin. MR0482822

[29] HAUSENBLAS, E. and SEIDLER, J. (2001). A note on maximal inequality for stochastic con-
volutions. Czechoslovak Math. J. 51 785–790. MR1864042

[30] HÉLEIN, F. (1991). Regularity of weakly harmonic maps from a surface into a manifold with
symmetries. Manuscripta Math. 70 203–218. MR1085633

http://www.ams.org/mathscinet-getitem?mr=1736012
http://www.ams.org/mathscinet-getitem?mr=0322974
http://www.ams.org/mathscinet-getitem?mr=0929075
http://www.ams.org/mathscinet-getitem?mr=0966173
http://www.ams.org/mathscinet-getitem?mr=1622539
http://www.ams.org/mathscinet-getitem?mr=0561468
http://www.ams.org/mathscinet-getitem?mr=1890069
http://www.ams.org/mathscinet-getitem?mr=1223662
http://www.ams.org/mathscinet-getitem?mr=1207136
http://www.ams.org/mathscinet-getitem?mr=1684157
http://www.ams.org/mathscinet-getitem?mr=1617046
http://www.ams.org/mathscinet-getitem?mr=2044674
http://www.ams.org/mathscinet-getitem?mr=0675100
http://www.ams.org/mathscinet-getitem?mr=1339739
http://www.ams.org/mathscinet-getitem?mr=1421290
http://www.ams.org/mathscinet-getitem?mr=0445088
http://www.ams.org/mathscinet-getitem?mr=0267632
http://www.ams.org/mathscinet-getitem?mr=0678488
http://www.ams.org/mathscinet-getitem?mr=0596432
http://www.ams.org/mathscinet-getitem?mr=0482822
http://www.ams.org/mathscinet-getitem?mr=1864042
http://www.ams.org/mathscinet-getitem?mr=1085633
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