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BY ZHEN-QING CHEN', PANKI KIM? AND RENMING SONG
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Suppose that d > 2 and @ € (1, 2). Let D be a bounded cl1 open set in
R4 and b an R¥-valued function on R? whose components are in a certain
Kato class of the rotationally symmetric a-stable process. In this paper, we
derive sharp two-sided heat kernel estimates for L =AY2 4 b.VinD
with zero exterior condition. We also obtain the boundary Harnack principle
for £% in D with explicit decay rate.

1. Introduction. Throughout this paper we assume d > 2, @ € (1, 2) and that
X is a (rotationally) symmetric o-stable process on R?. The infinitesimal generator
of X is A¥? := —(—A)*/2. We will use B(x, r) to denote the open ball centered
at x € R? with radius r > 0.

DEFINITION 1.1. For a function f on R4, we define for r > 0,

O

dy.
ceRrd JB(x,r) |X —

A function f on R4 is said to belong to the Kato class Ky 1 if lim, o M? (r)y=0.

Since 1 < o < 2, using Holder’s inequality, it is easy to see that for every
p>d/(a—1), L®(R?; dx) + LP(R?: dx) C Kg,o—1. Throughout this paper
we will assume that b = (b', ..., b%) is an R¢-valued function on R? such that
|b] € Kg,o—1. Define L0 =AY2 4 p. V. Intuitively, the fundamental solution
pb (t,x,y) of L% and the fundamental solution p(t,x,y) of A%2 which is also
the transition density of X, should be related by the following Duhamel formula:

t
(1.1 pb(t,x,y):p(t,x,y)—i-/(; /Rd (s, x,2)b(2) - V.p(t —s, 2, y)dzds.
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Applying the above formula repeatedly, one expects that p”(z, x, y) can be ex-
pressed as an infinite series in terms of p and its derivatives. This motivates the
following definition. Define pg (t,x,y)=p(t, x,y)and, for k > 1,

t
(1.2) p,i’(t,x, y) :2/(; A{d p,i’_l(s, x,2)b(2) - V,p(t —s,z,y)dzds.

The following results are shown in [6], Theorem 1, Lemmas 15 and 23, and
their proofs. Here and in the sequel, we use := as a way of definition. For a, b € R,
a Ab:=min{a, b} and a Vv b := max{a, b}.

THEOREM 1.2. (i) There exist Ty > 0 and ¢y > 1 depending on b only through
the rate at which M| |Oll7| (r) goes to zero such that Y72 p,l{’ (t, x,y) converges locally

uniformly on (0, To] x R? x R? to a positive jointly continuous function p®(t, x, y)
and that on (0, Ty] x R? x R4,

t t
1.3 C_l<td/a/\7)< bt,x, <c <td/a/\7).
( ) 1 |X—y|d+a —p ( )’)_ 1 |X—y|d+a

Moreover, [pa pP(t,x, y)dy =1 forevery t € (0, To] and x € R9.

(ii) The function p®(t, x, y) defined in (i) can be extended uniquely to a positive
jointly continuous function on (0, 00) x R? x R? so that for all s,t € (0, 00) and
(x,y) e R x R4, [rd pP(t,x,2)dz=1and

(1.4) pb(s+t,x,y):/Rd PP (s, x,2)p%(t, 2, y) dz.
(iii) If we define
(1.5) PP = [ PP x )0 dy.

then forany f,g e C oo(Rd) the space of smooth functions with compact supports,
tim [ 17N (PP 0 = F@)grdx = [ £ g ax.
Thus p®(t, x, y) is the fundamental solution of LV in the distributional sense.

Here and in the rest of this paper, the meaning of the phrase “depending on b
only via the rate at which M » (1) goes to zero” is that the statement is true for any

R4-valued function b on Rd with

Mlbl(r) <M‘b‘(r) forall » > 0.

Note that the Green function G (x, y) of X is ¢/|x — y|?~% and so |V, G(x, y)| <
c/lx — yld_“+1. This indicates that Ky o is the right class of functions for gra-
dient perturbations of fractional Laplacian. The same phenomenon happens for
A+b-V;see[l8].
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It is easy to show (see Proposition 2.3 below) that the operators {P,b;t > 0}
defined by (1.5) form a Feller semigroup and so there exists a conservative Feller
process Xl = {Xf’,t >0, P,, x € R%} in R? such that Ptbf(x) = Ex[f(Xﬁ’)]. The
process X is, in general, nonsymmetric. We call X? an a-stable process with
drift b, since its infinitesimal generator is £°.

For any open subset D C R?, we define rlb) =inf{s > O:Xf’ ¢ D}. We will use
X?-P to denote the subprocess of X? in D; that is, Xf’D(a)) = Xf’(a)) ift < rg(a))
and X f’D (w)y=20ift > rg (w), where 0 is a cemetery state. The subprocess of X
in D will be denoted by X . Throughout this paper, we use the convention that for
every function f, we extend its definition to d by setting f(d) = 0. The infinites-
imal generator of xbD g £b|D, that is, £2 on D with zero exterior condition.
The process X”» has a transition density p% (t, x, y) with respect to the Lebesgue
measure; see (3.4) below. The transition density pll’) (t,x,y)of X b.D 5 the funda-
mental solution of £?|p. The transition density of X D is denoted by pp(t, x,y),
and it is the fundamental solution of L|p.

The purpose of this paper is to establish the following sharp two-sided esti-
mates on pll’) (t, x,y) in Theorem 1.3. To state this theorem, we first recall that
an open set D in RY is said to be a C'! open set if there exist a localiza-
tion radius Rp > 0 and a constant A > 0O such that for every z € d D, there ex-
ist a C!"!-function ¢ = ¢, : R~ — R satisfying ¢(0) =0, V¢ (0) = (0, ...,0),
IVPlloo < Ao, |[VP(x) — Vo (2)| < Aolx — z| and an orthonormal coordinate sys-
tem CS,: y=(1,...,Yd—1, Ya) := (¥, yg) with its origin at z such that

B(z, Ro) N D ={y € B(0, Ro) in CS::ya > ¢ (M)}

The pair (Rg, Ag) is called the characteristics of the C L1 open set D. We remark
that in some literatures, the C!'! open set defined above is called a uniform C'!
open set as (Rg, Ag) is universal for every z € dD. For x € D, let §p(x) denote
the Euclidean distance between x and 3 D. Note that a bounded C'! open set may
be disconnected.

THEOREM 1.3. Let D be a bounded C"' open subset of R¢ with C! char-
acteristics (Rgy, Ao). Define

folt,x,y) = (1 A 5”3?”)(1 A 5D(j;a/2>(t—d/a A m)

Foreach T > 0, there are constants ¢ = c1(T, Ry, Ao, d, a, diam(D), b) > 1 and

cr=cy(T,d,a, D,b) > 1with the dependence on b only through the rate at which
M |‘}‘7| (r) goes to zero such that:

1) on (0, T] x D x D,

Cl_lfD(t,x, y) < ph(t,x,y) <cifp(t, x,y);
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(i1) on [T,00) x D x D,
b,D 4 b.D
¢y eT M0 8p ()8 p (1) < ph (. x, y) < cre” M0 Sp (1) *8p (1),
where —15"” := supRe(o (L?|p)) < 0.

Here diam(D) denotes the diameter of D. At first glance, one might think that
the estimates in Theorem 1.3 can be obtained from the estimates for pp(z, x, y) by
using a Duhamel formula similar to (1.1) with p?, p and R? replaced by p%, PD
and D, respectively. Unfortunately such an approach does not work for pé’) (t,x,y).
This is because unlike the whole space case, we do not have a good control on
V.pp(s,z, y) when z is near the boundary of D. When D =R, p(t, x, y) is the
transition density of the symmetric «-stable process, and there is a nice bound for
V.p(t, z, y). This is the key reason why the result in Theorem 1.2(i) can be estab-
lished by using Duhamel’s formula. Instead, we establish Theorem 1.3 by using
probabilistic means through the Feller process X”. More specifically, we adapt the
road map outlined in our paper [9] that establishes sharp two-sided Dirichlet heat
kernel estimates for symmetric a-stable processes in C!»! open sets. Clearly, many
new and major difficulties arise when adapting the strategy outlined in [9] to X?.
Symmetric stable processes are Lévy processes that are rotationally symmetric and
self-similar. The Feller process X” here is typically nonsymmetric, which is the
main difficulty that we have to overcome. In addition, X? is neither self-similar
nor rotationally symmetric. Specifically, our approach consists of the following
four ingredients:

(i) determine the Lévy system of X? that describes how the process jumps;

(ii) derive an approximate stable-scaling property of X? in bounded C'! open
sets, which will be used to derive heat kernel estimates in bounded C!! open sets
for small time ¢ € (0, T'] from that at time t = 1;

(iii) establish sharp two-sided estimates with explicit boundary decay rate on
the Green functions of X” and its suitable dual process in C'*! open sets with
sufficiently small diameter;

(iv) prove the intrinsic ultracontractivity of (the nonsymmetric process) X” in
bounded open sets, which will give sharp two-sided Dirichlet heat kernel estimates
for large time.

In step (ii), we choose a large ball E centered at the origin so that our bounded
C!! open set D is contained in %E . Then we derive heat kernel estimates in D at
time ¢ = 1 carefully so that the constants depend on the quantity M defined in (6.5),
not on the diameter of D directly. Note that the constant M has the correct scaling
property, while the diameter of D does not. In fact, the constant ¢; in Theorem 1.3
depends on the diameter of D only through M.

We also establish the boundary Harnack principle for X and its suitable dual
process in C1*1 open sets with explicit boundary decay rate (Theorem 6.2). How-
ever, we like to point out that Theorem 6.2 is not used in the proof of Theorem 1.3.
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By integrating the two-sided heat kernel estimates in Theorem 1.3 with respect
to ¢, one can easily get the following estimates on the Green function G’Z) (x,y)=

ooopl;)(f,x,y)df-

COROLLARY 1.4. Let D be a bounded C'! open set in R?. Then there is a
constant ¢ = c¢(D,d, a, b) > 1 with the dependence on b only through the rate at
which M \OI;I (r) goes to zero such that on D x D,

O 1 <1Asb(x)°‘/28D<y)“/2)

|x — y|d— lx — y|*

S 01/25 /2
<G (x,y) < p(xX)*“8p(y) )

A
Ix—yl"‘“< lx — y|*

The above result was obtained independently as the main result in [7]. Clearly
the heat kernel p% (t, x, y) contains much more information than the Green func-
tion Gll’) (x, ¥). The estimates on pr (t, x, y) are not studied in [7].

The sharp two-sided estimates for pp(¢, x, ¥), corresponding to the case b =0
in Theorem 1.3, were first established in [9]. Theorem 1.3 indicates that short time
Dirichlet heat kernel estimates for the fractional Laplacian in bounded C'-! open
sets are stable under gradient perturbations. Such stability should hold for much
more general open sets.

We say that an open set D is k-fat if there exists an R > 0 such that for every
x € D and r € (0, Ry], there is some y such that B(y, xr) C B(x,r) N D. The pair
(R1, k) is called the characteristics of the «-fat open set D.

CONJECTURE 1.5. Let T > 0 and D be a bounded «-fat open subset of RY.
Then there is a constant c1 > 1 depending only on T, D, a and b with the depen-
dence on b only through the rate at which M |‘}‘)| (r) goes to zero such that

CIIPD(I,X,)’) <pb, x,y) <cipp(t,x,y) fort € (0, Tland x,y € D
and

i 'Gp(x,y) < Gh(x,y) <c1Gp(x,y)  forx,yeD.

In the remainder of this paper, the constants Ci, Cp, C3, Cs4 will be fixed
throughout this paper. The lower case constants cg, ¢y, ¢2, ... can change from
one appearance to another. The dependence of the constants on the dimension d
and the stability index « will not be always mentioned explicitly. We will use dx
to denote the Lebesgue measure in R¢. For a Borel set A C R, we also use |A]
to denote its Lebesgue measure. The space of continuous functions on R? will be
denoted as C(R?), while Cp,(R?) and Cs(R?) denote the space of bounded con-
tinuous functions on R and the space of continuous functions on R¢ that vanish
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at infinity, respectively. For two nonnegative functions f and g, the notation f =< g
means that there are positive constants ¢; and ¢ so that c;g(x) < f(x) < c2g(x)
in the common domain of definition for f and g.

2. Feller property and Lévy system. Recall thatd >2 and « € (1, 2). A (ro-
tationally) symmetric a-stable process X = {X,,t >0, P, x € R?}inR? is a Lévy
process such that

E,[efs Xi=X0)] = 111" for every x € R? and £ € R.

The infinitesimal generator of this process X is the fractional Laplacian A%/2,
which is a prototype of nonlocal operators. The fractional Laplacian can be written
in the form

A(d, —a)

2.1 A2y (x) = lim u(y) —u(x))———————=—dy,
2.1 (x) L {yeRd:|y—x|>s}( (y) — u( ))Ix—y|d+°‘ y

where A(d, —a) := a2°‘_17r_d/2F(d%)F(l — %)_1.
We will use p(t, x, y) to denote the transition density of X (or equivalently the

heat kernel of the fractional Laplacian A%/2) Tt is well known (see, e.g., [2, 12])
that

t
B — on (0, 00) x RY x RY.

L, x,y)xt
p(t.x,y) =y

The next two lemmas will be used later.

LEMMA 2.1. If f is a function belonging to Ky o—1, then for any compact
subset K of RY,

sup/ Mdy<oo.

xecRd K |')C - yld_a

PROOF. This follows immediately from the fact thatd —a <d + 1 — . We
omit the details. [J

Recall that we are assuming that b is an R¢-valued function on R¢ such that
1b] € Ka,a—1-

LEMMA 2.2. If f is a function belonging to K4 o—1, then

lim sup/ Pblfl(x)ds—

10, cra
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PROOF. By (1.3),

t
lim sup | PP|fl(x)ds

=0 eRrd

t
<cp lim sup A (S/B Mdy

10y cRd (.sl/eye |y — x|dte

sl |f<y)|dy) ds.
B(x,s1/e)

So it suffices to show that the right-hand side is zero. Clearly, for any s < 1, we
have

_ |f DI
2.2 / dy < (sV/@yd+l=a gy / —
(2.2) 85108 lfWldy < (s7%) xeﬂgd sty [y — [T
Applying [36], Lemma 1.1, we get
Lf DI Vayd+l—a  ljay—(d+a) _ . 1ja—2
(2.3) xs:ugd el md}’ <c(s’7) (%) =28 .

Now the conclusion follows immediately from (2.2) and (2.3). O

By the semigroup property of p?(z,x,y) and (1.3), there are constants ci,
¢ > 1, such that on (0, 00) x R? x R4,

-1 —Czt( —d/a i )
c, e t A
1
|x _ y|d+a

(2.4)

. t
<p’(t,x,y) < cre® (t_d/“ A m)-

PROPOSITION 2.3.  The family of operators {Ptb; t > 0} defined by (1.5) forms
a Feller semigroup. Moreover, it satisfies the strong Feller property; that is, for
eacht > 0, Ptb f maps bounded measurable functions to continuous functions.

PROOF. Since pb (t, x, y) is continuous, by the bounded convergence theorem,
P,b enjoys the strong Feller property. Moreover, for every f € Coo(R?) and 1 > 0,

. . _ t
Jim 1221 < tim 1 [ (6740 n G2 )i+ )l dy =0

and so Ptbf € Cso(R?). By (2.4), we have
sup sup P (X7 — X§| > 8)

<10 xcRd

_ t
< c1e“ sup sup (t dfe 7d+0[> dy
1<io xeRd J (yER? : [x—y|=3) lx =yl
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o0 t
= ¢3¢ sup rd=1 (td/“ A d—) dr
1<t J8 rd+a

o0
§C4€C2t0/ 1 ud_1<1 A dl )du
51y udte

for some ¢3 = c3(d) > 0 and ¢4 = c4(d) > 0. Thus

(2.5) limsup sup P, (|X? — X5 > 6)=0.
1010 1<ty  eRd

Forevery f € Cp(RY), x e R? and ¢ > 0, there isa § > 0 so that lf)—fx)]<e
for every y € B(x, 8). Therefore we have by (2.5),

lim| P £ () = £ )]

_ lim‘ /R P X )(FO) = F@)dy

t0

<lim PP, x, MIfFG) — fx)ldy
110 J{yeRd : |y—x| <8}

+ ltifg2||f||me(|Xf —x|=4) <e.

Therefore for every f € Cp(R?) and x € R?, lim, 10 Plb f(x) = f(x). This com-
pletes the proof of the proposition. [

We will need the next result, which is an extension of Theorem 1.2(iii).
PROPOSITION 2.4. Forany f € Cé’o(Rd) and g € Coo (R, we have

tim [ 7P S0~ F@)grdx = [ (L7 g0 dx.

110 Jrd

PROOF. This proposition can be proved by following the proof of [6], Theo-
rem 1, with some obvious modifications. Indeed, one can follow the same argu-
ment of the proof of [6], Theorem 1, until the second display in [6], page 195,
with f € Ccoo(]Rd) and g € Coo(RY). Let & > 0, and use the same notation as
in [6], page 195, except that K := {z:dist(z, K1) < 1} and we ignore K. Since
h(x,y) =V f(y)g(x) is still uniformly continuous, there exists a § > 0 such that
for all x, y, z with |[x —z| < and |y — z| < &, we have that |h(x, y) —h(z, 2)| < €.
Thus the third display in [6], page 195, can be modified as

L= [ G- VI @s)dz

tp(t—s,x,2)p(s,z,y)
S/Rd /Rd ]Isz/(\) P ds|b(2)||h(x,y) —h(z,2)|dxdydz
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t
§2||h||/ / /( p(t—S,X,Z)dX)Mdﬂb(Zﬂdde
K¢ JK JO \JR4 t
t r—
+2||h||f f] / PUZS X DPS2Y) o) dx dy dz
K (B(z,8)x B(z,8))¢ JO t

! ! — [ )
-‘,—g/ // / pt—s,x,2)p(s,2,y) dslb(@)|dx dydz.
K B(z,8)xB(z,8) JO t

The remainder of the proof is the same as that of the proof of [6], Theorem 1. []

The Feller process X? possesses a Lévy system (see [33]), which describes how
X? jumps. Intuitively, since the infinitesimal generator of X” is £?, X? should
satisfy

dX’ =dX, 4+ b(X?)dr.

So X? should have the same Lévy system as that of X, as the drift does not con-
tribute to the jumps. This is indeed true, and we are going to give a rigorous proof.
It is well known that the symmetric stable process X has Lévy intensity function

J(x,y) = Ad, —a)|x — y|~@+).

The Lévy intensity function gives rise to a Lévy system (N, H) for X, where
N(x,dy)=J(x,y)dy and H; = t, which describes the jumps of the process X:
for any x € RY and any nonnegative measurable function f on R x R? x R¢
vanishing on {(s, x, y) € Ry x R x R? : x = y} and stopping time T (with respect
to the filtration of X),

B3 s X x| =B [ ([, 16 %0 Iy ) s |

s<T

(See, e.g., [12], proof of Lemma 4.7, and [13], Appendix A.)
We first show that X? is a solution to the martingale problem of £”.

THEOREM 2.5. For every x € R? and every f € Cfo(Rd),
t
Ml = roxh - oy [ £ peedds
is a martingale under Py.

PROOF. Define the adjoint operator P,b’* of P,b with respect to the Lebesgue
measure by

PP reyi= [ty £ dy.

It follows immediately from (1.3) and the continuity of p’(z, x, y) that, for any
g € Coo(R?) and s > 0, both P?g and PP*g are in Coo(RY). Thus, for any f, g €
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Ccx (R?) and s > 0, by applying Proposition 2.4 with h = Psb *g and (1.4), we get
that

lim | 17 (Ph f(x) — PP f(x))g(x)dx

:l,if(} Rdt_l(Ptbf(x) — f(x))PP*g(x) dx

- f L8 () PP g (x) dx = / E,[£° £ (XP)]g(x) do,
Rd Rd

which implies that
b ! b b
@6 [ (1w - feswdx= [ E] ['@ poidsecoax.

Using the strong Feller property of P,b , Lemmas 2.1 and 2.2, we can easily see that
the function

x> PPF() - f(x) — By [ [ ’ Ebf(Xf)ds] — B M)

is continuous, and thus is identically zero on R? by (2.6). It follows that for any
feCx (R andx e R4, M7 isa martingale with respect to P,.. [

Theorem 2.5 in particular implies that Xf’ = (Xf’l,...,Xf”d) is a semi-
martingale. By Itd’s formula, we have that, for any f € C2° RY),

d . |
@ fOD ==Y [ 4r & axt + n )+ 340,
i=1

s<t

where

d »
2.8) ns(f) = F(X2) = FXP) =3 o F(xPy(xBi — xP)
i=1
and

d . . .
(2.9) A= Y [ o0, e e e,
i,j=1
Now suppose that A and B are two bounded closed sets having a positive dis-
tance from each other. Let f € C2° (RY) with f =0 on A and f =1 on B. Then

we know that N,f = fé 14(X f_) de is a martingale. Combining Theorem 2.5
and (2.7)—(2.9) with (2.1), we get that

t
N/ =3 1axb) Fxh) - /0 Li(X)(A“ £ (X)) ds

s<t

t
_ b by b b
=X Lo - [0 [ foadavds.

s<t
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By taking a sequence of functions f;, € C° (R4 with f, =0on A, f, =1on B
and f;, | 1p, we get that, for any x € R4,

> 14Xt )1B(X”)—/ 14(X?) /J(X y)dyds

s<t

is a martingale with respect to Py.. Thus,

t
B[S oo =k [ [ taodismsod. nayas|

sS<t

Using this and a routine measure theoretic argument, we get

[Zf(X ¢ } "[/Ol_/Rd f(X?,y)J(Xf’y)dyds]

St

for any nonnegative measurable function f on R? x R vanishing on {(x, y) €
R? x R? : x = y}. Finally following the same arguments as in [12], Lemma 4.7,
and [13], Appendix A, we get:

THEOREM 2.6. X” has the same Lévy system (N, H) as X; that is, for any
x € RY and any nonnegative measurable function f on Ry x R? x R? vanishing
on {(s,x,y) e Ry x RY x R? : x = y} and stopping time T (with respect to the
filtration of X?)

T
(2.10) IEX[Z f(s,Xf_,Xf)]zExUO (/Rdf(s, Xf,y)J(Xf,y)dy)ds]

s<T

For any open subset E of R?, let E; = E U {3}, where 9 is the cemetery point.
Define for x, y € E,

NE(x,dy):=J(x,y)dy,  NE(x,9):= /;ECJ(x,y)dy

and HZE :=t. Then it follows from the theorem above that (N£, HE) is a Lévy
system for X?-£; that is, for any x € E, any nonnegative measurable function f on
R4+ x E x Ej vanishing on {(s, x, y) e Ry x E x E:x =y} and stopping time T
(with respect to the filtration of X F)

[Z f(s, x0E xb E)]

s<T

2.11) ,
:Ex[/o (/E f(s,Xf’E,y)NE(Xf’E,dy)>dHSE].
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3. Subprocess of X”. In this section we study some basic properties of sub-
processes of X” in open subsets. These properties will be used in later sections.

LEMMA 3.1. Forany é > 0, we have

lim sup P, (2 <s5)=0.
waeﬂgd x( B(x,8) = )

PROOF. By the strong Markov property of X? (see, e.g., [3], pages 43 and 44),
we have for every x € R?,

Px(fzg(x,s) <s)
<Pe(ths) <5. X2 € B(x,8/2)) + P (X} € B(x,8/2)°)
3.1) <EJ[Px, (X’ _, —X§{|=68/2):154.5 <s]

TB(x.5) STTB(x.8)
+P.(1X0 — Xx51>8/2)
<2sup sup Po(IX? — X§| = 8/2).

1<S ycRd

Now the conclusion of the lemma follows from (2.5). O

A point z on the boundary G of a Borel set G is said to be a regular boundary
point with respect to X” if P, (rg =0) = 1. A Borel set G is said to be regular with

respect to X if every point in G is a regular boundary point with respect to X°.

PROPOSITION 3.2. Suppose that G is a Borel set of R¢ and z € 3G. If there
is a cone A with vertex z such that int(A) N B(z,r) C G€ for some r > 0, then z is
a regular boundary point of G with respect to X°.

PROOF. This result follows from (1.3) and Blumenthal’s zero—one law by a
routine argument. For example, the reader can follow the argument in the proof
of [25], Proposition 2.2. Even though [25], Proposition 2.2, is stated for open sets,
the proof there works for Borel sets. We omit the details. [J

This result implies that all bounded Lipschitz open sets, and in particular, all
bounded C'-! open sets, are regular with respect to X”. Repeating the argument
in the second part of the proof of [17], Theorem 1.23, we immediately get the
following result.

PROPOSITION 3.3.  Suppose that D is an open set in R, and f is a bounded
Borel function on dD. If z is a regular boundary point of D with respect to X",
and f is continuous at z, then

lim B [f(X7): 7 < 0] = [ (2).

D>x—z
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Let
(3.2) Kbt x.y) =Bl p"(t = 1. Xy )i 1) <1]
and
(3.3) Ph(t,x, y) i= pP(t, x, y) = kp(t, x, ).

Then pl[’) (t,x,y) is the transition density of X?P. This is because by the strong
Markov property of X?, for every ¢ > 0 and Borel set A C R?,

(3.4) P, (X" e A) = /A bt x, y)dy.

We will use {Ptb’D } to denote the semigroup of XP and £?|p to denote the in-
finitesimal generator of {P,b’D}. Using some standard arguments (e.g., [4, 17]), we
can show the following:

THEOREM 3.4. Let D be an open set in R?. The transition density p% (t,x,y)
is jointly continuous on (0, 00) x D x D. For everyt >0 and s > 0,

3.5 p%(t—i—s,x,y)=/Dp’l’)(t,x,z)plz)(s,z,y)dz.

If z is a regular boundary point of D with respect to X, then for any t > 0 and
y € D$ hmDBX—)Z p%(t’-x, J’) = 0

PROOF. Note that by (2.4), there exist c1, c» > 0 such that for all 7y > 0 and
6 >0,

. t
sup sup pP(t,x,y) <c1e?sup sup (t dfo \ —d+a>
1<tg |x—y|>8 1<to |x—y|>8 lx — yl
(3.6)
<c ec‘zlot_o <
= Sd+a

We first show that k’b(t, X, +) is jointly continuous on (0, c0) x D x D. For any
8 > 0, define Ds = {x € D :dist(x, D) <8}. For0 <s <r and x, y € Ds, define

h(s, %, 3) =Bl p’(r = 1, X3y, )i s <7 < 7],
Note that

Exlh(s, r, X2, )1 =By [h(s, r, X2, y); s < t51+ Exlh(s, r, X2, y);s > ©5]
=h(s,r +5,%,9) +Ex[h(s,r, X2, y); s > T}
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and
K, x,y) =h(0,1,x,y)
= h(s.1.x,9) +Ex[p"(t = 1. X0y ) ) < 5]

=Eolh(s, t —5, X2, 9)]1 = Eylh(s, t — 5, X2, y); 1) < 5]
+Ealp”(t = T, X7y, ) 7 <51

For all #1, ; € (0, o0), by (3.6), pb(r,z, y) is bounded on (0, 2] x D¢ x Ds by
a constant c3. Consequently, A(s, r, x, y) is bounded by c3 for all x, y € Ds and
s,r € (0, ] with s <r A (t1/3). Thus we have from the above display as well as
(3.6) that for all ¢ € [#1,12], s <t1/2 and x, y € Dy,

kB (2, x, y) — Exlh(s, t —s, X2, p)]| < 2c3P, (15 <s)

<2c3 sup P, (rg(z’s) <s),
zeRd

which by Lemma 3.1 goes to 0 as s — O (uniformly in (¢, x, y) € [t1, £2] X Ds X
Ds). Since pb (t,x,y) is jointly continuous, it follows from the bounded con-
vergence theorem that E,[A(s, t — s, Xf ,¥)] is jointly continuous in (s,#,y) €
[0, #1/3] x [t1, 2] x Ds. On the other hand, for (s, #, y) in any locally compact
subset of (0,11/3) x [t1, 2] X Ds, Ex[h(s,t — s, Xf, W] = Jpa p(s,x,2)h(s, t —
s, zZ, ) dy is equi-continuous in x. Therefore E,[h(s,t — s, X f , y)] is jointly con-
tinuous in (s, ¢, x, y) € (0,11 /3) x [f1, 12] X Ds x Ds. Consequently, klz) (t,x,y)is
jointly continuous in (s, ¢, y) € [0, 1 /3] X [#1, 2] X Ds and hence on (0, o) x D x
D. Since pb (t, x, y) is jointly continuous, we can now conclude that pll’) (t,x,y)is
jointly continuous on (0, 00) x D x D.

By Proposition 3.3, the last assertion of the theorem can be proved using the
argument in the last paragraph of the proof of [17], Theorem 2.4. We omit the
details. [

The next result is a short time lower bound estimate for plz) (t, x, y) near the
diagonal. The technique used in its proof is well known. We give the proof here to
demonstrate that symmetry of the process is not needed.

PROPOSITION 3.5. Forany a; € (0,1), a» >0, az > 0 and R > 0, there is
a constant c = c¢(d, o, ay, az, az, R, b) > 0 with the dependence on b only via the
rate at which Ml"lgl(r) goes to zero such that such that for all xo € R? and r €
O, R],
Pl (% y) = ct =4
(3.7
forall x,y € B(xo,air) andt € layr®, azr®].



DIRICHLET HEAT KERNEL ESTIMATES FOR AY/2 4+ ).V 2497

PROOF. Let x :=ay/(2a3) and B, := B(xg, r). We first show that there is a
constant ¢; € (0, 1) so that (3.7) holds for all » > 0, x,y € B(xg,a1r) and t €
[kc1r®, c1r*].

For r > 0, t € [kc1r®, c1r®], and x,y € B(xg,ayr), since |x — y| < 2air <

2a1(kcy) "V~ and t < c1r® < R%, we have by (2.4), (3.2) and (3.3),
ph (t,x,y) > 020i+d/al_d/a

(3.8) ,

1 —1g

_ _hydje o~ B
T

By
where the positive constants ¢; = ¢;(d, o, a1, az, a3, R, b),i = 2,3, are indepen-
dent of ¢ € (0, 1]. Observe that

|Xlr’,, —y|>{—apr fort—tgrftfclr“,

By
and so
b b 1+d/a

r—T r—t

(39) B, < B, < ‘1 —d/a
X0, — yldte = (1 —a)r)®e = (1 —a)d+e
g,

Note that if ¢; < (1 —ay)/2)%, by (2.4), for t < c1r,
Po(X] ¢ Blr, (1 —anr/2)) = [ pb(t,x, y)dy
B(x,(1—ay)r/2)¢
< / !
C —_—
=2 Js.—anrae Ix — yld+e

t
< c4— = c40q,
rO{

dz

where ¢4 is independent of c;. Now by the same argument as in the proof of
Lemma 3.1, we have

(3.10) P (T . (1—apyry <1) < 2csc1.
Consequently, we have from (3.8)—(3.10),
"y cl-‘rd/oz
b +d/a 1 b —d
pp,(t,x,y) > <02C1 - C3W]P)x(73, = t)>f e
"y cl-‘rd/ot
+d/a 1 b —d
= ("2"1 - CSWPX(TB(X»(I—M)”) = ’)>’ e
1+d /o C1 —d/a
> Cl (C2 — 2C4C3m)t .

Clearly we can choose ¢ < a3 A ((1 — ay)/2)* small so that p%r (t,x,y) >
cs5t~4/%  This establishes (3.7) for any xg € RY r>0andt € [kcir?, cir®].
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Now for r > 0 and ¢ € [ayr®, az3r®], define kg = [a3z/c1] + 1. Here for a > 1,
[a] denotes the largest integer that does not exceed a. Then, since ¢; < a3, t/kg €
[kcir®, cir®]. Using the semigroup property (3.5) kg times, we conclude that for
all x, y € B(xg,air) and t € [axr?, asr®],

p%(x()’r)(ta X, y)

P%(xo,r)(f/ko, X, wy)---

B(xo,r) o /I;(XOJ")

X Py t/ k0, W1, Y) dwy -+ dwy_y

b
= (t ko,x,wl)...
‘/;(Xo,mr) v/‘B(Xo,alr) pB(x()’r) /

X p[l)?(xo,r)(t/ko’ Wp—1,y)dw] ---dwp_1
> ¢5(t/ ko) ™4/ (e5(t/ ko) ™| B(O, D(@rr)?) ™" = cot ™4/,

The proof of (3.7) is now complete. [J

Using the domain monotonicity of p%, the semigroup property (3.5) and the
Lévy system of X?, the above proposition yields the following.

COROLLARY 3.6. For every open subset D C R¢, pll’) (t,x,y) is strictly pos-
itive.

PROOF. For x € D, denote by D(x) the connected component of D that con-

tains x. If y € D(x), using a chaining argument and Proposition 3.5, we have

plb(tv-x’ )’) ZP?)(X)(Z‘,X,)’) > 0

If y ¢ D(x), then by using the strong Markov property and the Lévy system (2.10)
of Xb,

P, x,y)

b b b )
=E:[pp(t — th@)s Xff)m’ )i Thay <1]

b b b . .b b
> E[pp(t — Ty er,(x)’ Y)i Thoy <1t Xr{’)m € D(y)]

t
b b
> p (s,x,z)(/ J(z,w)p ,(t—s,w,y)dw)dzds>0.
/O /D(x) D(x) DOy D(y)
The corollary is thus proved. [J

In the remainder of this section we assume that D is a bounded open set in R?.
The proof of the next lemma is standard; for example, see [24], Lemma 6.1.
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LEMMA 3.7. There exist positive constants C1 and Co depending only on d,

o, diam(D) and b with the dependence on b only through the rate at which M fl‘ﬂ (r)
goes to zero such that

Pht,x,y) <Cie™ @, (t,x,y)€(1,00) x D x D.
PROOF. Put L :=diam(D). By (1.3), for every x € D we have

Po(th < 1) = Py(x? e RY\ D) =/ PP x, y)dy
RI\D

1
> ¢ IA—)d
B I/Rd\,)< Ix—yl‘”"‘) Y
1
201/ <1/\—>dz>0.
{lz1>L} |z]d+

sup p%(l,x,y)dy = sup}P’x(rf’) >1) < 1.
xeDJD xeD

Thus

The Markov property of X? then implies that there exist positive constants ¢, and
c3 such that

/ ot x, y)dy < cpe™ ! for (¢, x) € (0, 00) x D.
D

It follows from (1.3) that there exists ¢4 > 0 such that p’l’)(l, x,y) < pb(l, x,y) <
c4 forevery (x,y) € D x D. Thus for any (¢, x, y) € (1,00) x D x D, we have

p’z)(r,x,y>=/Dp’z)<r—1,x,z>p’z)(1,z,y>dz
< C4f Pot —1,x,2)dz < cycge™ 30D, 0O
D

Combining the result above with (1.3) we know that there exists a positive con-
stant c; = c1(d, a, diam(D), b) with the dependence on b only through the rate at
which Ml‘}‘Jl(r) goes to zero such that for any (¢, x, y) € (0,00) x D x D,

b R
(3.11) pD(t,x,y)§C1<t aA|x—y|d+a)'

Therefore the Green function GbD (x,y)= fooo plb (¢, x, y)dt is finite and continu-
ous off the diagonal of D x D and

(3.12) Ghx,y)<cp——
b lx — y|d—«

for some positive constant ¢y = ¢2(d, o, diam(D), b) with the dependence on b
only through the rate at which M fél (r) goes to zero.
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4. Uniform estimates on Green functions. Let

8D<x>aa<y))“/2
Ix — y|?

1
,y) = 1A
£0(+.3) = (

The following lemma is needed in deriving sharp bounds on the Green function
Gll’] when U is some small C!'! open set. It can be regarded as a new type of 3G
estimates.

LEMMA 4.1. There exists a positive constant C3 = C3(d, o) such that for all
x,y,z€ D,

, | 1
@D gplx, z)% < C3gp(a. y)(|x — i y|d+1_a)
and

gp(x,2) gn(z,y)
42) lx —z| Adp(x) [z =y Adp(2)

X, 1 1
<cs gp(x,y) ( SR — )
|x =y ASp(x) \|x —zldtl= |z — y|dtl-a

PROOF. Putr(x,y)=468p(x)+dp(y)+ |x — y|. Note that for a, b > 0,

ab
4.3)

<aAb<?2 .
a—+b a—+b

Moreover for x, y € D, since
3p()* <8p(M)(Ep () + Ix = ¥I) <3p(Ip () +8p()*/2+ x — yI*/2,
one has
8p(x)* <28p()3p(y) + Ix — yI*,
It follows from these observations that
Sp(x)ép(y) _ ( SD(X)(SD(y)) 1230 ()3D(y)

(r(x,yN* ~ lx — yI? (r(x,y)*
Consequently, we have

4.4)

1 Sp(x)*28p(y)*/?

@ SN2 LT T ()
Now
2p(x.2) gn(z,y)
lz—ylAdp(2)

- o o — d—a
(4.6) XgD(x,y)lz yl+6p (@) ép(2)%r(x,y) ( Ix — vl )

lz = yI6p(z) r(x,2)%r(z, y)*\|x —z| |z =]
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r(y,z)amz)“—‘r(x,y)“( x — yl >d°‘
lz =yl r(x,2)%(z, y)* \|x —z| |z — Y|
r(x,y) <8D<z>r<x,y)>“—1( lx — yl )d—“
lz = ylr(x,2) \r(x,2)r(z,y) |x —z| - [z =yl
Since r(x,y) <r(x,z)+r(z,y),
Sp()r(x,y) < dp(z)  dp(2) <2
r(x,2)r(z,y) ~r(x,z) r(z,y)
On the other hand, since §p(y) <dp(x) + |x — y|,
r(x,y) 52Ix—yIJrfSD(X)Szlx—zIJr(lz—ylJr(Sz)(x))
|z — ylr(x,z) |z —ylr(x,z) |z —ylr(x,z)
2 2 2 2
< + < + :
r(x,z) lz—yl " |lx—z| lz—Y]
Hence we deduce from (4.6) that
gp(z,y)
|z =yl Adp(2)

1 1 X — d—a
§2°‘gD(x,y)< + )( X~ | )
lx —z|  lz—=yl/\|lx—2z]-]lz—yl

1 1 1 1
<cign(x, + +
< c18pl y)<|x—z| Iz—yl)(IX—zld_“ IZ—yId_“)

1 1
< czgp(x,y)( + )

|x—z|d+1_°‘ |Z_y|d+l—a

<gp(x,y)

=gp(x,y)

gp(x,2)

where c; and ¢, are positive constants depending only on d and «. This proves
4.1).
Now we show that (4.2) holds. Note that by (4.5),

gp(x,2) gn(z,y)
lx —z| Adp(x) |z — y| Adp(2)
S sp(y)*/? lx —z| -1z =yl
T — gz — A= (x — 2] ASp (X)) (12 — y| A Sp(2))
8p(2)”
r(x,2)%r(z, y)*

4.7

gp(x,y) |x — y|dFl=

T x =yl ASp(x) |x —z|dtl-e)z — yldtl-e

’

where
;. o yIndp @) lx —z|-]z =yl 3p(2)“r(x, y)*
' lx — vl (Ix =zl Adp())(Iz = Y| A 8p(2)) r(x, )r (z, )&
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It follows from (4.3) and the fact that |x — z| + §p(z) < r(x, z) that
= ylsp)
|x — y[(]x =yl +8p(x))
o lx —z|- |z = yl(Ix —z| +8p(x)) (|2 — y| +8p(2)) Sp(2)*r(x, y)¥

(Ix = zI8p(x))(|z — y|dp(2)) r(x,2)%r(z, y)*
_ @, ! - ! 1
T, 22 (z, y)o! =00 (r(x,z)“‘1 - r(%Z)““)

<2.
Inequality (4.2) now follows from (4.7). 0O
Recall that G p is the Green function of X . It is known that
d
(4.8) IV:Gp(z, )| < ———————Gp(z,y);
) lz—yl Adp(2)

see [8], Corollary 3.3. Recall also that b is an R4-valued function on R? such that
bl € Ka,a—1-

PROPOSITION 4.2. If D is a bounded open set, and 1pb has compact support
in D, then Glz) satisfies

(4.9) G (x,y) =Gp(x,y) + /D G%(x,2)b(z) - V.G p(z,y)dz.

PROOF. Recall that by Theorem 2.5, for every f € C° RY), M,f = f(Xb) -
f(Xg) — fot Ebf(Xf) ds is a martingale with respect to P,.. Since 1pb has compact
support in D, in view of (3.12), (4.8) and the fact that || € Ky -1, M,fMD is a
uniformly integrable martingale.

Define D; := {x € D:dist(x, D) > 1/j}. Let ¢ € C?o(Rd) with ¢ > 1,
supp[¢] C B(0,1) and [ps ¢(x)dx = 1. For any ¢ € C.(D), define f = Gpy
and f, := ¢, x f, where ¢, (x) := nd¢(nx). Clearly f, € C?O(Rd) and f;, con-
verges uniformly to f = Gpy. Fix j > 1. Since IEX[M({"] = Ex[M,fl’)‘j], and for
every y € D; and sufficiently large n, '

bu  (AY2)(y) = / $u (DAY GpY) (v — 2)dz.
B(0,1/n)

we have, by Dynkin’s formula, that for sufficiently large n,

Bl fa (X7, )] = fulx)

= [ G, (A £ + b)Y 1))
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= [ G, (605 AP 0) +5) - 9 (V) dy
J

= /D G, (6, ) (=¢n # U () + b - u * (V(Gp¥) (1)) dy.
j
Taking n — oo, we get, by (3.12), (4.8) and the fact that |b| € Ky o1,

(410) Ei[f (X7, )] = f(x) = fD Gh, 6, (=¥ () +b() - V(G py) () dy.

Now using the fact that 1pb has compact support in D, taking j — oo, we have
by (3.12), (4.8) and the fact that |b| € Ky -1,

—f@) = /D L (6. ) (= () + b(Y) - V(G py) (v)) dy.
Hence we have
—Gpy(x) = —Ghy + G (b - VGpy).

This shows that for each x € D, (4.9) holds for a.e. y € D. Since GIZ) is continuous
off the diagonal of D x D, we get that (4.9) holds forall x,y e D. [J

We will derive two-sided estimates on the Green function of X? on certain nice
open sets when the diameter of such open sets are less than or equal to some
constant depending on b only through the rate at which M \01;\ (r) goes to zero.

PROPOSITION 4.3. There exists a positive constant ry = r«(d, o, b) with the
dependence on b only via the rate at which M “’1‘7‘ (r) goes to zero such that for any
ball B = B(xg,r) of radius r <ry and anyn > 1,

27'Gp(x,y) <G%(x,y) <2Gp(x,y),  x,y€B,
where
4.11) bn(x) = b(x)1ge(x) + b1k, (x), xR,

with K, being an increasing sequence of compact subsets of B such that | J,, K,, =
B.

PROOF. It is well known that there exists a constant ¢ = c¢1(d, &) > 1 such
that

o1 (1 R 6B<x>83(y>>“/2

Cl d—o 2
X — X —
@.12) lx — vl |x — vl

<Gpx,y)<c

/2
1|d_a (1 A 53()6)&9()’)) '

lx — y?

lx —
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Define Tlf(x, y) recursively forn > 1, k > 0 and (x,y) € B x B by
I (x,y) == Gp(x, ),
) = [ 6 2bn(@) - ViGa ) dz.
Iterating (4.9) gives that for each m > 2 and for every (x, y) € B X B,
b UApS b ~
@.13) G,y =Y I'(x,y)+ /B Gg (x,2)by(2) - Vo1,,(z,y) dz.
k=0
Using induction, Lemma 4.1, (4.8) with D = B and (4.12), we see that there exists

a positive constant ¢; (in fact, one can take co = 2d C3 c% where Cj3 is the constant in
Lemma 4.1) depending only on d and « such that for n, k > 1 and (x, y) € B X B,

(4.14) 17 (x. )] < 2Gp(x, y) (M (2r)
and
~ Gp(x,
(4.15) VTGl < e — 2B e o).

lx =yl Aép(x)
There exists an 7] > 0 depending on b only via the rate at which M |0;7| (r) goes to

zero such that

(4.16) cle‘};l(r) < for every 0 < r <77.

14+ 2c

Equations (3.12) and (4.15), (4.16) imply that if r < 7;/2, then for n > 1 and
(x,y)€ B x B,

‘ /B Gl (6, )b (2) - VT2 (2, y) dz

by Gp(z,y)
o [ Gy om@I 2o~

1 Gg(z,y) )( 1 )’”
b(z)|d
03(/3 i oy PN T,
1

ol o 2 ) )
=N\ Jp jx = zdt1—a [ — yd+i-a 1+ 2¢5

i b(2) 1bI(2)
<c5(1+2c) lx — vl /;(lX—ZW—H_a |y_Z|d+1_a d

dz) (caMfy 2r))"

A

< c6(142¢2) "M Dy — y|7dFI=e)

which goes to zero as m — oo. In the second inequality, we have used the fact
that b, is compactly supported in B. Thus, by (4.13), G%” (., ) =220 I (x,y).
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Moreover, by (4.14),

o0 [e.e]
Y I <aGpx,y) Y (1+2e)* <Gplx,y)/2.
k=1 k=1

It follows that for any x¢ € R? and B=B (x0, r) of radius r <77/2,
Gp(x,y)/2< G%"(x, V) <3Gp(x,y)/2 foralln >1and x, y € B.

This proves the theorem. [

For any bounded C L1 open set D with characteristic (Rp, Ag), it is well known
(see, e.g., [34], Lemma 2.2) that there exists L = L(Rp, Ag,d) > 0 such that for
every z € 3D and r < Ry, one can find a C*! open set U(;,r) with characteristic
(rRo/L, AoL/r) such that DN B(z,r/2) C U,y C DN B(z, r). For the remain-
der of this paper, given a bounded C!-! open set D, U, , always refers to the C!-!
open set above.

For U(; ), we also have a result similar to Proposition 4.3.

PROPOSITION 4.4. For every C'' open set D with the characteristic
(Ro, Aog), there exists ro = ro(d, o, Ro, Ao, b) € (0, (Rg A 1)/8] with the depen-
dence on b only via the rate at which M fl‘)l (r) goes to zero such that for all n > 1,
z€ 0D andr <rg, we have

@17 27'Gu, () <GP (4,3) 26y, (x.y),  xyEeUen,
where

(4.18) b)) =b()1ye | () +bW)1k, (),  xeRY

with K, being an increasing sequence of compact subsets of U ) such that

U, Kn= Ugr.

PROOF. Itis well known (see [23], e.g.) that, for any bounded C!-! open set U,
there exists ¢ = ¢1(Rg, Ag, diam(U)) > 1 such that

~1 1 (1 A 3U(X)5U(y))

C
1 —
lx — y|d— Ix — y?

(4.19)
=< GU(X, y) <c

1 1) )
_ (1 L v U(zy)>.
|x — y|e=e lx =l

It follows from this, the fact that r~'U(, ,y is a C!"! open set with characteristic

(Ro/L, AoL) and scaling that, for any bounded C'-! open set D with character-
istics (Rg, Ao), there exists a constant ¢» = ¢p(Rg, Ag, d) > 1 such that for all
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z€dD,r <Rpandx,y¢€ Uirys
—1 1 (1 A 8U(z,r) (x)(SU(“)(J’))

C
2 —
lx — y|d— lx — y?

1 (1 A SU(ZJ») (X)SU(ZJ) ()7)>
|d—(x :

<Guy.,x,y)<c2 x — y[2

lx —

Now we can repeat the argument of Theorem 4.3 to complete the proof. [J

Now we are going to extend Propositions 4.3 and 4.4 to G% and GbU(Z? »- For
the remainder of this section, we let U be either a ball B = B(xg, r) with r <r,
where r, is the constant in Proposition 4.3 or U (z, r) [for a C!-! open set D with
the characteristic (Rg, Ag)] with r < rg where rg is the constant in Proposition 4.4.
We also let b,, be defined by either (4.11) or (4.18), and we will take care of the
two cases simultaneously.

By [6], Lemma 13, and its proof, there exists a constant C4 > O such that

t
L, [ P =s.x 21b@IUTep(s.2.3)1ds dz < Cap(t. . 5)Np(0)

and so

t
@200 [ [ p =5 2lby@IIVep(s. 20l ds dz = Caprox N0,

where
t
Ny (1) := sup/ /Ib(z)l(lw—z|_d_1/\s‘(d“)/o‘)dsdz,
weRd R4 Jo

which is finite and goes to zero as t — 0 by [6], Corollary 12. We remark that the
constant Cy4 here is independent of ¢ and is not the same constant C4 from [6],
Lemma 13. Moreover,

t
f /p(z—s,x,z>|b<z)—bn<z)||vzp(s,z,y>|dsdz
R4 JO

< Cup(t,x, y)Np_p, (1)
4.21)

=Cyp(t,x,y)

t
X sup /U\K /0 |b(Z)|(|w—zl_d_1/\s_(d+1)/°‘)dsdz,

weRd

Now, by [6], (27),

(4.22) 1Pt x, V)|V Ip,f” (t,x, V)| < (CaNp()r p(t, x, ).
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Choose 77 > 0 small so that
(4.23) CaNp(t) <%, t<Th.

We will fix this constant 77 until the end of this section.

LEMMA 4.5. Forallk > 1and (t,x,y) € (0, T1] x R¢ x R?,

by
|py(t, x, y) — pR(t, x, )|
<kC2=* Vp(r,x,y)

t

weRd
PROOF. We prove the lemma by induction. For k = 1, we have
Py (1, x, ¥) = P, x, V)]
< /Ot A@d p(s,x, )|V, p(t —s,z2,¥)||b —b,|(z)dzds.

Thus by (4.21), the lemma is true for k = 1.
Next we assume that the lemma holds for £ > 1. We will show that the lemma
hods for k + 1. Let

[(n,t,x,y):= /Ot[l;d|p,’§(s,x,z)||Vzp(t—s,z,y)||b_bn|(z)dzds
and
I(n,t,x,y)
= fo /R 1P (5, %, 2) = pR(s, x, DIIV2p(t — 5,2, Y)1ba(2)] dz ds.
Then we have

Py (. y) — plo (6 x, I < T(n,t,x, ) + 1 (n, 1, x, ).
By (4.21)—(4.23),

I(n,t,x,y)

t
@24 = @Np)* [ [ ptr =52, 216 ba@IIVep(s.z. ] dsdz

t
=C42_kp(t,x,y) sup /U\K /0 1b(2)|(lw _Z|—d—1 /\S_(d+1)/a)dsdz.

weRd
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On the other hand, by the induction assumption, (4.20) and (4.23),
l(n,t,x,y)

t
< kC42_(k_1)( sup / / b@)|(Jw — z| 74t A sT@TD/@) g dz)
U\K, Jo

weRd

t
x/ /p(s,x,znvz,p(r_s,z,y)nbn(z»dzds
R4 JO
(425)  <kC2~* V(4N () p(t, x, ¥)
t
xosup [ [ lb@I(w - 27 Ay ds s
weRd U\K, J0
<kCs27*p(t,x,y)
t
xosup [ [ Ib@ (w2 AT dsdz,
weRd JU\K, JO

Combining (4.24) and (4.25), we see that the lemma holds for k& + 1, and thus by
induction, the lemma holds for every £ > 1. [

THEOREM 4.6. pPn(t,x,y) converges uniformly to pP(t,x,y) on any [to,
T1x RY x RY, where 0 < 1ty < T < 00. Moreover,

(4.26) lim Glrf=Gbf  forevery f e Cp(U).

PROOF. Without of loss of generality, we may assume that 0 < 1y < 771/2,
where T is the constant in (4.23). We first consider the case (¢, x, ¥) € [fg, T1] X
R? x R?. By Theorem 1.2(i) and Lemma 4.5,

sup 1Pt x,y) — p’(t, x, )|
(t,X,y)e[to,Tl]x]Rded

o
bn
< sup Yo Ip (e x,y) — ppt, x, )|
(t.x,y)€lto, Ti ] xR xR [ —|

o
<Cy sup Y k2% D p(, x, y)
(t.x,y)€lto, TIIXRIXRY =1

t
X sup /U\K /(; |b(Z)|(|w—Z|_d_1/\s_(d+1)/“)dsdz

weRd

_ n
< cCyt, /% sup /;]\K /0 Ib@)|(Jw — 2|71 A sV g dy,

weRd

which goes to zero as n — oco.
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If (1, x,y) € (T1,3T1 /2] x R? x R?, using the semigroup property (1.4) with
n="/2,

sup PPt x, y) — pP (2. x. )]
(t,x,y)e
(T1,3T1 /2] x R4 x R4
b b
= sup p (t1,x,2)p°(t —11,z,y)dz
(t,x,y)€ R4

(T1,3T1/2]XRdXRd

—/Rd pPrt, x, 2)pP(t — 11,2, y) dz

< s f PPt x, DI’ =z, y) = p = 11,2,y dz
(t,x,y)e R4
(T1,3T1 /2] xRE xRE
by b by
+ sup / |p”" (11, x,2) — p” (11, x, )| p™" (t — 11,2, y) dz,
(t,x,y)e R4
(T1,3T1 /2] xRE xRd
which is, by (1.3), less than or equal to cltl_d/a times
b by
sup [ 1=tz = ph =0,z dz

(t,y)e(T,3T1 /2] x R4

=+ sup 1pP (11, x, 2) — pP(t1, x, 2)| dz ds.
xeRd d

Now, by the first case, we see that the above goes to zero as n — oo. Iterating the
above argument one can deduce that the theorem holds for L = [ty, kTp/2] for any
integer k > 2. This completes the proof of the first claim of the theorem.

First observe that by (1.3), for each fixed x € R and for every 0 < t; <1, <

-+ < 1y, the distributions of {(X f’l", X g("), P} form a tight sequence. Next, by
the same argument as that for (3.1),

P, (X% ¢ B(x,r))<p  foralln>1,0<s<randx € R
implies
IP)x(sup|Xf’" — Xlo’"| > Zr) =]P’x(rg’zx 2y < 1) <2p foralln > 1,x e RY,
s<t ’

Hence by (1.3) and the same argument leading to (2.5), we have for every r > 0,

lim sup Py <sup |Xf” — Xg”l > 2r> =0.

110 n>1,xeR St

Thus it follows from the Markov property and [22], Theorem 2 (see also [20],
Corollary 3.7.4, and [1], Theorem 3) that, for each x € R?, the laws of {X’», P,}
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form a tight sequence in the Skorohod space D([0, c0), R?). Combining this and
Theorem 4.6 with [20], Corollary 4.8.7, we get that X% converges to X? weakly.

It follows directly from the definition of Skorohod topology on D([0, c0), R%)
(see, e.g., [20], Section 3.5) that {¢t < rg} and {r > rg} are disjoint open subsets in

D([0, 00), RY). Thus the boundary of {t < rlb,} in D([0, 00), R?) is contained in
{r{’] <t< rg}. Note that, by the strong Markov property,

Py(tf) <10) =Pu(tf <f + 1 oerlb],xfg €dU)
— b b
_]PX(O<T009,[[b],Xle] GaU)

=Px(Pys, (0<7p); Xfl,; €dU) =0.
U
The last equality follows from the regularity of U; that is, P, (‘Eg =0) =1 for
every z € dU; see Proposition 3.2. Therefore, using the Lévy system for X?,

Po(rpy <t <tl)=Pu(t)=t=1))

<Pu(X? €dU) +Py(t =1 and X2 _ £ X% )

T —
=/ pb(t,x,y)dy+0=0,
U

which implies that the boundary of {r < tl’}} in D([0, 00), R?) is P,-null for
every x € U. For every f € Cp(U), f (Xﬁ’)l{ b is a bounded function on

D([0, 00), R?) with discontinuity contained in the boundary of {r < rf’,}. Thus
we have (cf. Theorem 2.9.1(vi) in [19])

3 bﬂ b
(4.27) Jim E[F OO, ] = B[ f XD, )]

1<t

Given f € Cp (U) and ¢ > 0, choose T > 1 large such that
2C1C5 " fllove™ " <,

where C; and C; are the constants in Lemma 3.7 with D = U. By the bounded
convergence theorem and Fubini’s theorem, from (4.27) we have

T T
: bn _ : bn
nlggoEx[/o fx, )1{[«3,,}4 _H%L Ex[f (XI)1,, ]

d b
:Ex[/(; f(Xt)l{tqg}dt].

On the other hand, by the choice of T and the fact that C; and C, depending only
ond, o, diam(U) and b, with the dependence on b only through the rate at which
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Mlollal (r) goes to zero, we have by Lemma 3.7
B [T o gy de | B [ r ey, i
> b b
<l [ ([ (015030 + P, ) v ) i

o0
<2C1[ flloe / Ol gt <e.
T

This completes the proof of (4.26). [

As immediate consequences of (4.26) and Propositions 4.3 and 4.4, we get the
following:

THEOREM 4.7. There exists a constant ry = ry(d, o, b) > 0 with the depen-
dence on b only via the rate at which Mﬁ?l(r) goes to zero such that for any ball
B = B(xq,r) of radius r <r,,

271G (x, y) < Gh(x,y) <2Gp(x, ), x,y € B.

THEOREM 4.8. For every cl! open set D with the characteristic (Rg, Ao),
there exists a constant ro = ro(d, @, Ro, Ao, b) € (0, (Ry A 1)/8] with the depen-
dence on b only via the rate at which M| “}‘7‘ (r) goes to zero such that for any for any
z€ 0D andr <rg, we have

428) 27'Gy,, (x,y) <G}, (x,3) <26y, (x,)),  x,y€Uqn.
‘We will need the above two results later on.

5. Duality. In this section we assume that E is an arbitrary bounded open set
in RY. We will discuss some basic properties of X?¥ and its dual process under
some reference measure. The results of this section will be used later in this paper.

By Theorem 3.4 and Corollary 3.6, X**F has a jointly continuous and strictly
positive transition density p%(t, x,y). Using the continuity of p% (t, x,y) and the
estimate

b b est ,—d ) t )
t,x,y) < pl(t,x,y) <cre(t A—),
pet,x,y) < p (t,x,y) <ci ( e

the proof of the next proposition is easy. We omit the details.
PROPOSITION 5.1.  X»E is a Hunt process, and it satisfies the strong Feller

property, that is, for every f € L°°(E), PtEf(x) = Ex[f(X,b’E)] is bounded and
continuous in E.
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Define

hg(x) = /E GS(y,x)dy and £g(dx):=hg(x)dx.
The following result says that £ is a reference measure for X b.E

PROPOSITION 5.2. £f is an excessive measure for X E | that is, for every
Borel function f >0,

/ FOOEE(dx) > / B, £ (XPE)eg (dx).
E E

Moreover, hg is a strictly positive, bounded continuous function on E.

PROOF. By the Markov property, we have for any Borel function f > 0 and
xeE,

| B ENG () dy =By [ By LX) ds
E 0 S
= [ Edrtinas

< f FOGL . y) dy.
E

Integrating with respect to x, we get by Fubini’s theorem
| B Memdy < [ f0hew)dy.

The second claim follows from (3.12), the continuity of G% and the strict positivity
of p% (Corollary 3.6). O

We define a transition density with respect to the reference measure £g by

b
—b pE(ta-xay)
Pt x,y)=———""
E he(y)
Let
— 00 Gh.(x,y)
Gh(x, ):=/ Dot x,y)dt = —E27
E y 0 PE y hE(Y)

Then 6% (x, y) is the Green function of X b.E with respect to the reference mea-
sure &g
Before we discuss properties of G% (x,y), let us first recall some definitions.

DEFINITION 5.3. Suppose that U is an open subset of E. A Borel function u
on E is said to be:
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(i) harmonic in U with respect to X b.E if

5.1) u(x) = Ex[u(xX%5H), x € B,
7B

for every bounded open set B with B C U;
(ii) excessive with respective to X”£ if u is nonnegative and for every r > 0
andx e E

u(x) > E [u(X>%)] and u(x)zltif(}Ex[u(Xﬁ”En;

(iii) a potential with respect to X?E if it is - excessive with respect to X b.E and
for every sequence {U,},>1 of open sets with U, C U,41 and | J, U, = E,
. bE\q __ ) .
nlgr()loIEx[u(Xrgn )]=0, é£p-ae. x € E;

(iv) apure potential with respect to X £ if it is a potential with respect to X>-F
and

lim Eclu(X?E))=0,  £p-ae.xeE;
—> 0

(v) regular harmonic with respect to X*F in U if u is harmonic with respect
to X2E in U and (5.1) is true for B=U.

We list some properties of the Green function 6% (x,y) of X>F that we will
need later:

(A1) E%(x, y) >0 forall (x,y) e E x E; E%(x, y) = oo if and only if x =
veFE. - -

(A2) Forevery x € E, Gl]’; (x,-) and Gl]’;(-, x) are extended continuous in E.

(A3) For every compact subset K of E, [ G% (x, y)ée(dy) < oo.

(A3) follows from (3.12) and Proposition 5.2. Both (A1) and (A2) follow from
(3.12), Proposition 5.2, domain monotonicity of Green functions and the lower
bound in (4.12).

From (A1)—(A3), we know that the process X b.E gatisfies the condition (R)
on [16], page 211, and the conditions (a) and (b) of [16], Theorem 5.4. It follows
from [16], Theorem 5.4, that X>-£ satisfies Hunt’s Hypothesis (B). Thus by [16],
Theorem 13.24, X”£ has a dual process X"E which is a standard process.

In addition, we have the following.

(A4) Foreachy, x — 5% (x, y) is excessive with respect to X b.E and harmonic
with respect to X% in E \ {y}. Moreover, for every open subset U of E, we have

(5.2) B [Go(X%E, »1=Gh(x,y),  (x,y)€ExU,

b
TU

where Tllj’ = inf{r > O:Xf’E € U}. In particular, for every y € E and ¢ > 0,
5%(-, y) is regular harmonic in E \ B(y, €) with respect to X0E,
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PROOF OF (A4). It follows from [15], Proposition 3, and [29], Theorem 2
on page 373, that, to prove (A4), it suffices to show that, for any x € E \ U, the
function

v B [GR(X3E, v

is continuous on U. (See the proof of [31], Theorem 1.) Fix x e E\ U and y € U.
Put r := 8y (y). Let y € B(y, r/4). It follows from (2.11) and (3.12) that, for any
§€(0,73),

Ed[GL (X" 50 X7y € B(y.8)]

b
TU

A, —a)
|w _ Z|d+0‘

G%\U(x, w) dw)@%(z,y) dz

B(y,a)( E\U
C1

—infy g m hE®G)

[ ———
X w — .
B(y.&) \VE\U |x — w|4=% |w — z|d+ |z — Y|4

Thus, for any € > 0, there is a § € (0, 5) such that

— e .
(53)  EGhL(X3E. v X3P € B(y, )] < ; foreveryFeB(y.r/4).

Now we fix this é and let {y,} be a sequence of points in B(y,r/4) converging
to y. Since the function (z,u) +— 6% (z,u) is bounded and continuous in (£ \
B(y,6)) x B(y, %), we have by the bounded convergence theorem that there exists
no > 0 such that for all n > ny,

5 EL[Gh(X7E. v): X3:F € B(y.6)°]
— Ec[Gh (X575 v X3P € B(y, 8)°1] <

N ™

Since ¢ > 0 is arbitrary, combining (5.3) and(5.4), the proof of (A4) is now com-
plete. [

THEOREM 5.4. For each y € E, x > 6%()@ y) is a pure potential with re-
spect to XPE . In fact, for every sequence {Up}n=1 of open sets with U, C Uy
and | J, U, = E, lim,_,  E, [5%(Xb;,E, v)] = 0 for every x # y in E. Moreover,

Ty,

forevery x,y € E, we have lim;_, oo [E [6]1’5(Xf’E, y)] =0.

PROOF. Fory € E,let X b.E.y denote the h-conditioned process obtained from
X E with h() = G%(-, y), and let E; denote the expectation for X b.E.y starting
fromx € E.
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Let x #y € E. Using (Al), (A2), (A4) and the strict positivity of Gb., and
applying [30], Theorem 2, we get that the lifetime £2 £ of X% £ is finite P}-a.s.

and
. b,E,y _ y_
(5.5) ZTI{II?}:_J X/ =y, PY-a.s.

Let {E, k > 1} be an increasing sequence of relatively compact open subsets of E
such that Ex C Ex C E and |J;2 | Ex = E. Then

E[Gh (X% 901 =Gl (x, B (], <™ E9).

Eg

By (5.5), we have limy oo PY (13, < ¢>FY) =0. Thus
lim E.[Gh (X", »1=0.
k— 00 TE,
The last claim of the theorem is easy. By (3.11) and (3.12), for every x,y € E,
we have

c dz
t4/%hg(y) JE |z — y|d—’

—b b,
E.[GE(X!" »)] <
which converges to zero as ¢ goes to co. [

‘We note that

17E o

—~b
/;_ Gl e, e () = S

fEG%<x, W dx = llhglls < 00,

So we have
(AS) for every compact subset K of E, [ 5% (x, y)Ep(dx) < oo.

Using (A1)—(A5), (3.12) and Theorem 5.4 we get from [28, 29] that X b.E has a
Hunt process as a dual.

THEOREM 5.5. There exists a transient Hunt process X"E in E such that
XY E s a strong dual of X"F with respect to the measure Eg; that is, the density
of the semigroup {PtE}zZo of XPE is given by ﬁ% (t,y,x) and thus

/E F)PEg(x)Ep(dx) = /E ¢ BE f()Ep(dx)  forall f.g € LX(E. £p).

PROOF. The existence of a dual Hunt process XPE jg proved in [28, 29]. To
show X b.E is transient, we need to show that for every compact subset K of E,
Ix G%(x, v)&E (dx) is bounded. This is just (AS5) above. [
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In Theorem 2.6, we have determined a Lévy system (N, H) for X b with respect
to the Lebesgue measure dx. To derive a Lévy system for X?F, we need to con-
sider a Lévy system for X*F with respect to the reference measure £ (dx). One
can easily check that, if
J(x,y)
hEe(y)

NE(x,d):= /ECJ(x,y)dy forx € E,

NEx,dy) = Ep(dy)  for(x,y) € E X E,

and HE :=1¢, then (NF, HF) is a Lévy system for X*F with respect to the refer-
ence measure &g (dx). It follows from [21] that a Lévy system (N *~, NE HE ) for X* xb-E
satisfies H/ HE =t and

NE(y,dx)ep(dy) = NE (x, dy)&g (dx).

Therefore, using J(x,y) = J (y x), we have for every stopping time 7" with re-
spect to the filtration of Xb

[Z f(s, X0E X E)]

s<T

_ r obE I (X bE’Y) ) "E:|
(5.6) u [ ([ e ®EDD e )4

T - J(XPE g (y)
— b,E K
_Ex[/o </Ef(S’XS RS T dy)‘“]

That is,
SE _Jx,»hE®R)
N=(x,dy)= 7}“2()6) dy.
Let
PPES @)= [ e 0 08y
and

BPE f(x) = /E Bo(t, v, ) fFOEE ().

For any open subset U of E, we use XPE.U 1o denote the subprocess of
XPE in U, that is, X5V () = X0 E () if 1t < 75 (w) and X5V () =8 if
t > ?g’E(a)), where ?g’E = inf{t > O:ff’E ¢ U}, and 9 is the cemetery state.
Then by [37], Theorem 2, and Remark 2 following it, X b.U and XPEU are dual
processes with respect to £g. Now we let

pYt. y, )hg(y)
hEg(x) ’

(5.7) Pyt xy) =
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By the joint continuity of p;’](t, x,y) (Theorem 3.4) and the continuity and posi-

tivity of hg (Proposition 5.2), we know that 1’5lng(t, -, +) is jointly continuous on
U x U. Thus we have the following.

THEOREM 5.6. For every open subset U , ﬁ?jE(t, X, y) is strictly positive and

Jjointly continuous on U x U and is the transition density of XPEU yyith respect
to the Lebesgue measure. Moreover,

~ GY (v, )hE()
b,E . U
(5.8) Gy (x,y):= —hE(x)

is the Green function of with respect to the Lebesgue measure so that for
every nonnegative Borel function f,

X\b,E,U

~b,E
E[ fo ! fo?ﬁ’ﬂdt}: /U GLE (x, ) £ () dy.

6. Scaling property and uniform boundary Harnack principle. In this sec-
tion, we first study the scaling property of X”, which will be used later in this
paper.

For A > 0, let Ytb’A = AXi’_at. For any function f on R?, we define f*(-) =
f(A-). Then we have

EASWPDI = [ o070 5 ) ) dy
It follows from Theorem 1.2(iii) that for any f, g € C° (RY),

tim [ 17 ELF O] = )5 d
:%/RdA—“(xaz)—l(Pf,atf*(x—lx) — 0T )gr ) d
=tim [ 297G T (Pl 1) = )5 @) dz
=387 [ (@) + b V@) 0 d:
=307 [ (8@ + k() - VS G) g0

= /Rd(—(—A)“/Zf(x) + AT ) - V() g (x) dax.

Thus {)»Xi’,?,l,t > 0} is the subprocess of X* “®¢™") in A D. So for any A > 0,
we have

)\lfozb )»71- _ _ _ _
pip ¢ x, ) = 2 ph 0 A e A )

(6.1)
fort >0and x,y € AD,
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6.2) G PO ey =2879G (A 1k, a7 ly) forx, y € AD.
Define
6.3) by(x):=A1"%b(x/n)  forx € RY.

Then we have

d iy —1
- |b'|(A""y)dy
Ioll’xl(r) =1 Z sup y|d+1—a

i=1 xecRd [x—yl<r |x_

d .

3 1b'](2) dz |
- su - . = MO{ by .

i=1 4 /If—zlsx—lr T — z|d+1-« (A7)

xeRd
Therefore for every A > 1 and r > 0,

(6.4) My () =My (0.7 r) < M (r).

In the remainder of this paper, we fix a bounded C!-! open set D in R with C'!-!
characteristics (Ro, Ag) and a ball E C R? centered at the origin so that D C %E .
Define

h
(6.5) Mi=M®b.E)= sup "EX
x,ye3E/4 hE(Y)
which is a finite positive constant no less than 1. Note that, in view of scaling
property (6.2), we have

(6.6) M (b, E) = M(by, AE).

Although E and D are fixed, the constants in all the results of this section will
depend only on d, ¢, Ro, Ao, b and M (not the diameter of D directly) with the de-
pendence on b only via the rate at which M fj,l (r) goes to zero. In view of (6.4) and

(6.6), the results of this section in particular hold for £°* (equivalently, for X%*)
and the pair (AD, AE) for every A > 1.

In the remainder of this section, we will establish a uniform boundary Harnack
principle on D for certain harmonic functions for X**£ and XE Since the argu-
ments are mostly similar for X*»£ and XPE we will only give the proof for XbE

A real-valued function u on E is said to be harmonic in an open set U C E with
respect to X"E if for every relatively compact open subset B with B C U,

6.7) Ex[|u()?§,f§)|]<oo and u(x):Ex[u()?f;i)] for every x € B.
B B

A real-valued function u on E is said to be regular harmonic in an open set U C
E with respect to X if (6.7) is true with B = U. Clearly, a regular harmonic
function in U is harmonic in U.
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For any bounded open set U, define the Poisson kernel for X? of U as
Kboroi= [ GheonImady, (el x ®N\D),

When U C E, we define the Poisson kernel for Xb2E of U CE as

_he@
 hE()

By (2.11) and (5.6), we have

6.8) KpE(x,z2) fG (y,x)J(z, y)dy, (x,z) €U x (E\ D).

APty 2 X = [ Kb fedz

and

E, [f(XZEE) XM ¢XZEE

J(XPE DhE(2)
_E/ (/ f@ e 0E) dz)ds
Gy, 0)he(y) J(y, DhE(2)
_/u hEg(x) / A he(y)

= /UC KpE(x,2) f(2)dz.

(6.9)
dzdy

LEMMA 6.1. Suppose that U is a bounded C' open set in R? with U C %E
and diam(U) < 3r, where ry is the constant in Theorem 4.7. Then

(6.10) Py(X?, €0U)=0  foreveryx €U
U
and
(6.11) P (X%E cdu)=0  foreveryxeU.
Ty

PROOF. The proof is similar to that of [4], Lemma 6. For our readers’ con-
venience, we are going to spell out the details of the proof of (6.11). Let By :=
B(x,éy(x)/3). By (5.6) we have for x e U,

- 3
bE _ (2
= (e (3) \0)

_ G%x@,x)hE(y)(/ J(y, D)hE(2) dz) b.
(FE\U

B, hEg(x) he(y)
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Since diam(U) < 3ry, 6y (x)/3 < r4, thus by Theorem 4.7, for x € U,
- 3
bE d
(R e (52) \ )
(6.12) zc1< inf hE(M))/ Gp (x,y)(/ J(y,z)dz) dy
uvedE/d hp(w) /) Jp, BE/H\U

3
> M'P, (X,Bx € <ZE) \ U),

where M is the constant defined in (6.5). Let Vy := B8y (x) !x, 1/3). By the
scaling property of X,

3
P, (XTBX € <ZE) \ U)
_ —13
(6.13) = IP’(SU(X)IX<X%U(X)IBX € 8y (x) (ZE) \ U)

=/ va<6u(x)—1x,a)(/ J(a,b)db)da.
Ve Sy ()| BE/4\U

Let z, € U be such that 8y (x) = |x — z,|. Since U is C"'!, y(x) "' (G E) \
U)D SU(x)_l(%E \ %E) and 8y (x) < 3r,, there exists n > 0 such that, under an
appropriate coordinate system, we have zy + CcC Sy(x)~! ((%E )\ U) where

Co={y=01, -, ya) eR:0 < ys < (12r)7 " 3+ 4+ 33, <nya).

Thus there is a constant ¢, > 0 such that

inf J(a,b)ydb>cr, >0 for every x e U.
a€Vy J5y (x)~"H(BE/H\U)

Combining this with (6.12) and (6.13),
- 3
. b, -
(6.14) xlglf]IP’x (X?g? € (ZE> \ U) > c1eaM By [t0.1/3)] = €3 > 0.
On the other hand, since by (5.6) Px(j(\?b, e €dU) =0 for every x € U, we have
By

P.(X%5 € 9U) =Eu[Pgns (X5 € 0U); X0 € U,
Ty fZ»E Ty TBy

Thus inductively, P, (X245 € 0U) =1limy_, o pr(x), where
Ty

po(x) =P (X25 € 9U)
U

and
pr() = Elpeot (X050 Xy e Ul fork = 1.
Bx

T By
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By (6.14),

sup pra1(x) < (1 —¢3) sup pr(x) < (1 — e3)**1 > 0.
xeU xelU

Therefore, Px(ff\i,’,,EE edU)=0foreveryxeU. U
U

Let z € 9D. We will say that a function u: R? — R vanishes continuously on
D N B(z,r) ifu=0o0n DN B(z,r), and u is continuous at every point of 3D N
B(z,r).

THEOREM 6.2 (Boundary Harnack principle). There exist positive constants
c1 =c1(d,a, Ry, Ao, b) and r1 = ri(d, o, Ry, Ao, b) with the dependence on b
only via the rate at which Mﬁ’l (r) goes to zero such that for all z € 0D, r € (0, r{]
and all function u > 0 on RY that is positive harmonic with respect to X? (or XbE,
resp.) in D N B(z, r), and vanishes continuously on D¢ N\ B(z,r) (or D€, resp.) we
have

u(x) _ - 28p(0)*”
u(y) ~ 0 sp(y)/?

x,ye DN B(z,r/4).

PROOF. We only give the proof for X?-E_ Recall that r, and ry are the con-
stants from Theorems 4.7 and 4.8, respectively. Let r| = r, A rg, and fix € (0, r1]
throughout this proof. Recall that there exists L = L(Rg, Ao, d) such that for every
z€dD and r < Rg/2, one can find a C! open set U = U.r) with Cc!! charac-
teristic (rRo/L, AoL/r) suchthat DN B(z,r/2) C U C DN B(z, r). Without loss
of generality, we assume z = 0.

Note that, by the same proof as that of [11], Lemma 4.2, every nonnegative
function u in R? that is harmonic with respect to X*EinDNB (0, r) and vanishes
continuously on D€ is regular harmonic in D N B(0, r) with respect to XhE,

For all functions # > 0 on E that is positive regular harmonic for X"EinDn
B(0, r) and vanishing on D¢, by (5.6) and Lemma 6.1, we have

u(x) =E, [u(X%5): X0E € D\ U]
29 29

_ Sb.E
(6.15) _/D\U Ky~ (e, wu(w) dw
_ b hE(w) )
—/UGU(y,x)</D\U e J(w, yu(w)dw ) dy.
Define

hu(x) := Ex[u(Xe;); Xoy € D\ U]

- [ GU<y,x>(/D\U J(w, y)u(w)dw) dy.
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which is positive regular harmonic for X in D N B(0, r/2) and vanishing on D°.
Applying Theorem 4.8 to (6.15), we get

(6.16) "My (x) <u(x) <etMhy,(x)  forx € D.
By the boundary Harnack principle for X in C!*! open sets (see [14, 35]), there is

a constant ¢ > 1 that depends only on Ry, Ag, d and « so that

hy
@) ) forx.yeDNBO,r/4).
hy(y)

Combining this with (6.16) and the two-sided estimates on Gy (x, y) we arrive at
the conclusion of the theorem. [

7. Small time heat kernel estimates. Our strategy is to first establish sharp
two-sided estimates on plz)(t, x,y) at time ¢t = 1. We then use a scaling argument
to establish estimates fort < T.

We continue to fix a ball E centered at the origin and a C!-! open set D C %E
with characteristics (Rg, Ao). Recall that M > 1 is the constant defined in (6.5).

The next result follows from Proposition 3.5, (5.7) and (6.5).

PROPOSITION 7.1. For all ay € (0,1), ay,a3, R > 0, there is a constant
c1=ci1(d,a,ay,az, a3, R, M, b) > 0 with the dependence on b only via the rate at
which Mlol‘,l(r) goes to zero such that for all open ball B(xg,r) C %E withr <R,

d/fe forall x,y € B(xg,air) and t € [ayr®, azr®].

1/5];;’(50,,,)(1‘» xX,y)=cit

Again, we emphasize that the constants in all the results of the remainder of this
section (except Theorem 7.8 where the constant also depends on T for an obvious
reason) will depend only on d, «, Ry, Ag, M (not the diameter of D directly) and
b with the dependence on b only through the rate at which M, fl‘,l (r) goes to zero.
In view of (6.3), (6.4) and (6.6), in particular, all the results of this section are
applicable to £+ and the pair (AD, AE) for every A > 1.

Recall that r, and rq are the constants from Theorems 4.7 and 4.8, respectively,
which depend only on d, «, Ry, Ap and b with the dependence on b only via the
rate at which M| f;]‘ (r) goes to zero.

LEMMA 7.2. Thereiscy =ci1(d, o, Ry, r, M, Ag, b) > 0 with the dependence
on b only via the rate at which MIOICJI (r) goes to zero such that for all x € D

(7.1) Py (th > 1/4) < c1(1 ASp(x)¥/?)
and

(7.2) P (Z5F > 1/4) <e1(1 A 8p(x)*/?).
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PROOF. We only give the proof of (7.2). The proof of (7.1) is similar. Recall
that there exists L = L(Rg, Ao, d) such that for every z € 9D and r < Ry, one
can finda C!! open set U(; ) with C1 characteristic (rRo/L, AoL/r) such that
DN B(z,r/2) CUg,) C DN B(z,r). Clearly it suffices to prove (7.2) for x € D
with §p(x) < (rg A ry)/8.

Choose Q, € 9D such that §p(x) = |[x — Qy|, and choose a C!! open set
U :=U(g,.(rorr)/2) With C11 characteristic ((ro A7) Ro/(2L), 2A0L/(ro AT4))
such that DN B(Qx, (ro Ary)/4) CU C DN B(Qx, (rg Ary)/2).

Note that by (5.8), (6.8) and Lemma 6.1,

P,(Z5F > 1/4)

<P.(&y" > 1/4) +Pu(XL5 € D)
U

< 4B (5 "1+ Pe(X% € D)

—4/G E()’)

+/ / E(Z;J(y, 2)dydz.

Now using Theorem 4.8, we get

P, (T5F > 1/4)

5461Mf Gy(y,x)dy
U
+c1M/ /GU<y,x>J<y,z>dydz
p\U Ju

:4c1M/ Gy(x,y)dy +c1MPy (X, € D\ U)
U

< 28y ()2 = c28p (x)*/2.

The last inequality is due to (4.19) and the boundary Harnack principle for X in
Cc!opensets. [

LEMMA 7.3. Suppose that Uy, Uz, U are open subsets ofRd with Uy, Uz C
U C 3E and dist(Uy, Us) > 0. Let U := U \ (U1 U U3). If x € Uy and y € Us,
then for all t > 0,

Py (t.x,y) <P (XP, €Uy sup pf(s.z.)
Uy s<t,zelUs

(7.3) )
+ @ AEx[tg, D sup  J(u,2),

uely,zeUs
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Pyt y, x) < MP (X3 € Un) - sup  ply(s, y,2)

Ul s<t,zeUs
(7.4) bE
+ M@ ANExlTy D) sup J(u,2)
uely,zeUsz
and

(7.5) pU(1/3 X,y)> > IP’ (‘L'U1 > 1/3)]P’y(’flb]E >1/3)- inf J(u,z).

uely,zeUs

PROOF. The proof of (7.3) is similar to the proof of [5], Lemma 2, which is a
variation of the proof of [9], Lemma 2.2. Hence we omit its proof. We will present
a proof for (7.4) and (7.5). Using the strong Markov property and (5.7), we have

b hEg(x )AbE
(t,y,x)= (,x,y)
Pull,y, X he(y) Py
hEe(x) ~b.E TbE
t—77 ., X )k, t
h()x[U( Ty, AgEy)tUl<]
_ he() <
Elpg " =75, X0 i 7 F <1, X055 € U]
~ he(y) ) o
+hE(x)IE[ Ep_ghE JPE \yobE _ FbE o1y
he(y) P o i v i
=:1+1I.
Using (5.7) again,
hE(X) Sb.E _ Zb.E ~bE
Pop <t X055 e Un( swp ppfes.z )
( ) T] s<t,zeUp
hEg(x) ~b,E b he(y)
R <%k eun( s pheaitl)
he() U i s<tizely © hE(2)
5( sup M)R@Zi—é%)( sup pbu(s,y,z))-
a,be3E/4 hE(D) ) s<t,zeUs

On the other hand, by (5.6) and (5.7),

hE(x)/ /;] Ees, x, u)/ J(u, he@) Pt —s,v,2)
1

he(y) h (u)
X heQ) dzduds
hEg(z)
hg(a)
< (a be3E/4h§(b))/ / Py, (s X, u)f J(u, z)pU(t s,v,z)dzduds
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t
§M< sup J(u,z))_/(;]P)x(?g’lE>s)</U pf](t—s,y,z)dz)ds
3

uelUy,zeUs

t
§Mf Px(?f,’lE>s)ds- sup  J(u,z2)
0

uelUy,zeUs

S M@ ABAZG D sup J(u,2).
uely,zeUs

Now we consider the lower bound. By (2.11) and (5.7),
Py (1/3,x, )
> Elply (1/3 = 1, X3y - )i 7, < 1/3, X7, € Us]
1 1

_ 1/3 b , )
_/O (/Ul Py, (8, %, u)(/U3 Jw,z2)py(1/3 —s,2,y) dz) du) ds

1/3
> inf J(u,z)/ /pg(1/3—s,z,y)Px(rgl>s)dzds
0 Us

T uelU,zeU;

1/3
>Py(zf, > 1/3) inf J(u,z)/o fUp”U3(1/3—s,z,y)dzds
3

uely,zeUs
=P.(t5, >1/3) inf J(u z)/1/3 phEA/3 = Z)Mdzds
R uely,zeUsz ’ 0 Us pU3 ') hE(Z)
1/3

—1 b . ~b,E
=M™ Pr(ry, > 1/.“5)u€U1112C€U3J(u,z)f0 Py(tU3 >1/3—s)ds

1 b . ~b,E
= g = D, ol S IR 1) =

LEMMA 7.4. There is a positive constant ¢c1 = c1(d, o, Ry, Ao, M, b) with the
dependence on b only via the rate at which M fél(r) goes to zero such that for all
x,y€eD,

1
(7.6) PH(1/2,x,y) < el A5/3(16)“/2)(1 A m)
and

1
(1.7) ph1/2,x,y) <l ASD(y)“/2)<1 A m)

PROOF. We only give the proof of (7.7). Recall that there exists L =
L(Ry, Ao, d) such that for every z € 9D and r < Ry/2, one can find a cll open
set U, with C!! characteristic (rRo/L, AgL/r) such that D N B(z,r/2) C
UzrnCDNB(z,r).
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It follows from (2.4) that
Ph(1/2,%,3) < pP(1/2,x,y) < c1(1 A ;)
- - |x _ y|d+oe

so it suffices to prove of (7.7) for y € D with dp(y) < ro/(32).
When |x — y| < rg, by the semigroup property (3.5), (1.3) and (5.7),

ph(1/2,x, y) = /D P14, %, 2 pb(1/4. 2. y) dz

b b.E he(y)
5/ P74 xR 1y 5 B
<c2M/< ld+a)13’8E(1/4,y,z)dz

< czMIP’y(rD’ > 1/4).
Applying (7.2), we get

Ph1/2,x, ) <e3(1 ASp(»)Y?)

1
<es(1vrdtey(ia (SD(y)"‘/z)(l A m)'

Finally we consider the case that |x — y| > rg [and §p(y) < r9/(32)]. Fix y € D
with ép(y) < ro/(32), and let Q € 0D be such that |y — Q| = ép(y). Choose
a C1 open set Uy :==U,ry8 with C!! characteristic (roRo/(8L), 8AoL/ro)

such that D N B(Q, ro/(16)) C Uy C D N B(Q, ro/8).

Let D3 :={z€ D:|z—y|>|x —y|/2} and D, := D \ (U, U D3). Note that

|z — y| > ro/2 for z € D3. So, if u € Uy and z € D3, then
u—zl=lz—yl—ly—ul=lz—yl—ro/4= 3|z — y| = 1lx — yl.

Thus

1
(7.8) sup  J(u,z) < sup J(M,Z)SC4<1AW>-

uely,zeD3 (u,2) : lu—z|=|x—y|/4

If z€ Dy, then |z — x| > |x — y| — |y — z| > |x — y|/2. Thus by (1.3),

sup plb(s’xv Z) = sup pb(s,x,z)

s<1/2,zeD» s<1/2,zeD»
(7.9) < (1 ! )
. <cs5  sup AN—
s<1/2,zeDy lx — Z|d+a

1
IAN—
= c6< I —y|d+a)
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for some c5, cg > 0. Applying Lemma 7.3 with (7.8) and (7.9), we obtain

ph(1/2,x,y) < C7(1 A >(Py()?§;,i € D) +E, [ 1)
Uy ’

jx — y|dte
On the other hand, by (5.8), (6.8), Lemma 6.1 and Theorem 4.8,
Ey[2y," 1+ Py(X;: € D)
Uy

hEg(z) hEg(z)
= G (z d G? (w, J(w,z)dwd
/Uy AS y)hE()’) Z+./D\Uy ./Uy o, (W y)hE(y) (w, ) dwdz

SCgM/;J GUy(z,y)dz—i—CgM/D\U _/;] GUy(w,y)J(w,z)dwdz
y y y

< 98y, (1)** = codp ()2

Therefore

1
b 2 L
pPp(1/2,x,y) <ciodp(»)® <1/\ |x_y|d+a>'

Equation (7.6) can be proved in a similar way. [J

LEMMA 7.5. There is a positive constant ¢c1 = c1(d, o, Ry, Ao, M, b) with the
dependence on b only via the rate at which M I(Zl(r) goes to zero such that for all
x,yeD,

(7.10)  ph(l,x,y) <ci(1A8p(x)*?) (1 A 5D(y)°‘/2)<1 A m)

PROOF. Using (7.6) and (7.7), the semigroup property (3.5) and the two-sided
estimates of p(¢, x, y),

phx ) = [ (/25 2ph(1/2.2.9)dz

< c(1A8p*) (1 A8p (1)

1 1
1A 1A d
. /Rd< |x —zl‘”“)( Iz—yl””“) ¢

<c(1A8p*) (1 ASp(1)*/?) /Rd p(1/2,x,2)p(1/2,z,y)dz

=c(1A8p()*)p(l, x, y)

o o 1
<c(1 A8p()*?) (1 ASp(y) /2)(1 A W) 0



2528 Z.-Q. CHEN, P. KIM AND R. SONG

LEMMA 7.6. Ifr > 0, then there is a constant ¢c1 = c¢1(d, o, r, M, b) > 0 with
the dependence on b only via the rate at which M |(r) goes to zero such that for

every B(u,r), B(v,r) C 4E’

1
b
pB(u’r)UB(U’r)(l/& u,v) > cj (1 A 7“! — v|d+a)'

PrROOF. If |u — v| <r/2, by Proposition 3.5,

b . b
pB(u,r)UB(v,r)(1/3’ u,v) = |u_g|1£r/2p3(u,r)(1/3’ u,v)

1
2z e )
If [u — v| > r/2, with Uy = B(u, r/8) and U3 = B(v, r/8), we have, by (7.5),
b
PBu,ruB,rn1/3,u,v)

1
> §Pu(r{}, > 1/3)[?,,(?5’315 >1/3) inf J(w 2)

wely,zeU

b ~b,E
>c 1/3,u, z dz/ y 1/3,v,2)dz
/B(u,r/]6) pB(u,r/g)( / ) PB(u’r/g)( / )

B(v,r/16)
X —_—
|u _ v|d+a

1 b
= c(zeB(1££/16) pB(u,r/S)(1/37 u, Z))(

1
X <1A—|u—v|d+“>'

Now applying Propositions 3.5 and 7.1, we conclude that

2€B(v £/16)p3(” rp(1/3, 0, Z))

1
b
pB(u,r)UB(v,r)(1/3’ u,v) = C(l A lu — v|d+a>' O

LEMMA 7.7. There is a positive constant c; = c1(d, o, Ro, Ao, M, b) with the
dependence on b only via the rate at which M} b (r) goes to zero such that

1
P x,y) = ci(1A8p(x)*) (1A aD<y)“/2)(1 A W)

PROOF. Recall that rg < Ro/8 is the constant from Theorem 4.8 which de-
pends only on d, , Ry, Ao and b with the dependence on b only via the rate at
which Ml‘;‘,l(r) goes to zero. Since D is Cl1 with €Ut characteristics (Ry, Ag),
there exist 6 = §(Ro, Ag) € (0,r9/8) and L = L(Rp, Ag) > 1 so that for all
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x,y € D, there are §, € D N B(x, L§) and &, € D N B(y, L§) with B(§,,28) N
B(x,28) =@, B(§y,28) N B(y,28) = @ and B(&,,85) U B(§y,85) C D.
Note that by the semigroup property (3.5) and Lemma 7.6,

o, x,y)

= [ [ a0 p (/3w a1 /3, v, ) dudy
B(&y,8) JB(5x,6)

b b
> pp(1/3,x,u)p (1/3,u,v)
/B(Sy,ﬁ) -/;?(Sxﬁ) D B(u,6/2)UB(v,8/2)
(7.11) x pb(1/3, v, y)dudv

261[ f b (1/3, %, ) (I, v) A 1) ply(1/3, v, y) dudv
B(&y,8) J B(§x,9)

(J(u,v) A 1))

> c1( inf
(u,v)€B(£x,8) x B(§y.9)

X (/ P}Z)(l/3,x,u)du> </ p’,5(1/3,v,y)dv>.
B(§x,9) B(§y,9)
Ifix—y|>4/8, |lu—v| <201+ L)s§+|x —y| <17+ 16L)|x — y|, and we have

(J(u,v) A1) 202(1 A ;>

7.12
( ) |x _y|d+oz

inf
(u,v)eB(§x,8)x B(§y,5)
If [x — y| <8/8, |u — v| <2(2+ L)8 and

1
7.13 inf Ju, Al >cs>ea[IA— ).
(7.13) (um)eB(é%xB(;v,(S)( (. ) )‘03_c4< |x—y|d+“)
We claim that

(7.14) / P (1/3, x,u)du > cs(1 A 8p(x)*/?)

B(&:.9)
and
(7.15) / Ph (13,0, y)dv = es(1 A Sp(0)@2),

B(&y.9)

which, combined with (7.11)—(7.13), proves the theorem.
We only give the proof of (7.15).If §p(y) > 6, since dist(B(&y, 8), B(y, 8)) > 0,
by (7.5),

/ ph(1/3, v, y)dv
B(&y,8)

1
7.16 >_/ P, (" 13d)PAb,E 3
(710 _3M( BE,.5) o(TBe,.5 > 1/3)dv )Py (Tg(y 5 > 1/3)
X inf J(w,y),

weB(£y,8),z€B(y,8)
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which is greater than or equal to some positive constant depending only on
d,a, Ry, Ag, M and b, with the dependence on b only via the rate at which M “}‘7' (r)
goes to zero by Propositions 3.5 and 7.1.
If6p(y) <6, choosea Q € dD be such that |y — Q| =ép(y), and choose a ch!
open set Uy := U 45) with C!! characteristic (46Ro/L, AgL/(48)) such that
DN B(Q,28) cUy, C DNB(Q,48) C DN B(Q,68) =:V,.

Then, since dist(B(&y, §), V) > 0, by (7.5),

f (13, v, ) dv
B(&y,9)

1

7.17 >—/ P, (<2 13d>IP’Ab’E 1/3

717 _3M( B(&,.5) (T, > 1/3)dv By > 1/3)
X nf J(w,y),

1
weB(&y,8),z€Vy

which is greater than or equal to c6Py (’f‘l}‘E > 1/3) for some positive constant cg
depending only on d, a, Ry, Ag, M and b with the dependence on b only via the
rate at which M| “’1‘7‘ (r) goes to zero by Propositions 3.5 and 7.1.

Let B(yp,2c78) be a ball in D N (B(Q,658) \ B(Q,48)) where c7 = c7(Ay,
d) > 0. By the strong Markov property,

. ~b,E b, E
(%3&2278/2) Pu (T ey > 1/3))Py(X i © B(y0,¢78/2))

~b,E . vb, E
=< Ey[]P))?fhEE (TB()A(Z,EE,WS) > 1/3), X?gE € B(yo, C75/2)]
Uy Uy Y
=b, b,
<Ey[Pyne (@ > 1/3; Xls € BOo, e78/2)]
IU’y y

< IP’y(?f};E > 1/3, )?%EE € B(y0.¢78/2)) < IP’y(?"j;E > 1/3).
:

Using Proposition 7.1, we get

(7.18) Py(?lv’;E > 1/3) = esP, (X5E € B(yo, ¢78/2)).

T Uy

Now applying (5.8), (6.8) and Theorem 4.8,
Py()?f;;i € B(y0,¢78/2))
Uy

h
= / G, (w,y) E(Z)](w,z)dwdz
B(yo.c18/2) JU, 77 he(y)
(7.19)
> oM™ Gu, (w, y)J (w, 2) dwdz

B(y0,¢78/2) JUy

> c108u, ()% = c108p (»)*/?.
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Combining (7.16)—(7.19), we have proved (7.15). U

THEOREM 7.8. There exists c = c(d, o, Ro, Ao, T, M, b) > 0 with the depen-
dence on b only via the rate at which M Ioél (r) goes to zero such that for0 <t <T,
x,y€eD,

(7.20) < pht,x,y)

S\ (3N (e r

PROOF. Let D; :=t"Y*D and E; := t~/* E. By the scaling property in (6.1),
(7.20) is equivalent to

_ o o !
¢ N1 A 8D, () (1 ASp, () /2)(1Am>

(@—D/apl/a,
<ph Pk, y)

- t

1
<c(1 A8p, (x)*?)(1 A 8p, (y)“/z)(l A m)

The above holds in view of (6.3), (6.4), (6.6) and the fact that fort < T, the D;’s are
C!! open sets in R? with the same C! characteristics (Ro(T)~1/%, Ao(T)~1/*).
The theorem is thus proved. [J

8. Large time heat kernel estimates. Recall that we have fixed a ball E cen-
tered at the origin, and M > 1 is the constant in (6.5). Let U be an arbitrary open
set U C A%E, and we let

. x,y)

—b,E
; (tvxv ):_7,
Pu Y hE(y)

which is strictly positive, bounded and continuous on (¢, x, y) € (0,00) x U x U
because p’l’J (t,x,y) is strictly positive, bounded and continuous on (¢, x,y) €
(0,00) x U x U, and hg(y) is strictly positive and continuous on E. For each
xelU, (t,y)— ﬁlg]’E(t, X, y) is the transition density of X2V, P,) with respect
to the reference measure &g, and, for each y € U, (¢,x) — ﬁlZ;E(I, x,y) is the
transition density of (XP-EU, IPy), the dual process of X b.U with respect to the
reference measure &g.
Let

PPEF = | G ) f()ER @)
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and
BPEU f(x) = /U BUE y. ) f(0)EEY).

Let Elg]’E and fIZ,E be the infinitesimal generators of the semigroups {P,b’E’U} and
{P\tb’E’U} on L*(U, &), respectively.

Note that, since for each r > 0, ﬁll’]’E(t, x,y) is bounded in U x U, it follows
from Jentzsch’s theorem ([32], Theorem V.6.6, page 337) that the common value
—AS’E’ V.= supRe(o (E?]’E)) =supRe(o (EZ’E)) is an eigenvalue of multiplicity 1

for both El[’]’E and EII’]’E, and that an eigenfunction ¢bU’E of L’l;]’E associated with

b,E,U . o . b,E
Ao can be chosen to be strictly positive with [[¢;; ™ [ 12 £, (4x)) = 1, and an

eigenfunction w[b]’E of EA}[’J’E associated with AS’E’U can be chosen to be strictly

.. . b.E
positive with ||y ||L2(U,€E(dx)) =1.
It is clear from the definition that, for any Borel function f,

P,b’E’Uf(x) = Ptb’Uf(x) for every x € U and ¢ > 0.

Thus the operators £°|y and £Z’E have the same eigenvalues. In particular, the
eigenvalue AZ’E’U does not depend on E, and so from from now on we will denote
it by a?.

DEFINITION 8.1. The semigroups {P,b’E’U} and {f’,b’E’U} are said to be in-
trinsically ultracontractive if, for any ¢ > 0, there exists a constant ¢, > 0 such
that

ol x,y) <caobF@ylE@)  forx,yeU.
It follows from [26], Theorem 2.5, that if {Ptb’E’U} and {I/J\tb’E’U} are intrinsi-

cally ultracontractive, then for any ¢ > 0 there exists a positive constant ¢; > 1
such that

(8.1) ol = erEwlE(y)  forx,yeU.

THEOREM 8.2. For every B(xg,2r) C U there exists a constant c = c(d, o, r,
diam(U), M) > O such that for every x € D,

b
U
82) E, [ /O 1B<xo,r>(Xf’U)dt] > CE.[c)]

and
~b.E

TU —~
(8.3) Bl [ Lo RPEY)di] 2 cBLlEL )
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PROOF. The method of the proof to be given below is now well known; see
[10, 27]. For the reader’s convenience, we present the details here. We give the
proof of (8.3) only. The proof for (8.2) is similar. Fix a ball B(xg, 2r) C U and put

By := B(xq,r/4), K1 :=B(xg,7/2) and Bj;:= B(xg,r).

Let {6;, t > 0} be the shift operators of X" E and we define stopping times S, and
T,, recursively by

S1(w) :=0,
T, () = Su(@) + T)%, 05, (@) for Sy(w) <Ty"

and

Sus1(@) = Ty (@) +T5F 007, (@) for Ty(w) < 7"
Clearly S, < ?gE Let S :=1im, . S, < ?{}’E. On {S < ’fg’E}, we must have
Sy < Ty < Spy1 for every n > 0. Using the fact that P, (?g’E < 00) =1 for ev-

ery x € U and the quasi-left continuity of X>£:U, we have P (S < 75%) = 0.
Therefore, for every x € U,

= (i 5= i =) =1

For any x € K1, by Proposition 7.1 we have

7571 co /

2r¢ bE
/ Dg, (t,x,y)dtdy > c for every x € K.
B(x0.7/2) g

r(X
Now it follows from the strong Markov property that
Ex[Sn+l —Th]=E, [Egl;EU ["Eg’zE], T, < ?g’E]
> 1P (X35 € B)
=c1E, [P)’Eb.E,U(X\Z’,,EE’U € By)].
S TU\K;
Note that for any x € U \ B», by (6.9), we have

b, E,U
P (X, s~ € Bo)
TU\K,

_ Ging, (0, %) / <J<y,z>hg<z)
U\k;  hg(x) By he(y)

Gk, (0, %) dz
-1 . U\K,
ZMUA D | e he () /Igo(miamw»dﬂ)md”

dz)ée )

~b
= oy [TU\EK1 ]
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for some constant ¢ = ¢ (e, r, diam(U), M) > 0. It follows then

(85)  Exl Syt = Tal 2 1Bl Bgnev [Tk, 11 = 1B T, = S,

Since fﬁ’EU € By for T, <t < S,41, we have, by (8.4),

~b.E

TU ~
Ex[/o 132(Xf’E’U)dt:|

-E - T"l Sb.EU Sn+1 Sb.EU
—E.| Y ; (X0 By dr + . 15, (XY dr
n=1 7 on "

o0 Sn R 0
> E, [Z( f - 132<X£’*E’U)dr)] _E, [Z(S,m - Tn)].
n=1

n=1 n

Using (8.4) and (8.5) and noting that )A(f”E’U ¢ U\ By fort € [T,, Sy+1), we get

=b,E

T >
E, [/O 132(Xf’E’U)dt]

[ oo
> c1ooBx | Y (T —Sn)]

Ln=1

[ & T SbhE.U St ShEU
> c102E, Z( fs 108, (REV) dr + /T 1y, (XP°E >dr)
Ln=1 50 "

_  =bE

7, R
=c102E, /0 lU\Bz(X?'E’U)dt].

Thus

~b,E
v Sb.EU ] c1e2 ~bE
E / 1g,(X; 77 )dt | > Exlz, "]
x|: ) B, (X; ) "1+ 1 x[TU ] N

THEOREM 8.3. {P,b’E’U} and {Eb’E’U} are intrinsically ultracontractive.

. b,U . . . .
PROOF. Since WZ’E = e’ Plb ’E’UwZ’E, it follows that WZ’E is strictly posi-
tive, bounded and continuous in U. Theorem 8.2 implies that

Gb,E
.ty 1< c / Gu C I b (e )

8.6) B, hEe(y)
' GUE (2, y) i
<a S @@ = o)

0
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Similarly,

&)
(8.7) Ex[t)] < — g op" ().
Ay
By the semigroup property and (1.3),

—b,E
Py (t,x,y)

f BE /3, x,2) / BE /3, 2w P E /3w, y)Ep(dw)Ep (dz)

< e [ By /3.x D662 [ P73 0, g dw)
= 3t YR (e E > 13)P G E > 1/3)
< (9¢3/ 1) [TBIE, 17 F .
This together with (8.6) and (8.7) establishes the intrinsic ultracontractivity of
{P[h,E,U} and {ﬁzb,E,U}. 0
Applying [26], Theorem 2.7, we obtain:

THEOREM 8.4. There exist positive constants ¢ and v such that

b,E b,E
MyE BhE (1 x, y)

orE @l ()
where MZ’E =y ¢ij(y)w3’E(y)é‘E(dy) <L

(8.8) — 1| <ce ™, (t,x,y)e(1,00) x U x U,

Now we can present the following:

PROOF OF THEOREM 1.3(ii). Assume that the ball E is large enough so that

-~

b,D b,D
D C %E. Since d)%E =M Plb’qu%E and wg’E =M Plb’E’DwZ’E, we have
from Theorem 1.3(i) that on D,

1
65" () = (1A 8p(x)*?) fD (1A 8D(y>“/2)(1 A w)«b#(y)dy

|x

(8.9)
= 8p(x)*/?
and
yrEx) < (1 /\SD(x)a/z)/ (IA(SD(y)“/Z)(l A ;>
D D Ix — y|d+a
hE(y) b.E
(8.10) oy )wD (»dy

= 8p(x)*/.
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Theorem 8.3, (8.9) and (8.10) imply that
¢ '8p(0)*28p (1 < BRE (1. x, ¥) < erdp(0)*8p (y)*/?
for every (¢, x, y) € (0,00) x D x D, and so
i e 8 p ()2 8p(0)*F < phy(t, x, y) < c1e8p(x)* 28 p ()

for every (¢, x,y) € (0,00) x D x D.
Furthermore, by Theorem 8.4 and (8.9), there exist ¢ > 1 and 77 > O such that
for all (¢, x,y) € [T;,00) x D x D,

b.D . . bD
5 e 8 p () P8p (NP < BE (1 x, y) < cae” 0 Sp ()28 p (1)1,
which implies that
b,D _ . b,D
;e 0 8p ()28 p ()2 < ph(t.x,y) < cze”0T 8p ()28 p ().
If T < T1, by Theorem 1.3(i), there is a constant ¢; > 1 such that

5 ' 8p(0)*28p ()% < ph (1, x, ) < e28p(x)*/*8p (y)*/?

for every t € [T, T1) and x, y € D. This establishes Theorem 1.3(i). [

REMARK 8.5. (i) Using Corollary 1.4 and the argument of the proof of
Lemma 6.1, (6.10) is, in fact, true for all bounded open sets U with exterior cone
condition.

(i1) In view of Corollary 1.4, estimate (4.8) and Lemma 4.1, we can deduce
from (4.10) by the dominated convergence theorem that Proposition 4.2 holds for
general b with |b| € Ky,o—1.
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