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Suppose that d ≥ 2 and α ∈ (1,2). Let D be a bounded C1,1 open set in
R

d and b an R
d -valued function on R

d whose components are in a certain
Kato class of the rotationally symmetric α-stable process. In this paper, we
derive sharp two-sided heat kernel estimates for Lb = �α/2 + b · ∇ in D

with zero exterior condition. We also obtain the boundary Harnack principle
for Lb in D with explicit decay rate.

1. Introduction. Throughout this paper we assume d ≥ 2, α ∈ (1,2) and that
X is a (rotationally) symmetric α-stable process on R

d . The infinitesimal generator
of X is �α/2 := −(−�)α/2. We will use B(x, r) to denote the open ball centered
at x ∈ R

d with radius r > 0.

DEFINITION 1.1. For a function f on R
d , we define for r > 0,

Mα
f (r) = sup

x∈Rd

∫
B(x,r)

|f |(y)

|x − y|d+1−α
dy.

A function f on R
d is said to belong to the Kato class Kd,α−1 if limr↓0 Mα

f (r) = 0.

Since 1 < α < 2, using Hölder’s inequality, it is easy to see that for every
p > d/(α − 1), L∞(Rd;dx) + Lp(Rd;dx) ⊂ Kd,α−1. Throughout this paper
we will assume that b = (b1, . . . , bd) is an R

d -valued function on R
d such that

|b| ∈ Kd,α−1. Define Lb = �α/2 + b · ∇ . Intuitively, the fundamental solution
pb(t, x, y) of Lb and the fundamental solution p(t, x, y) of �α/2, which is also
the transition density of X, should be related by the following Duhamel formula:

pb(t, x, y) = p(t, x, y) +
∫ t

0

∫
Rd

pb(s, x, z)b(z) · ∇zp(t − s, z, y) dz ds.(1.1)
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Applying the above formula repeatedly, one expects that pb(t, x, y) can be ex-
pressed as an infinite series in terms of p and its derivatives. This motivates the
following definition. Define pb

0(t, x, y) = p(t, x, y) and, for k ≥ 1,

pb
k(t, x, y) :=

∫ t

0

∫
Rd

pb
k−1(s, x, z)b(z) · ∇zp(t − s, z, y) dz ds.(1.2)

The following results are shown in [6], Theorem 1, Lemmas 15 and 23, and
their proofs. Here and in the sequel, we use := as a way of definition. For a, b ∈ R,
a ∧ b := min{a, b} and a ∨ b := max{a, b}.

THEOREM 1.2. (i) There exist T0 > 0 and c1 > 1 depending on b only through
the rate at which Mα|b|(r) goes to zero such that

∑∞
k=0 pb

k(t, x, y) converges locally

uniformly on (0, T0]×R
d ×R

d to a positive jointly continuous function pb(t, x, y)

and that on (0, T0] × R
d × R

d ,

c−1
1

(
t−d/α ∧ t

|x − y|d+α

)
≤ pb(t, x, y) ≤ c1

(
t−d/α ∧ t

|x − y|d+α

)
.(1.3)

Moreover,
∫
Rd pb(t, x, y) dy = 1 for every t ∈ (0, T0] and x ∈ R

d .
(ii) The function pb(t, x, y) defined in (i) can be extended uniquely to a positive

jointly continuous function on (0,∞) × R
d × R

d so that for all s, t ∈ (0,∞) and
(x, y) ∈ R

d × R
d ,

∫
Rd pb(t, x, z) dz = 1 and

pb(s + t, x, y) =
∫

Rd
pb(s, x, z)pb(t, z, y) dz.(1.4)

(iii) If we define

P b
t f (x) :=

∫
Rd

pb(t, x, y)f (y) dy,(1.5)

then for any f,g ∈ C∞
c (Rd), the space of smooth functions with compact supports,

lim
t↓0

∫
Rd

t−1(
P b

t f (x) − f (x)
)
g(x) dx =

∫
Rd

(Lbf )(x)g(x) dx.

Thus pb(t, x, y) is the fundamental solution of Lb in the distributional sense.

Here and in the rest of this paper, the meaning of the phrase “depending on b

only via the rate at which Mα|b|(r) goes to zero” is that the statement is true for any

R
d -valued function b̃ on R

d with

Mα

|b̃|(r) ≤ Mα|b|(r) for all r > 0.

Note that the Green function G(x,y) of X is c/|x − y|d−α and so |∇xG(x, y)| ≤
c/|x − y|d−α+1. This indicates that Kd,α−1 is the right class of functions for gra-
dient perturbations of fractional Laplacian. The same phenomenon happens for
� + b · ∇; see [18].
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It is easy to show (see Proposition 2.3 below) that the operators {P b
t ; t ≥ 0}

defined by (1.5) form a Feller semigroup and so there exists a conservative Feller
process Xb = {Xb

t , t ≥ 0,Px, x ∈ R
d} in R

d such that P b
t f (x) = Ex[f (Xb

t )]. The
process Xb is, in general, nonsymmetric. We call Xb an α-stable process with
drift b, since its infinitesimal generator is Lb.

For any open subset D ⊂ R
d , we define τb

D = inf{t > 0 :Xb
t /∈ D}. We will use

Xb,D to denote the subprocess of Xb in D; that is, X
b,D
t (ω) = Xb

t (ω) if t < τb
D(ω)

and X
b,D
t (ω) = ∂ if t ≥ τb

D(ω), where ∂ is a cemetery state. The subprocess of X

in D will be denoted by XD . Throughout this paper, we use the convention that for
every function f , we extend its definition to ∂ by setting f (∂) = 0. The infinites-
imal generator of Xb,D is Lb|D , that is, Lb on D with zero exterior condition.
The process Xb,D has a transition density pb

D(t, x, y) with respect to the Lebesgue
measure; see (3.4) below. The transition density pb

D(t, x, y) of Xb,D is the funda-
mental solution of Lb|D . The transition density of XD is denoted by pD(t, x, y),
and it is the fundamental solution of L|D .

The purpose of this paper is to establish the following sharp two-sided esti-
mates on pb

D(t, x, y) in Theorem 1.3. To state this theorem, we first recall that
an open set D in R

d is said to be a C1,1 open set if there exist a localiza-
tion radius R0 > 0 and a constant �0 > 0 such that for every z ∈ ∂D, there ex-
ist a C1,1-function φ = φz : Rd−1 → R satisfying φ(0) = 0, ∇φ(0) = (0, . . . ,0),
‖∇φ‖∞ ≤ �0, |∇φ(x) − ∇φ(z)| ≤ �0|x − z| and an orthonormal coordinate sys-
tem CSz: y = (y1, . . . , yd−1, yd) := (ỹ, yd) with its origin at z such that

B(z,R0) ∩ D = {y ∈ B(0,R0) in CSz :yd > φ(ỹ)}.
The pair (R0,�0) is called the characteristics of the C1,1 open set D. We remark
that in some literatures, the C1,1 open set defined above is called a uniform C1,1

open set as (R0,�0) is universal for every z ∈ ∂D. For x ∈ D, let δD(x) denote
the Euclidean distance between x and ∂D. Note that a bounded C1,1 open set may
be disconnected.

THEOREM 1.3. Let D be a bounded C1,1 open subset of R
d with C1,1 char-

acteristics (R0,�0). Define

fD(t, x, y) =
(

1 ∧ δD(x)α/2
√

t

)(
1 ∧ δD(y)α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
.

For each T > 0, there are constants c1 = c1(T ,R0,�0, d,α,diam(D), b) ≥ 1 and
c2 = c2(T , d,α,D,b) ≥ 1 with the dependence on b only through the rate at which
Mα|b|(r) goes to zero such that:

(i) on (0, T ] × D × D,

c−1
1 fD(t, x, y) ≤ pb

D(t, x, y) ≤ c1fD(t, x, y);
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(ii) on [T ,∞) × D × D,

c−1
2 e−tλ

b,D
0 δD(x)α/2δD(y)α/2 ≤ pb

D(t, x, y) ≤ c2e
−tλ

b,D
0 δD(x)α/2δD(y)α/2,

where −λ
b,D
0 := sup Re(σ (Lb|D)) < 0.

Here diam(D) denotes the diameter of D. At first glance, one might think that
the estimates in Theorem 1.3 can be obtained from the estimates for pD(t, x, y) by
using a Duhamel formula similar to (1.1) with pb, p and R

d replaced by pb
D , pD

and D, respectively. Unfortunately such an approach does not work for pb
D(t, x, y).

This is because unlike the whole space case, we do not have a good control on
∇zpD(s, z, y) when z is near the boundary of D. When D = R

d , p(t, x, y) is the
transition density of the symmetric α-stable process, and there is a nice bound for
∇zp(t, z, y). This is the key reason why the result in Theorem 1.2(i) can be estab-
lished by using Duhamel’s formula. Instead, we establish Theorem 1.3 by using
probabilistic means through the Feller process Xb. More specifically, we adapt the
road map outlined in our paper [9] that establishes sharp two-sided Dirichlet heat
kernel estimates for symmetric α-stable processes in C1,1 open sets. Clearly, many
new and major difficulties arise when adapting the strategy outlined in [9] to Xb.
Symmetric stable processes are Lévy processes that are rotationally symmetric and
self-similar. The Feller process Xb here is typically nonsymmetric, which is the
main difficulty that we have to overcome. In addition, Xb is neither self-similar
nor rotationally symmetric. Specifically, our approach consists of the following
four ingredients:

(i) determine the Lévy system of Xb that describes how the process jumps;
(ii) derive an approximate stable-scaling property of Xb in bounded C1,1 open

sets, which will be used to derive heat kernel estimates in bounded C1,1 open sets
for small time t ∈ (0, T ] from that at time t = 1;

(iii) establish sharp two-sided estimates with explicit boundary decay rate on
the Green functions of Xb and its suitable dual process in C1,1 open sets with
sufficiently small diameter;

(iv) prove the intrinsic ultracontractivity of (the nonsymmetric process) Xb in
bounded open sets, which will give sharp two-sided Dirichlet heat kernel estimates
for large time.

In step (ii), we choose a large ball E centered at the origin so that our bounded
C1,1 open set D is contained in 1

4E. Then we derive heat kernel estimates in D at
time t = 1 carefully so that the constants depend on the quantity M defined in (6.5),
not on the diameter of D directly. Note that the constant M has the correct scaling
property, while the diameter of D does not. In fact, the constant c1 in Theorem 1.3
depends on the diameter of D only through M .

We also establish the boundary Harnack principle for Xb and its suitable dual
process in C1,1 open sets with explicit boundary decay rate (Theorem 6.2). How-
ever, we like to point out that Theorem 6.2 is not used in the proof of Theorem 1.3.
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By integrating the two-sided heat kernel estimates in Theorem 1.3 with respect
to t , one can easily get the following estimates on the Green function Gb

D(x, y) =∫ ∞
0 pb

D(t, x, y) dt .

COROLLARY 1.4. Let D be a bounded C1,1 open set in R
d . Then there is a

constant c = c(D,d,α, b) ≥ 1 with the dependence on b only through the rate at
which Mα|b|(r) goes to zero such that on D × D,

c−1 1

|x − y|d−α

(
1 ∧ δD(x)α/2δD(y)α/2

|x − y|α
)

≤ Gb
D(x, y) ≤ c

|x − y|d−α

(
1 ∧ δD(x)α/2δD(y)α/2

|x − y|α
)
.

The above result was obtained independently as the main result in [7]. Clearly
the heat kernel pb

D(t, x, y) contains much more information than the Green func-
tion Gb

D(x, y). The estimates on pb
D(t, x, y) are not studied in [7].

The sharp two-sided estimates for pD(t, x, y), corresponding to the case b = 0
in Theorem 1.3, were first established in [9]. Theorem 1.3 indicates that short time
Dirichlet heat kernel estimates for the fractional Laplacian in bounded C1,1 open
sets are stable under gradient perturbations. Such stability should hold for much
more general open sets.

We say that an open set D is κ-fat if there exists an R1 > 0 such that for every
x ∈ D and r ∈ (0,R1], there is some y such that B(y, κr) ⊂ B(x, r) ∩ D. The pair
(R1, κ) is called the characteristics of the κ-fat open set D.

CONJECTURE 1.5. Let T > 0 and D be a bounded κ-fat open subset of R
d .

Then there is a constant c1 ≥ 1 depending only on T , D, α and b with the depen-
dence on b only through the rate at which Mα|b|(r) goes to zero such that

c−1
1 pD(t, x, y) ≤ pb(t, x, y) ≤ c1pD(t, x, y) for t ∈ (0, T ] and x, y ∈ D

and

c−1
1 GD(x, y) ≤ Gb

D(x, y) ≤ c1GD(x, y) for x, y ∈ D.

In the remainder of this paper, the constants C1,C2,C3,C4 will be fixed
throughout this paper. The lower case constants c0, c1, c2, . . . can change from
one appearance to another. The dependence of the constants on the dimension d

and the stability index α will not be always mentioned explicitly. We will use dx

to denote the Lebesgue measure in R
d . For a Borel set A ⊂ R

d , we also use |A|
to denote its Lebesgue measure. The space of continuous functions on R

d will be
denoted as C(Rd), while Cb(R

d) and C∞(Rd) denote the space of bounded con-
tinuous functions on R

d and the space of continuous functions on R
d that vanish
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at infinity, respectively. For two nonnegative functions f and g, the notation f � g

means that there are positive constants c1 and c2 so that c1g(x) ≤ f (x) ≤ c2g(x)

in the common domain of definition for f and g.

2. Feller property and Lévy system. Recall that d ≥ 2 and α ∈ (1,2). A (ro-
tationally) symmetric α-stable process X = {Xt, t ≥ 0,Px, x ∈ R

d} in R
d is a Lévy

process such that

Ex

[
eiξ ·(Xt−X0)

] = e−t |ξ |α for every x ∈ R
d and ξ ∈ R

d .

The infinitesimal generator of this process X is the fractional Laplacian �α/2,
which is a prototype of nonlocal operators. The fractional Laplacian can be written
in the form

�α/2u(x) = lim
ε↓0

∫
{y∈Rd : |y−x|>ε}

(
u(y) − u(x)

) A(d,−α)

|x − y|d+α
dy,(2.1)

where A(d,−α) := α2α−1π−d/2�(d+α
2 )�(1 − α

2 )−1.

We will use p(t, x, y) to denote the transition density of X (or equivalently the
heat kernel of the fractional Laplacian �α/2). It is well known (see, e.g., [2, 12])
that

p(t, x, y) � t−d/α ∧ t

|x − y|d+α
on (0,∞) × R

d × R
d .

The next two lemmas will be used later.

LEMMA 2.1. If f is a function belonging to Kd,α−1, then for any compact
subset K of R

d ,

sup
x∈Rd

∫
K

|f |(y)

|x − y|d−α
dy < ∞.

PROOF. This follows immediately from the fact that d − α < d + 1 − α. We
omit the details. �

Recall that we are assuming that b is an R
d -valued function on R

d such that
|b| ∈ Kd,α−1.

LEMMA 2.2. If f is a function belonging to Kd,α−1, then

lim
t→0

sup
x∈Rd

∫ t

0
P b

s |f |(x) ds = 0.
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PROOF. By (1.3),

lim
t→0

sup
x∈Rd

∫ t

0
P b

s |f |(x) ds

≤ c1 lim
t→0

sup
x∈Rd

∫ t

0

(
s

∫
B(x,s1/α)c

|f (y)|
|y − x|d+α

dy

+ s−d/α
∫
B(x,s1/α)

|f (y)|dy

)
ds.

So it suffices to show that the right-hand side is zero. Clearly, for any s ≤ 1, we
have ∫

B(x,s1/α)
|f (y)|dy ≤ (s1/α)d+1−α sup

x∈Rd

∫
B(x,1)

|f (y)|
|y − x|d+1−α

dy.(2.2)

Applying [36], Lemma 1.1, we get

sup
x∈Rd

∫
B(x,s1/α)c

|f (y)|
|y − x|d+α

dy ≤ c2(s
1/α)d+1−α(s1/α)−(d+α) = c2s

1/α−2.(2.3)

Now the conclusion follows immediately from (2.2) and (2.3). �

By the semigroup property of pb(t, x, y) and (1.3), there are constants c1,
c2 ≥ 1, such that on (0,∞) × R

d × R
d ,

c−1
1 e−c2t

(
t−d/α ∧ t

|x − y|d+α

)
(2.4)

≤ pb(t, x, y) ≤ c1e
c2t

(
t−d/α ∧ t

|x − y|d+α

)
.

PROPOSITION 2.3. The family of operators {P b
t ; t ≥ 0} defined by (1.5) forms

a Feller semigroup. Moreover, it satisfies the strong Feller property; that is, for
each t > 0, P b

t f maps bounded measurable functions to continuous functions.

PROOF. Since pb(t, x, y) is continuous, by the bounded convergence theorem,
P b

t enjoys the strong Feller property. Moreover, for every f ∈ C∞(Rd) and t > 0,

lim
x→∞|P b

t f (x)| ≤ lim
x→∞ c1e

c2t
∫

Rd

(
t−d/α ∧ t

|y|d+α

)
|f (x + y)|dy = 0

and so P b
t f ∈ C∞(Rd). By (2.4), we have

sup
t≤t0

sup
x∈Rd

Px(|Xb
t − Xb

0 | ≥ δ)

≤ c1e
c2t0 sup

t≤t0

sup
x∈Rd

∫
{y∈Rd : |x−y|≥δ}

(
t−d/α ∧ t

|x − y|d+α

)
dy
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= c3e
c2t0 sup

t≤t0

∫ ∞
δ

rd−1
(
t−d/α ∧ t

rd+α

)
dr

≤ c4e
c2t0

∫ ∞
δt

−1/α
0

ud−1
(

1 ∧ 1

ud+α

)
du

for some c3 = c3(d) > 0 and c4 = c4(d) > 0. Thus

lim
t0↓0

sup
t≤t0

sup
x∈Rd

Px(|Xb
t − Xb

0 | ≥ δ) = 0.(2.5)

For every f ∈ Cb(R
d), x ∈ R

d and ε > 0, there is a δ > 0 so that |f (y)−f (x)| < ε

for every y ∈ B(x, δ). Therefore we have by (2.5),

lim
t↓0

|P b
t f (x) − f (x)|

= lim
t↓0

∣∣∣∣∫
Rd

pb(t, x, y)
(
f (y) − f (x)

)
dy

∣∣∣∣
≤ lim

t↓0

∫
{y∈Rd : |y−x|<δ}

pb(t, x, y)|f (y) − f (x)|dy

+ lim
t↓0

2‖f ‖∞Px(|Xb
t − x| ≥ δ) < ε.

Therefore for every f ∈ Cb(R
d) and x ∈ R

d , limt↓0 P b
t f (x) = f (x). This com-

pletes the proof of the proposition. �

We will need the next result, which is an extension of Theorem 1.2(iii).

PROPOSITION 2.4. For any f ∈ C∞
c (Rd) and g ∈ C∞(Rd), we have

lim
t↓0

∫
Rd

t−1(
P b

t f (x) − f (x)
)
g(x) dx =

∫
Rd

(Lbf )(x)g(x) dx.

PROOF. This proposition can be proved by following the proof of [6], Theo-
rem 1, with some obvious modifications. Indeed, one can follow the same argu-
ment of the proof of [6], Theorem 1, until the second display in [6], page 195,
with f ∈ C∞

c (Rd) and g ∈ C∞(Rd). Let ε > 0, and use the same notation as
in [6], page 195, except that K := {z : dist(z,K1) ≤ 1} and we ignore K2. Since
h(x, y) = ∇f (y)g(x) is still uniformly continuous, there exists a δ > 0 such that
for all x, y, z with |x − z| < δ and |y − z| < δ, we have that |h(x, y)−h(z, z)| < ε.
Thus the third display in [6], page 195, can be modified as∣∣∣∣It −

∫
Rd

b(z) · ∇f (z)g(z) dz

∣∣∣∣
≤

∫
Rd

∫
Rd

∫
Rd

∫ t

0

p(t − s, x, z)p(s, z, y)

t
ds|b(z)||h(x, y) − h(z, z)|dx dy dz
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≤ 2‖h‖
∫
Kc

∫
K1

∫ t

0

(∫
Rd

p(t − s, x, z) dx

)
p(s, z, y)

t
ds|b(z)|dy dz

+ 2‖h‖
∫
K

∫ ∫
(B(z,δ)×B(z,δ))c

∫ t

0

p(t − s, x, z)p(s, z, y)

t
ds|b(z)|dx dy dz

+ ε

∫
K

∫ ∫
B(z,δ)×B(z,δ)

∫ t

0

p(t − s, x, z)p(s, z, y)

t
ds|b(z)|dx dy dz.

The remainder of the proof is the same as that of the proof of [6], Theorem 1. �

The Feller process Xb possesses a Lévy system (see [33]), which describes how
Xb jumps. Intuitively, since the infinitesimal generator of Xb is Lb, Xb should
satisfy

dXb
t = dXt + b(Xb

t ) dt.

So Xb should have the same Lévy system as that of X, as the drift does not con-
tribute to the jumps. This is indeed true, and we are going to give a rigorous proof.

It is well known that the symmetric stable process X has Lévy intensity function

J (x, y) = A(d,−α)|x − y|−(d+α).

The Lévy intensity function gives rise to a Lévy system (N,H) for X, where
N(x, dy) = J (x, y) dy and Ht = t , which describes the jumps of the process X:
for any x ∈ R

d and any nonnegative measurable function f on R+ × R
d × R

d

vanishing on {(s, x, y) ∈ R+ ×R
d ×R

d :x = y} and stopping time T (with respect
to the filtration of X),

Ex

[∑
s≤T

f (s,Xs−,Xs)

]
= Ex

[∫ T

0

(∫
Rd

f (s,Xs, y)J (Xs, y) dy

)
ds

]
.

(See, e.g., [12], proof of Lemma 4.7, and [13], Appendix A.)
We first show that Xb is a solution to the martingale problem of Lb.

THEOREM 2.5. For every x ∈ R
d and every f ∈ C∞

c (Rd),

M
f
t := f (Xb

t ) − f (Xb
0) −

∫ t

0
Lbf (Xb

s ) ds

is a martingale under Px .

PROOF. Define the adjoint operator P
b,∗
t of P b

t with respect to the Lebesgue
measure by

P
b,∗
t f (x) :=

∫
Rd

pb(t, y, x)f (y) dy.

It follows immediately from (1.3) and the continuity of pb(t, x, y) that, for any
g ∈ C∞(Rd) and s > 0, both P b

s g and P b,∗
s g are in C∞(Rd). Thus, for any f,g ∈
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C∞
c (Rd) and s > 0, by applying Proposition 2.4 with h = P b,∗

s g and (1.4), we get
that

lim
t↓0

∫
Rd

t−1(
P b

t+sf (x) − P b
s f (x)

)
g(x) dx

= lim
t↓0

∫
Rd

t−1(
P b

t f (x) − f (x)
)
P b,∗

s g(x) dx

=
∫

Rd
Lbf (x)P b,∗

s g(x) dx =
∫

Rd
Ex[Lbf (Xb

s )]g(x) dx,

which implies that∫
Rd

(
P b

t f (x) − f (x)
)
g(x) dx =

∫
Rd

Ex

[∫ t

0
(Lbf )(Xb

s ) ds

]
g(x) dx.(2.6)

Using the strong Feller property of P b
t , Lemmas 2.1 and 2.2, we can easily see that

the function

x �→ P b
t f (x) − f (x) − Ex

[∫ t

0
Lbf (Xb

s ) ds

]
= Ex[Mf

t ]
is continuous, and thus is identically zero on R

d by (2.6). It follows that for any
f ∈ C∞

c (Rd) and x ∈ R
d , Mf is a martingale with respect to Px . �

Theorem 2.5 in particular implies that Xb
t = (X

b,1
t , . . . ,X

b,d
t ) is a semi-

martingale. By Itô’s formula, we have that, for any f ∈ C∞
c (Rd),

f (Xb
t ) − f (Xb

0) =
d∑

i=1

∫ t

0
∂if (Xb

s−) dXb,i
s + ∑

s≤t

ηs(f ) + 1

2
At(f ),(2.7)

where

ηs(f ) = f (Xb
s ) − f (Xb

s−) −
d∑

i=1

∂if (Xb
s−)(Xb,i

s − X
b,i
s−)(2.8)

and

At(f ) =
d∑

i,j=1

∫ t

0
∂i∂jf (Xb

s−) d〈(Xb,i)c, (Xb,j )c〉s .(2.9)

Now suppose that A and B are two bounded closed sets having a positive dis-
tance from each other. Let f ∈ C∞

c (Rd) with f = 0 on A and f = 1 on B . Then

we know that N
f
t := ∫ t

0 1A(Xb
s−) dM

f
s is a martingale. Combining Theorem 2.5

and (2.7)–(2.9) with (2.1), we get that

N
f
t = ∑

s≤t

1A(Xb
s−)f (Xb

s ) −
∫ t

0
1A(Xb

s )(�
α/2f (Xb

s )) ds

= ∑
s≤t

1A(Xb
s−)f (Xb

s ) −
∫ t

0
1A(Xb

s )

∫
Rd

f (y)J (Xb
s , y) dy ds.
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By taking a sequence of functions fn ∈ C∞
c (Rd) with fn = 0 on A, fn = 1 on B

and fn ↓ 1B , we get that, for any x ∈ R
d ,∑

s≤t

1A(Xb
s−)1B(Xb

s ) −
∫ t

0
1A(Xb

s )

∫
B

J (Xb
s , y) dy ds

is a martingale with respect to Px . Thus,

Ex

[∑
s≤t

1A(Xb
s−)1B(Xb

s )

]
= Ex

[∫ t

0

∫
Rd

1A(Xb
s )1B(y)J (Xb

s , y) dy ds

]
.

Using this and a routine measure theoretic argument, we get

Ex

[∑
s≤t

f (Xb
s−,Xb

s )

]
= Ex

[∫ t

0

∫
Rd

f (Xb
s , y)J (Xb

s , y) dy ds

]

for any nonnegative measurable function f on R
d × R

d vanishing on {(x, y) ∈
R

d × R
d : x = y}. Finally following the same arguments as in [12], Lemma 4.7,

and [13], Appendix A, we get:

THEOREM 2.6. Xb has the same Lévy system (N,H) as X; that is, for any
x ∈ R

d and any nonnegative measurable function f on R+ × R
d × R

d vanishing
on {(s, x, y) ∈ R+ × R

d × R
d : x = y} and stopping time T (with respect to the

filtration of Xb)

Ex

[∑
s≤T

f (s,Xb
s−,Xb

s )

]
= Ex

[∫ T

0

(∫
Rd

f (s,Xb
s , y)J (Xb

s , y) dy

)
ds

]
.(2.10)

For any open subset E of R
d , let E∂ = E ∪ {∂}, where ∂ is the cemetery point.

Define for x, y ∈ E,

NE(x, dy) := J (x, y) dy, NE(x, ∂) :=
∫
Ec

J (x, y) dy

and HE
t := t . Then it follows from the theorem above that (NE,HE) is a Lévy

system for Xb,E ; that is, for any x ∈ E, any nonnegative measurable function f on
R+ × E × E∂ vanishing on {(s, x, y) ∈ R+ × E × E :x = y} and stopping time T

(with respect to the filtration of Xb,E)

Ex

[∑
s≤T

f (s,X
b,E
s− ,Xb,E

s )

]
(2.11)

= Ex

[∫ T

0

(∫
E∂

f (s,Xb,E
s , y)NE(Xb,E

s , dy)

)
dHE

s

]
.
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3. Subprocess of Xb. In this section we study some basic properties of sub-
processes of Xb in open subsets. These properties will be used in later sections.

LEMMA 3.1. For any δ > 0, we have

lim
s↓0

sup
x∈Rd

Px

(
τb
B(x,δ) ≤ s

) = 0.

PROOF. By the strong Markov property of Xb (see, e.g., [3], pages 43 and 44),
we have for every x ∈ R

d ,

Px

(
τb
B(x,δ) ≤ s

)
≤ Px

(
τb
B(x,δ) ≤ s,Xb

s ∈ B(x, δ/2)
) + Px

(
Xb

s ∈ B(x, δ/2)c
)

≤ Ex

[
PX

τb
B(x,δ)

(∣∣Xb

s−τb
B(x,δ)

− Xb
0

∣∣ ≥ δ/2
); τb

B(x,δ) < s
]

(3.1)

+ Px(|Xb
s − Xb

0 | ≥ δ/2)

≤ 2 sup
t≤s

sup
x∈Rd

Px(|Xb
t − Xb

0 | ≥ δ/2).

Now the conclusion of the lemma follows from (2.5). �

A point z on the boundary ∂G of a Borel set G is said to be a regular boundary
point with respect to Xb if Pz(τ

b
G = 0) = 1. A Borel set G is said to be regular with

respect to Xb if every point in ∂G is a regular boundary point with respect to Xb.

PROPOSITION 3.2. Suppose that G is a Borel set of R
d and z ∈ ∂G. If there

is a cone A with vertex z such that int(A) ∩ B(z, r) ⊂ Gc for some r > 0, then z is
a regular boundary point of G with respect to Xb.

PROOF. This result follows from (1.3) and Blumenthal’s zero–one law by a
routine argument. For example, the reader can follow the argument in the proof
of [25], Proposition 2.2. Even though [25], Proposition 2.2, is stated for open sets,
the proof there works for Borel sets. We omit the details. �

This result implies that all bounded Lipschitz open sets, and in particular, all
bounded C1,1 open sets, are regular with respect to Xb. Repeating the argument
in the second part of the proof of [17], Theorem 1.23, we immediately get the
following result.

PROPOSITION 3.3. Suppose that D is an open set in R
d , and f is a bounded

Borel function on ∂D. If z is a regular boundary point of D with respect to Xb,
and f is continuous at z, then

lim
D̄�x→z

Ex[f (Xb

τb
D

); τb
D < ∞] = f (z).
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Let

kb
D(t, x, y) := Ex[pb(t − τb

D,Xb

τb
D

, y); τb
D < t](3.2)

and

pb
D(t, x, y) := pb(t, x, y) − kb

D(t, x, y).(3.3)

Then pb
D(t, x, y) is the transition density of Xb,D . This is because by the strong

Markov property of Xb, for every t > 0 and Borel set A ⊂ R
d ,

Px(X
b,D
t ∈ A) =

∫
A

pb
D(t, x, y) dy.(3.4)

We will use {P b,D
t } to denote the semigroup of XD and Lb|D to denote the in-

finitesimal generator of {P b,D
t }. Using some standard arguments (e.g., [4, 17]), we

can show the following:

THEOREM 3.4. Let D be an open set in R
d . The transition density pb

D(t, x, y)

is jointly continuous on (0,∞) × D × D. For every t > 0 and s > 0,

pb
D(t + s, x, y) =

∫
D

pb
D(t, x, z)pb

D(s, z, y) dz.(3.5)

If z is a regular boundary point of D with respect to Xb, then for any t > 0 and
y ∈ D, limD�x→z pb

D(t, x, y) = 0.

PROOF. Note that by (2.4), there exist c1, c2 > 0 such that for all t0 > 0 and
δ > 0,

sup
t≤t0

sup
|x−y|≥δ

pb(t, x, y) ≤ c1e
c2t0 sup

t≤t0

sup
|x−y|≥δ

(
t−d/α ∧ t

|x − y|d+α

)
(3.6)

≤ c1e
c2t0

t0

δd+α
< ∞.

We first show that kb
D(t, x, ·) is jointly continuous on (0,∞) × D × D. For any

δ > 0, define Dδ = {x ∈ D : dist(x,Dc) < δ}. For 0 ≤ s < r and x, y ∈ Dδ , define

h(s, r, x, y) = Ex[pb(r − τb
D,Xb

τb
D

, y); s ≤ τb
D < r].

Note that

Ex[h(s, r,Xb
s , y)] = Ex[h(s, r,Xb

s , y); s < τb
D] + Ex[h(s, r,Xb

s , y); s ≥ τb
D]

= h(s, r + s, x, y) + Ex[h(s, r,Xb
s , y); s ≥ τb

D]
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and

kb
D(t, x, y) = h(0, t, x, y)

= h(s, t, x, y) + Ex[pb(t − τb
D,Xb

τb
D

, y); τb
D < s]

= Ex[h(s, t − s,Xb
s , y)] − Ex[h(s, t − s,Xb

s , y); τb
D ≤ s]

+ Ex[pb(t − τb
D,Xb

τb
D

, y); τb
D < s].

For all t1, t2 ∈ (0,∞), by (3.6), pb(r, z, y) is bounded on (0, t2] × Dc × Dδ by
a constant c3. Consequently, h(s, r, x, y) is bounded by c3 for all x, y ∈ Dδ and
s, r ∈ (0, t2] with s < r ∧ (t1/3). Thus we have from the above display as well as
(3.6) that for all t ∈ [t1, t2], s < t1/2 and x, y ∈ Dδ ,

|kb
D(t, x, y) − Ex[h(s, t − s,Xb

s , y)]| ≤ 2c3Px(τ
b
D ≤ s)

≤ 2c3 sup
z∈Rd

Pz

(
τb
B(z,δ) ≤ s

)
,

which by Lemma 3.1 goes to 0 as s → 0 (uniformly in (t, x, y) ∈ [t1, t2] × Dδ ×
Dδ). Since pb(t, x, y) is jointly continuous, it follows from the bounded con-
vergence theorem that Ex[h(s, t − s,Xb

s , y)] is jointly continuous in (s, t, y) ∈
[0, t1/3] × [t1, t2] × Dδ . On the other hand, for (s, t, y) in any locally compact
subset of (0, t1/3) × [t1, t2] × Dδ , Ex[h(s, t − s,Xb

s , y)] = ∫
Rd p(s, x, z)h(s, t −

s, z, y) dy is equi-continuous in x. Therefore Ex[h(s, t − s,Xb
s , y)] is jointly con-

tinuous in (s, t, x, y) ∈ (0, t1/3) × [t1, t2] × Dδ × Dδ . Consequently, kb
D(t, x, y) is

jointly continuous in (s, t, y) ∈ [0, t1/3]×[t1, t2]×Dδ and hence on (0,∞)×D×
D. Since pb(t, x, y) is jointly continuous, we can now conclude that pb

D(t, x, y) is
jointly continuous on (0,∞) × D × D.

By Proposition 3.3, the last assertion of the theorem can be proved using the
argument in the last paragraph of the proof of [17], Theorem 2.4. We omit the
details. �

The next result is a short time lower bound estimate for pb
D(t, x, y) near the

diagonal. The technique used in its proof is well known. We give the proof here to
demonstrate that symmetry of the process is not needed.

PROPOSITION 3.5. For any a1 ∈ (0,1), a2 > 0, a3 > 0 and R > 0, there is
a constant c = c(d,α, a1, a2, a3,R, b) > 0 with the dependence on b only via the
rate at which Mα|b|(r) goes to zero such that such that for all x0 ∈ R

d and r ∈
(0,R],

pb
B(x0,r)

(t, x, y) ≥ ct−d/α

(3.7)
for all x, y ∈ B(x0, a1r) and t ∈ [a2r

α, a3r
α].
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PROOF. Let κ := a2/(2a3) and Br := B(x0, r). We first show that there is a
constant c1 ∈ (0,1) so that (3.7) holds for all r > 0, x, y ∈ B(x0, a1r) and t ∈
[κc1r

α, c1r
α].

For r > 0, t ∈ [κc1r
α, c1r

α], and x, y ∈ B(x0, a1r), since |x − y| ≤ 2a1r ≤
2a1(κc1)

−1/αt−1/α and t ≤ c1r
α ≤ Rα , we have by (2.4), (3.2) and (3.3),

pb
Br

(t, x, y) ≥ c2c
1+d/α
1 t−d/α

(3.8)

− c3Ex

[
1{τb

Br
≤t}

(
(t − τb

Br
)−d/α ∧ t − τb

Br

|Xb

τb
Br

− y|d+α

)]
,

where the positive constants ci = ci(d,α, a1, a2, a3,R, b), i = 2,3, are indepen-
dent of c1 ∈ (0,1]. Observe that

|Xb

τb
Br

− y| ≥ (1 − a1)r for t − τb
Br

≤ t ≤ c1r
α,

and so

t − τb
Br

|Xb

τb
Br

− y|d+α
≤ t − τb

Br

((1 − a1)r))d+α
≤ c

1+d/α
1

(1 − a1)d+α
t−d/α.(3.9)

Note that if c1 < ((1 − a1)/2)α , by (2.4), for t ≤ c1r
α ,

Px

(
Xb

t /∈ B
(
x, (1 − a1)r/2

)) =
∫
B(x,(1−a1)r/2)c

pb(t, x, y) dy

≤ c3

∫
B(x,(1−a1)r/2)c

t

|x − y|d+α
dz

≤ c4
t

rα
≤ c4c1,

where c4 is independent of c1. Now by the same argument as in the proof of
Lemma 3.1, we have

Px

(
τb
B(x,(1−a1)r)

≤ t
) ≤ 2c4c1.(3.10)

Consequently, we have from (3.8)–(3.10),

pb
Br

(t, x, y) ≥
(
c2c

1+d/α
1 − c3

c
1+d/α
1

(1 − a1)d+α
Px(τ

b
Br

≤ t)

)
t−d/α

≥
(
c2c

1+d/α
1 − c3

c
1+d/α
1

(1 − a1)d+α
Px

(
τb
B(x,(1−a1)r)

≤ t
))

t−d/α

≥ c
1+d/α
1

(
c2 − 2c4c3

c1

(1 − a1)d+α

)
t−d/α.

Clearly we can choose c1 < a3 ∧ ((1 − a1)/2)α small so that pb
Br

(t, x, y) ≥
c5t

−d/α . This establishes (3.7) for any x0 ∈ R
d , r > 0 and t ∈ [κc1r

α, c1r
α].
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Now for r > 0 and t ∈ [a2r
α, a3r

α], define k0 = [a3/c1] + 1. Here for a ≥ 1,
[a] denotes the largest integer that does not exceed a. Then, since c1 < a3, t/k0 ∈
[κc1r

α, c1r
α]. Using the semigroup property (3.5) k0 times, we conclude that for

all x, y ∈ B(x0, a1r) and t ∈ [a2r
α, a3r

α],
pb

B(x0,r)
(t, x, y)

=
∫
B(x0,r)

· · ·
∫
B(x0,r)

pb
B(x0,r)

(t/k0, x,w1) · · ·

× pb
B(x0,r)

(t/k0,wn−1, y) dw1 · · ·dwn−1

≥
∫
B(x0,a1r)

· · ·
∫
B(x0,a1r)

pb
B(x0,r)

(t/k0, x,w1) · · ·

× pb
B(x0,r)

(t/k0,wn−1, y) dw1 · · ·dwn−1

≥ c5(t/k0)
−d/α(

c5(t/k0)
−d/α|B(0,1)|(a1r)

d)k0−1 ≥ c6t
−d/α.

The proof of (3.7) is now complete. �

Using the domain monotonicity of pb
D , the semigroup property (3.5) and the

Lévy system of Xb, the above proposition yields the following.

COROLLARY 3.6. For every open subset D ⊂ R
d , pb

D(t, x, y) is strictly pos-
itive.

PROOF. For x ∈ D, denote by D(x) the connected component of D that con-
tains x. If y ∈ D(x), using a chaining argument and Proposition 3.5, we have

pb
D(t, x, y) ≥ pb

D(x)(t, x, y) > 0.

If y /∈ D(x), then by using the strong Markov property and the Lévy system (2.10)
of Xb,

pb
D(t, x, y)

= Ex

[
pb

D

(
t − τb

D(x),X
b

τb
D(x)

, y
); τb

D(x) < t
]

≥ Ex

[
pb

D

(
t − τb

D(x),X
b

τb
D(x)

, y
); τb

D(x) < t,Xb

τb
D(x)

∈ D(y)
]

≥
∫ t

0

∫
D(x)

pb
D(x)(s, x, z)

(∫
D(y)

J (z,w)pb
D(y)(t − s,w,y) dw

)
dzds > 0.

The corollary is thus proved. �

In the remainder of this section we assume that D is a bounded open set in R
d .

The proof of the next lemma is standard; for example, see [24], Lemma 6.1.
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LEMMA 3.7. There exist positive constants C1 and C2 depending only on d ,
α, diam(D) and b with the dependence on b only through the rate at which Mα|b|(r)
goes to zero such that

pb
D(t, x, y) ≤ C1e

−C2t , (t, x, y) ∈ (1,∞) × D × D.

PROOF. Put L := diam(D). By (1.3), for every x ∈ D we have

Px(τ
b
D ≤ 1) ≥ Px(X

b
1 ∈ R

d \ D) =
∫

Rd\D
pb(1, x, y) dy

≥ c1

∫
Rd\D

(
1 ∧ 1

|x − y|d+α

)
dy

≥ c1

∫
{|z|≥L}

(
1 ∧ 1

|z|d+α

)
dz > 0.

Thus

sup
x∈D

∫
D

pb
D(1, x, y) dy = sup

x∈D

Px(τ
b
D > 1) < 1.

The Markov property of Xb then implies that there exist positive constants c2 and
c3 such that ∫

D
pb

D(t, x, y) dy ≤ c2e
−c3t for (t, x) ∈ (0,∞) × D.

It follows from (1.3) that there exists c4 > 0 such that pb
D(1, x, y) ≤ pb(1, x, y) ≤

c4 for every (x, y) ∈ D × D. Thus for any (t, x, y) ∈ (1,∞) × D × D, we have

pb
D(t, x, y) =

∫
D

pb
D(t − 1, x, z)pb

D(1, z, y) dz

≤ c4

∫
D

pb
D(t − 1, x, z) dz ≤ c2c4e

−c3(t−1). �

Combining the result above with (1.3) we know that there exists a positive con-
stant c1 = c1(d,α,diam(D), b) with the dependence on b only through the rate at
which Mα|b|(r) goes to zero such that for any (t, x, y) ∈ (0,∞) × D × D,

pb
D(t, x, y) ≤ c1

(
t−d/α ∧ t

|x − y|d+α

)
.(3.11)

Therefore the Green function Gb
D(x, y) = ∫ ∞

0 pb
D(t, x, y) dt is finite and continu-

ous off the diagonal of D × D and

Gb
D(x, y) ≤ c2

1

|x − y|d−α
(3.12)

for some positive constant c2 = c2(d,α,diam(D), b) with the dependence on b

only through the rate at which Mα|b|(r) goes to zero.
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4. Uniform estimates on Green functions. Let

gD(x, y) := 1

|x − y|d−α

(
1 ∧ δD(x)δD(y)

|x − y|2
)α/2

.

The following lemma is needed in deriving sharp bounds on the Green function
Gb

U when U is some small C1,1 open set. It can be regarded as a new type of 3G

estimates.

LEMMA 4.1. There exists a positive constant C3 = C3(d,α) such that for all
x, y, z ∈ D,

gD(x, z)
gD(z, y)

|z − y| ∧ δD(z)
≤ C3gD(x, y)

(
1

|x − z|d+1−α
+ 1

|z − y|d+1−α

)
(4.1)

and

gD(x, z)

|x − z| ∧ δD(x)

gD(z, y)

|z − y| ∧ δD(z)
(4.2)

≤ C3
gD(x, y)

|x − y| ∧ δD(x)

(
1

|x − z|d+1−α
+ 1

|z − y|d+1−α

)
.

PROOF. Put r(x, y) = δD(x) + δD(y) + |x − y|. Note that for a, b > 0,

ab

a + b
≤ a ∧ b ≤ 2

ab

a + b
.(4.3)

Moreover for x, y ∈ D, since

δD(x)2 ≤ δD(x)
(
δD(y) + |x − y|) ≤ δD(x)δD(y) + δD(x)2/2 + |x − y|2/2,

one has

δD(x)2 ≤ 2δD(x)δD(y) + |x − y|2.
It follows from these observations that

δD(x)δD(y)

(r(x, y))2 ≤
(

1 ∧ δD(x)δD(y)

|x − y|2
)

≤ 24
δD(x)δD(y)

(r(x, y))2 .(4.4)

Consequently, we have

gD(x, y) � 1

|x − y|d−α

δD(x)α/2δD(y)α/2

(r(x, y))α
.(4.5)

Now

gD(x, z)
gD(z, y)

|z − y| ∧ δD(z)

� gD(x, y)
|z − y| + δD(z)

|z − y|δD(z)

δD(z)αr(x, y)α

r(x, z)αr(z, y)α

( |x − y|
|x − z| · |z − y|

)d−α

(4.6)



DIRICHLET HEAT KERNEL ESTIMATES FOR �α/2 + b · ∇ 2501

≤ gD(x, y)
r(y, z)

|z − y|
δD(z)α−1r(x, y)α

r(x, z)αr(z, y)α

( |x − y|
|x − z| · |z − y|

)d−α

= gD(x, y)
r(x, y)

|z − y|r(x, z)

(
δD(z)r(x, y)

r(x, z)r(z, y)

)α−1( |x − y|
|x − z| · |z − y|

)d−α

.

Since r(x, y) ≤ r(x, z) + r(z, y),

δD(z)r(x, y)

r(x, z)r(z, y)
≤ δD(z)

r(x, z)
+ δD(z)

r(z, y)
≤ 2.

On the other hand, since δD(y) ≤ δD(x) + |x − y|,
r(x, y)

|z − y|r(x, z)
≤ 2

|x − y| + δD(x)

|z − y|r(x, z)
≤ 2

|x − z| + (|z − y| + δD(x))

|z − y|r(x, z)

≤ 2

r(x, z)
+ 2

|z − y| ≤ 2

|x − z| + 2

|z − y| .
Hence we deduce from (4.6) that

gD(x, z)
gD(z, y)

|z − y| ∧ δD(z)

≤ 2αgD(x, y)

(
1

|x − z| + 1

|z − y|
)( |x − y|

|x − z| · |z − y|
)d−α

≤ c1gD(x, y)

(
1

|x − z| + 1

|z − y|
)(

1

|x − z|d−α
+ 1

|z − y|d−α

)

≤ c2gD(x, y)

(
1

|x − z|d+1−α
+ 1

|z − y|d+1−α

)
,

where c1 and c2 are positive constants depending only on d and α. This proves
(4.1).

Now we show that (4.2) holds. Note that by (4.5),

gD(x, z)

|x − z| ∧ δD(x)

gD(z, y)

|z − y| ∧ δD(z)

� δD(x)α/2δD(y)α/2

|x − z|d+1−α|z − y|d+1−α

|x − z| · |z − y|
(|x − z| ∧ δD(x))(|z − y| ∧ δD(z))

(4.7)

× δD(z)α

r(x, z)αr(z, y)α

� gD(x, y)

|x − y| ∧ δD(x)
· |x − y|d+1−α

|x − z|d+1−α|z − y|d+1−α
· I,

where

I := |x − y| ∧ δD(x)

|x − y| · |x − z| · |z − y|
(|x − z| ∧ δD(x))(|z − y| ∧ δD(z))

δD(z)αr(x, y)α

r(x, z)αr(z, y)α
.
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It follows from (4.3) and the fact that |x − z| + δD(z) � r(x, z) that

I � |x − y|δD(x)

|x − y|(|x − y| + δD(x))

× |x − z| · |z − y|(|x − z| + δD(x))(|z − y| + δD(z))

(|x − z|δD(x))(|z − y|δD(z))

δD(z)αr(x, y)α

r(x, z)αr(z, y)α

� δD(z)α−1r(x, y)α−1

r(x, z)α−1r(z, y)α−1 ≤ δD(z)α−1
(

1

r(x, z)α−1 + 1

r(y, z)α−1

)
≤ 2.

Inequality (4.2) now follows from (4.7). �

Recall that GD is the Green function of XD . It is known that

|∇zGD(z, y)| ≤ d

|z − y| ∧ δD(z)
GD(z, y);(4.8)

see [8], Corollary 3.3. Recall also that b is an R
d -valued function on R

d such that
|b| ∈ Kd,α−1.

PROPOSITION 4.2. If D is a bounded open set, and 1Db has compact support
in D, then Gb

D satisfies

Gb
D(x, y) = GD(x, y) +

∫
D

Gb
D(x, z)b(z) · ∇zGD(z, y) dz.(4.9)

PROOF. Recall that by Theorem 2.5, for every f ∈ C∞
c (Rd), M

f
t := f (Xb

t )−
f (Xb

0)−∫ t
0 Lbf (Xb

s ) ds is a martingale with respect to Px . Since 1Db has compact
support in D, in view of (3.12), (4.8) and the fact that |b| ∈ Kd,α−1, M

f
t∧τD

is a
uniformly integrable martingale.

Define Dj := {x ∈ D : dist(x,Dc) > 1/j}. Let φ ∈ C∞
c (Rd) with φ ≥ 1,

supp[φ] ⊂ B(0,1) and
∫
Rd φ(x) dx = 1. For any ψ ∈ Cc(D), define f = GDψ

and fn := φn ∗ f , where φn(x) := ndφ(nx). Clearly fn ∈ C∞
c (Rd) and fn con-

verges uniformly to f = GDψ . Fix j ≥ 1. Since Ex[Mfn

0 ] = Ex[Mfn
τDj

], and for
every y ∈ Dj and sufficiently large n,

φn ∗ (�α/2f )(y) =
∫
B(0,1/n)

φn(z)�
α/2(GDψ)(y − z) dz,

we have, by Dynkin’s formula, that for sufficiently large n,

Ex[fn(X
b
τDj

)] − fn(x)

=
∫
Dj

Gb
Dj

(x, y)
(
�α/2fn(y) + b(y) · ∇fn(y)

)
dy
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=
∫
Dj

Gb
Dj

(x, y)
(
φn ∗ (�α/2f )(y) + b(y) · φn ∗ (∇f )(y)

)
dy

=
∫
Dj

Gb
Dj

(x, y)
(−φn ∗ ψ(y) + b(y) · φn ∗ (∇(GDψ)(y))

)
dy.

Taking n → ∞, we get, by (3.12), (4.8) and the fact that |b| ∈ Kd,α−1,

Ex[f (Xb
τDj

)] − f (x) =
∫
D

Gb
Dj

(x, y)
(−ψ(y) + b(y) · ∇(GDψ)(y)

)
dy.(4.10)

Now using the fact that 1Db has compact support in D, taking j → ∞, we have
by (3.12), (4.8) and the fact that |b| ∈ Kd,α−1,

−f (x) =
∫
D

Gb
D(x, y)

(−ψ(y) + b(y) · ∇(GDψ)(y)
)
dy.

Hence we have

−GDψ(x) = −Gb
Dψ + Gb

D(b · ∇GDψ).

This shows that for each x ∈ D, (4.9) holds for a.e. y ∈ D. Since Gb
D is continuous

off the diagonal of D × D, we get that (4.9) holds for all x, y ∈ D. �

We will derive two-sided estimates on the Green function of Xb on certain nice
open sets when the diameter of such open sets are less than or equal to some
constant depending on b only through the rate at which Mα|b|(r) goes to zero.

PROPOSITION 4.3. There exists a positive constant r∗ = r∗(d,α, b) with the
dependence on b only via the rate at which Mα|b|(r) goes to zero such that for any
ball B = B(x0, r) of radius r ≤ r∗ and any n ≥ 1,

2−1GB(x, y) ≤ G
bn

B (x, y) ≤ 2GB(x, y), x, y ∈ B,

where

bn(x) = b(x)1Bc(x) + b(x)1Kn(x), x ∈ R
d,(4.11)

with Kn being an increasing sequence of compact subsets of B such that
⋃

n Kn =
B .

PROOF. It is well known that there exists a constant c1 = c1(d,α) > 1 such
that

c−1
1

1

|x − y|d−α

(
1 ∧ δB(x)δB(y)

|x − y|2
)α/2

(4.12)

≤ GB(x, y) ≤ c1
1

|x − y|d−α

(
1 ∧ δB(x)δB(y)

|x − y|2
)α/2

.
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Define Ĩ n
k (x, y) recursively for n ≥ 1, k ≥ 0 and (x, y) ∈ B × B by

Ĩ n
0 (x, y) := GB(x, y),

Ĩ n
k+1(x, y) :=

∫
B

Ĩ n
k (x, z)bn(z) · ∇zGB(z, y) dz.

Iterating (4.9) gives that for each m ≥ 2 and for every (x, y) ∈ B × B ,

G
bn

B (x, y) =
m∑

k=0

Ĩ n
k (x, y) +

∫
B

G
bn

B (x, z)bn(z) · ∇zĨ
n
m(z, y) dz.(4.13)

Using induction, Lemma 4.1, (4.8) with D = B and (4.12), we see that there exists
a positive constant c2 (in fact, one can take c2 = 2dC3c

3
1 where C3 is the constant in

Lemma 4.1) depending only on d and α such that for n, k ≥ 1 and (x, y) ∈ B × B ,

|Ĩ n
k (x, y)| ≤ c2GB(x, y)

(
c2M

α|b|(2r)
)k(4.14)

and

|∇x Ĩ
n
k (x, y)| ≤ c2

GB(x, y)

|x − y| ∧ δB(x)

(
c2M

α|b|(2r)
)k

.(4.15)

There exists an r̂1 > 0 depending on b only via the rate at which Mα|b|(r) goes to
zero such that

c2M
α|b|(r) <

1

1 + 2c2
for every 0 < r ≤ r̂1.(4.16)

Equations (3.12) and (4.15), (4.16) imply that if r ≤ r̂1/2, then for n ≥ 1 and
(x, y) ∈ B × B ,∣∣∣∣∫

B
G

bn

B (x, z)bn(z) · ∇zĨ
n
m(z, y) dz

∣∣∣∣
≤ c2

(∫
B

G
bn

B (x, z)|bn(z)| GB(z, y)

|z − y| ∧ δB(z)
dz

)(
c2M

α|b|(2r)
)m

≤ c3

(∫
B

1

|x − z|d−α

GB(z, y)

|z − y| |b(z)|dz

)(
1

1 + 2c2

)m

≤ c4

(∫
B

1

|x − z|d+1−α

|b(z)|
|z − y|d+1−α

dz

)(
1

1 + 2c2

)m

≤ c5(1 + 2c2)
−m|x − y|−(d+1−α)

∫
B

( |b(z)|
|x − z|d+1−α

+ |b|(z)
|y − z|d+1−α

)
dz

≤ c6(1 + 2c2)
−(m+1)|x − y|−(d+1−α),

which goes to zero as m → ∞. In the second inequality, we have used the fact
that bn is compactly supported in B . Thus, by (4.13), G

bn

B (x, y) = ∑∞
k=0 Ĩ n

k (x, y).
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Moreover, by (4.14),

∞∑
k=1

|Ĩ n
k (x, y)| ≤ c2GB(x, y)

∞∑
k=1

(1 + 2c2)
−k ≤ GB(x, y)/2.

It follows that for any x0 ∈ R
d and B = B(x0, r) of radius r ≤ r̂1/2,

GB(x, y)/2 ≤ G
bn

B (x, y) ≤ 3GB(x, y)/2 for all n ≥ 1 and x, y ∈ B.

This proves the theorem. �

For any bounded C1,1 open set D with characteristic (R0,�0), it is well known
(see, e.g., [34], Lemma 2.2) that there exists L = L(R0,�0, d) > 0 such that for
every z ∈ ∂D and r ≤ R0, one can find a C1,1 open set U(z,r) with characteristic
(rR0/L,�0L/r) such that D ∩ B(z, r/2) ⊂ U(z,r) ⊂ D ∩ B(z, r). For the remain-
der of this paper, given a bounded C1,1 open set D, U(z,r) always refers to the C1,1

open set above.
For U(z,r), we also have a result similar to Proposition 4.3.

PROPOSITION 4.4. For every C1,1 open set D with the characteristic
(R0,�0), there exists r0 = r0(d,α,R0,�0, b) ∈ (0, (R0 ∧ 1)/8] with the depen-
dence on b only via the rate at which Mα|b|(r) goes to zero such that for all n ≥ 1,
z ∈ ∂D and r ≤ r0, we have

2−1GU(z,r)
(x, y) ≤ G

bn

U(z,r)
(x, y) ≤ 2GU(z,r)

(x, y), x, y ∈ U(z,r),(4.17)

where

bn(x) = b(x)1Uc
(z,r)

(x) + b(x)1Kn(x), x ∈ R
d,(4.18)

with Kn being an increasing sequence of compact subsets of U(z,r) such that⋃
n Kn = U(z,r).

PROOF. It is well known (see [23], e.g.) that, for any bounded C1,1 open set U ,
there exists c1 = c1(R0,�0,diam(U)) > 1 such that

c−1
1

1

|x − y|d−α

(
1 ∧ δU (x)δU (y)

|x − y|2
)

(4.19)

≤ GU(x, y) ≤ c1
1

|x − y|d−α

(
1 ∧ δU (x)δU (y)

|x − y|2
)
.

It follows from this, the fact that r−1U(z,r) is a C1,1 open set with characteristic
(R0/L,�0L) and scaling that, for any bounded C1,1 open set D with character-
istics (R0,�0), there exists a constant c2 = c2(R0,�0, d) > 1 such that for all
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z ∈ ∂D, r ≤ R0 and x, y ∈ U(z,r),

c−1
2

1

|x − y|d−α

(
1 ∧ δU(z,r)

(x)δU(z,r)
(y)

|x − y|2
)

≤ GU(z,r)
(x, y) ≤ c2

1

|x − y|d−α

(
1 ∧ δU(z,r)

(x)δU(z,r)
(y)

|x − y|2
)
.

Now we can repeat the argument of Theorem 4.3 to complete the proof. �

Now we are going to extend Propositions 4.3 and 4.4 to Gb
B and Gb

U(z,r). For
the remainder of this section, we let U be either a ball B = B(x0, r) with r ≤ r∗
where r∗ is the constant in Proposition 4.3 or U(z, r) [for a C1,1 open set D with
the characteristic (R0,�0)] with r ≤ r0 where r0 is the constant in Proposition 4.4.
We also let bn be defined by either (4.11) or (4.18), and we will take care of the
two cases simultaneously.

By [6], Lemma 13, and its proof, there exists a constant C4 > 0 such that∫
Rd

∫ t

0
p(t − s, x, z)|b(z)||∇zp(s, z, y)|ds dz ≤ C4p(t, x, y)Nb(t)

and so ∫
Rd

∫ t

0
p(t − s, x, z)|bn(z)||∇zp(s, z, y)|ds dz ≤ C4p(t, x, y)Nb(t),(4.20)

where

Nb(t) := sup
w∈Rd

∫
Rd

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz,

which is finite and goes to zero as t → 0 by [6], Corollary 12. We remark that the
constant C4 here is independent of t and is not the same constant C4 from [6],
Lemma 13. Moreover,∫

Rd

∫ t

0
p(t − s, x, z)|b(z) − bn(z)||∇zp(s, z, y)|ds dz

≤ C4p(t, x, y)Nb−bn(t)
(4.21)

= C4p(t, x, y)

× sup
w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz.

Now, by [6], (27),

|pb
k(t, x, y)| ∨ |pbn

k (t, x, y)| ≤ (C4Nb(t))
kp(t, x, y).(4.22)
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Choose T1 > 0 small so that

C4Nb(t) < 1
2 , t ≤ T1.(4.23)

We will fix this constant T1 until the end of this section.

LEMMA 4.5. For all k ≥ 1 and (t, x, y) ∈ (0, T1] × R
d × R

d ,

|pbn

k (t, x, y) − pb
k(t, x, y)|

≤ kC42−(k−1)p(t, x, y)

× sup
w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz.

PROOF. We prove the lemma by induction. For k = 1, we have

|pbn

1 (t, x, y) − pb
1(t, x, y)|

≤
∫ t

0

∫
Rd

p(s, x, z)|∇zp(t − s, z, y)||b − bn|(z) dz ds.

Thus by (4.21), the lemma is true for k = 1.
Next we assume that the lemma holds for k ≥ 1. We will show that the lemma

hods for k + 1. Let

I (n, t, x, y) :=
∫ t

0

∫
Rd

|pb
k(s, x, z)||∇zp(t − s, z, y)||b − bn|(z) dz ds

and

II(n, t, x, y)

:=
∫ t

0

∫
Rd

|pbn

k (s, x, z) − pb
k(s, x, z)||∇zp(t − s, z, y)||bn(z)|dzds.

Then we have

|pbn

k+1(t, x, y) − pb
k+1(t, x, y)| ≤ I (n, t, x, y) + II(n, t, x, y).

By (4.21)–(4.23),

I (n, t, x, y)

≤ (C4Nb(t))
k
∫

Rd

∫ t

0
p(t − s, x, z)|b(z) − bn(z)||∇zp(s, z, y)|ds dz(4.24)

= C42−kp(t, x, y) sup
w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz.
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On the other hand, by the induction assumption, (4.20) and (4.23),

II(n, t, x, y)

≤ kC42−(k−1)

(
sup

w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz

)

×
∫

Rd

∫ t

0
p(s, x, z)|∇zp(t − s, z, y)||bn(z)|dzds

≤ kC42−(k−1)(C4Nb(t))p(t, x, y)(4.25)

× sup
w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz

≤ kC42−kp(t, x, y)

× sup
w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz.

Combining (4.24) and (4.25), we see that the lemma holds for k + 1, and thus by
induction, the lemma holds for every k ≥ 1. �

THEOREM 4.6. pbn(t, x, y) converges uniformly to pb(t, x, y) on any [t0,
T ] × R

d × R
d , where 0 < t0 < T < ∞. Moreover,

lim
n→∞G

bn

U f = Gb
Uf for every f ∈ Cb(U).(4.26)

PROOF. Without of loss of generality, we may assume that 0 < t0 ≤ T1/2,
where T1 is the constant in (4.23). We first consider the case (t, x, y) ∈ [t0, T1] ×
R

d × R
d . By Theorem 1.2(i) and Lemma 4.5,

sup
(t,x,y)∈[t0,T1]×Rd×Rd

|pb(t, x, y) − pbn(t, x, y)|

≤ sup
(t,x,y)∈[t0,T1]×Rd×Rd

∞∑
k=1

|pbn

k (t, x, y) − pb
k(t, x, y)|

≤ C4 sup
(t,x,y)∈[t0,T1]×Rd×Rd

∞∑
k=1

k2−(k−1)p(t, x, y)

× sup
w∈Rd

∫
U\Kn

∫ t

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz

≤ cC4t
−d/α
0 sup

w∈Rd

∫
U\Kn

∫ T1

0
|b(z)|(|w − z|−d−1 ∧ s−(d+1)/α)

ds dz,

which goes to zero as n → ∞.
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If (t, x, y) ∈ (T1,3T1/2] × R
d × R

d , using the semigroup property (1.4) with
t1 = T1/2,

sup
(t,x,y)∈

(T1,3T1/2]×Rd×Rd

|pb(t, x, y) − pbn(t, x, y)|

≤ sup
(t,x,y)∈

(T1,3T1/2]×Rd×Rd

∣∣∣∣∫
Rd

pb(t1, x, z)pb(t − t1, z, y) dz

−
∫

Rd
pbn(t1, x, z)pbn(t − t1, z, y) dz

∣∣∣∣
≤ sup

(t,x,y)∈
(T1,3T1/2]×Rd×Rd

∫
Rd

pb(t1, x, z)|pb(t − t1, z, y) − pbn(t − t1, z, y)|dz

+ sup
(t,x,y)∈

(T1,3T1/2]×Rd×Rd

∫
Rd

|pbn(t1, x, z) − pb(t1, x, z)|pbn(t − t1, z, y) dz,

which is, by (1.3), less than or equal to c1t
−d/α
1 times

sup
(t,y)∈(T1,3T1/2]×Rd

∫
Rd

|pb(t − t1, z, y) − pbn(t − t1, z, y)|dz

+ sup
x∈Rd

∫
Rd

|pbn(t1, x, z) − pb(t1, x, z)|dzds.

Now, by the first case, we see that the above goes to zero as n → ∞. Iterating the
above argument one can deduce that the theorem holds for L = [t0, kT0/2] for any
integer k ≥ 2. This completes the proof of the first claim of the theorem.

First observe that by (1.3), for each fixed x ∈ R
d and for every 0 ≤ t1 < t2 <

· · · < tk , the distributions of {(Xbn
t1

, . . . ,X
bn
tk

),Px} form a tight sequence. Next, by
the same argument as that for (3.1),

Px

(
Xbn

s /∈ B(x, r)
) ≤ p for all n ≥ 1,0 ≤ s ≤ t and x ∈ R

d

implies

Px

(
sup
s≤t

|Xbn
t − X

bn

0 | ≥ 2r
)

= Px

(
τ

bn

B(x,2r) ≤ t
) ≤ 2p for all n ≥ 1, x ∈ R

d .

Hence by (1.3) and the same argument leading to (2.5), we have for every r > 0,

lim
t↓0

sup
n≥1,x∈R

Px

(
sup
s≤t

|Xbn
t − X

bn

0 | ≥ 2r
)

= 0.

Thus it follows from the Markov property and [22], Theorem 2 (see also [20],
Corollary 3.7.4, and [1], Theorem 3) that, for each x ∈ R

d , the laws of {Xbn,Px}
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form a tight sequence in the Skorohod space D([0,∞),R
d). Combining this and

Theorem 4.6 with [20], Corollary 4.8.7, we get that Xbn converges to Xb weakly.
It follows directly from the definition of Skorohod topology on D([0,∞),R

d)

(see, e.g., [20], Section 3.5) that {t < τb
U } and {t > τb

Ū
} are disjoint open subsets in

D([0,∞),R
d). Thus the boundary of {t < τb

U } in D([0,∞),R
d) is contained in

{τb
U ≤ t ≤ τb

Ū
}. Note that, by the strong Markov property,

Px(τ
b
U < τb

Ū
) = Px(τ

b
U < τb

U + τb
Ū

◦ θτb
U
,Xb

τb
U

∈ ∂U)

= Px(0 < τb
Ū

◦ θτb
U
,Xb

τb
U

∈ ∂U)

= Px

(
PXb

τb
U

(0 < τb
Ū

);Xb

τb
U

∈ ∂U
) = 0.

The last equality follows from the regularity of Ū ; that is, Pz(τ
b
Ū

= 0) = 1 for

every z ∈ ∂U ; see Proposition 3.2. Therefore, using the Lévy system for Xb,

Px(τ
b
U ≤ t ≤ τ b

Ū
) = Px(τ

b
U = t = τb

Ū
)

≤ Px(X
b
t ∈ ∂U) + Px(t = τb

U and Xb
τU− �= Xb

τU
)

=
∫
∂U

pb(t, x, y) dy + 0 = 0,

which implies that the boundary of {t < τb
U } in D([0,∞),R

d) is Px-null for
every x ∈ U . For every f ∈ Cb(U), f (Xb

t )1{t<τb
U } is a bounded function on

D([0,∞),R
d) with discontinuity contained in the boundary of {t < τb

U }. Thus
we have (cf. Theorem 2.9.1(vi) in [19])

lim
n→∞ Ex

[
f (X

bn
t )1{t<τ

bn
U }

] = Ex

[
f (Xb

t )1{t<τb
U }

]
.(4.27)

Given f ∈ Cb(U) and ε > 0, choose T > 1 large such that

2C1C
−1
2 ‖f ‖∞e−C2T < ε,

where C1 and C2 are the constants in Lemma 3.7 with D = U . By the bounded
convergence theorem and Fubini’s theorem, from (4.27) we have

lim
n→∞ Ex

[∫ T

0
f (X

bn
t )1{t<τ

bn
U } dt

]
= lim

n→∞

∫ T

0
Ex

[
f (X

bn
t )1{t<τ

bn
U }

]
dt

= Ex

[∫ T

0
f (Xb

t )1{t<τb
U } dt

]
.

On the other hand, by the choice of T and the fact that C1 and C2 depending only
on d , α, diam(U) and b, with the dependence on b only through the rate at which
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Mα|b|(r) goes to zero, we have by Lemma 3.7

Ex

[∫ ∞
T

f (X
bn
t )1{t<τ

bn
U } dt

]
+ Ex

[∫ ∞
T

f (Xb
t )1{t<τb

U } dt

]
≤ ‖f ‖∞

∫ ∞
T

(∫
D

(
p

bn

D (t, x, y) + pb
D(t, x, y)

)
dy

)
dt

≤ 2C1‖f ‖∞
∫ ∞
T

e−C2t dt < ε.

This completes the proof of (4.26). �

As immediate consequences of (4.26) and Propositions 4.3 and 4.4, we get the
following:

THEOREM 4.7. There exists a constant r∗ = r∗(d,α, b) > 0 with the depen-
dence on b only via the rate at which Mα|b|(r) goes to zero such that for any ball
B = B(x0, r) of radius r ≤ r∗,

2−1GB(x, y) ≤ Gb
B(x, y) ≤ 2GB(x, y), x, y ∈ B.

THEOREM 4.8. For every C1,1 open set D with the characteristic (R0,�0),
there exists a constant r0 = r0(d,α,R0,�0, b) ∈ (0, (R0 ∧ 1)/8] with the depen-
dence on b only via the rate at which Mα|b|(r) goes to zero such that for any for any
z ∈ ∂D and r ≤ r0, we have

2−1GU(z,r)
(x, y) ≤ Gb

U(z,r)
(x, y) ≤ 2GU(z,r)

(x, y), x, y ∈ U(z,r).(4.28)

We will need the above two results later on.

5. Duality. In this section we assume that E is an arbitrary bounded open set
in R

d . We will discuss some basic properties of Xb,E and its dual process under
some reference measure. The results of this section will be used later in this paper.

By Theorem 3.4 and Corollary 3.6, Xb,E has a jointly continuous and strictly
positive transition density pb

E(t, x, y). Using the continuity of pb
E(t, x, y) and the

estimate

pb
E(t, x, y) ≤ pb(t, x, y) ≤ c1e

c2t

(
t−d/α ∧ t

|x − y|d+α

)
,

the proof of the next proposition is easy. We omit the details.

PROPOSITION 5.1. Xb,E is a Hunt process, and it satisfies the strong Feller
property, that is, for every f ∈ L∞(E), P E

t f (x) := Ex[f (X
b,E
t )] is bounded and

continuous in E.
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Define

hE(x) :=
∫
E

Gb
E(y, x) dy and ξE(dx) := hE(x) dx.

The following result says that ξE is a reference measure for Xb,E .

PROPOSITION 5.2. ξE is an excessive measure for Xb,E , that is, for every
Borel function f ≥ 0,∫

E
f (x)ξE(dx) ≥

∫
E

Ex[f (X
b,E
t )]ξE(dx).

Moreover, hE is a strictly positive, bounded continuous function on E.

PROOF. By the Markov property, we have for any Borel function f ≥ 0 and
x ∈ E, ∫

E
Ey[f (X

b,E
t )]Gb

E(x, y) dy = Ex

∫ ∞
0

E
X

b,E
s

[f (X
b,E
t )]ds

=
∫ ∞

0
Ex[f (X

b,E
t+s )]ds

≤
∫
E

f (y)Gb
E(x, y) dy.

Integrating with respect to x, we get by Fubini’s theorem∫
E

Ey[f (X
b,E
t )]hE(y) dy ≤

∫
E

f (y)hE(y) dy.

The second claim follows from (3.12), the continuity of Gb
E and the strict positivity

of pb
E (Corollary 3.6). �

We define a transition density with respect to the reference measure ξE by

pb
E(t, x, y) := pb

E(t, x, y)

hE(y)
.

Let

Gb
E(x, y) :=

∫ ∞
0

pb
E(t, x, y) dt = Gb

E(x, y)

hE(y)
.

Then Gb
E(x, y) is the Green function of Xb,E with respect to the reference mea-

sure ξE .
Before we discuss properties of Gb

E(x, y), let us first recall some definitions.

DEFINITION 5.3. Suppose that U is an open subset of E. A Borel function u

on E is said to be:
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(i) harmonic in U with respect to Xb,E if

u(x) = Ex[u(X
b,E

τb
B

)], x ∈ B,(5.1)

for every bounded open set B with B ⊂ U ;
(ii) excessive with respective to Xb,E if u is nonnegative and for every t > 0

and x ∈ E

u(x) ≥ Ex[u(X
b,E
t )] and u(x) = lim

t↓0
Ex[u(X

b,E
t )];

(iii) a potential with respect to Xb,E if it is excessive with respect to Xb,E and
for every sequence {Un}n≥1 of open sets with Un ⊂ Un+1 and

⋃
n Un = E,

lim
n→∞ Ex[u(X

b,E

τb
Un

)] = 0, ξE-a.e. x ∈ E;

(iv) a pure potential with respect to Xb,E if it is a potential with respect to Xb,E

and

lim
t→∞Ex[u(X

b,E
t )] = 0, ξE-a.e. x ∈ E;

(v) regular harmonic with respect to Xb,E in U if u is harmonic with respect
to Xb,E in U and (5.1) is true for B = U .

We list some properties of the Green function Gb
E(x, y) of Xb,E that we will

need later:

(A1) Gb
E(x, y) > 0 for all (x, y) ∈ E × E; Gb

E(x, y) = ∞ if and only if x =
y ∈ E.

(A2) For every x ∈ E, Gb
E(x, ·) and Gb

E(·, x) are extended continuous in E.
(A3) For every compact subset K of E,

∫
K Gb

E(x, y)ξE(dy) < ∞.

(A3) follows from (3.12) and Proposition 5.2. Both (A1) and (A2) follow from
(3.12), Proposition 5.2, domain monotonicity of Green functions and the lower
bound in (4.12).

From (A1)–(A3), we know that the process Xb,E satisfies the condition (R)
on [16], page 211, and the conditions (a) and (b) of [16], Theorem 5.4. It follows
from [16], Theorem 5.4, that Xb,E satisfies Hunt’s Hypothesis (B). Thus by [16],
Theorem 13.24, Xb,E has a dual process X̂b,E , which is a standard process.

In addition, we have the following.

(A4) For each y, x �→ Gb
E(x, y) is excessive with respect to Xb,E and harmonic

with respect to Xb,E in E \ {y}. Moreover, for every open subset U of E, we have

Ex[Gb
E(X

b,E

T b
U

, y)] = Gb
E(x, y), (x, y) ∈ E × U,(5.2)

where T b
U := inf{t > 0 :Xb,E

t ∈ U}. In particular, for every y ∈ E and ε > 0,
Gb

E(·, y) is regular harmonic in E \ B(y, ε) with respect to Xb,E .
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PROOF OF (A4). It follows from [15], Proposition 3, and [29], Theorem 2
on page 373, that, to prove (A4), it suffices to show that, for any x ∈ E \ U , the
function

y �→ Ex[Gb
E(X

b,E
TU

, y)]
is continuous on U . (See the proof of [31], Theorem 1.) Fix x ∈ E \ U and y ∈ U .
Put r := δU (y). Let ŷ ∈ B(y, r/4). It follows from (2.11) and (3.12) that, for any
δ ∈ (0, r

2),

Ex[Gb
E(X

b,E

T b
U

, ŷ);Xb,E

T b
U

∈ B(y, δ)]

=
∫
B(y,δ)

(∫
E\U

Gb
E\U(x,w)

A(d,−α)

|w − z|d+α
dw

)
G

b

E(z, ŷ) dz

≤ c1

infỹ∈B(y,r/4) hE(ỹ)

×
∫
B(y,δ)

(∫
E\U

1

|x − w|d−α

1

|w − z|d+α
dw

)
dz

|z − ŷ|d−α
.

Thus, for any ε > 0, there is a δ ∈ (0, r
2) such that

Ex[Gb
E(X

b,E
TU

, y);Xb,E
TU

∈ B(y, δ)] ≤ ε

4
for every ŷ ∈ B(y, r/4).(5.3)

Now we fix this δ and let {yn} be a sequence of points in B(y, r/4) converging
to y. Since the function (z, u) �→ Gb

E(z,u) is bounded and continuous in (E \
B(y, δ))×B(y, δ

2), we have by the bounded convergence theorem that there exists
n0 > 0 such that for all n ≥ n0,

|Ex[Gb
E(X

b,E
TU

, y);Xb,E
TU

∈ B(y, δ)c]
(5.4)

− Ex[Gb
E(X

b,E
TU

, yn);Xb,E
TU

∈ B(y, δ)c]| ≤ ε

2
.

Since ε > 0 is arbitrary, combining (5.3) and(5.4), the proof of (A4) is now com-
plete. �

THEOREM 5.4. For each y ∈ E, x �→ Gb
E(x, y) is a pure potential with re-

spect to Xb,E . In fact, for every sequence {Un}n≥1 of open sets with Un ⊂ Un+1

and
⋃

n Un = E, limn→∞ Ex[Gb
E(X

b,E

τb
Un

, y)] = 0 for every x �= y in E. Moreover,

for every x, y ∈ E, we have limt→∞ Ex[Gb
E(X

b,E
t , y)] = 0.

PROOF. For y ∈ E, let Xb,E,y denote the h-conditioned process obtained from
Xb,E with h(·) = Gb

E(·, y), and let E
y
x denote the expectation for Xb,E,y starting

from x ∈ E.
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Let x �= y ∈ E. Using (A1), (A2), (A4) and the strict positivity of Gb
E , and

applying [30], Theorem 2, we get that the lifetime ζ b,E,y of Xb,E,y is finite P
y
x-a.s.

and

lim
t↑ζ b,E,y

X
b,E,y
t = y, P

y
x-a.s.(5.5)

Let {Ek, k ≥ 1} be an increasing sequence of relatively compact open subsets of E

such that Ek ⊂ Ek ⊂ E and
⋃∞

k=1 Ek = E. Then

Ex[Gb
E(X

b,E

τb
Ek

, y)] = Gb
E(x, y)Py

x(τ
b
Ek

< ζb,E,y).

By (5.5), we have limk→∞ P
y
x(τ

b
Ek

< ζb,E,y) = 0. Thus

lim
k→∞Ex[Gb

E(X
b,E

τb
Ek

, y)] = 0.

The last claim of the theorem is easy. By (3.11) and (3.12), for every x, y ∈ E,
we have

Ex[Gb
E(X

b,E
t , y)] ≤ c

td/αhE(y)

∫
E

dz

|z − y|d−α
,

which converges to zero as t goes to ∞. �

We note that∫
E

Gb
E(x, y)ξE(dx) ≤ ‖hE‖∞

hE(y)

∫
E

Gb
E(x, y) dx = ‖hE‖∞ < ∞.

So we have

(A5) for every compact subset K of E,
∫
K Gb

E(x, y)ξE(dx) < ∞.

Using (A1)–(A5), (3.12) and Theorem 5.4 we get from [28, 29] that Xb,E has a
Hunt process as a dual.

THEOREM 5.5. There exists a transient Hunt process X̂b,E in E such that
X̂b,E is a strong dual of Xb,E with respect to the measure ξE ; that is, the density
of the semigroup {P̂ E

t }t≥0 of X̂b,E is given by pb
E(t, y, x) and thus∫

E
f (x)P E

t g(x)ξE(dx) =
∫
E

g(x)P̂ E
t f (x)ξE(dx) for all f,g ∈ L2(E, ξE).

PROOF. The existence of a dual Hunt process X̂b,E is proved in [28, 29]. To
show X̂b,E is transient, we need to show that for every compact subset K of E,∫
K Gb

E(x, y)ξE(dx) is bounded. This is just (A5) above. �
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In Theorem 2.6, we have determined a Lévy system (N,H) for Xb with respect
to the Lebesgue measure dx. To derive a Lévy system for X̂b,E , we need to con-
sider a Lévy system for Xb,E with respect to the reference measure ξE(dx). One
can easily check that, if

NE(x, dy) := J (x, y)

hE(y)
ξE(dy) for (x, y) ∈ E × E,

NE(x, ∂) :=
∫
Ec

J (x, y) dy for x ∈ E,

and HE
t := t , then (NE,HE) is a Lévy system for Xb,E with respect to the refer-

ence measure ξE(dx). It follows from [21] that a Lévy system (N̂E, ĤE) for X̂b,E

satisfies ĤE
t = t and

N̂E(y, dx)ξE(dy) = NE(x, dy)ξE(dx).

Therefore, using J (x, y) = J (y, x), we have for every stopping time T with re-
spect to the filtration of X̂b,E ,

Ex

[∑
s≤T

f (s, X̂
b,E
s− , X̂b,E

s )

]

= Ex

[∫ T

0

(∫
E

f (s, X̂b,E
s , y)

J (X̂b,E
s , y)

hE(X̂
b,E
s )

ξE(dy)

)
dĤE

s

]
(5.6)

= Ex

[∫ T

0

(∫
E

f (s, X̂b,E
s , y)

J (X̂b,E
s , y)hE(y)

hE(X̂
b,E
s )

dy

)
ds

]
.

That is,

N̂E(x, dy) = J (x, y)hE(y)

hE(x)
dy.

Let

P
b,E
t f (x) :=

∫
E

pb
E(t, x, y)f (y)ξE(dy)

and

P̂
b,E
t f (x) :=

∫
E

pb
E(t, y, x)f (y)ξE(dy).

For any open subset U of E, we use X̂b,E,U to denote the subprocess of
X̂b,E in U , that is, X̂

b,E,U
t (ω) = X̂

b,E
t (ω) if t < τ̂

b,E
U (ω) and X̂

b,E,U
t (ω) = ∂ if

t ≥ τ̂
b,E
U (ω), where τ̂

b,E
U := inf{t > 0 : X̂b,E

t /∈ U}, and ∂ is the cemetery state.
Then by [37], Theorem 2, and Remark 2 following it, Xb,U and X̂b,E,U are dual
processes with respect to ξE . Now we let

p̂
b,E
U (t, x, y) := pb

U(t, y, x)hE(y)

hE(x)
.(5.7)
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By the joint continuity of pb
U(t, x, y) (Theorem 3.4) and the continuity and posi-

tivity of hE (Proposition 5.2), we know that p̂
b,E
U (t, ·, ·) is jointly continuous on

U × U . Thus we have the following.

THEOREM 5.6. For every open subset U , p̂
b,E
U (t, x, y) is strictly positive and

jointly continuous on U × U and is the transition density of X̂b,E,U with respect
to the Lebesgue measure. Moreover,

Ĝ
b,E
U (x, y) := Gb

U(y, x)hE(y)

hE(x)
(5.8)

is the Green function of X̂b,E,U with respect to the Lebesgue measure so that for
every nonnegative Borel function f ,

Ex

[∫ τ̂
b,E
U

0
f (X̂

b,E
t ) dt

]
=

∫
U

Ĝ
b,E
U (x, y)f (y) dy.

6. Scaling property and uniform boundary Harnack principle. In this sec-
tion, we first study the scaling property of Xb, which will be used later in this
paper.

For λ > 0, let Y
b,λ
t := λXb

λ−αt
. For any function f on R

d , we define f λ(·) =
f (λ·). Then we have

Ex[f (Y
b,λ
t )] =

∫
Rd

pb(λ−αt, λ−1x, y)f λ(y) dy.

It follows from Theorem 1.2(iii) that for any f,g ∈ C∞
c (Rd),

lim
t↓0

∫
Rd

t−1(
Ex[f (Y

b,λ
t )] − f (x)

)
g(x) dx

= lim
t↓0

∫
Rd

λ−α(λαt)−1(
P b

λ−αtf
λ(λ−1x) − f λ(λ−1x)

)
gλ(λ−1x)dx

= lim
t↓0

∫
Rd

λd−α(λαt)−1(
P b

λ−αtf
λ(z) − f λ(z)

)
gλ(z) dz

= λd−α
∫

Rd

(−(−�)α/2f λ(z) + b(z) · ∇f λ(z)
)
gλ(z) dz

= λd−α
∫

Rd

(−(−�)α/2f λ(z) + λb(z) · ∇f (λz)
)
g(λz) dz

=
∫

Rd

(−(−�)α/2f (x) + λ1−αb(λ−1x) · ∇f (x)
)
g(x) dx.

Thus {λX
b,D
λ−αt

, t ≥ 0} is the subprocess of Xλ1−αb(λ−1·) in λD. So for any λ > 0,
we have

p
λ1−αb(λ−1·)
λD (t, x, y) = λ−dpb

D(λ−αt, λ−1x,λ−1y)
(6.1)

for t > 0 and x, y ∈ λD,
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G
λ1−αb(λ−1·)
λD (x, y) = λα−dGb

D(λ−1x,λ−1y) for x, y ∈ λD.(6.2)

Define

bλ(x) := λ1−αb(x/λ) for x ∈ R
d .(6.3)

Then we have

Mα|bλ|(r) = λ1−α
d∑

i=1

sup
x∈Rd

∫
|x−y|≤r

|bi |(λ−1y)dy

|x − y|d+1−α

=
d∑

i=1

sup
x̂∈Rd

∫
|x̂−z|≤λ−1r

|bi |(z) dz

|x̂ − z|d+1−α
= Mα|b|(λ−1r).

Therefore for every λ ≥ 1 and r > 0,

Mα|bλ|(r) = Mα|b|(λ−1r) ≤ Mα|b|(r).(6.4)

In the remainder of this paper, we fix a bounded C1,1 open set D in R
d with C1,1

characteristics (R0,�0) and a ball E ⊂ R
d centered at the origin so that D ⊂ 1

4E.
Define

M := M(b,E) := sup
x,y∈3E/4

hE(x)

hE(y)
,(6.5)

which is a finite positive constant no less than 1. Note that, in view of scaling
property (6.2), we have

M(b,E) = M(bλ,λE).(6.6)

Although E and D are fixed, the constants in all the results of this section will
depend only on d,α,R0,�0, b and M (not the diameter of D directly) with the de-
pendence on b only via the rate at which Mα|b|(r) goes to zero. In view of (6.4) and

(6.6), the results of this section in particular hold for Lbλ (equivalently, for Xbλ )
and the pair (λD,λE) for every λ ≥ 1.

In the remainder of this section, we will establish a uniform boundary Harnack
principle on D for certain harmonic functions for Xb,E and X̂b,E . Since the argu-
ments are mostly similar for Xb,E and X̂b,E , we will only give the proof for X̂b,E .

A real-valued function u on E is said to be harmonic in an open set U ⊂ E with
respect to X̂b,E if for every relatively compact open subset B with B ⊂ U ,

Ex[|u(X̂
b,E

τ̂
b,E
B

)|] < ∞ and u(x) = Ex[u(X̂
b,E

τ̂
b,E
B

)] for every x ∈ B.(6.7)

A real-valued function u on E is said to be regular harmonic in an open set U ⊂
E with respect to X̂b,E if (6.7) is true with B = U . Clearly, a regular harmonic
function in U is harmonic in U .
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For any bounded open set U , define the Poisson kernel for Xb of U as

Kb
U(x, z) :=

∫
U

Gb
U(x, y)J (y, z) dy, (x, z) ∈ U × (Rd \ U).

When U ⊂ E, we define the Poisson kernel for X̂b,E of U ⊂ E as

K̂
b,E
U (x, z) := hE(z)

hE(x)

∫
U

Gb
U(y, x)J (z, y) dy, (x, z) ∈ U × (E \ U).(6.8)

By (2.11) and (5.6), we have

Ex[f (X
b,E

τb
U

);Xb

τb
U− �= Xb

τb
U

] =
∫
Ū c

Kb
U(x, z)f (z) dz

and

Ex[f (X̂
b,E

τ̂
b,E
U

); X̂b,E

τ̂
b,E
U − �= X̂

b,E

τ̂
b,E
U

]

= Ex

∫ τ̂
b,E
U

0

(∫
Ū c

f (z)
J (X̂b,E

s , z)hE(z)

hE(X̂
b,E
s )

dz

)
ds

(6.9)

=
∫
U

Gb
U(y, x)hE(y)

hE(x)

∫
Ū c

f (z)
J (y, z)hE(z)

hE(y)
dz dy

=
∫
Ū c

K̂
b,E
U (x, z)f (z) dz.

LEMMA 6.1. Suppose that U is a bounded C1,1 open set in R
d with U ⊂ 1

2E

and diam(U) ≤ 3r∗ where r∗ is the constant in Theorem 4.7. Then

Px(X
b

τb
U

∈ ∂U) = 0 for every x ∈ U(6.10)

and

Px(X̂
b,E

τ̂
b,E
U

∈ ∂U) = 0 for every x ∈ U.(6.11)

PROOF. The proof is similar to that of [4], Lemma 6. For our readers’ con-
venience, we are going to spell out the details of the proof of (6.11). Let Bx :=
B(x, δU(x)/3). By (5.6) we have for x ∈ U ,

Px

(
X̂

b,E

τ̂
b,E
Bx

∈
(

3

4
E

) ∖
U

)

=
∫
Bx

Gb
Bx

(y, x)hE(y)

hE(x)

(∫
( 3

4 E)\U
J (y, z)hE(z)

hE(y)
dz

)
dy.
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Since diam(U) ≤ 3r∗, δU(x)/3 ≤ r∗, thus by Theorem 4.7, for x ∈ U ,

Px

(
X̂

b,E

τ̂
b,E
Bx

∈
(

3

4
E

) ∖
U

)

≥ c1

(
inf

u,v∈3E/4

hE(u)

hE(v)

)∫
Bx

GBx (x, y)

(∫
(3E/4)\U

J (y, z) dz

)
dy(6.12)

≥ c1M
−1

Px

(
XτBx

∈
(

3

4
E

) ∖
U

)
,

where M is the constant defined in (6.5). Let Vx := B(δU(x)−1x,1/3). By the
scaling property of X,

Px

(
XτBx

∈
(

3

4
E

) ∖
U

)
= PδU (x)−1x

(
Xτ

δU (x)−1Bx
∈ δU (x)−1

(
3

4
E

) ∖
U

)
(6.13)

=
∫
Vx

GVx (δU (x)−1x, a)

(∫
δU (x)−1(3E/4)\U

J (a, b) db

)
da.

Let zx ∈ ∂U be such that δU (x) = |x − zx |. Since U is C1,1, δU(x)−1((3
4E) \

U) ⊃ δU (x)−1(3
4E \ 1

2E) and δU (x) ≤ 3r∗, there exists η > 0 such that, under an
appropriate coordinate system, we have zx + Ĉ ⊂ δU (x)−1((3

4E) \ U) where

Ĉ := {
y = (y1, . . . , yd) ∈ R

d : 0 < yd < (12r∗)−1,

√
y2

1 + · · · + y2
d−1 < ηyd

}
.

Thus there is a constant c2 > 0 such that

inf
a∈Vx

∫
δU (x)−1((3E/4)\U)

J (a, b) db ≥ c2 > 0 for every x ∈ U.

Combining this with (6.12) and (6.13),

inf
x∈U

Px

(
X̂

b,E

τ̂
b,E
Bx

∈
(

3

4
E

) ∖
U

)
≥ c1c2M

−1
Ew

[
τB(0,1/3)

] ≥ c3 > 0.(6.14)

On the other hand, since by (5.6) Px(X̂τ̂
b,E
Bx

∈ ∂U) = 0 for every x ∈ U , we have

Px(X̂
b,E

τ̂
b,E
U

∈ ∂U) = Ex[PX̂
b,E

τ̂
b,E
Bx

(X̂
b,E

τ̂
b,E
U

∈ ∂U); X̂b,E

τ̂
b,E
Bx

∈ U ].

Thus inductively, Px(X̂
b,E

τ̂
b,E
U

∈ ∂U) = limk→∞ pk(x), where

p0(x) := Px(X̂
b,E

τ̂
b,E
U

∈ ∂U)

and

pk(x) := Ex[pk−1(X̂
b,E

τ̂
b,E
Bx

); X̂b,E

τ̂
b,E
Bx

∈ U ] for k ≥ 1.
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By (6.14),

sup
x∈U

pk+1(x) ≤ (1 − c3) sup
x∈U

pk(x) ≤ (1 − c3)
k+1 → 0.

Therefore, Px(X̂
b,E

τ̂
b,E
U

∈ ∂U) = 0 for every x ∈ U . �

Let z ∈ ∂D. We will say that a function u : Rd → R vanishes continuously on
Dc ∩ B(z, r) if u = 0 on Dc ∩ B(z, r), and u is continuous at every point of ∂D ∩
B(z, r).

THEOREM 6.2 (Boundary Harnack principle). There exist positive constants
c1 = c1(d,α,R0,�0, b) and r1 = r1(d,α,R0,�0, b) with the dependence on b

only via the rate at which Mα|b|(r) goes to zero such that for all z ∈ ∂D, r ∈ (0, r1]
and all function u ≥ 0 on R

d that is positive harmonic with respect to Xb (or X̂b,E ,
resp.) in D ∩B(z, r), and vanishes continuously on Dc ∩B(z, r) (or Dc, resp.) we
have

u(x)

u(y)
≤ c1M

2 δD(x)α/2

δD(y)α/2 , x, y ∈ D ∩ B(z, r/4).

PROOF. We only give the proof for X̂b,E . Recall that r∗ and r0 are the con-
stants from Theorems 4.7 and 4.8, respectively. Let r1 = r∗ ∧ r0, and fix r ∈ (0, r1]
throughout this proof. Recall that there exists L = L(R0,�0, d) such that for every
z ∈ ∂D and r ≤ R0/2, one can find a C1,1 open set U = U(z,r) with C1,1 charac-
teristic (rR0/L,�0L/r) such that D ∩B(z, r/2) ⊂ U ⊂ D ∩B(z, r). Without loss
of generality, we assume z = 0.

Note that, by the same proof as that of [11], Lemma 4.2, every nonnegative
function u in R

d that is harmonic with respect to X̂b,E in D ∩B(0, r) and vanishes
continuously on Dc is regular harmonic in D ∩ B(0, r) with respect to X̂b,E .

For all functions u ≥ 0 on E that is positive regular harmonic for X̂b,E in D ∩
B(0, r) and vanishing on Dc, by (5.6) and Lemma 6.1, we have

u(x) = Ex[u(X̂
b,E

τ̂
b,E
U

); X̂b,E

τ̂
b,E
U

∈ D \ U ]

=
∫
D\U

K̂
b,E
U (x,w)u(w)dw(6.15)

=
∫
U

Gb
U(y, x)

(∫
D\U

hE(w)

hE(x)
J (w,y)u(w)dw

)
dy.

Define

hu(x) := Ex[u(XτU
);XτU

∈ D \ U ]
=

∫
U

GU(y, x)

(∫
D\U

J (w,y)u(w)dw

)
dy,
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which is positive regular harmonic for X in D ∩ B(0, r/2) and vanishing on Dc.
Applying Theorem 4.8 to (6.15), we get

c−1
1 M−1hu(x) ≤ u(x) ≤ c1Mhu(x) for x ∈ D.(6.16)

By the boundary Harnack principle for X in C1,1 open sets (see [14, 35]), there is
a constant c2 > 1 that depends only on R0,�0, d and α so that

hu(x)

hu(y)
≤ c2 for x, y ∈ D ∩ B(0, r/4).

Combining this with (6.16) and the two-sided estimates on GU(x, y) we arrive at
the conclusion of the theorem. �

7. Small time heat kernel estimates. Our strategy is to first establish sharp
two-sided estimates on pb

D(t, x, y) at time t = 1. We then use a scaling argument
to establish estimates for t ≤ T .

We continue to fix a ball E centered at the origin and a C1,1 open set D ⊂ 1
4E

with characteristics (R0,�0). Recall that M > 1 is the constant defined in (6.5).
The next result follows from Proposition 3.5, (5.7) and (6.5).

PROPOSITION 7.1. For all a1 ∈ (0,1), a2, a3,R > 0, there is a constant
c1 = c1(d,α, a1, a2, a3,R,M,b) > 0 with the dependence on b only via the rate at
which Mα|b|(r) goes to zero such that for all open ball B(x0, r) ⊂ 3

4E with r ≤ R,

p̂
b,E
B(x0,r)

(t, x, y) ≥ c1t
−d/α for all x, y ∈ B(x0, a1r) and t ∈ [a2r

α, a3r
α].

Again, we emphasize that the constants in all the results of the remainder of this
section (except Theorem 7.8 where the constant also depends on T for an obvious
reason) will depend only on d,α,R0,�0, M (not the diameter of D directly) and
b with the dependence on b only through the rate at which Mα|b|(r) goes to zero.
In view of (6.3), (6.4) and (6.6), in particular, all the results of this section are
applicable to Lbλ and the pair (λD,λE) for every λ ≥ 1.

Recall that r∗ and r0 are the constants from Theorems 4.7 and 4.8, respectively,
which depend only on d , α, R0, �0 and b with the dependence on b only via the
rate at which Mα|b|(r) goes to zero.

LEMMA 7.2. There is c1 = c1(d,α,R0, r,M,�0, b) > 0 with the dependence
on b only via the rate at which Mα|b|(r) goes to zero such that for all x ∈ D

Px(τ
b
D > 1/4) ≤ c1

(
1 ∧ δD(x)α/2)

(7.1)

and

Px(τ̂
b,E
D > 1/4) ≤ c1

(
1 ∧ δD(x)α/2)

.(7.2)
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PROOF. We only give the proof of (7.2). The proof of (7.1) is similar. Recall
that there exists L = L(R0,�0, d) such that for every z ∈ ∂D and r ≤ R0, one
can find a C1,1 open set U(z,r) with C1,1 characteristic (rR0/L,�0L/r) such that
D ∩ B(z, r/2) ⊂ U(z,r) ⊂ D ∩ B(z, r). Clearly it suffices to prove (7.2) for x ∈ D

with δD(x) < (r0 ∧ r∗)/8.
Choose Qx ∈ ∂D such that δD(x) = |x − Qx |, and choose a C1,1 open set

U := U(Qx,(r0∧r∗)/2) with C1,1 characteristic ((r0 ∧ r∗)R0/(2L),2�0L/(r0 ∧ r∗))
such that D ∩ B(Qx, (r0 ∧ r∗)/4) ⊂ U ⊂ D ∩ B(Qx, (r0 ∧ r∗)/2).

Note that by (5.8), (6.8) and Lemma 6.1,

Px(τ̂
b,E
D > 1/4)

≤ Px(τ̂
b,E
U > 1/4) + Px(X̂

b,E

τ̂
b,E
U

∈ D)

≤ 4Ex[τ̂ b,E
U ] + Px(X̂

b,E

τ̂
b,E
U

∈ D)

= 4
∫
U

Gb
U(y, x)

hE(y)

hE(x)
dy

+
∫
D\U

∫
U

Gb
U(y, x)

hE(z)

hE(x)
J (y, z) dy dz.

Now using Theorem 4.8, we get

Px(τ̂
b,E
D > 1/4)

≤ 4c1M

∫
U

GU(y, x) dy

+ c1M

∫
D\U

∫
U

GU(y, x)J (y, z) dy dz

= 4c1M

∫
U

GU(x, y) dy + c1MPx(XτU
∈ D \ U)

≤ c2δU (x)α/2 = c2δD(x)α/2.

The last inequality is due to (4.19) and the boundary Harnack principle for X in
C1,1 open sets. �

LEMMA 7.3. Suppose that U1,U3,U are open subsets of R
d with U1,U3 ⊂

U ⊂ 3
4E and dist(U1,U3) > 0. Let U2 := U \ (U1 ∪ U3). If x ∈ U1 and y ∈ U3,

then for all t > 0,

pb
U(t, x, y) ≤ Px(X

b

τb
U1

∈ U2) · sup
s<t,z∈U2

pb
U(s, z, y)

(7.3)
+ (t ∧ Ex[τb

U1
]) · sup

u∈U1,z∈U3

J (u, z),
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pb
U(t, y, x) ≤ MPx(X̂

b,E

τ̂
b,E
U1

∈ U2) · sup
s<t,z∈U2

pb
U(s, y, z)

(7.4)
+ M(t ∧ Ex[τ̂ b,E

U1
]) · sup

u∈U1,z∈U3

J (u, z)

and

pb
U(1/3, x, y) ≥ 1

3M
Px(τ

b
U1

> 1/3)Py(τ̂
b,E
U3

> 1/3) · inf
u∈U1,z∈U3

J (u, z).(7.5)

PROOF. The proof of (7.3) is similar to the proof of [5], Lemma 2, which is a
variation of the proof of [9], Lemma 2.2. Hence we omit its proof. We will present
a proof for (7.4) and (7.5). Using the strong Markov property and (5.7), we have

pb
U(t, y, x) = hE(x)

hE(y)
p̂

b,E
U (t, x, y)

= hE(x)

hE(y)
Ex[p̂b,E

U (t − τ̂
b,E
U1

, X̂
b,E

τ̂
b,E
U1

, y); τ̂ b,E
U1

< t]

= hE(x)

hE(y)
Ex[p̂b,E

U (t − τ̂
b,E
U1

, X̂
b,E

τ̂
b,E
U1

, y); τ̂ b,E
U1

< t, X̂
b,E

τ̂
b,E
U1

∈ U2]

+ hE(x)

hE(y)
Ex[p̂b,E

U (t − τ̂
b,E
U1

, X̂
b,E

τ̂
b,E
U1

, y); τ̂ b,E
U1

< t, X̂
b,E

τ̂
b,E
U1

∈ U3]
=: I + II.

Using (5.7) again,

I ≤ hE(x)

hE(y)
Px(τ̂

b,E
U1

< t, X̂
b,E

τ̂
b,E
U1

∈ U2)
(

sup
s<t,z∈U2

p̂
b,E
U (s, z, y)

)
= hE(x)

hE(y)
Px(τ̂

b,E
U1

< t, X̂
b,E

τ̂
b,E
U1

∈ U2)

(
sup

s<t,z∈U2

pb
U(s, y, z)

hE(y)

hE(z)

)

≤
(

sup
a,b∈3E/4

hE(a)

hE(b)

)
Px(X̂

b,E

τ̂
b,E
U1

∈ U2)
(

sup
s<t,z∈U2

pb
U(s, y, z)

)
.

On the other hand, by (5.6) and (5.7),

II = hE(x)

hE(y)

∫ t

0

∫
U1

p̂
b,E
U1

(s, x, u)

∫
U3

J (u, z)
hE(z)

hE(u)
pb

U (t − s, y, z)

× hE(y)

hE(z)
dz duds

≤
(

sup
a,b∈3E/4

hE(a)

hE(b)

)∫ t

0

∫
U1

p̂
b,E
U1

(s, x, u)

∫
U3

J (u, z)pb
U(t − s, y, z) dz duds
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≤ M
(

sup
u∈U1,z∈U3

J (u, z)
)∫ t

0
Px(τ̂

b,E
U1

> s)

(∫
U3

pb
U(t − s, y, z) dz

)
ds

≤ M

∫ t

0
Px(τ̂

b,E
U1

> s)ds · sup
u∈U1,z∈U3

J (u, z)

≤ M(t ∧ Ex[τ̂ b,E
U1

]) · sup
u∈U1,z∈U3

J (u, z).

Now we consider the lower bound. By (2.11) and (5.7),

pb
U(1/3, x, y)

≥ Ex[pb
U(1/3 − τb

U1
,Xb

τb
U1

, y); τb
U1

< 1/3,Xb

τb
U1

∈ U3]

=
∫ 1/3

0

(∫
U1

pb
U1

(s, x, u)

(∫
U3

J (u, z)pb
U(1/3 − s, z, y) dz

)
du

)
ds

≥ inf
u∈U1,z∈U3

J (u, z)

∫ 1/3

0

∫
U3

pb
U(1/3 − s, z, y)Px(τ

b
U1

> s)dz ds

≥ Px(τ
b
U1

> 1/3) inf
u∈U1,z∈U3

J (u, z)

∫ 1/3

0

∫
U3

pb
U3

(1/3 − s, z, y) dz ds

= Px(τ
b
U1

> 1/3) inf
u∈U1,z∈U3

J (u, z)

∫ 1/3

0

∫
U3

p̂
b,E
U3

(1/3 − s, y, z)
hE(y)

hE(z)
dz ds

≥ M−1
Px(τ

b
U1

> 1/3) inf
u∈U1,z∈U3

J (u, z)

∫ 1/3

0
Py(τ̂

b,E
U3

> 1/3 − s) ds

≥ 1

3M
Px(τ

b
U1

> 1/3) inf
u∈U1,z∈U3

J (u, z)Py(τ̂
b,E
U3

> 1/3). �

LEMMA 7.4. There is a positive constant c1 = c1(d,α,R0,�0,M,b) with the
dependence on b only via the rate at which Mα|b|(r) goes to zero such that for all
x, y ∈ D,

pb
D(1/2, x, y) ≤ c1

(
1 ∧ δD(x)α/2)(

1 ∧ 1

|x − y|d+α

)
(7.6)

and

pb
D(1/2, x, y) ≤ c1

(
1 ∧ δD(y)α/2)(

1 ∧ 1

|x − y|d+α

)
.(7.7)

PROOF. We only give the proof of (7.7). Recall that there exists L =
L(R0,�0, d) such that for every z ∈ ∂D and r ≤ R0/2, one can find a C1,1 open
set U(z,r) with C1,1 characteristic (rR0/L,�0L/r) such that D ∩ B(z, r/2) ⊂
U(z,r) ⊂ D ∩ B(z, r).
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It follows from (2.4) that

pb
D(1/2, x, y) ≤ pb(1/2, x, y) ≤ c1

(
1 ∧ 1

|x − y|d+α

)
,

so it suffices to prove of (7.7) for y ∈ D with δD(y) < r0/(32).
When |x − y| ≤ r0, by the semigroup property (3.5), (1.3) and (5.7),

pb
D(1/2, x, y) =

∫
D

pb
D(1/4, x, z)pb

D(1/4, z, y) dz

≤
∫
D

pb(1/4, x, z)p̂
b,E
D (1/4, y, z)

hE(y)

hE(z)
dz

≤ c2M

∫
D

(
1 ∧ 1

|x − z|d+α

)
p̂

b,E
D (1/4, y, z) dz

≤ c2MPy(τ̂
b,E
D > 1/4).

Applying (7.2), we get

pb
D(1/2, x, y) ≤ c3

(
1 ∧ δD(y)α/2)

≤ c3(1 ∨ rd+α
0 )

(
1 ∧ δD(y)α/2)(

1 ∧ 1

|x − y|d+α

)
.

Finally we consider the case that |x −y| > r0 [and δD(y) < r0/(32)]. Fix y ∈ D

with δD(y) < r0/(32), and let Q ∈ ∂D be such that |y − Q| = δD(y). Choose
a C1,1 open set Uy := U(Q,r0/8) with C1,1 characteristic (r0R0/(8L),8�0L/r0)

such that D ∩ B(Q, r0/(16)) ⊂ Uy ⊂ D ∩ B(Q, r0/8).
Let D3 := {z ∈ D : |z − y| > |x − y|/2} and D2 := D \ (Uy ∪ D3). Note that

|z − y| > r0/2 for z ∈ D3. So, if u ∈ Uy and z ∈ D3, then

|u − z| ≥ |z − y| − |y − u| ≥ |z − y| − r0/4 ≥ 1
2 |z − y| ≥ 1

4 |x − y|.
Thus

sup
u∈Uy,z∈D3

J (u, z) ≤ sup
(u,z) : |u−z|≥|x−y|/4

J (u, z) ≤ c4

(
1 ∧ 1

|x − y|d+α

)
.(7.8)

If z ∈ D2, then |z − x| ≥ |x − y| − |y − z| ≥ |x − y|/2. Thus by (1.3),

sup
s<1/2,z∈D2

pb
D(s, x, z) ≤ sup

s<1/2,z∈D2

pb(s, x, z)

≤ c5 sup
s<1/2,z∈D2

(
1 ∧ 1

|x − z|d+α

)
(7.9)

≤ c6

(
1 ∧ 1

|x − y|d+α

)
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for some c5, c6 > 0. Applying Lemma 7.3 with (7.8) and (7.9), we obtain

pb
D(1/2, x, y) ≤ c7

(
1 ∧ 1

|x − y|d+α

)(
Py(X̂

b,E

τ̂
b,E
Uy

∈ D) + Ey[τ̂ b,E
Uy

]).
On the other hand, by (5.8), (6.8), Lemma 6.1 and Theorem 4.8,

Ey[τ̂ b,E
Uy

] + Py(X̂
b,E

τ̂
b,E
Uy

∈ D)

=
∫
Uy

Gb
Uy

(z, y)
hE(z)

hE(y)
dz +

∫
D\Uy

∫
Uy

Gb
Uy

(w,y)
hE(z)

hE(y)
J (w, z) dw dz

≤ c8M

∫
Uy

GUy (z, y) dz + c8M

∫
D\Uy

∫
Uy

GUy (w,y)J (w, z) dw dz

≤ c9δUy (y)α/2 = c9δD(y)α/2.

Therefore

pb
D(1/2, x, y) ≤ c10δD(y)α/2

(
1 ∧ 1

|x − y|d+α

)
.

Equation (7.6) can be proved in a similar way. �

LEMMA 7.5. There is a positive constant c1 = c1(d,α,R0,�0,M,b) with the
dependence on b only via the rate at which Mα|b|(r) goes to zero such that for all
x, y ∈ D,

pb
D(1, x, y) ≤ c1

(
1 ∧ δD(x)α/2)(

1 ∧ δD(y)α/2)(
1 ∧ 1

|x − y|d+α

)
.(7.10)

PROOF. Using (7.6) and (7.7), the semigroup property (3.5) and the two-sided
estimates of p(t, x, y),

pb
D(1, x, y) =

∫
Rd

pb
D(1/2, x, z)pb

D(1/2, z, y) dz

≤ c
(
1 ∧ δD(x)α/2)(

1 ∧ δD(y)α/2)
×

∫
Rd

(
1 ∧ 1

|x − z|d+α

)(
1 ∧ 1

|z − y|d+α

)
dz

≤ c
(
1 ∧ δD(x)α/2)(

1 ∧ δD(y)α/2) ∫
Rd

p(1/2, x, z)p(1/2, z, y) dz

= c
(
1 ∧ δD(x)α/2)

p(1, x, y)

≤ c
(
1 ∧ δD(x)α/2)(

1 ∧ δD(y)α/2)(
1 ∧ 1

|x − y|d+α

)
. �
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LEMMA 7.6. If r > 0, then there is a constant c1 = c1(d,α, r,M,b) > 0 with
the dependence on b only via the rate at which Mα|b|(r) goes to zero such that for

every B(u, r),B(v, r) ⊂ 3
4E,

pb
B(u,r)∪B(v,r)(1/3, u, v) ≥ c1

(
1 ∧ 1

|u − v|d+α

)
.

PROOF. If |u − v| ≤ r/2, by Proposition 3.5,

pb
B(u,r)∪B(v,r)(1/3, u, v) ≥ inf|u−v|<r/2

pb
B(u,r)(1/3, u, v)

≥ c1 ≥ c2

(
1 ∧ 1

|u − v|d+α

)
.

If |u − v| ≥ r/2, with U1 = B(u, r/8) and U3 = B(v, r/8), we have, by (7.5),

pb
B(u,r)∪B(v,r)(1/3, u, v)

≥ 1

3
Pu(τ

b
U1

> 1/3)Pv(τ̂
b,E
U3

> 1/3) inf
w∈U1,z∈U3

J (w, z)

≥ c

∫
B(u,r/16)

pb
B(u,r/8)(1/3, u, z) dz

∫
B(v,r/16)

p̂
b,E
B(u,r/8)(1/3, v, z) dz

×
(

1 ∧ 1

|u − v|d+α

)
≥ c

(
inf

z∈B(u,r/16)
pb

B(u,r/8)(1/3, u, z)
)(

inf
z∈B(v,r/16)

p̂
b,E
B(u,r/8)(1/3, v, z)

)
×

(
1 ∧ 1

|u − v|d+α

)
.

Now applying Propositions 3.5 and 7.1, we conclude that

pb
B(u,r)∪B(v,r)(1/3, u, v) ≥ c

(
1 ∧ 1

|u − v|d+α

)
. �

LEMMA 7.7. There is a positive constant c1 = c1(d,α,R0,�0,M,b) with the
dependence on b only via the rate at which Mα|b|(r) goes to zero such that

pb
D(1, x, y) ≥ c1

(
1 ∧ δD(x)α/2)(

1 ∧ δD(y)α/2)(
1 ∧ 1

|x − y|d+α

)
.

PROOF. Recall that r0 ≤ R0/8 is the constant from Theorem 4.8 which de-
pends only on d , α, R0, �0 and b with the dependence on b only via the rate at
which Mα|b|(r) goes to zero. Since D is C1,1 with C1,1 characteristics (R0,�0),
there exist δ = δ(R0,�0) ∈ (0, r0/8) and L = L(R0,�0) > 1 so that for all
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x, y ∈ D, there are ξx ∈ D ∩ B(x,Lδ) and ξy ∈ D ∩ B(y,Lδ) with B(ξx,2δ) ∩
B(x,2δ) = ∅, B(ξy,2δ) ∩ B(y,2δ) = ∅ and B(ξx,8δ) ∪ B(ξy,8δ) ⊂ D.

Note that by the semigroup property (3.5) and Lemma 7.6,

pb
D(1, x, y)

≥
∫
B(ξy,δ)

∫
B(ξx,δ)

pb
D(1/3, x, u)pb

D(1/3, u, v)pb
D(1/3, v, y) dudv

≥
∫
B(ξy,δ)

∫
B(ξx,δ)

pb
D(1/3, x, u)pb

B(u,δ/2)∪B(v,δ/2)(1/3, u, v)

× pb
D(1/3, v, y) dudv(7.11)

≥ c1

∫
B(ξy,δ)

∫
B(ξx,δ)

pb
D(1/3, x, u)

(
J (u, v) ∧ 1

)
pb

D(1/3, v, y) dudv

≥ c1

(
inf

(u,v)∈B(ξx,δ)×B(ξy,δ)

(
J (u, v) ∧ 1

))
×

(∫
B(ξx,δ)

pb
D(1/3, x, u) du

)(∫
B(ξy,δ)

pb
D(1/3, v, y) dv

)
.

If |x − y| ≥ δ/8, |u − v| ≤ 2(1 + L)δ + |x − y| ≤ (17 + 16L)|x − y|, and we have

inf
(u,v)∈B(ξx,δ)×B(ξy,δ)

(
J (u, v) ∧ 1

) ≥ c2

(
1 ∧ 1

|x − y|d+α

)
.(7.12)

If |x − y| ≤ δ/8, |u − v| ≤ 2(2 + L)δ and

inf
(u,v)∈B(ξx,δ)×B(ξy,δ)

(
J (u, v) ∧ 1

) ≥ c3 ≥ c4

(
1 ∧ 1

|x − y|d+α

)
.(7.13)

We claim that ∫
B(ξx,δ)

pb
D(1/3, x, u) du ≥ c5

(
1 ∧ δD(x)α/2)

(7.14)

and ∫
B(ξy,δ)

pb
D(1/3, v, y) dv ≥ c5

(
1 ∧ δD(y)α/2)

,(7.15)

which, combined with (7.11)–(7.13), proves the theorem.
We only give the proof of (7.15). If δD(y) > δ, since dist(B(ξy, δ),B(y, δ)) > 0,

by (7.5), ∫
B(ξy,δ)

pb
D(1/3, v, y) dv

≥ 1

3M

(∫
B(ξy,δ)

Pv

(
τb
B(ξy,δ) > 1/3

)
dv

)
Py

(
τ̂

b,E
B(y,δ) > 1/3

)
(7.16)

× inf
w∈B(ξy,δ),z∈B(y,δ)

J (w,y),
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which is greater than or equal to some positive constant depending only on
d,α,R0,�0, M and b, with the dependence on b only via the rate at which Mα|b|(r)
goes to zero by Propositions 3.5 and 7.1.

If δD(y) ≤ δ, choose a Q ∈ ∂D be such that |y −Q| = δD(y), and choose a C1,1

open set Uy := U(Q,4δ) with C1,1 characteristic (4δR0/L,�0L/(4δ)) such that

D ∩ B(Q,2δ) ⊂ Uy ⊂ D ∩ B(Q,4δ) ⊂ D ∩ B(Q,6δ) =: Vy.

Then, since dist(B(ξy, δ),Vy) > 0, by (7.5),∫
B(ξy,δ)

pb
D(1/3, v, y) dv

≥ 1

3M

(∫
B(ξy,δ)

Pv

(
τb
B(ξy,δ) > 1/3

)
dv

)
Py(τ̂

b,E
Vy

> 1/3)(7.17)

× inf
w∈B(ξy,δ),z∈Vy

J (w,y),

which is greater than or equal to c6Py(τ̂
b,E
Vy

> 1/3) for some positive constant c6

depending only on d,α,R0,�0, M and b with the dependence on b only via the
rate at which Mα|b|(r) goes to zero by Propositions 3.5 and 7.1.

Let B(y0,2c7δ) be a ball in D ∩ (B(Q,6δ) \ B(Q,4δ)) where c7 = c7(�0,
d) > 0. By the strong Markov property,(

inf
w∈B(y0,c7δ/2)

Pw

(
τ̂

b,E
B(w,c7δ)

> 1/3
))

Py

(
X̂

b,E

τ̂
b,E
Uy

∈ B(y0, c7δ/2)
)

≤ Ey

[
P

X̂
b,E

τ̂
b,E
Uy

(
τ̂

b,E

B(X̂
b,E

τ̂
b,E
Uy

,c7δ)
> 1/3

); X̂b,E

τ̂
b,E
Uy

∈ B(y0, c7δ/2)
]

≤ Ey[PX̂
b,E

τ̂
b,E
Uy

(τ̂
b,E
Vy

> 1/3); X̂b,E

τ̂
b,E
Uy

∈ B(y0, c7δ/2)]

≤ Py

(
τ̂

b,E
Vy

> 1/3, X̂
b,E

τ̂
b,E
Uy

∈ B(y0, c7δ/2)
) ≤ Py(τ̂

b,E
Vy

> 1/3).

Using Proposition 7.1, we get

Py(τ̂
b,E
Vy

> 1/3) ≥ c8Py

(
X̂

b,E

τ̂
b,E
Uy

∈ B(y0, c7δ/2)
)
.(7.18)

Now applying (5.8), (6.8) and Theorem 4.8,

Py

(
X̂

b,E

τ̂
b,E
Uy

∈ B(y0, c7δ/2)
)

=
∫
B(y0,c7δ/2)

∫
Uy

Gb
Uy

(w,y)
hE(z)

hE(y)
J (w, z) dw dz

(7.19)
≥ c9M

−1
∫
B(y0,c7δ/2)

∫
Uy

GUy (w,y)J (w, z) dw dz

≥ c10δUy (y)α/2 = c10δD(y)α/2.
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Combining (7.16)–(7.19), we have proved (7.15). �

THEOREM 7.8. There exists c = c(d,α,R0,�0, T ,M,b) > 0 with the depen-
dence on b only via the rate at which Mα|b|(r) goes to zero such that for 0 < t ≤ T ,
x, y ∈ D,

c−1
(

1 ∧ δD(x)α/2
√

t

)(
1 ∧ δD(y)α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
≤ pb

D(t, x, y)(7.20)

≤ c

(
1 ∧ δD(x)α/2

√
t

)(
1 ∧ δD(y)α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
.

PROOF. Let Dt := t−1/αD and Et := t−1/αE. By the scaling property in (6.1),
(7.20) is equivalent to

c−1(
1 ∧ δDt (x)α/2)(

1 ∧ δDt (y)α/2)(
1 ∧ 1

|x − y|d+α

)
≤ p

t(α−1)/αb(t1/α ·)
Dt

(1, x, y)

≤ c
(
1 ∧ δDt (x)α/2)(

1 ∧ δDt (y)α/2)(
1 ∧ 1

|x − y|d+α

)
.

The above holds in view of (6.3), (6.4), (6.6) and the fact that for t ≤ T , the Dt ’s are
C1,1 open sets in R

d with the same C1,1 characteristics (R0(T )−1/α,�0(T )−1/α).
The theorem is thus proved. �

8. Large time heat kernel estimates. Recall that we have fixed a ball E cen-
tered at the origin, and M > 1 is the constant in (6.5). Let U be an arbitrary open
set U ⊂ 1

4E, and we let

p
b,E
U (t, x, y) := pb

U(t, x, y)

hE(y)
,

which is strictly positive, bounded and continuous on (t, x, y) ∈ (0,∞) × U × U

because pb
U(t, x, y) is strictly positive, bounded and continuous on (t, x, y) ∈

(0,∞) × U × U , and hE(y) is strictly positive and continuous on E. For each
x ∈ U , (t, y) �→ p

b,E
U (t, x, y) is the transition density of (Xb,U ,Px) with respect

to the reference measure ξE , and, for each y ∈ U , (t, x) �→ p
b,E
U (t, x, y) is the

transition density of (X̂b,E,U ,Py), the dual process of Xb,U with respect to the
reference measure ξE .

Let

P
b,E,U
t f (x) :=

∫
U

p
b,E
U (t, x, y)f (y)ξE(dy)
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and

P̂
b,E,U
t f (x) :=

∫
U

p
b,E
U (t, y, x)f (y)ξE(dy).

Let Lb,E
U and L̂b,E

U be the infinitesimal generators of the semigroups {P b,E,U
t } and

{P̂ b,E,U
t } on L2(U, ξE), respectively.
Note that, since for each t > 0, p

b,E
U (t, x, y) is bounded in U × U , it follows

from Jentzsch’s theorem ([32], Theorem V.6.6, page 337) that the common value
−λ

b,E,U
0 := sup Re(σ (Lb,E

U )) = sup Re(σ (L̂b,E
U )) is an eigenvalue of multiplicity 1

for both Lb,E
U and L̂b,E

U , and that an eigenfunction φ
b,E
U of Lb,E

U associated with

λ
b,E,U
0 can be chosen to be strictly positive with ‖φb,E

U ‖L2(U,ξE(dx)) = 1, and an

eigenfunction ψ
b,E
U of L̂b,E

U associated with λ
b,E,U
0 can be chosen to be strictly

positive with ‖ψb,E
U ‖L2(U,ξE(dx)) = 1.

It is clear from the definition that, for any Borel function f ,

P
b,E,U
t f (x) = P

b,U
t f (x) for every x ∈ U and t > 0.

Thus the operators Lb|U and Lb,E
U have the same eigenvalues. In particular, the

eigenvalue λ
b,E,U
0 does not depend on E, and so from from now on we will denote

it by λ
b,U
0 .

DEFINITION 8.1. The semigroups {P b,E,U
t } and {P̂ b,E,U

t } are said to be in-
trinsically ultracontractive if, for any t > 0, there exists a constant ct > 0 such
that

p
b,E
U (t, x, y) ≤ ctφ

b,E
U (x)ψ

b,E
U (y) for x, y ∈ U.

It follows from [26], Theorem 2.5, that if {P b,E,U
t } and {P̂ b,E,U

t } are intrinsi-
cally ultracontractive, then for any t > 0 there exists a positive constant ct > 1
such that

p
b,E
U (t, x, y) ≥ c−1

t φ
b,E
U (x)ψ

b,E
U (y) for x, y ∈ U.(8.1)

THEOREM 8.2. For every B(x0,2r) ⊂ U there exists a constant c = c(d,α, r ,
diam(U),M) > 0 such that for every x ∈ D,

Ex

[∫ τb
U

0
1B(x0,r)(X

b,U
t ) dt

]
≥ cEx[τb

U ](8.2)

and

Ex

[∫ τ̂
b,E
U

0
1B(x0,r)(X̂

b,E,U
t ) dt

]
≥ cEx[τ̂ b,E

U ].(8.3)
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PROOF. The method of the proof to be given below is now well known; see
[10, 27]. For the reader’s convenience, we present the details here. We give the
proof of (8.3) only. The proof for (8.2) is similar. Fix a ball B(x0,2r) ⊂ U and put

B0 := B(x0, r/4), K1 := B(x0, r/2) and B2 := B(x0, r).

Let {θt , t > 0} be the shift operators of X̂b,E , and we define stopping times Sn and
Tn recursively by

S1(ω) := 0,

Tn(ω) := Sn(ω) + τ̂
b,E
U\K1

◦ θSn(ω) for Sn(ω) < τ̂
b,E
U

and

Sn+1(ω) := Tn(ω) + τ̂
b,E
B2

◦ θTn(ω) for Tn(ω) < τ̂
b,E
U .

Clearly Sn ≤ τ̂
b,E
U . Let S := limn→∞ Sn ≤ τ̂

b,E
U . On {S < τ̂

b,E
U }, we must have

Sn < Tn < Sn+1 for every n ≥ 0. Using the fact that Px(τ̂
b,E
U < ∞) = 1 for ev-

ery x ∈ U and the quasi-left continuity of X̂b,E,U , we have Px(S < τ̂
b,E
U ) = 0.

Therefore, for every x ∈ U ,

Px

(
lim

n→∞Sn = lim
n→∞Tn = τ̂

b,E
U

)
= 1.(8.4)

For any x ∈ K1, by Proposition 7.1 we have

Ex[τ̂ b,E
B2

] ≥ c0

∫
B(x0,r/2)

∫ 2rα

rα
p̂

b,E
B2

(t, x, y) dt dy ≥ c1 for every x ∈ K1.

Now it follows from the strong Markov property that

Ex[Sn+1 − Tn] = Ex

[
E

X̂
b,E,U
Tn

[τ̂ b,E
B2

];Tn < τ̂
b,E
U

]
≥ c1Px(X̂

b,E,U
Tn

∈ B0)

= c1Ex[PX̂
b,E,U
Sn

(X̂
b,E,U

τ̂
b,E
U\K1

∈ B0)].

Note that for any x ∈ U \ B2, by (6.9), we have

Px(X̂
b,E,U

τ̂
b,E
U\K1

∈ B0)

=
∫
U\K1

Gb
U\K1

(y, x)

hE(x)

∫
B0

(
J (y, z)hE(z)

hE(y)
dz

)
ξE(dy)

≥ M−1A(d,−α)

∫
U\K1

Gb
U\K1

(y, x)

hE(x)

∫
B0

(
dz

(diam(U))d+α

)
ξE(dy)

= c2Ex[τ̂ b,E
U\K1

]
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for some constant c2 = c2(α, r,diam(U),M) > 0. It follows then

Ex[Sn+1 − Tn] ≥ c1c2Ex[EX̂
b,E,U
Sn

[τ̂ b,E
U\K1

]] = c1c2Ex[Tn − Sn].(8.5)

Since X̂
b,E,U
t ∈ B2 for Tn < t < Sn+1, we have, by (8.4),

Ex

[∫ τ̂
b,E
U

0
1B2(X̂

b,E,U
t ) dt

]

= Ex

[ ∞∑
n=1

(∫ Tn

Sn

1B2(X̂
b,E,U
t ) dt +

∫ Sn+1

Tn

1B2(X̂
b,E,U
t ) dt

)]

≥ Ex

[ ∞∑
n=1

(∫ Sn+1

Tn

1B2(X̂
b,E,U
t ) dt

)]
= Ex

[ ∞∑
n=1

(Sn+1 − Tn)

]
.

Using (8.4) and (8.5) and noting that X̂
b,E,U
t /∈ U \ B2 for t ∈ [Tn,Sn+1), we get

Ex

[∫ τ̂
b,E
U

0
1B2(X̂

b,E,U
t ) dt

]

≥ c1c2Ex

[ ∞∑
n=1

(Tn − Sn)

]

≥ c1c2Ex

[ ∞∑
n=1

(∫ Tn

Sn

1U\B2(X̂
b,E,U
t ) dt +

∫ Sn+1

Tn

1U\B2(X̂
b,E,U
t ) dt

)]

= c1c2Ex

[∫ τ̂
b,E
U

0
1U\B2(X̂

b,E,U
t ) dt

]
.

Thus

Ex

[∫ τ̂
b,E
U

0
1B2(X̂

b,E,U
t ) dt

]
≥ c1c2

1 + c1c2
Ex[τ̂ b,E

U ]. �

THEOREM 8.3. {P b,E,U
t } and {P̂ b,E,U

t } are intrinsically ultracontractive.

PROOF. Since ψ
b,E
U = eλ

b,U
0 P̂

b,E,U
1 ψ

b,E
U , it follows that ψ

b,E
U is strictly posi-

tive, bounded and continuous in U . Theorem 8.2 implies that

Ex[τ̂ b,E
U ] ≤ c1

∫
B2

G
b,E
U (z, y)

hE(y)
ψ

b,E
U (z)ξE(dz)

(8.6)

≤ c1

∫
U

G
b,E
U (z, y)

hE(y)
ψ

b,E
U (z)ξE(dz) = c1

λ
b,U
0

ψ
b,E
U (y).
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Similarly,

Ex[τb
U ] ≤ c2

λ
b,U
0

φ
b,E
U (x).(8.7)

By the semigroup property and (1.3),

p
b,E
U (t, x, y)

=
∫
U

p
b,E
U (t/3, x, z)

∫
U

p
b,E
U (t/3, z,w)p

b,E
U (t/3,w, y)ξE(dw)ξE(dz)

≤ c3t
−d/α

∫
U

p
b,E
U (t/3, x, z)ξE(dz)

∫
U

p
b,E
U (t/3,w, y)ξE(dw)

= c3t
−d/α

Px(τ
b,E
U > t/3)Py(τ̂

b,E
U > t/3)

≤ (9c3/t2)t−d/α
Ex[τb

U ]Ey[τ̂ b,E
U ].

This together with (8.6) and (8.7) establishes the intrinsic ultracontractivity of

{P b,E,U
t } and {P̂ b,E,U

t }. �

Applying [26], Theorem 2.7, we obtain:

THEOREM 8.4. There exist positive constants c and ν such that∣∣∣∣Mb,E
U etλ

b,U
0 p

b,E
U (t, x, y)

φ
b,E
U (x)ψ

b,E
U (y)

− 1
∣∣∣∣ ≤ ce−νt , (t, x, y) ∈ (1,∞) × U × U,(8.8)

where M
b,E
U := ∫

U φ
b,E
U (y)ψ

b,E
U (y)ξE(dy) ≤ 1.

Now we can present the following:

PROOF OF THEOREM 1.3(ii). Assume that the ball E is large enough so that

D ⊂ 1
4E. Since φ

b,E
D = eλ

b,D
0 P

b,D
1 φ

b,E
D and ψ

b,E
D = eλ

b,D
0 P̂

b,E,D
1 ψ

b,E
D , we have

from Theorem 1.3(i) that on D,

φ
b,E
D (x) � (

1 ∧ δD(x)α/2) ∫
D

(
1 ∧ δD(y)α/2)(

1 ∧ 1

|x − y|d+α

)
φ

b,E
D (y) dy

(8.9)
� δD(x)α/2

and

ψ
b,E
D (x) � (

1 ∧ δD(x)α/2) ∫
D

(
1 ∧ δD(y)α/2)(

1 ∧ 1

|x − y|d+α

)

× hE(y)

hE(x)
ψ

b,E
D (y) dy(8.10)

� δD(x)α/2.
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Theorem 8.3, (8.9) and (8.10) imply that

c−1
t δD(x)α/2δD(y)α/2 ≤ p

b,E
D (t, x, y) ≤ ct δD(x)α/2δD(y)α/2

for every (t, x, y) ∈ (0,∞) × D × D, and so

c−1
1 c−1

t δD(x)α/2δD(y)α/2 ≤ pb
D(t, x, y) ≤ c1ct δD(x)α/2δD(y)α/2

for every (t, x, y) ∈ (0,∞) × D × D.
Furthermore, by Theorem 8.4 and (8.9), there exist c2 > 1 and T1 > 0 such that

for all (t, x, y) ∈ [T1,∞) × D × D,

c−1
2 e−tλ

b,D
0 δD(x)α/2δD(y)α/2 ≤ p

b,E
D (t, x, y) ≤ c2e

−tλ
b,D
0 δD(x)α/2δD(y)α/2,

which implies that

c−1
3 e−tλ

b,D
0 δD(x)α/2δD(y)α/2 ≤ pb

D(t, x, y) ≤ c3e
−tλ

b,D
0 δD(x)α/2δD(y)α/2.

If T < T1, by Theorem 1.3(i), there is a constant c2 ≥ 1 such that

c−1
2 δD(x)α/2δD(y)α/2 ≤ pb

D(t, x, y) ≤ c2δD(x)α/2δD(y)α/2

for every t ∈ [T ,T1) and x, y ∈ D. This establishes Theorem 1.3(ii). �

REMARK 8.5. (i) Using Corollary 1.4 and the argument of the proof of
Lemma 6.1, (6.10) is, in fact, true for all bounded open sets U with exterior cone
condition.

(ii) In view of Corollary 1.4, estimate (4.8) and Lemma 4.1, we can deduce
from (4.10) by the dominated convergence theorem that Proposition 4.2 holds for
general b with |b| ∈ Kd,α−1.
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