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We present a theory of backward stochastic differential equations in con-
tinuous time with an arbitrary filtered probability space. No assumptions are
made regarding the left continuity of the filtration, of the predictable quadratic
variations of martingales or of the measure integrating the driver. We present
conditions for existence and uniqueness of square-integrable solutions, using
Lipschitz continuity of the driver. These conditions unite the requirements for
existence in continuous and discrete time and allow discrete processes to be
embedded with continuous ones. We also present conditions for a comparison
theorem and hence construct time consistent nonlinear expectations in these
general spaces.

1. Introduction. The theory of backward stochastic differential equations
(BSDEs) has been extensively studied. Typically, results have been obtained only
in the context of a filtration generated by a Brownian motion, possibly with the
addition of Poisson jumps. Specifically, attention has been given to equations of
the form

le:F(a)staYl—aZ[)dt_Z;dets YT:Qa

where M is the martingale generating the filtration (typically Brownian motion),
T is a fixed finite terminal time, Q € L?(Fr) is a stochastic terminal value, F is
a progressively measurable function, [-]* denotes matrix/vector transposition (and
hence A*B denotes the inner product of A and B) and the solution is a square
integrable pair of processes (Y, Z), where Y is adapted and Z is predictable.

A notable exception to this is the work of El Karoui and Huang [12], where a
general probability space is considered. In the case considered in [12], the martin-
gale M is specified a priori, and the equation considered is

(1) dY,=F(w,t,Y,—,Z,)dC; — Z[ dM; — dNy; Yr=20,

where each term is as above, the filtration is quasi-left continuous, C is a continu-
ous process such that d (M) is absolutely continuous with respect to dC and N is a
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martingale strongly orthogonal to M, that is, (M, N) =0, where (-, -) denotes the
predictable quadratic covariation process.

These equations depend heavily on the continuity of C and, therefore, are un-
able to deal with any situation where martingales may jump at a point with pos-
itive probability. However, these situations may arise in various applications. For
example, when using BSDEs in modeling dividend paying assets, the martingales
involved may jump at the time of the dividend announcement. Similarly, if we con-
sider embedding a discrete time process in continuous time, we obtain processes
which jump with positive probability at every integer.

A significant use of these equations is to generate “nonlinear expectations” or
“nonlinear evaluations,” in the sense of [18]. These are operators

ECIFN: L (Fr) — L*(F),

satisfying certain basic properties. They have important applications in mathemati-
cal finance and stochastic control. Given the results of [9] and [15], it is known that
in the Brownian setting, under certain conditions, these operators are completely
described by BSDEs. Furthermore, it is clear, given the comparison theorem in [8],
BSDE:s of the form of (1) in arbitrary spaces, under some conditions, also describe
nonlinear expectations. However, it is not known how large a class of nonlinear
expectations in a general space is given by a BSDE.

To establish such a result for BSDEs of the form of (1), one faces a significant
problem. If £(Q|F;) = Y; is given as the solution to (1) for some F not dependent
on Y;_, once M is fixed, for any martingale N orthogonal to M with Ny = 0, we
have the property

E(Q + Nr|F1) =E(Q1F).

This property is clearly not true for most nonlinear expectations, whenever there
are nontrivial examples of such processes N, which is not the case in the Brow-
nian setting (as a martingale representation theorem holds). It follows that these
equations cannot describe any nonlinear expectations which do not possess this
property.

Furthermore, the fact that the martingale M must be specified a priori is ar-
guably unsatisfying. Conceptually, it may be preferable if, in some sense, the prob-
ability space itself dictated what martingales are needed for the BSDE. In this case,
one could proceed either by specifying the probability space using a collection of
martingales (which, given a representation theorem holds, will then describe all
martingales in the space), or vice versa.

In this paper we establish such a general result. We show that there is a sense
in which the original BSDE can be interpreted in a general space, using only a
separability assumption on L2(F7). We establish conditions on the existence and
uniqueness of BSDEs in this setting, where the driver is integrated with respect
to an arbitrary deterministic Stieltjes measure (Theorem 6.1). We also prove a
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comparison theorem for these solutions, which shows under which conditions they
do indeed describe nonlinear expectations and evaluations.

A similar approach is taken in [14], where a form of BSDE is considered using
generic maps from a space of semimartingales to the spaces of square-integrable
martingales and of finite-variation processes integrable with respect to a given con-
tinuous increasing process. Using Browder’s theorem, they demonstrate the exis-
tence of solutions to these equations on an infinite horizon. Our approach differs
from theirs by considering a classical form of BSDE on a finite horizon and deriv-
ing an existence result using a contraction mapping technique. Because of this, our
conditions for existence are a more straightforward extension of those in the classi-
cal case. More significantly, our approach does not require the driver of the BSDE
to be integrated with respect to a continuous measure, which allows a unification
of the discrete and continuous time theory of BSDEs.

2. Martingale representations. The key result used in the construction of
BSDEs is the Martingale representation theorem. In the Brownian setting, this
result is well known (see, e.g., [20], Chapter V.3, or [13], Theorem 12.33). In
other cases, for example, when dealing with martingales generated by Markov
chains, a similar result is available (see [4]); however it is also known that there
exist probability spaces in which no finite-dimensional martingale representation
theorem exists.

Consider a probability space (€2, F, P) with a filtration {F;},t € [0, T'], satis-
fying the usual conditions of completeness and right continuity. The time-interval
[0, T'] is given the Borel o-field B([0, T']).

DEFINITION 2.1. For any nondecreasing process of finite variation u, we de-
fine the measure induced by pu to be the measure over 2 x [0, T'] given by

A|—>E[f IA(a),t)d,u]
[0,7]
Here A € 7 ® B([0, T]), and the integral is taken pathwise in a Stieltjes sense.

REMARK 2.1. If u is a deterministic process, then this definition gives the
product measure u x PP. We can also consider these as measures on the space
(2 x [0, T], P), where P is the predictable o -algebra.

Under the assumption that the Hilbert space L?(Fr) is separable, a paper of
Davis and Varaiya [10] gives the following result (see also Malamud [17]).

THEOREM 2.1 (Martingale representation theorem; [10]). Suppose that
L*(Fr) is a separable Hilbert space, with an inner product (X,Y) = E[XY].
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Then there exists a finite or countable sequence of square-integrable {F;}-
martingales M', M?, ... such that every square integrable {F,}-martingale N has
a representation

o
Ne=No+) | ZidMm,
i=1710.11

for some sequence of predictable processes Z'. This sequence satisfies
o

2) E[Z / (Z;>2d<M’>u} < +oo.
i=0"[0:T1

These martingales are orthogonal (i.e., E[.M§M%] =0foralli # j), and the
predictable quadratic variation processes {M') satisfy

(M) > (M%) > -,

where > denotes absolute continuity of the induced measures (Definition 2.1). Fur-
thermore, these martingales are unique, in that if N' is another such sequence,
then (N') ~ (M"), where ~ denotes equivalence of the induced measures.

COROLLARY 2.1.1.  For any predictable processes Z i satisfying (2), the pro-
cess Yy ; f]O,t] Z; dM] is well defined and is a square-integrable martingale.

REMARK 2.2. When a finite-dimensional martingale representation theorem
holds, as when the space is generated by a Brownian motion, then all but finitely
many of the martingales M’ given by Theorem 2.1 will be zero. We shall not,
in general, assume that this is the case, but acknowledge that, in this situation,
significant simplification of the equations considered is possible.

We shall use this result to construct a form of BSDE on this general space.

DEFINITION 2.2. We denote by RX** the space of infinite RX -valued se-

quences. We note that the predictable processes Z' in Theorem 2.1 can be written
as a vector process Z, which takes values in R!*°,

3. BSDEs in general spaces: A definition. We seek to construct BSDEs, as-
suming only the usual properties of the filtration and that L?(Fr) is a separable
Hilbert space. For simplicity, we shall also assume that Fy is trivial, which, by
right continuity, ensures that, almost surely, no martingale has a jump at r = 0.

DEFINITION 3.1. Let u be a deterministic signed Stieltjes measure. For
K € N, a BSDE is an equation of the form

[e.e]
(3) :Y—/ F(w,u,Yu_, Z,)du, + / ZiaMt,
Q t ][’T] u u lu‘M ; ]I,T] u u
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where Z;(w) is the (countably infinite) vector with entries {Zf (w) € RX};en. For
a terminal value Q € L2(RX; F7), a predictable driver function F:Q x [0, T] x
RX x RE>x%° _ RX asolution is a pair of processes (Y, Z) taking values in RX x
RX*% where Z is predictable, and Y is adapted. We shall restrict our attention to
the case when Y is square integrable, and Z satisfies (2).

REMARK 3.1. We note that this type of equation encompasses most previ-
ously studied forms of BSDEs. When the filtration is Brownian, we can take M i to
be the ith component of the generating Brownian motion, ; = ¢, and the equation
is standard. When the filtration is generated by a Poisson random measure over a
separable space and a Brownian motion, as in [2, 22] and others, or by a Markov
chain, as in [4, 5], we have a similar reduction. When we consider the analogous
equations in discrete time, we can form the discrete-time filtration embedded in
this continuous time context (see [16], Chapter 1f) and hence obtain the backward
stochastic difference equations considered in [6] and [7].

Comparing with the work of [12], we see that if F' depends only on the projec-
tion of Z into a finite-dimensional subspace of RX*> then it is possible to reduce
the equation to a form similar to (1).

We shall present a result (Theorem 6.1) demonstrating conditions under which
there exists a unique solution to such an equation.

4. Inequalities for Stieltjes integrals. To give conditions under which so-
lutions to a BSDE exist, we must first establish the following results regarding
integrals with respect to Stieltjes measures. These results are standard whenever
the measures are continuous.

4.1. Stieltjes exponentials.

DEFINITION 4.1. For any cadlag function of finite variation v : [0, co[ — R,
we write

) =e" [ (1+ Avpe ™Y,
0<s<t
and call this the Stieltjes exponential of v. Note that this is also a cadlag function.
Note that €(v;) should be more properly written as E(v(.); t), as it is a function

of {vs; s <t} not just of v,. We use the former notation purely for compactness,
whenever this does not lead to confusion. We note the following useful bound.

LEMMA 4.1. Ifv is a cadlag function, then E(v;) < e, where e"' is the clas-
sical exponential of v;.
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PROOF. Ase* > 1+ x, itis clear that (1 + Av,)e” 2" < 1 for all ¢. The result
follows. [

LEMMA 4.2. For any cadlag function of finite variation, the Stieltjes expo-
nential is well defined. Furthermore, if Av, > —1, then €(v;) > 0. If Avg > —1,
then €(v;) > 0, and €(v,)~ ! is well defined. In this case, the process u; =
us €(v)E(y) "1 is the solution to the Lebesgue—Stieltjes integral equation,

Uy =ug + Up_dvy.
Is,t]

PROOF. As the process v; is cadlag and of finite variation, it is a (determin-
istic) semimartingale. &(v;) is then the standard Doléans—-Dade exponential of
this process, and so its existence and basic properties can be seen in [13], The-
orem 13.5 ff. This guarantees the convergence of the infinite products considered
and solves the desired integral equation. The nonnegativity result is clear by in-
spection.

For the positivity result, we need only show that [[y<,<,(1 + Avs) > 0. By
continuity of the logarithm, this is equivalent to showing that

— > log(l + Avy) < 0.
0<s<t

We then note that we can consider three cases. First, if Avg > 0, then —log(1 +
Avy) <0, and hence

—( Z log(1 + Avs)> <0< 0.

{0<s=<t}N{Av;>0}

Second, we note that ) (_ -, |Avg]| is finite, as v is of finite variation, and hence
there are only finitely many s such that Avy < —0.7. Therefore

—< Z log(1 + Avs)> < 00.
{0<s<t}N{Avs<—0.7}
Finally, we know that 2x < log(1 4+ x) <0 for —0.7 < x < 0. Hence, we have

_< > log(1 + Avs)> < < > 2|Avs|>

{0<s<t}N{—0.7<Avs <0} {0<s<t}N{—0.7<Avs <0}
< 00.
Combining these three sums gives the desired constraint on the logarithm, and
hence the strict positivity of the desired product. [

LEMMA 4.3. For v a cadlag function of finite variation with Avy > —1, we
have the stronger result

infT{ []a —i—Avs)} > 0.

0<t<
— = M0<s<t
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PROOF. By the same argument as in Lemma 4.2, we have

—( > log(1 + Avs)) < 00.

{0<s<T}N{Av; <0}
It follows that
— Z log(1+ Avg) < —( Z log(1 + Avs)) <00
0<s<t {0<s<T}IN{Avs<0}
for all ¢. Hence

inf { [ (1+Avs)} >< [ (1+Avs)> > 0.

0=t=T 1525 {0<s<T}N{Av, <0} O

DEFINITION 4.2. Let v be a cadlag function of finite variation with Ay, > —1
for all ¢. Then the left-jump inversion of v is defined by

- (A‘)s)2
HEV D Ay
0O<s<t §

Similarly if Av; < 1 for all ¢, the right-jump inversion is defined by

N (Avy)?
Vy = .
P=vet 02 1 — Avyg
<s<t

LEMMA 4.4. For v a function as in Definition 4.2, the left- and right-jump
inversions are finite (whenever they are defined), and satisfy
C) ™ = (=)
and
E(—v) =€)

PROOF. Consider first the left-jump-inversion. We know that Avg; > —1 and
> |Avs| < oo. Hence it follows that Avg has only finitely many values in any
neighborhood not containing zero and hence is bounded away from —1. That is,
there exists some ¢ > 0 such that Avg; > & — 1 for all s. To show finiteness, write

(Avy)?
< A
E } Tt An, = E |Avg| < 00

{0<s=<t}N{Avs>0 {0=<s=<t}N{Av;>0}

and

(Avp)? 2
}1+Avs58< r ew)

{0<s<t}N{Avs <0}

<X jaw)

{0<s<t}N{Av; <0}

{0<s=<t}N{Avs<0

< Q.
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Combining these sums gives the desired finiteness result.
We now note that, algebraically,

(Avg)?

-1
— =1+ Av,.
1+ Avs) T A

(1= a3~ = (1= 8u+
Hence
Cwp = [T (1 + Avp)Tlet™
0<s<t
_ o Vit Do<s= (Av0)?/(14+Avy)) I (1 + Avy)~leds— @)/ (+Av)
O<s=<t
=e " [] (1= Abper™s
O<s=<t

The proof for the right-jump inversion follows in the same way, where finiteness
is because

(Av)? (—Avy)?

2 1—Av, 2 1+ (—=Avy)’

0<s<t O<s=<t

and —vy satisfies the requirements given above for the left-jump inversion. The
algebraic result is then that

N (Av)* P
(I4+Avy) " =14+ Avy + ———— =1-—Avy,
1 —Avyg

and the result is as given. [

LEMMA 4.5. For v a cadlag function of bounded variation with Avg > —1,
the right-jump inversion of the left-jump inversion of v is the original function, that
is,

]_)t = V¢.

Similarly, if Avs < —1, then 1:J, =y.

PROOF. For simplicity, we decompose v into a discontinuous part vtd =
> 0<s<: Avg and a continuous part vy = v; — vg. Clearly, taking either the left-
or ri_gﬁt-jump inversion will not alter the continuous part v, and so it is sufficient
to show that the discontinuous parts are equal, that is, A\z), = A\Z)t = Ay, forall ¢,
whenever these terms are well defined. From Definition 4.2 we have

Avy Av;
14 Ay 11— Ay,

Vt

Vt
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and hence
AL, Av/(L+Avy)
T1—AD, 1—Avw/0+Av)

AD,

Vi,
and similarly Af), = Avy, as desired. [

4.2. Integrating factors. 1t is useful to have some results relating to the so-
lutions of equations of the form du; — u;— dv; = ---. These are similar the the
classical results on the use of integrating factors and Gronwall’s inequality in the
study of ordinary differential equations.

DEFINITION 4.3. Let u, v be two measures on a ¢ -algebra A. We write du <
dv if, for any A € A, u(A) <v(A).

REMARK 4.1. When v is a nonnegative measure, and u is absolutely contin-
uous with respect to v, this definition is equivalent to requiring that the Radon—
Nikodym derivative satisfies du/dv <1, dv-a.e.

LEMMA 4.6. Let u, v and w be signed Stieltjes measures on B([0, T]), such
that Av; < 1 forall t, and
du; > —u;_ dv; +dwy,
then
d(u€()) = (1 — Av) ' €(F-) dwy,

where V is the right-jump inversion of v.

PROOF. Applying the product rule for Stieltjes integrals we have

duE(W
M = dl/lt + U d\jt + AM[A]?[.
€(v-)

As dv, =dv/(1 — Av,) and Au; Avy = (Avy) duy, this gives

d(u () —du+u dv; Av,
— = =du; +u—

d
) = Ay, 1= an M

<1+ AV; )d + dvt
= u Ur—
I—AU[ ! ! 1—AUZ

= (1 — Avy) "' (du;y + u;— dvy)
> (1 — Av) "' dwy,. 0
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LEMMA 4.7 (Backward Gronwall inequality). Let u be a process such that,
for v a nonnegative Stieltjes measure with Av; < 1 and o a v-integrable process,
u is v-integrable and

ur <o+ ugdvy,
16,71

then
ur <oy + L’E(—vt)/ € (V5o ds.
16.T]
If a; = « is constant, this simplifies to
Uy < @€Or)E@) " = a@(—v)€E-vr)~".

PROOF. First note that dv, = % and that AV, Av; = AV, dv,. Then let

wy = @(f)t)/ usdvg.
16,T]

From the product rule for stochastic integrals, as v is of finite variation,

dw; ~ ~
= =</ usdvs)dvs—utdvt—utAvtAvt
E(;-) 1.7
:—ut(l—J’-Af)[)dU[—i-(/ usdvs> dﬁ[
1¢,T]

— —u,di, + (/ usdvs> v,
12,T]

= (—u,+ usdvs> dv;
1t,T]

> — di}t

Note that dv; and €(v;_) are both nonnegative. Therefore, by integration,

w = €@ [ ugdv < / € (B )aty .
1 1t,T]

t,T]
Substitution yields
w o+ €7 [ e@oudi,
16,71

and the desired inequalities follow from E@) ! = &(—v). If a; = «, then this
simplifies to

"y Sa[l—l—(’f(ﬁ,)_lf @(ﬁs_)df)s}
1t.T]

= o[l +&@) " (er) — €@))]
— aCr)EE,) . =
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LEMMA 4.8 (Forward Gronwall inequality). Let u be a function such that, for
V a nonnegative Stieltjes measure and o a v-integrable process, u is v-integrable
and

ur <ar+ ugsdvy,
10,7]

then
w <o+ € [ Eiasds,
10,7]

If oy = « is constant, this simplifies to

ur < a(vy).

PROOF. This result follows in an almost identical fashion to Lemma 4.7, and
the proof is therefore omitted. [J

5. Existence of BSDE solutions: Fundamental results. In this section we
shall establish the existence of solutions to BSDEs when the process p satisfies
particular properties.

DEFINITION 5.1. Let p be a deterministic nondecreasing right-continuous
function  : [0, T] — R™. The measure du will serve in the place of the Lebesgue
measure dt in our BSDE.

As u is of finite variation, its discontinuities Ay are bounded. We assume that
W assigns positive measure to any nonempty open interval in [0, T'].

Unless otherwise indicated, all (in-)equalities should be read as “up to evanes-
cence.”

DEFINITION 5.2.  We denote by | - || the standard Euclidean norm on RX | and
note that ||y 12 = y*y, where [-]* denotes vector transposition.

DEFINITION 5.3. For a given p and fixed K € N, we define the stochastic
seminorm || - || 57, on RE> as follows. For each i € N, consider (M') as a mea-
sure on the predictable o-algebra; cf. Remark 2.1. Let (M') have the Lebesgue
decomposition

(MY, =mb! mi?,

where mi’l is absolutely continuous with respect to u x P, and mi’z is orthogonal

to u x P. As they represent bounded measures on the predictable o -algebra, both
i1 i2 . . .

m;  and m;”~ will be nondecreasing predictable processes.
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We define, for z, € RK*,

. dmi,l
2 g2 “"r
a3, .—Z[nz,n d(uxp)],

i

where z§ € RX is the ith element in z;, considered as a series of values in RX.

We note that, for any predictable, progressively measurable process Z taking
values in RX*%°_and, in particular, for processes satisfying (2) in each of their K
components, we have the inequality

E| (122, au| < E[S [ 1Zi12aomi)
1z an] <E|3 | |
]
:E:H;/AZfdM; 2]

for any predictable set A € 2 x [0, T']. (Note the latter equalities are simply the
standard isometry used in the construction of the stochastic integral, by the orthog-
onality of the M'.)

4) =FE ZH /A ZidM!

DEFINITION 5.4. We define the following spaces of equivalence classes:

H,%,, = {Z :Q x [0, T] — RE*%, predictable,

i o] <o

52 = {Y:Q x [0, T] — RX | adapted, E[ sup ||Y,||2] < +oo},
t€[0,T]

Hi = {Y Q2 x[0,T]— RX, progressive, / E[IIY,||2] dus < —i—oo},
10,T]
where two elements Z, Z of H,%,, are deemed equivalent if
E|Y [ 1z Ziirdury | =0,
Xi: 0.T] t t t

two elements of S are deemed equivalent if they are indistinguishable and two
elements of H ;% are equivalent if they are equal p x P-a.s. Note that K is here
taken as fixed.
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REMARK 5.1. We note that H[%,I is itself a complete metric space, with norm
given by Z — E[); f[o,T] ||Z£ I2d(M);]; similarly for Hﬁ. Note also that the
martingale representations constructed in Theorem 2.1 are unique in HI%,[

A key assumption in the study of BSDEs is the continuity of the driver func-
tion F. When the measure u is continuous, we shall show that it is sufficient that '
is uniformly Lipschitz continuous for the BSDE (3) to have a solution. On the other
hand, as is clear in discrete time (cf. [7]), when u is not continuous, a stronger con-
dition is needed on F. We shall call this a firm Lipschitz bound on F, as is defined
in the following theorem.

THEOREM 5.1. For u as in Definition 5.1, assume ur < 1. Let F:Q X
[0, T] x RK x RE* s RK pe a predictable, progressively measurable function
such that:

o Elfjo.r I F(@,1,0,0)[>dp] < +o0;
e there exists a linear firm Lipschitz bound on F, that is, a measurable determinis-

tic function ¢; uniformly bounded by some ¢ € R, such that, for any y;, y| € RX,
2 Z’ c RK X 00
9 t 9

IF (@, 1,31, 20) = Fle, 1, y;. 2D 1?
<clly = yilI> +cllze —zllyy,.  dp x dP-as.
and
Ay < 1.
Note that the variable bound c; need only apply to the behavior of F with respect
toy.

A function satisfying these conditions will be called standard. Then for any Q €
L2(RX; Fr), the BSDE (3) with driver F has a unique solution (Y, Z) € $2 x Hz%/l'
(S% and Hf,[ are defined in Definition 5.4.)

To prove this theorem, we first establish the following results.

LEMMA 5.1. If u assigns positive measure to every nonempty open inter-
val, then two cadlag processes in H 3 are indistinguishable if and only if they are

equivalent in H i Similarly, two cadlag processes are equivalent in H i if and only

if their left limits are equivalent in H i

PROOF. Clearly indistinguishability implies equivalence of the processes, and
their left limits, in H /% By right continuity (resp., left continuity), if on some non-
null set A, two processes (resp., their left limits) differ at any point, they must
differ on some nonempty open interval. As p assigns positive measure to such an
interval, it follows that the processes will not be equivalent in H 3 U
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LEMMA 5.2. Let (Y, Z) be the solution to a BSDE with data (F, Q). If F is
standard, Q € L>*(RX; Fr) and Z € H?,, then Y € S? if and only if the left limit

2
process Y, € H.

PROOF. Clearly, if Y € §2, then as Y is cadlag and adapted, and hence pro-
gressive, Y € H]%/[- For the converse, write

2

sup [|Y;]|1* <2/|Q* +4 sup
t€l0,T] tel0,T]

ZldM!
1,71

i
+4 sup {/ IIF(w,M,Yu—,Zu)HZdM}
ref0,71 1.7

2

<2||Ql*+4 sup
t€l0,T]

ZldM!
1.7

i

+8/ I F (@, u,0,0)|>du;
10,T]

+8/ Lo Y I? + ¢l Zull2y, 1 dpts,
10,T]

and by the assumptions of the lemma, as Z € HZ,, and so Y ; f]o,t] Z; dM,i is a
square integrable martingale, by Doob’s inequality [16], Theorem 1.43, this quan-
tity is finite in expectation. [

The following lemma provides the key bounds on BSDE solutions, which we
shall use to prove existence and uniqueness of solutions.

LEMMA 5.3. Let (Y, Z) alzd (_17, 7) be the solutions to two BSDEs with stan-
dard parameters (F, Q) and (F, Q). Define
§Y:=Y-Y, $Z2:=Z-72,
82.ft = F(Cl), t’ Yl’—v Zl’) - F(C{), t? Yl‘—’ Zl‘)a

5) v = /]0 G5 = A1+ woes + xldps,
7y = /]0 [0 = A+ g 1A = A~ dis,
)t

pi = o™ (ot = Ap) (14 w)el( = Avg) ™ d(M"),,
N
where cs and c are the Lipschitz constants of F, and x;, wy are any nonnegative
measurable functions such Athat Apy < x; U and Avy < 1 for all t, and the inte-
grands defining v, w and p* are uniformly bounded.
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Then
ELI8Y: IP1€@) + E[Z /] ., oz<as_)||3z;2||2dp;:}
6) o
< E[I5QI21€(r) + /] | Ells £ P1EG-) dr,
and

/ E[II(SYf—IIZ]@(z?;_)dm+E[Z/ us(’f(ﬁs—)llr?Z.illzdﬂﬁ}
10,71 = J10,T]

(7)
< urE[|I8Q|*1€(0r) + /]0 . s ELN82 £ 121€(0s ) drs.

PROOF. Let8F = F(w,t,Y_,Z;) — F(w,t,Y,_, Z;). By application of the
differentiation rule for stochastic integrals, we have

dll|sY |11 = =2(8Y: ) * G F) dus +2 ) (8Y:)*(8Z;) dM;

) +3°6ZH* Gz dIM!, MT), — 26 F)(Apy) Y (SZH AM!
i,j i

+ I8F 2 (A

As 8Y € §2, by the BDG inequality it is clear that /) ,; >;(8Ys-)*(8Z})d M| is a
martingale. Similarly the process

) [<5Fs><Aus>Z<52§)AM§}
5s€]0,7] i

is a countable sum of integrable martingale differences and so is also a martingale.
Also, §Z € HI%/I and so, by orthogonality of the M*,

S 6zh*6z)ydimt, M1, = 18ZE2 a (M,
i,j i
is a martingale.

For any A € B([0, T']), integrating on A and taking an expectation through (8)
then yields

[ azusvitr=-2 [ E[<5Y1_>*<5Ft>]dut+E[lZ / ||5Z;'||2d<M">t}

+ Y ELSFIPI(AR).

teA
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Using the fact that (A,uvt)2 = (Auy)(duy) and that for any x > 0, any a, b € R,
+2ab < xa* + x~1b?, we have, for any measurable function x; > 0,

/AdE[n(Sanz]z—fo,E[naYt_nz]duz—/Ax;lE[n(Sanz]dm

©) +E[Z/ 18112 d{M’) } /E[naFtu 1(Awo) dpy

—fozE[uaYt_nzlduz—]A(x,—l — ARDELISE M dps

+ E[Z/A ||az;'||2d<M">,]

We now note that, for any measurable w; > 0, as (a + b2 <1 +w)a*>+ 1+
w~1)b? for all w > 0,

I8F 1> < (1 +w) | Flw,t,Y—, Z;) — F(w,t, Y,—, Z))|I*
+ A +w HF(w,t, Y-, Z)) = F(w,t,Y,—, Z)|?
< (4w I8Y—I1* + (1 +w)ellSZe I3, + (14w, D182 117

Hence, as x; L Au >0,

/ ! — Ap)ELISE P d i
< / = Aun) (1 + w)e ENISY— 21 d
A
+ [ 7 = A1+ w)eEBZ 1Ry 1 dua
—1 —1 2
(10) 4 /A Gl = A+ w YENS fil2 d i
< fA ' — Apd (1 + w)e ELNISY,— P d

+ E[Z/A(XFI — Ap) (1 + w8 Z! ||2d<Mi>,]

+/A(’“f ~ A+ w Y ELS il d .

Combining (9) and (10) gives
fAdE[uaY,nz] > fA ELISY,— " dv, + E[Z/A(l - Av»naZinzdpi}
i

—/AE[nszﬁnz]a _ Avpdn,.
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Let ¢ be the signed measure on B([0, T']) defined by
o)=Y [ (1= 0 1sZiPapi| - [ EN81P10 ~ Bv) dm
i
As dm/du is bounded, dp'/d(M') is bounded, ||82f||2 is p-integrable and
8Z; € HI%,I, it follows that ¢ (A) is bounded. We see then that ¢ is a signed Stieltjes

measure, and we equate it with its distribution function ¢, := ¢ ([0, ¢]).
Therefore, as Av;, <1, Au — x1<0,an application of Lemma 4.6 yields

/ dIEI|8Y,|1*1€(D)] > f (1= Av) ' &@,-) dgy
A A
=E[Z [ €@z ||2dp;}
- /A (5 ) EL|182.f; |2 drr.
For A = Jt, T, it follows that

E[|18Y:1121€ (D) + E[Z /] - E(05-)|18Z! ||2dp;']

< E[|I8Q|I*1€(0r) + /]t . E[182£51121€ (D5 ) dy;,

which is the desired inequality (6). Taking a left-limit in ¢ gives, by the dominated
convergence theorem,

EUSY,-IP1e) + E[ Y [, €@ NIZIP do |

< E[I5QIP1€(5r) + /[t - ET1182 £5 IP1€ (05 ) dos,

and so by integration and Fubini’s theorem, we have that

/ E[uaYt_nz]e(o,_)dm+E[Z / usews_)nsz;'uzdpf;}
10,T] . Y/10,T]

< urELISQ111€(@r) + /]0 . ws IS fiIP1€ (D) ds. 0

LEMMA 5.4. Let F:Q x [0, T] — RX be a predictable progressively mea-
surable function such that

E[f ||F(w,t)||2d,u} < 4o0.
10,71
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Then the BSDE
Yt—/ F(a),u)d,u—FZ/ ZLdM! = Q
16,71 — J1t,T]

has a unique solution in S* x Hj%,[ for any Q € L>(RX; Fr). (Note here that F
does not depend on Y or Z.)

PROOF. Using Theorem 2.1, we first construct the processes Z' which give a
representation of the square integrable martingale

3 z;dM,i:E[QJr/ F(w,u)du’]—}]
— Jj0.1] 10,71

This can clearly be done componentwise, and so we obtain a unique process Z €
Hf,[, that is, Z{(w) € RX. 1t follows that

3 z;dM;=Q+/ F(a),u)du—E[Q—i—/ F(w,u)du‘}}]
16, T] 10,T] 10,T]

=Q+/ F(a),u)du—E[Q-i-/ F(a),u)du'}",],
16.T] 16,71

and so there is an adapted process

Yt:=E[Q+/ ; F(a),u)du‘ft]
(11) 1]
=Q+f F(w,u)dM—Zf Z,dM;,
171 —~ .11

which satisfies the BSDE. By uniqueness of the right-hand side of (11), this pro-
cess is unique up to indistinguishability and hence in §2. [

LEMMA 5.5. Letv:[0,T] — R be a nondecreasing cadlag function of finite
variation and c(.y:[0,T] — R be a nonnegative bounded measurable function.
Then c;Avy = supse[O,T]{csAvs} for some t; that is c¢; Av, attains its maximum.
Consequently, if, for some k € R, c;Av; < k for all t, then there exists an ¢ > (0
such that c;Av; <k — ¢ forall t.

PROOF. If ¢; Av; =0, then the result is trivial. Let ¢ be the upper bound of c(.).
As v is right-continuous, it has at most countably many jumps. Then, as v is non-
decreasing, >, c;Av; < c(}_; Avy) < cvr < 00. Therefore, ¢; Av; is a summable
sequence, and hence has finitely many values greater than or equal to §, for any
6 > 0.Leté €]0, c; Av,] for some ¢, and so {c; Av; : ¢c; Av, > 8} is a finite nonempty
set, and therefore has a maximum.
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Now suppose ¢; Av; < k for all ¢. Let ¢* be the value at which ¢; Av; attains its
maximum, hence ¢+ Avy= < k. For any € < k — ¢« Avg the result then holds. [

PROOF OF THEOREM 5.1.  We consider constructing a sequence of approxi-
mations in the usual way. For a BSDE with driver F' and terminal condition Q,
we fix an initial approximation (Y%, 20y e §2 x Hz%,,. (Note that we denote by
Z™ the nth approximation of the infinite-dimensional process Z, to distinguish
it from Z', the ith component of Z.) We shall first allow the Z component of the
solution to converge, then allow the Y component to do likewise. This two-stage
approach is needed due to the difference in the Lipschitz coefficients of F' with
respect to Y and Z. We shall assume, without loss of generality, that the Lipschitz
coefficient of F' (with respect to Z) satisfies ¢ > 0 uniformly.

Step 1: BSDEs where the driver has Y fixed. To construct the Z solutions, we
first fix some cadlag process ¥ € H EL We wish to define a sequence of approxima-
tions of solutions to the BSDE with driver F (-, -, I?._, 2.

For any approximation Z, we fix the driver F"(w,t) = F(w, t, Y,_, Zt(n)).
Using Lemma 5.4, we obtain a new approximation (Y"*!, Z"+1D) We shall show
that the induced map Z™ > Z®*1 is a contraction, and hence that a unique limit
exists.

Suppose at the nth stage we have two approximations (Y™!, Z(1D) and
(Y™2, Z"2)) of the solution of a BSDE with terminal value Q and driver
F(,-, Y_, -). We can hence construct new approximations (yntbht ze+lDy apd
(ynt1L2 z(n+1.2)y We consider the difference

(8Y"+l 5Z(n+1)) — (Yn-i-l,l i Yn-H,Z Z(n—l—l,l) i Z(n+1,2))‘

Note that (Y"+11, Z#+1.DY comes from a BSDE with driver F(-,-, V., z"™D)
which does not depend on the solutions (Y"*1-1, Z®+1.Dy Hence, for appropriate
functions x. and w., the differences (8Y”+!, §Z"*+D) satisfy our estimate (6), with

bufy = Fwrs. T Z000) = Flw,s. T 207)

and 6 Q = 0, and when defining v and p' in (5) we can take c; = ¢ = 0.
We take the values w; =1, xt_l = 4—lc + Ay, and so we see that Ay, —xt_1 <0,

4c
vi=[ xdu = / gy <de
t o] sd s 0.1 T+ 4cAu, Ms 223

is nondecreasing and bounded (and hence of finite variation) and

4c Ay - 1

Avy = <1- <
14+4cApy 1+4c

1.
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It follows that the integrands in (5) are bounded, our estimate (6) holds and
E(w,)(1 — Avs)*1 is strictly positive and bounded. Hence

in2 ~ _ 1 i
z HE[Z [, 170 - av) do, |

is an equivalent norm on Hz%,,.
As we can take ¢ = 0 in (5), we have the simplification

dpl =1 — Av) taM'y, =1 —x, Ap)~Hd (MY,

From (6) we obtain
E[Z /]; T] “ (SZ(’H—])).IS”Z@(DG—)(I — Avs)_l d<M1>[j|
< [ BB AIPIGE = A + g e = av) ™ dis
1¢,T]

1 - _
= [ B AR 5 [ - av)
16,71 2c
By the Lipschitz continuity of the original driver, we have
2
ELI82£517) < cE[[8Z" 3, ].

and so, for our chosen values of w; and x;, using inequality (4),
[Z/ | (6Z@ D) Pe@-) (1 — Av) ™' d(M >t]

2 U —
<3 Jo g EUBZ T3, JE@) (1 = Avo) ™ s

1 () N
SzE[,Z/]o,n”(‘SZ e - au)ar), |

By completeness, the contraction mapping principle gives the existence of a
unique limit Z € H]%,[ solving the BSDE with driver F(-, -, Y_, -) and terminal
value Q. (The solution Y process can, of course, be found using Lemma 5.4, fixing
the Z process at the constructed limit.)

Step 2: BSDEs with general drivers. 'We now construct a convergent sequence
of approximations in Y for a general driver. Consider the Lipschitz bounds of the
original driver F. Without loss of generality, we assume that ¢ > 0 uniformly. As
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csAus < 1, p is nondecreasing and of finite variation, and c; is bounded, Lem-
ma 5.5 yields a fixed ¢ > 0 such that c;Aus <1 —¢.

Let
Xt lzm—l—Am,
. &’
Y= e
As
xz_l—A,ut !

= < ,
c(14+2e1) el +w)
it is clear that
dp}
d(M?),

=[1— (" = Ap) (I +w)el(l —x Ap) ™" >0,

so p' is a nonnegative measure for each i.

For any terminal value Q, consider an approximation ¥” € S2. We can then
construct a solution (Y"t!, Z"+Dy to the BSDE with driver F"(w,1t,z) =
F(w,t,Y/", z), using the above result. Again we shall show that Y" — Y"tlisa
contraction, and hence that a unique limit exists.

As above, we consider the sequence of differences (§Y",§Z ™)) from two ini-
tial approximations. As Y"+1.! is defined using the driver F" = F(w, 1, Y"', 2),
which does not depend on Y n+1.1 " we can take ¢; = 0 when defining plin (5).

Hence, for our chosen values of x; and w;, we can again easily verify that the
integrands in (5) are bounded, and the resulting v is nonnegative, bounded and
Av < 1. It follows that &(0y) is strictly positive and bounded.

Considering the difference of any two approximations §Y", by the Lipschitz
continuity of the original driver, we have

EN82£5 1171 < es E[IISY™ |71,

S0, as p' is a family of nonnegative measures, our estimate (7) gives

/ E[ISY" 21€(5,-) dpus
10,T]
< / s ELS £ 1P1€ (Bs—) drs
10,T]

< / EI8Y™ |21€ @y ises [0t — Apg)(1 4+ wi 1]
10,T]

x (1 —xsApg) " dug.
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By construction we have
psesly ! = Ap) (14w HIA — xsApg) ™!

= psesxy (I+wih)

1 -1
=gy + e 1+ 07

A e
F— _8 J—
=M\ ca+2e ) 2 8_4e

= g
where the fifth line is because s < ur <1 and
Cy & & ~1
— <1 1 —=—(14+2¢ .
c Sh=ttg=g+2e)

‘We then have
2

- & -
/ ENSY™ P1E@,) dis < (1 - —) / ELISY™ IP1E@s_) dus.
10,71 8/ Ji0,1

As E(Ug_) is strictly positive and bounded, f]o,T] E[|l - I*1€(Ds—) d s is an equiv-
alent norm on H, 3 By completeness, the contraction mapping principle gives the
existence of a limit ¥, =1lim, o Y/*,
existence of a limit Z, as d,of Jd{(M 0y, is strictly positive, and from (7),

. ~ 2 i
i [ mewo 62 apl]

which is unique in H 3 We also have the

< Jim | s ENN82 £ 121€ (05— ) dmg = 0;

that is, §Z also converges to zero in Hl%,l
We take the right limits of a left-continuous version of the process Y °°, namely

:
7|

By Lemma 5.2, Y € S? and by Lemma 5.1 it is unique in S2. This pair (Y, Z)
will solve the BSDE with driver F' and terminal value Q. This limit is unique for
Ze Hz%p as can by seen by fixing Y and using our earlier result. [J

Yt:E[Q-‘l_ F(C!),S, Ysooszs)dl'l’s
16,T1]

=E|:Q+ ] ]F(a)»s’Ys—aZs)dMs

t, T
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REMARK 5.2. In discrete time, we have shown in [6] that a necessary and
sufficient condition for the existence of a solution to the discrete BSDE is that
F is invariant with respect to equivalent Z in || - |5, norm, and that y — y —
F(w,t,y,z)isabijection in y for all z, t and almost all w. The requirement that '
is firmly Lipschitz is sufficient, but not necessary, to guarantee that these conditions
hold.

6. Existence of BSDE solutions: General results. We now wish to extend
our above solution to allow u to be any Stieltjes measure, by relaxing the con-
dition that ur < 1. In so doing, we shall also weaken slightly the firm Lipschitz
requirement.

LEMMA 6.1. Let v be a nonnegative Stieltjes measure with Av < 1. Then
there exists an n > 0 and a finite sequence {0 =ty <t| < --- <tp = T} such that
v(lti, ti1]) <1 —nforalli.

PROOF. By Lemma 5.5 with ¢; = 1, there exists an n > 0 with Av < 1 —n5. Let
tx =T for some large K. Define recursively for integers j < K, t; = sup{t:v; <
Vi — 1 +n} Vv 0. By right continuity, v(l¢;, j+1]) = Vi — Vi < 1 —n. For any j,
it is also easy to show that Vi — Vij > 1 —n. Hence, as vr is finite, the sequence
t; has only finitely many nonzero terms. Let k = max{j:7x =0}, let B =K —k
and rescale the index of our sequence accordingly. We then have a sequence with
the desired properties. [J

THEOREM 6.1. Let u be any deterministic Stieltjes measure assigning pos-
itive measure to every open interval. (Note || - ||y is still well defined in relation
to ) Let F:Q x [0, T] x RE x REX® 5 RK pe g predictable, progressively
measurable function such that:

o Elfjo.111F(®,1,0,0)[*du,] < +oo.
o There exists a quadratic firm Lipschitz bound on F, that is, a measurable de-

terministic function c¢; uniformly bounded by some c € R, such that, for any
yl‘a y; € RK, 2ty Z; S RKXOO,

IF (.1, yr.20) — Fw, 1,5/, z)|?
<clyr—yI*+ellze — 23, duxdP-as.
and
(M) < 1.

Note that the variable bound c; need only apply to the behavior of F with respect
o y.
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A function satisfying these conditions will be called standard. Then for any Q €
L2(RX; Fr), the BSDE (3) with driver F has a unique solution (Y, Z) € §2 % H}%,,.
(82 and Hl%/[ are defined in Definition 5.4.)

PROOF. We assume, without loss of generality, that ¢ > 1. By Lemma 5.5, as
(,u,)2 is a nondecreasing cadlag function of finite variation and c,(AM,)2 < 1 for
all ¢, there exists an & > 0 such that c,(A/VL,)2 <1l—e¢.Let

2(14+&He B
Vtzf 1 dﬂ[ = )\'l ldlL[.
10,1 € +2(1 + e )cAp, 10,11

Then v ~ w, and Av; = A 1Aut < 1. As v, is right continuous, deterministic and

has no jumps of size equal to or greater than one, by Lemma 6.1 there exists a

finite sequence {t{p =0 <1 <--- <tp =T} such that v(]¢;,7;11]) <1 forall j.
We now note that, omitting the @ and ¢ arguments, our BSDE (3) can be written

o0
(12) Q=Y,—f MiF (Yue, Z)dvg + ) ZldM,
1,71 /1T
which is a BSDE in v with Lipschitz property
1A F (s 2) =M F (G 2> < 27eillye = yi 1P+ 27cllz =z, dvxdP-ass.

We write

2
c= sup{Atzc} < ( + MT) c <00
t

I3
2(1+e He
and ¢, :ktzct. Note thatas ¢ < 1, ¢;/c < 1,

e+2(1+ e_l)cA/,L,>2
CtAVt
2(14+ ¢ e

EIAV[ = (

e 2
<(——+A
- (2(1+8_1)C+ “’) “

<1+ s_l)—gzct + (1 + S)C;(A[L;)z
4(14¢e71)2c?
(13) 5

S%—I—(l—i—s)(l—s)

2
<1_3i
- 4

< 1.

Finally, we define the measures

Vf: (i—i—(l—l)b%k)dv,.
10,t At 111 \ Vi Vi
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It is easy then to show that v,‘i+ | = 1 for all k. Furthermore, as

dvk n
E = U_[klt<tk + Ile[tk,t](Jrl] > Oa
we see VK assigns positive measure to every interval in ]O, #x4+1]. Hence, on
10, tr+11, vk is a measure of the type considered in Theorem 5.1. Also, Avtk <
Av, < 1, and v¥ agrees with v for all subsets of ], f+1].
We now consider the sequence of BSDEs

o0
14 yitl=yf- / MEYE_ ZH v+ / (Z5idm!
1t tk411 im1 Y1011
with Y}? = Q. For each k, (14) is a standard BSDE with a driver A; F, which has
Lipshitz coefficients of ¢; and ¢, and hence is (linearly) firmly Lipschitz by (13).
Hence, the existence of a unique solution for each k is guaranteed by Theorem 5.1.

For k = B — 1, (14) agrees with (12), and hence with the original BSDE (3),
for all ¢ € [tg, tx+1]. It follows that the solution Y,B ~1is a solution to our origi-
nal BSDE on the interval [f5_1, tg]. Similarly, for kK = B — 2, this argument then
implies that YIB ~2 is a solution to our original BSDE on the interval [¢tp_2, tp_1],
etc.

We now piece together these solutions to define Y; = Ytk where t € tx, tr+1],
and similarly for Z. By an inductive argument, we can see that this will solve the
desired BSDE. Furthermore, this solution will be unique, as the solution is unique
on each subsection [#t, tx41]. U

REMARK 6.1. We note that, even when pur < 1, the conditions of Theo-
rem 6.1 are strictly weaker than those of Theorem 5.1. In this case, the jumps of
w satisfy Ap < 1, and it follows that a quadratic firm Lipschitz bound is weaker
than a linear firm Lipschitz bound.

REMARK 6.2. Clearly if Au =0, then the requirement that F' is firmly Lip-
schitz degenerates into the classical requirement that F is uniformly Lipschitz.
It is to be expected that many of the generalisations of the Lipschitz conditions
which are known in the case where our filtration is generated by a Brownian mo-
tion, that is, to drivers with a stochastic Lipschitz bound, to drivers with quadratic
growth, to drivers with linear growth and a monotonicity condition, etc., will also
be possible in this situation. There is, however, considerable difficulty involved in
obtaining these results in the simple continuous case, and it is to be expected that
this difficulty will be increased by the discontinuities present here.

REMARK 6.3. The situation where F has stochastic Lipschitz bounds is of
particular interest here, as it would then be possible to consider replacing u with a
general predictable process of finite variation, and consequently, with any square
integrable special semimartingale. Such a general situation is arguably as general
as can be expected within the context of stochastic integration.
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7. A comparison theorem. Given we have now established the existence of
solutions to these equations, we now wish to prove a comparison theorem for them.
This is based on the theorem in [8], for BSDEs of the type of (1).

THEOREM 7.1 (Comparison theorem). Suppose we have two BSDEs corre-
sponding to standard coefficients and terminal values (F, Q) and (F, Q). Let
(Y, Z) and (Y, Z) be the associated solutions. Suppose that for some s, the fol-
lowing conditions hold:

(i) 0= Q P-as.;
(i) u xP-as.on[s,T] x Q,

F(Cl),u, Yu—a Zu) Z F(C(),M, }_]u—, Zu),

(iii) for each j, there exists a measure P j equivalent to P such that the jth
component of X, as defined for r > s by

e;er = _A ]e;f[F(w’ u, Yu—s Zy) — F(w,u, ?M—v Zu)]d:uu
s, r
+Z/ ei[Z), — Z},1d M,
Is,r]

isalP j supermartingale on [s, T];
(iv) if, forallr € [s, T],

]

zel*}_]r_E]fDl[‘/]‘ ]el*F(a)’uv ?u—’Zu)dMu
r,t

eZ‘Yr—E@A[/ e;F(w,u,Yy—, Z,)duy,
"L t]

]

It is then true that Y > Y on [s, T1, except possibly on some evanescent set.

foralli, then Y, > Y, forall r € [s, t] componentwise.

PROOF. We omit the w and ¢ arguments of F for clarity.
Then, forr € [s, T']

Y, — 7, — f] O 20 = Fue, Zlde,
(15) +Z/ [z — Zi1dM]

=Y, —Y;>0.
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This can be rearranged to give

Y, — ¥, — / [F(Yu_. Zy) — F (V. Zu)d1a
Ir,T]

> / (F(Puer Za) — F(Tuer Zu)ld it
1nT]
(16)
+ [F(Yu—» Zu)_F(Yu—aZu)]dMu

1, T

—Z/ (2, — Z1dM,,
We have that
/ [F (T Z4) — F(Fue. Zu)dptn = 0
1n,T]

by assumption (ii). As e;‘.Xr isalP j supermartingale, we know that the process
given by
eiX, = eiX, — Ep [¢5X7|F/]
(17) =5 | [ PG 2~ F(m 2 di
InT]
— Z/ e[z, — Z}1d M, f,}
1T

is also a Ip’j—supermartingale, with e;UN(T =0 Iﬁ’j -a.s. Hence e}‘f(r > 0.

For each j, taking a P | conditional expectation throughout (16) and premul-
tiplying by e;k. gives
J—“r] > 0.

This must hold for all r € [s, T'] and almost all w. By assumption (iv), for almost
all w, it follows that the comparison Y, > Y, must hold for all r € [s, T].

As Y — Y is cadlag, we have that Y — Y is indistinguishable from a nonnegative
process and, therefore, the inequality holds up to evanescence. [

ety —etY, — E; eXF Yy, Zy) — F(Yy—, Z)1d 1y
J J P; v’

REMARK 7.1. Assumption (iv) is clearly trivial whenever F' does not depend
onY.

REMARK 7.2. Assumption (iii) is very closely related to the Fundamental
theorem of asset pricing (see [11]), as it relates an inequality in current values to
the existence of an equivalent (super-)martingale measure.

COROLLARY 7.1.1. If assumption (iv) holds for any T whenever s > T — ¢
for some fixed ¢, then the comparison also holds.
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PROOF. In this case, we can show that the comparison holds on [T — ¢, T].
We can then replace T with T — ¢ throughout the theorem, replacing Q and Q
with Y7_, and Yr_; in assumption (i). It is clear that assumptions (ii) and (iii)
will continue to hold, with the same choice of measures P;. By the statement of
the corollary, assumption (iv) will then hold on the interval [T — 2¢, T — ¢]. By
induction, it follows that the comparison holds on [T — ne, T'] for all n € N. For n
sufficiently large, this implies the comparison holds on [s, T'] as desired. [

DEFINITION 7.1. A standard driver F such that assumptions (iii) and (iv)

of Theorem 7.1 hold on [0, 7] for all Y,Y € S? and Z, Z € H1%4 will be called
balanced.

THEOREM 7.2. In the scalar (K = 1) case, assumption (iv) of Theorem 7.1
holds for any standard F .

PROOF. As we are in the scalar case, we can omit the ¢; from the statement of
the assumption. Hence, we wish to show that, given for all r € [s, T']

]

ZYI‘_E]TD F(a)ﬂu’Yu—ﬂzM)dMM
1nT]

Y, — E]fn Flo,u,Y,_,Z,)du,
1n,T]

a
we must have Y, > Y,. For simplicity, let §Y :=Y — Y.

It is clear from the problem and the recursivity of BSDE solutions that we can
replace T with any stopping time T < T such that §Y; > 0. By applying Lem-
ma 6.1, we can also assume that s is such that f] 5.7 Cud iy < 1, and simply piece
together the result for general s.

Suppose on some nonnull set A € F, §Y,, <O for some u € [s,T]. As 8Y is
adapted and right continuous, this implies that there are stopping times o, T such
that §Y, <Oforall u € [o, [, and s <0 < T on A. Without loss of generality, let
T be the largest such upper bound. Then, as Y7 > 0 and v < T, it follows that

&Y > 0. Replacing T with 7 in the above inequality, we know that
E[@[Ire[cr,r[wyrl]

= E@[_Ire[a,t[SYr]

< E@[—Ire[g,f[f] Py zh - ey Zbduu}
rT

IA

Es |:Ir€[a,r[/ Cu|5Yu—|d/fLu:|
Ir,7]

IA

E@[lue[a,r[wyu—”cu diy.
1r,T]



2292 S. N. COHEN AND R. J. ELLIOTT

Taking a left limit in r, we see

E]f»[lre[(r,r[wyr—l] = /[r 7 E]fv[lue[(r,r[wyu—l]cu duy.
By assumption, this quantity is strictly positive. Integration on ]¢, T'] and Fubini’s

theorem gives, for t > s,

[ Eslhectld¥—llerdur < [

</ Efp[]ue[a,r[wyu—ucu dlLu)Cr dur
16,T] 16,T] [r,T]

= </ Cr er>EI§>[Iue[o,r[|8Yu—|]Cu dpy
16, T] \J]t,u]

< [ Eslluctorl8¥u-ewdia,
16.T]

where the last line is due to our assumption that f]s’T] crduy < 1. This contradicts
our assumption that this quantity is strictly positive. Therefore, A is a null set, that
i1s,8Y, >0forallu e [s,¢]. O

DEFINITION 7.2. The comparison between Y and Y will be called strict on
[s, T'] if the conditions of Theorem 7.1 hold, and, for any A € F; such that Yy = ¥
P-a.s.on A, we have Y,, =Y, on [s, T] X A, up to evanescence.

LEMMA 7.1. If the comparison is strict on [s, T], then for any A € F; such
that Yy = Y, P-a.s. on A, it follows that:

° Q:QIP’_—a.s._onA;_ ) B
o Flw,u,Y,—,2,)=F(o,u,Y,—,Z,) u x P-as.on[s,T] x A;
° ZEZinH,%,lon[s,T]xA.

PROOF. We omit the @ and 7 arguments of F and F for clarity. Let X be as
in (17), and let S be the process defined by

¢S, :=efE; [Q — O|F/]
(18) J J7P;

+97E[§>i |:/]‘ T][F(Yu_, Zu) — F(Yu—; Zu)]dﬂu
r,

fr] +e’;)~(r.

Then e;‘fS isaP j-supermartingale, as the first term is a P j-martingale, the second

is nonincreasing in r by assumption (ii) of Theorem 7.1 and the third is a P -
supermartingale by assumption (iii) of Theorem 7.1. Furthermore, each of these
terms is nonnegative.

Taking a P j|Fr conditional expectation through (3), we have that, for all r €
[s, T1,

(19) e;f(Y,—?r)=e§Sr+E@[f] ]e’;mn_,zu)—F(iu_,zmduu
r,t

7
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IfY,=Y,on[s, T]x A up to evanescence, then it is clear from (19) that S, =0
P-a.s. on [s, T] x A. Hence, by nonnegativity, each of the terms on the right-hand
side of (18) must be zero. The first two points of the lemma immediately follow.

Consider the BSDE (3) satisfied by Y. As F(Yy_, Z,) = F (Yu_, Zy,) it x P-a.s.
on[s,T]x Aand Q = Q P-a.s. on A, we know that

7, - / F(Tue Zu) dpty + Z/ ZidMi =0
1T ~ 1]
is P-a.s. equal to

i,_/ F(}_’M_,Zu)duu—i-Z/ ZidaMi = 0.
171 = It

Hence, in A, (Y, Z) is a solution at time r to the BSDE defining (¥, Z).

As the solution to this BSDE is unique, it follows that, on [s,T] x A, Z=Z
: 2
in Hy, . O

THEOREM 7.3 (Strict comparison). Consider the scalar (K = 1) case, where
F is balanced. Then the comparison is strict on [s, T] for all s.

PROOF. Again,as K =1 we can omit ¢; from all equations, and we omit the
w and 7 arguments of F and F for clarity. Let S, be as defined in (18), and note
that § is a nonnegative P-supermartingale.

Taking a IP|Fy conditional expectation of (19) gives

]
g

EplY, — Y| F] = Eﬂa[sr + f] v t][F(Yu_, Zy)— F(Yu—, Z)dpy

N

- E@[ f]m[F(Yu, Z) = F(Vue, Zi))d 1

<5+ E@[ /] P 2) = Pa Z

(20)
+/]' EsllF (Ve ) = F(Fm, )11 F) du

<5+ E@[ f] P Z) = F(Tm 2Ny
S,

+c ]E@HY—_YM—”}—S]dﬂu-

Is,r

We know from (19) and the assumption Y — Y, =0 on A that

148, + IAEI@[ f] P (e 22) = F(Fae. Z)1
s, t

fs] = IA(YS - ?s) :Oa
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and so, as Y — Y is nonnegative by Theorem 7.1, premultiplication of (20) by I
and then taking an expectation gives

Esliay =Tl e [ Egllattu- = Faoldp,

As all quantities are nonnegative, taking a limit from below yields

Ella(Y,- =Y, )l <c | Eplla(Yu- — Yy ldpu,
Is.r]

and an application of (the forward version of) Gronwall’s lemma implies
EslIa(Y, — ¥,)] <O0.

By nonnegativity, it follows that ¥, = Y,, P-as.on A. Again, as Y — Y is cadlag,
this shows that Y =Y on [s, ] x A, up to evanescence. [l

COROLLARY 7.3.1. Ifthe ith component of F(w,t, y, z) depends only on the
ith component of y (as well as on w, t and z), then the comparison is strict.

PROOF. As the ith component of F depends only on the ith component of y,
we can repeat the construction of Theorem 7.3 in each component. The result
follows. [

REMARK 7.3. Inthe scalar case, with a simple Brownian filtration (M I—w,
M' =0fori > 2)and du = dt, we can use Girsanov’s transformation to construct
the measure required for assumption (iii) of Theorem 7.1. We write

Fa),u,?,,Z —F w,u,?,,z
Nota [ o, F@wT Z)—F@uY 2
10,7] Zy—2Zy

qu’

then dP/dP = Arz. It is then easy to verify that X is a martingale. In this case,
using Theorem 7.2 we can see that any Lipschitz continuous F is balanced.

8. Nonlinear expectations. We are now in a position to explicitly construct
nonlinear expectations in a general probability space. We shall not here consider
the more general theory of nonlinear evaluations. An approach without these re-
strictions can be seen in [8]. These operators, discussed in [19], are closely related
to the theory of dynamic risk measures, as in [1, 3, 21] and others, as each con-
cave nonlinear expectation £(-|F;) corresponds to a dynamic convex risk measure
through the relationship

pi(Q) = —E(QIF).

A further discussion of this relationship can be found in [21].

DEFINITION 8.1. A family of operators
ECIF):L*(Fr) — L*(F),  0<t=T,
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is called an F;-consistent nonlinear expectation it £(-|JF;) satisfies the following
properties:

(1) If Q > Q P-a.s. componentwise
E(QIF) = E(QIF, IP-a.s. componentwise

with equality iff Q0 = Q P-a.s.
(2) For Q € L*(F;), E(Q|F:) = Q P-as.
(3) Forany s <t,

EE(QIFDIFy) = E(QIFy), P-ass.
(4) Forany A € F;,
1AE(QIF1) =EUTA 01 F), P-a.s.

THEOREM 8.1. Let F be a balanced driver which does not depend on Y (i.e.,
¢ =0) and satisfies F(w, t,y,0) =0 u x P-a.s. Then the operator defined by

EQIF) =Y,

where Y is the solution to a BSDE (3) with driver F, is a nonlinear expectation.

PROOF. (1) As F is balanced, this result follows directly from the comparison
theorem (Theorem 7.1). As F does not depend on Y, the strict comparison will
also hold, by Corollary 7.3.1.

(2) Consider the BSDE (3) on [t, T']

Y, —f F(w,u, Yu,,zu)duﬁzf ZidM! = Q.
Is,T] 7 Y1s.T]

This has a solution Yy = Q, Z, =0. As Q € L2(.7-',), this solution is adapted and,
by Theorem 5.1, unique. Therefore £(Q|F;) = Y; = Q as desired.

(3) By definition the BSDE with terminal condition Q at time 7 has solution
Y; at time ¢. Simple manipulation of the BSDE (3) at time s shows that Y is also
the time s solution to the BSDE with terminal condition Y; at time z. Hence, by
property 2, Y solves both the BSDE with terminal condition Y; = £(Q|F;) and
the BSDE with terminal condition Q.

(4) Consider the BSDE with driver F and terminal condition Q. Multiplying
by Ia,as [ F(w,t,y,2) = F(w,t, 14y, 14z), we see that (14Y, [4Z) is the solu-
tion to the BSDE with driver F' and terminal condition 74 Q, as desired. [

REMARK 8.1. It is known in discrete time [6], and under some conditions
in continuous time [9], that BSDEs describe all nonlinear expectations, subject
to some boundedness conditions. It is likely that a similar result will hold in this
setting. However, obtaining such a result is beyond the scope of this paper.

9. Conclusions. We have constructed BSDEs in a general filtered probability
space, using only basic properties of the filtration. We have presented conditions
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for the existence of unique solutions to these equations, and seen how these are
related to the conditions in both the classical setting, and the discrete time set-
ting. We have given a comparison theorem for these solutions, which allows the
construction of nonlinear expectations in these spaces.

These results are significantly more general than those previously available, as
they make very few assumptions on the underlying probability space. A conse-
quence of this is that a possibly infinite-dimensional martingale representation the-
orem is required. In full generality, they also make no assumptions regarding the
relationship of the integrator of the driver and the quadratic variations of the mar-
tingale terms. At the same time, this general setting provides an approach unifying
the theory of BSDEs in discrete and continuous time.

Acknowledgment. Robert Elliott wishes to thank the Australian Research
Council for support.
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