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A PROBABILISTIC INTERPRETATION OF THE MACDONALD
POLYNOMIALS

BY PERSI DIACONIS1 AND ARUN RAM2

Stanford University and University of Melbourne

The two-parameter Macdonald polynomials are a central object of alge-
braic combinatorics and representation theory. We give a Markov chain on
partitions of k with eigenfunctions the coefficients of the Macdonald polyno-
mials when expanded in the power sum polynomials. The Markov chain has
stationary distribution a new two-parameter family of measures on partitions,
the inverse of the Macdonald weight (rescaled). The uniform distribution on
cycles of permutations and the Ewens sampling formula are special cases.
The Markov chain is a version of the auxiliary variables algorithm of statisti-
cal physics. Properties of the Macdonald polynomials allow a sharp analysis
of the running time. In natural cases, a bounded number of steps suffice for
arbitrarily large k.

1. Introduction. The Macdonald polynomials Pλ(x;q, t) are a widely stud-
ied family of symmetric polynomials in variables X = (x1, x2, . . . , xn). Let �k

n

denote the vector space of homogeneous symmetric polynomials of degree k (with
coefficients in Q). The Macdonald inner product is determined by setting the inner
product between power sum symmetric functions pλ as

〈pλ,pμ〉 = δλμzλ(q, t)

with

zλ(q, t) = zλ

∏
i

(
1 − qλi

1 − tλi

)
and zλ =∏

i

iai ai !(1.1)

for λ a partition of k with ai parts of size i.
For each q, t , as λ ranges over partitions of k, the Pλ(x;q, t) are an orthogonal

basis for �k
n. Special values of q, t give classical bases such as Schur functions

(q = t), Hall–Littlewood functions (t = 0) and the Jack symmetric functions (limit
as t → 1 with qα = t). An enormous amount of combinatorics, group theory and
algebraic geometry is coded into these polynomials. A more careful description
and literature review is in Section 2.
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The original definition of Macdonald constructs Pλ(x;q, t) as the eigenfunc-
tions of a somewhat mysterious family of operators Dq,t (z). This is used to develop
their basic properties in [42]. A main result of the present paper is that the Mac-
donald polynomials can be understood through a natural Markov chain M(λ,λ′)
on the partitions of k. For q, t > 1, this Markov chain has stationary distribution

πq,t (λ) = Z

zλ(q, t)
with Z = (q, q)k

(t, q)k
, (x, y)k =

k−1∏
i=0

(1 − xyi).(1.2)

Here zλ(q, t) is the Macdonald weight (1.1), and Z is a normalizing constant. The
coefficients of the Macdonald polynomials expanded in the power sums give the
eigenvectors of M , and there is a simple formula for the eigenvalues.

Here is a brief description of M . From a current partition λ, choose some parts
to delete: call these λJ . This leaves λJc = λ \ λJ . The choice of λJc given λ is
made with probability

wλ(λJc) = 1

qk − 1

k∏
i=1

(
ai(λ)

ai(λJ c)

)
(qi − 1)ai(λ)−ai(λJc ).(1.3)

It is shown in Section 2.4 that for each λ, wλ(·) is a probability distribution with
a simple-to-implement interpretation. Having chosen λJc , choose a partition μ of
size |λ| − |λJc | with probability

π∞,t (μ) = t

t − 1

1

zμ

∏(
1 − 1

t i

)ai(μ)

.(1.4)

Adding μ to λJc gives a final partition ν. These two steps define the Markov chain
M(λ, ν) with stationary distribution πq,t . It will be shown to be a natural extension
of basic algorithms of statistical physics: the Swendsen–Wang and auxiliary vari-
ables algorithms. Properties of the Macdonald polynomials give a sharp analysis
of the running time for M .

Section 2 gives background on Macdonald polynomials (Section 2.1), Markov
chains (Section 2.2) and auxiliary variables algorithms (Section 2.3). The Markov
chain M is shown to be a special case of auxiliary variables and hence is reversible
with πq,t (λ) as stationary distribution. Section 2.4 reviews some of the many dif-
ferent measures used on partitions, showing that wλ and π∞,t above have simple
interpretations and efficient sampling algorithms.

The main theorems are in Section 3. The Markov chain M is identified as one
term of the Macdonald operators Dq,t (z). The coefficients of the Macdonald poly-
nomials in the power sum basis (suitably scaled) are shown to be the eigenfunc-
tions of M with a simple formula for the eigenvalues. Values of the eigenvectors
are derived. A heuristic overview of the argument is given (Section 3.2), which
may be read now for further motivation.

The main theorem is an extension of earlier work by Hanlon [16, 34], giving a
similar interpretation of the coefficients of the family of Jack symmetric functions
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as eigenfunctions of a natural Markov chain: the Metropolis algorithm on the sym-
metric group for generating from the Ewens sampling formula. Section 4 develops
the connection to the present study.

Section 5 gives an analysis of the convergence of iterates of M to the stationary
distribution πq,t for natural values of q and t . Starting from (k), it is shown that a
bounded number of steps suffice for arbitrary k. Starting from 1k , order log k steps
are necessary and sufficient for convergence.

2. Background and examples. This section contains needed background on
four topics: Macdonald polynomials, Markov chains, auxiliary variables algo-
rithms and measures on partitions and permutations. Each of these has a large
literature. We give basic definitions, needed formulas and pointers to literature.
Section 2.3 shows that the Markov chain M of the introduction is a special case of
the auxiliary variables algorithm. Section 2.4 shows that the steps of the algorithm
are easy to run.

2.1. Macdonald polynomials. Let �n be the algebra of symmetric polyno-
mials in n variables (coefficients in Q). There are many useful bases of �n: the
monomial {mλ}, power sum {pλ}, elementary {eλ}, homogeneous {hλ} and Schur
functions {sλ} are bases whose change of basis formulas contain a lot of basic com-
binatorics [53], Chapter 7, [42], Chapter I. More esoteric bases such as the Hall–
Littlewood functions {Hλ(q)}, zonal polynomials {Zλ} and Jack symmetric func-
tions {Jλ(α)} occur as the spherical functions of natural homogeneous spaces [42].
In all cases, as λ runs over partitions of k, the associated polynomials form a basis
of the vector space �k

n, homogeneous symmetric polynomials of degree k.
Macdonald introduced a two-parameter family of bases Pλ(x;q, t) which, spe-

cializing q, t in various ways, gives essentially all the previous bases. The Mac-
donald polynomials can be succinctly characterized by using the inner product
〈pλ,pμ〉 = δλμzλ(q, t) with zλ(q, t) from (1.1). For q, t > 1 this is positive def-
inite, and there is a unique family of symmetric functions P(x;q, t) such that
〈Pλ,Pμ〉q,t = 0 if λ �= μ and Pλ =∑

μ≤λ uλμmμ with uλλ = 1 [42], Chapter VI,
(4.7). The properties of Pλ are developed by studying Pλ as the eigenfunctions of
a family of operators Dq,t (z) from �n to �n.

Define an operator Tu,xi
on polynomials by Tu,xi

f (x1, . . . , xn) = f (x1, . . . , uxi,

. . . , xn). Define Dq,t (z) and Dr
q,t by

Dq,t (z) =
n∑

r=0

Dr
q,t z

r = 1

aδ

∑
w∈Sn

det(w)xwδ
n∏

i=1

(
1 + zt(wδ)i Tq,xi

)
,(2.1)

where δ = (n − 1, n − 2, . . . ,0), aδ is the Vandermonde determinant and xγ =
x

γ1
1 · · ·xγn

n for γ = (γ1, . . . , γn). For any r = 0,1, . . . , n,

Dr
q,t =∑

I

AI (x; t)∏
i∈I

Tq,xi
,(2.2)
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where the sum is over all r-element subsets I of {1,2, . . . , n} and

AI (x; t) = 1

aδ

(∏
Tt,xi

)
aδ = t r(r−1)/2

∏
i∈I,

j /∈I

txi − xj

xi − xj

(2.3)
[42], Chapter VI, (3.4)r .

Macdonald [42], Chapter VI, (4.15), shows that the Macdonald polynomials are
eigenfunctions of Dq,t (z)

Dq,t (z)Pλ(x;q, t) =
n∏

i=1

(1 + zqλi tn−i)Pλ(x;q, t).(2.4)

This implies that the operators Dr
q,t commute and have the Pλ as eigenfunctions

with eigenvalues the r th elementary symmetric function in {qλi tn−i}. We will use
D1

q,t in our work below. The Dr
q,t are self adjoint in the Macdonald inner product

〈Dr
q,tf, g〉 = 〈f,Dr

q,tg〉. This will translate into having πq,t as stationary distribu-
tion.

The Macdonald polynomials may be expanded in the power sums [42], Chap-
ter VI, (8.19),

Pλ(x;q, t) = 1

cλ(q, t)

∑
ρ

[
z−1
ρ

∏
i

(1 − tρi )Xλ
ρ(q, t)

]
pρ(x)(2.5)

with [42], Chapter VI, (8.1), cλ(q, t) =∏
s∈λ(1 − qa(s)t l(s)+1) where the product

is over the boxes in the shape of λ, a(s) the arm length and l(s) the leg length
of box s. The Xλ

ρ(q, t) are closely related to the two-parameter Kostka numbers
Kμλ(q, t) via [42], Chapter VI, (8.20),

Xλ
ρ(q, t) =∑

μ

χλ
ρKμλ(q, t), Kμλ(q, t) =∑

ρ

z−1
ρ χμ

ρ Xλ
ρ(q, t)(2.6)

with χλ
ρ the characters of the symmetric group for the λth representation at the

ρth conjugacy class. These Kμλ(q, t) have been a central object of study in al-
gebraic combinatorics [6, 26, 29–33]. The main result of Section 3 shows that
Xλ

ρ(q, t)
∏

i (1 − qρi ) are the eigenfunctions of the Markov chain M .
The Macdonald polynomials used here are associated to the root system An.

Macdonald [43] has defined analogous functions for the other root systems using
similar operators. In a major step forward, Cherednik [15] gives an independent
development in all types, using the double affine Hecke algebra. See [42, 44] for a
comprehensive treatment. Using this language, Ram and Yip [51] give a “formula”
for the Macdonald polynomials in general type. In general type the double affine
Hecke is a powerful tool for understanding actions. We believe that our Markov
chain can be developed in general type if a suitable analog of the power sum basis
is established.

2.2. Markov chains. Let X be a finite set. A Markov chain on X may be
specified by a matrix M(x,y) ≥ 0,

∑
y M(x, y) = 1. The interpretation being that
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M(x,y) is the chance of moving from x to y in one step. Then M2(x, y) =∑
z M(x, z)M(z, y) is the chance of moving from x to y in two steps, and M�(x, y)

is the chance of moving from x to y in � steps. Under mild conditions, always met
in our examples, there is a unique stationary distribution π(x) ≥ 0,

∑
x π(x) = 1.

This satisfies
∑

x π(x)M(x, y) = π(y). Hence, the (row) vector π is a left eigen-
vector of M with eigenvalue 1. Probabilistically, picking x from π and taking one
further step in the chain leads to the chance π(y) of being at y.

All of the Markov chains used here are reversible, satisfying the detailed bal-
ance condition π(x)M(x, y) = π(y)M(y, x), for all x, y in X . Set L2(X ) to be
{f : X → R} with (f1, f2) = ∑

x π(x)f1(x)f2(x). Then M acts as a contraction
on L2(X ) by Mf (x) = ∑

y M(x, y)f (y). Reversibility is equivalent to M being
self-adjoint. In this case, there is an orthogonal basis of (right) eigenfunctions fi

and real eigenvalues βi,1 = β0 ≥ β1 ≥ · · · ≥ β|X |−1 ≥ −1 with Mfi = βifi . For
reversible chains, if fi(x) is a left eigenvector, then fi(x)/π(x) is a right eigen-
vector with the same eigenvalue.

A basic theorem of Markov chain theory shows that M�
x(y) = M�(x, y)

�→∞ π(y).

(Again, there are mild conditions, met in our examples.) The distance to stationar-
ity can be measured in L1 by the total variation distance,

‖M�
x − π‖TV = max

A⊆X
|M�(x,A) − π(A)| = 1

2

∑
y

|M�(x, y) − π(y)|.(2.7)

Distance is measured in L2 by the chi-squared distance

‖M�
x − π‖2

2 =∑
y

(M�(x, y) − π(y))2

π(y)
=

|X |−1∑
i=1

f̄ 2
i (x)β2�

i ,(2.8)

where f̄i is the eigenvector fi , normalized to have L2-norm 1. The Cauchy–
Schwarz inequality shows

4‖M�
x − π‖2

TV ≤ ‖M�
x − π‖2

2.(2.9)

Using these bounds calls for getting one’s hands on eigenvalues and eigenvectors.
This can be hard work, but it has been done in many cases. A central question is
this: given M,ε > 0, and a starting state x, how large must � be so that ‖M�

x −
π‖TV < ε?

Background on the quantitative study of rates of convergence of Markov chains
is treated in the textbook of Brémaud [13]. The identities and inequalities that ap-
pear above are derived in the very useful treatment by Saloff-Coste [52]. He shows
how tools of analysis can be brought to bear. The recent monograph of Levin,
Peres and Wilmer [40] is readable by nonspecialists and covers both analytic and
probabilistic techniques.

2.3. Auxiliary variables. This is a method of constructing a reversible Markov
chain with π as stationary distribution. It was invented by Edwards and Sokal [22]
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as an abstraction of the remarkable Swendsen–Wang algorithm. The Swendsen–
Wang algorithm was introduced as a superfast method for simulating from the
Ising and Potts models of statistical mechanics. It is a block-spin procedure which
changes large pieces of the current state. A good overview of such block spin
algorithms is in [45]. The abstraction to auxiliary variables is itself equivalent to
several other classes of widely used procedures, data augmentation and the hit-
and-run algorithm. For these connections and much further literature, see [3].

To describe auxiliary variables, let π(x) > 0,
∑

x π(x) = 1 be a probability dis-
tribution on a finite set X . Let I be an auxiliary index set. For each x ∈ X , let wx(i)

be a probability distribution on I (the chance of moving to i). These define a joint
distribution f (x, i) = π(x)wx(i) and a marginal distribution m(i) = ∑

x f (x, i).
Let f (x|i) = f (x, i)/m(i) denote the conditional distribution. The final ingre-
dient needed is a Markov matrix Mi(x, y) with f (x|i) as reversing measure
[f (x|i)Mi(x, y) = f (y|i)Mi(y, x) for all x, y]. This allows for defining

M(x,y) =∑
i

wx(i)Mi(x, y).(2.10)

The Markov chain M has the following interpretation: from x, choose i ∈ I from
wx(i) and then y ∈ X from Mi(x, y). The resulting kernel is reversible with re-
spect to π :

π(x)M(x, y) =∑
i

π(x)wx(i)Mi(x, y) =∑
i

π(y)wy(i)Mi(y, x)

= π(y)
∑
i

wy(i)Mi(y, x) = π(y)M(y, x).

We now specialize things to Pk , the space of partitions of k. Take X = Pk, I =⋃k
i=1 Pi . The stationary distribution is as in (1.2),

π(λ) = πq,t (λ) = Z

zλ(q, t)
.(2.11)

From λ ∈ Pk , the algorithm chooses some parts to delete; call these λJ , leav-
ing parts λJc = λ \ λJ . Thus if λ = 322111 and λJ = 31, λJ c = 2211. We allow
λJ = λ but demand λJ �= ∅. Clearly, λ and λJ determine λJc , and (λ,λJ c) deter-
mines λJ . We let λJc be the auxiliary variable. The choice of λJc given λ is made
with probability

wλ(λJc) = 1

qk − 1

k∏
i=1

(
ai(λ)

ai(λJ c)

)
(qi − 1)ai(λJ )

(2.12)

= 1

qk − 1

k∏
i=1

(
ai(λ)

ai(λJ c)

)
(qi − 1)ai(λ)−ai(λJc ).

Thus, for λ = 13232;λJ = 13, λJ c = 1223;wλ(λJc) = 1
q11−1

(3
2

)(1
1

)(2
1

)
(q − 1)(q2 −

1)0(q3 − 1). It is shown in Section 2.4 below that wλ(λJc) is a probability dis-
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tribution with a simple interpretation. Having chosen λJ with 0 < |λJ | ≤ k, the
algorithm chooses μ  |λJ | with probability π∞,t (μ) given in (1.4). Adding these
parts to λJc gives ν. More carefully,

MλJc (λ, ν) = π∞,t (μ) = t

(t − 1)

1

zμ

∏
i

(
1 − 1

t i

)ai(μ)

.(2.13)

Here it is assumed that λJc is a part of both λ and ν; the kernel MλJc (λ, ν) is zero
otherwise.

It is shown in Section 2.4 below that MλJc has a simple interpretation which is
easy to sample from. The joint density f (λ,λJ c) = π(λ)wλ(λJ c) is proportional
to f (λ|λJc) and to ∏

i (1 − 1/ti)ai(λ)∏
i i

ai(λ)(ai(λ) − ai(λJ c))! .(2.14)

The normalizing constant depends on λJc , but this is fixed in the following.
We must now check reversibility of f (λ|λJc)MλJc (λ, ν). For this, compute
f (λ|λJc)MλJc (λ, ν) (up to a constant depending on λJc ) as∏

i (1 − 1/ti)ai(λ)+ai(ν)∏
i i

ai(λ)+ai(ν)(ai(λ) − ai(λJ c))!(ai(ν) − ai(λJ c))! .
This is symmetric in λ, ν and so equals f (ν|λJc)MλJc (ν, λ). This proves the fol-
lowing:

PROPOSITION 2.1. With definitions (2.11)–(2.14), the kernel on Pk ,

M(λ, ν) =∑
λJc

wλ(λJ c)MλJc (λ, ν)

generates a reversible Markov chain with πq,t (λ) as stationary distribution.

EXAMPLE 1. With k = 2, let

πq,t (2) = Z

2

(t2 − 1)

(q2 − 1)
, πq,t (1

2) = Z

2

(
t − 1

q − 1

)2

for Z = (1 − q)(1 − q2)

(1 − t)(1 − tq)
.

From the definitions, with rows and columns labeled (2), 12, the transition matrix
is

M =

⎛
⎜⎜⎝

1

2

(
1 + 1

t

)
1

2

(
1 − 1

t

)
q − 1

q + 1

1

2

(
1 + 1

t

)
4t + (q − 1)(t − 1)

2(q + 1)t

⎞
⎟⎟⎠

(2.15)

= 1

2t

⎛
⎝ t + 1 t − 1

(q − 1)(t + 1)

q + 1

4t + (q − 1)(t − 1)

q + 1

⎞
⎠ .
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In this k = 2 example, it is straightforward to check that πq,t sums to 1, the rows
of M sum to 1, and that πq,t (λ)M(λ, ν) = πq,t (ν)M(ν,λ).

2.4. Measures on partitions and permutations. The measure πq,t of (1.2) has
familiar specializations: to the distribution of conjugacy classes of a uniform per-
mutation (q = t), and the Ewens sampling measure (qα = t → 1). After recalling
these, the measures wλJc (·) and MλJc (λ, ·) used in the auxiliary variables algo-
rithm are treated. Finally, there is a brief review of the many other, nonuniform
distributions used on partitions Pk and permutations Sk . Along the way, many re-
sults on the “shape” of a typical partition drawn from πq,t appear.

2.4.1. Uniform permutations (q = t). If σ is chosen uniformly on Sk , the
chance that the cycle type of σ is λ is 1/zλ = πq,q(λ). There is a healthy liter-
ature on the structure of random permutations (number of fixed points, cycles of
length i, number of cycles, longest and shortest cycles, order, . . .). This is reviewed
in [25, 49], which also contain extensions to the distribution of conjugacy classes
of finite groups of Lie type.

One natural appearance of the measure 1/zλ comes from the coagulation/frag-
mentation process. This is a Markov chain on partitions of k introduced by
chemists and physicists to study clump sizes. Two parts are chosen with proba-
bility proportional to their size. If different parts are chosen, they are combined.
If the same part is chosen twice, it is split uniformly into two parts. This Markov
chain has stationary distribution 1/zλ. See [2] for a review of a surprisingly large
literature and [18] for recent developments. These authors note that the coagula-
tion/fragmentation process is the random transpositions walk, viewed on conju-
gacy classes. Using the Metropolis algorithm (as in Section 2.4.6 below) gives a
similar process with stationary distribution πq,t .

Algorithmically, a fast way to pick λ with probability 1/zλ is by uniform stick-
breaking: pick U1 ∈ {1, . . . , k} uniformly. Pick U2 ∈ {1, . . . , k − U1} uniformly.
Continue until the first time T that the uniform choice equals its maximum at-
tainable value. The partition with parts U1,U2, . . . ,UT equals λ with probability
1/zλ.

2.4.2. Ewens and Jack measures. Set q = tα , and let t → 1. Then πq,t (λ)

converges to

πα(λ) = Z

zλ

α−�(λ), Z = αkk!∏k−1
i=1 (iα + 1)

,

(2.16)
�(λ) the number of parts of λ.

In population genetics, setting α = 1/θ , with θ > 0 a “fitness parameter,” this
measure is called the Ewens sampling formula. It has myriad practical appearances
through its connection with Kingman’s coalescent process, and has generated a
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large enumerative literature in the combinatorics and probability community [5,
35, 50]. It also makes numerous appearances in the statistics literature through
its occurrence in nonparametric Bayesian statistics via Dirichlet random measures
and the Dubins–Pitman Chinese restaurant process [27] and [50], Section 3.1.

Algorithmically, a fast way to pick λ with probability π1/θ (λ) is by the Chinese
restaurant construction. Picture a collection of circular tables. Person 1 sits at the
first table. Successive people sit sequentially, by choosing to sit to the right of
a (uniformly chosen) previously seated person (probability θ ) or at a new table
(probability 1 − θ ). When k people have been seated, this generates the cycles of
a random permutation with probability π1/θ . It would be nice to have a similar
construction for the measures πq,t .

The Macdonald polynomials associated to this weight function are called the
Jack symmetric functions [42], Chapter VI, Section 1. Hanlon [16, 34] uses
properties of Jack polynomials to diagonalize a related Markov chain; see Sec-
tion 4. When α = 2, the Jack polynomials become the zonal-spherical functions of
GLn/On. Here, an analysis closely related to the present paper is carried out for
a natural Markov chain on perfect matchings and phylogenetic trees [14], Chap-
ter X, [17].

2.4.3. The measure wλ. Fix λ  k with � parts and q > 1. Define, for J ⊆
{1, . . . , �}, J �= ∅,

wλ(J ) = 1

qk − 1

∏
i∈J

(qλi − 1).(2.17)

The auxiliary variables algorithm for sampling from πq,t involves sampling from
wλ(J ), and setting λJ = {λi : i ∈ J }; see (1.3) and (2.12). The measure wλ(J ) has
the following interpretation, which leads to a useful sampling algorithm: consider
k places divided into blocks of length λi ,

− − · · ·−︸ ︷︷ ︸
λ1

− − · · ·−︸ ︷︷ ︸
λ2

· · ·− − · · ·−︸ ︷︷ ︸
λl

, λ1 + · · · + λl = k.

Flip a 1/q coin for each place. Let, for 1 ≤ i ≤ �,

Xi =
{

1, if the ith block is not all ones,
0, otherwise.

(2.18)

Thus P(Xi = 1) = 1 − 1/qλi . Let J = {i :Xi = 1}. So P {J = ∅} = 1 − 1/qk and

P {J |J �= ∅} = 1

1 − 1/qk

∏
i∈J

(
1 − 1

qλi

) ∏
j∈J c

1

qλj
= wλ(J ).(2.19)

This makes it clear that summing wλ(J ) over all nonempty subsets of {1, . . . , �}
gives 1.

The simple rejection algorithm for sampling from wλ is: flip coins as above. If
J �= ∅, output λJ = {λi : i ∈ J }. If J = ∅, sample again. The chance of success is
1 − 1/qk . Thus, unless q is very close to 1, this is an efficient algorithm.
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As q tends to ∞, wλ converges to point mass at J = {1, . . . , k}. As q tends to 1,
wλ converges to the measure putting mass λi/k on {i}.

2.4.4. The measure π∞,t . Generating from the kernel MλJc (λ, ν) of (2.13)
with r = |λ \ λJc |, requires generating a partition in Pr from

π∞,t (μ) =
(

t

t − 1

)
1

zμ

∏
i

(
1 − 1

t i

)ai(μ)

.

This measure has the following interpretation: pick μ(1)  r with probability
1/zμ(1) . This may be done by picking a random permutation in Sr uniformly and re-
porting the cycle decomposition, or by the uniform stick-breaking of Section 2.4.1
above. For each part μ

(1)
j of μ(1), flip a 1/t coin μ

(1)
j times. If this comes up tails

at least once, and this happens simultaneously for each j , set μ = μ(1). If some
part of μ(1) produces all heads, start again and choose μ(2)  r with probability
1/zμ(2) . . . . The chance of failure is 1/t , independent of r . Thus, unless t is close
to 1, this gives a simple, useful algorithm.

The shape of a typical pick from π∞,t is described in the following section.
When t tends to infinity, the measure converges to 1/zμ. When t tends to one, the
measure converges to point mass at the one part partition (r).

2.4.5. Multiplicative measures. For η = (η1, η2, . . . , ηk), ηi ≥ 0, define a
probability on Pk (equivalently, Sk) by

πη(λ) = Z

zλ

k∏
i=1

η
ai(λ)
i with Z−1 = ∑

μk

1

zμ

∏
i

η
ai(μ)
i .(2.20)

Such multiplicative measures are classical objects of study. They are considered
in [5, 9, 23, 54] and [56], where many useful cases are given. The measures πq,t

fall into this class with ηi = (t i−1)

(qi−1)
. If x = (x1, x2, . . .) and y = (y1, y2, . . .) are

two sequences of numbers and Vλ(X) is a multiplicative basis of �k
n such as

{eλ}, {pλ}, {hλ}, setting ηi = Vi(x)Vi(y) gives πη(λ) = Z
zλ

Vλ(x)Vλ(y). This is in
rough analogy to the Schur measures defined in Section 2.4.7. For the choices
eλ,pλ,hλ, with xi, yj positive numbers, the associated measures are positive. The
power sums, with all xi = a, yi = b, gives the Ewens measure with α = ab. Setting
x1 = y1 = c and xj = yj = 0 otherwise, gives the measure 1/zλ after normaliza-
tion. Multiplicative systems are studied in [42], Chapter VI, Section 1, example.

The asymptotic distribution of the parts of a partition chosen from πη when k

is large can be studied by classical tools of combinatorial enumeration. For fixed
values of q, t , these problems fall squarely into the domain of the logarithmic
combinatorial structures studied in [5]. A series of further results for more general
η have been developed by Jiang [37] and Zhao [57]. The following brief survey of
their results gives a good picture of typical partitions.
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Of course, the theorems vary with the choice of ηi . One convenient condition,
which includes the measure πq,t for fixed q, t > 1, is

∞∑
i=1

∣∣∣∣(ηi − 1)

i

∣∣∣∣< ∞.(2.21)

THEOREM 2.2. Suppose ηi,1 ≤ i < ∞, satisfy (2.21). If λ ∈ Pk is chosen
from πη of (2.20), then, for k large:

For any j , the distribution of (a1(λ), . . . , aj (λ)) converges to the
distribution of an independent Poisson vector with parameters ηi/i,
1 ≤ i ≤ j .

(2.22)

The number of parts of λ has mean and variance asymptotic to log k

and, normalized by its mean and standard deviation, a limiting stan-
dard normal distribution.

(2.23)

The length of the k largest parts of λ converge to the Poisson–
Dirichlet distribution [10, 28, 41].

(2.24)

These and other results from [5, 37] show that the parts of a random partition
are quite similar to the cycles of a uniformly chosen random permutation, with
the small cycles having slightly adjusted parameters. These results are used to
give a lower bound on the mixing time of the auxiliary variables Markov chain in
Proposition 3.2 below.

2.4.6. Simulation algorithms. The distribution πq,t (λ) can be far from uni-
form. For example, with k = 10, q = 4, t = 2, π4,2(10)

.= 0.16, π4,2(110)
.= 0. The

auxiliary variables algorithm for the measure πq,t has been programmed by Jiang
[37] and Zhao [57]. It seems to work well over a wide range of q and t . In our
experiments, the choice of q and t does not seriously affect the running time, and
simulations seem possible for k up to 106.

It is natural to try out the simple rejection algorithms of Sections 2.4.3 and 2.4.4
for the measures πη. To begin, suppose that 0 < ηi < 1 for all i. The measure πη

has the following interpretation: pick λ′ ∈ Pk with probability 1/zλ′ . As above,
for each part of λ′ of size i, generate a random variable taking values 1 or 0
with probability ηi,1 − ηi . If the values for all parts equal 1, set λ = λ′. If
not, try again. For more general ηi , divide all ηi by η∗ = maxηi , and generate
from ηi/η

i∗. This yields the measure πη on partitions. Alas, this algorithm per-

forms poorly for ηi and k in ranges of interest. For example, with ηi = t i−1
qi−1

for t = 2, q = 4, when k = 10,11,12,13, the chance of success (empirically) is
1/2,000,1/4,000,1/7,000,1/12,000. We never succeeded in generating a parti-
tion for any k ≥ 15.



1872 P. DIACONIS AND A. RAM

TABLE 1
Mixing times to πq,t for q = 4 and t = 2

k 10 20 30 40 50

Aux 1 1 1 1 1
Met 8 17 26 37 53
p(k) 42 627 5,604 37,338 204,226

We also compare with the Metropolis algorithm. This works by simulat-
ing permutations from πq,t lifted to Sk . From the current permutation σ , pro-
pose σ ′ by making a random transposition [all

(n
2

)
choices equally likely]. If

πq,t (σ
′) ≥ πq,t (σ ), move to σ ′. If πq,t (σ

′)/πq,t (σ ) < 1, flip a coin with proba-
bility πq,t (σ

′)/πq,t (σ ) and move to σ ′ if the coin comes up heads; else stay at σ .
For small values of k, Metropolis is competitive with auxiliary variables. Zhao has
computed the mixing time for k = 10,20,30,40,50 by a clever sampling algo-
rithm. For q = 4, t = 2, Table 1 shows the number of steps required to have total
variation distance less than 1/10 from stationary, starting from the partition (k).
Also shown is p(k), the number of partitions of k, to give a feeling for the size of
the state space (see Table 1).

The theorems of Section 3 show that auxiliary variables requires a bounded
number of steps for arbitrary k. In the computations above, the distance to station-
arity after one step of the auxiliary variables is 0.093 (within a 1% error in the last
decimal) for k = 10, . . . ,50. For larger k (e.g., k = 100), the Metropolis algorithm
seemed to need a very large number of steps to move at all. This is consistent with
other instances of auxiliary variables, such as the Swendsen–Wang algorithm for
the Ising and Potts model (away from the critical temperature; see [11]). Further
numerical examples are in [20].

2.4.7. Other measures on partitions. This portmanteau section gives pointers
to some of the many other measures that have been studied on Pk and Sk . Often
these studies are fascinating, deep, and extensive. All measures studied here seem
distinct from πq,t .

A remarkable two-parameter family of measures on partitions has been intro-
duced by Jim Pitman. For θ ≥ 0,0 ≤ α ≤ 1, and λ  k with � parts, set

Pθ,α(λ) = k!
zλ

θ(α,�−1)

(θ + 1 − α)(1,k−1)

k∏
j=1

[
(1 − α)(1,j−1)]aj (λ)

,

where

θ(a,m) =
{

1, if m = 0,
θ(θ + a) · · · (θ + (m − 1)a

)
, for m = 1,2,3, . . . .
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These measures specialize to 1/zλ (θ = 1, α = 0), and the Ewens measure (θ fixed,
α = 0); see [50], Section 3.2. They arise in a host of probability problems con-
nected to stable stochastic problems of index α. They are also being used in ap-
plied probability connected to genetics and Bayesian statistics. They satisfy elegant
consistency properties as k varies. For example, deleting a random part gives the
corresponding measure on Pk−1. For these and many other developments, see the
book-length treatments of [8] and [50], Section 3.2.

One widely-studied measure on partitions is the Plancherel measure,

p(λ) = f (λ)2/k!
with f (λ) the dimension of the irreducible representation of Sk associated to
shape λ. This measure was perhaps first studied in connection with Ulam’s prob-
lem on the distribution of the length of the longest increasing sequence in a random
permutation; see [41, 55]. For extensive developments and references, see [1, 38].

The Schur measures of [12, 46–48] are generalizations of the Plancherel mea-
sure. Here the chance of λ is taken as proportional to sλ(x)sλ(y), with sλ the Schur
function and x,y collections of real-valued entries. Specializing x and y in vari-
ous ways yields a variety of previously-studied measures. One key property, if the
partition is “tilted 135◦” to make a v-shape and the local maxima projected onto
the x-axis, the resulting points form a determinantal point process with a tractable
kernel. This gives a fascinating collection of shape theorems for the original parti-
tion.

One final distribution, the uniform distribution on Pk , has also been extensively
studied. For example, a uniformly chosen partition has order

√
6k/π parts of

size 1, the largest part is of size (
√

6k/π) · log(
√

6k/π), the number of parts is
of size

√
6k log(k/(2π)). A survey with much more refined results is in [24].

The above only scratches the surface. The reader is encouraged to look at [46–
48] to see the breadth and depth of the subject as applied to Gromov–Witten theory,
algebraic geometry and physics. The measures there seem closely connected to the
“Plancherel dual” of our πq,t . This dual puts mass proportional to c(λ)c′(λ) on λ,
with c, c′ the arm-leg length products defined in Section 3.1 below.

3. Main results. This section shows that the auxiliary variables Markov chain
M with stationary distribution πq,t (λ), λ ∈ Pk , is explicitly diagonalizable with
eigenfunctions fλ(μ) essentially the coefficients of the Macdonald polynomials
expanded in the power sum basis. The result is stated in Section 3.1. The proof,
given in Section 3.3, is somewhat computational. An explanatory overview is in
Section 3.2. In Section 5, these eigenvalue/eigenvector results are used to bound
rates of convergence of M .

3.1. Statement of main results. Fix q, t > 1 and k ≥ 2. Let M(λ,μ) =∑
λJc wλ(λJ c)MλJc (λ,μ) be the auxiliary variables Markov chain on Pk . Here,

wλ(·) and MλJc (λ,μ) are defined in (2.12), (2.13) and studied in Sections 2.4.3
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and 2.4.4. For a partition λ, let

cλ(q, t) = ∏
s∈λ

(
1 − qa(s)t l(s)+1) and c′

λ(q, t) = ∏
s∈λ

(
1 − qa(s)+1t l(s)

)
,(3.1)

where the product is over the boxes in the shape λ, and a(s) is the arm length and
l(s) the leg length of box s [42], Chapter VI, (8.1). Write l(λ) for the number of
parts of the partition λ.

THEOREM 3.1. (1) The Markov chain M(λ, ν) is reversible and ergodic with
stationary distribution πq,t (λ) defined in (1.2). This distribution is properly nor-
malized.

(2) The eigenvalues of M are {βλ}λ∈Pk
given by

βλ = t

qk − 1

�(λ)∑
i=1

(qλi − 1)t−i .

Thus, βk = 1, βk−1,1 = t
qk−1

(
qk−1−1

t
+ q−1

t2 ), . . . .

(3) The corresponding right eigenfunctions are

fλ(ρ) = Xλ
ρ(q, t)

�(ρ)∏
i=1

(1 − qρi )

with Xλ
ρ(q, t) the coefficients occurring in the following expansion of the Macdon-

ald polynomials in terms of the power sums [42], Chapter VI, (8.19):

Pλ(x;q, t) = 1

cλ(q, t)

∑
ρ

[
z−1
ρ Xλ

ρ(q, t)

�(ρ)∏
i=1

(1 − tρi )

]
pρ(x).(3.2)

(4) The fλ(ρ) are orthogonal in L2(πq,t ) with

〈fλ,fμ〉 = δλμcλ(q, t)c′
λ(q, t)

(q, q)k

(t, q)k
.

EXAMPLE 2. When k = 2, the matrix M with rows and columns indexed by 2,
12, is as in (2.15). Macdonald [42], page 359, gives tables of K(λ,μ) for 2 ≤ k ≤ 6.
For k = 2, K(λ,μ) is

(
1
t

q
1

)
. The character matrix is

(
1

−1
1
1

)
, and the product is(

1−q
t−1

1+q
t+1

)
. From Theorem 3.1(3), the rows of this matrix, multiplied coordinate-

wise by (1 − q2), (1 − q)2, give the right eigenvectors

f(2)(2) = f(2)(1
2) = (1 − q)2(1 + q),

f(12)(2) = (t − 1)(1 − q2) and f(12)(1
2) = (t + 1)(1 − q)2.

Then f(2)(ρ) is a constant function, and f(12)(ρ) satisfies
∑

ρ M(λ,ρ)f(12)(ρ) =
β(12)f(12)(λ), with β(12) = 1+t−1

1+q
.
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Further useful formulas, used in Section 5, are [42], Chapter VI, Section 8,
Example 8,

X(k)
ρ (q, t) = (q, q)k

�(ρ)∏
i=1

(1 − tρi ),

X(1k)
ρ (q, t) = (−1)|ρ|−�(ρ)(t, t)k

�(ρ)∏
i=1

(1 − tρi )−1,

(3.3)
Xλ

(k)(q, t) = ∏
(i,j)∈λ

(i,j) �=(1,1)

(t i−1 − qj−1),

Xλ
(1k)

(q, t) = c′
λ(q, t)

(1 − t)k

∑
T

ϕT (q, t)

with the sum over standard tableaux T of shape λ, and ϕT (q, t) from [42], Chap-
ter VI, page 341, (1), and [42], Chapter VI, (7.11).

3.2. Overview of the argument. Macdonald [42], Chapter VI, defines the
Macdonald polynomials as the eigenfunctions of the operator D1

q,t :�n → �n

from (2.2). As described in Section 2.1 above, D1
q,t is self-adjoint for the Mac-

donald inner product and sends �k
n into itself [42], Chapter VI, (4.15). For

λ  k, k ≤ n,

D1
q,tPλ(x;q, t) = β̄λPλ(x;q, t) with β̄λ =

�(λ)∑
i=1

qλi tk−i .(3.4)

The Markov chain M is related to an affine rescaling of the operator D1
q,t , which

Macdonald [42], Chapter VI, (4.1), calls En. We work directly with D1
q,t to give

direct access to Macdonald’s formulas. The affine rescaling is carried out at the
end of Section 3.3 below.

The integral form of Macdonald polynomials [42], Chapter VI, Section 8, is

Jλ(x;q, t) = cλ(q, t)Pλ(x;q, t)

for cλ defined in (3.1). Of course, the Jλ are also eigenfunctions of D1
q,t . The Jλ

may be expressed in terms of the shifted power sums via [42], Chapter VI, (8.19).

Jλ(x;q, t) =∑
ρ

z−1
ρ Xλ

ρ(q, t)pρ(x; t),
(3.5)

pρ(x; t) = pρ(x)

�(ρ)∏
i=1

(1 − tρi ).
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This gives our equation (3.2) above. In Proposition 3.2 below, we compute the
action of D1

q,t on the power sum basis: for λ with � parts,

D1
q,tpλ

def= ∑
μ

M̄(λ,μ)pμ

(3.6)

= [n]pλ + tn

t − 1

∑
J⊆{1,...,�}

pλJc

∏
k∈J

(qλk − 1)
∑

μ|λJ |

∏
m

(1 − t−μm)
pμ

zμ

.

On the right, the coefficient of pλJc pμ is essentially the Markov chain M ; we
use M̄ for this unnormalized version. Indeed, we first computed (3.6) and then
recognized the operator as a special case of the auxiliary variables operator.

Equations (3.4)–(3.6) show that simply scaled versions of Xλ
ρ are eigenvectors

of the matrix M̄ as follows. From (3.4), (3.5),

β̄λPλ(x;q, t) = D1
q,tPλ(x;q, t) = 1

cλ

D1
q,t (Jλ)

= 1

cλ

D1
q,t

(∑
ρ

Xλ
ρ

1

zρ

pρ(x; t)
)

= 1

cλ

∑
ρ

Xλ
ρ

∏
(1 − tρi )

zρ

D1
q,tpρ(x)(3.7)

= 1

cλ

∑
ρ

∏
(1 − tρi )

zρ

Xλ
ρ

∑
μ

M̄(ρ,μ)pμ(x)

= 1

cλ

∑
μ

pμ

∑
ρ

∏
(1 − tρi )

zρ

Xλ
ρM̄(ρ,μ).

Also, from (3.4) and (3.5),

β̄λPλ(x;q, t) = β̄λ

cλ

Jλ(x;q, t) = β̄λ

cλ

∑
μ

Xλ
μ

1

zμ

∏
i

(1 − tμi )pμ(x).(3.8)

Equating coefficients of pμ(x) on both sides of (3.7), (3.8), gives

β̄λ

cλ

Xλ
μ

1

zμ

∏
i

(1 − tμi ) = 1

cλ

∑
ρ

Xλ
ρ

zρ

∏
i

(1 − tρi )M̄(ρ,μ).(3.9)

This shows that hλ(μ) = Xλ
μ

∏
i (1−tμi )

zμ
is a left eigenfunction for M̄ with eigen-

value β̄λ. It follows from reversibility (πq,t (ρ)M̄(ρ,μ) = πq,t (μ)M̄(μ,ρ)) that
hλ(μ)/πq,t (μ) is a right eigenfunction for M̄ . Since πq,t (μ) = Zz−1

μ (q, t), simple
manipulations give the formulae of part (3) of Theorem 3.1.

As explained in Section 2.1 above, the Macdonald polynomials diagonalize a
family of operators Dr

q,t ,0 ≤ r ≤ n. The argument above applies to all of these.



MACDONALD POLYNOMIALS 1877

In essence, the method consists of interpreting equations such as (3.5) as linear
combinations of partitions, equating pλ with λ.

3.3. Proof of Theorem 3.1. As in Section 2.1 above, let Dq,t (z) =∑n
r=0 Dr

q,t ×
zr . Let [n] = ∑n

i=1 tn−i . The main result identifies D1
q,t , operating on the power

sums, as an affine transformation of the auxiliary variables Markov chain. The
following proposition is the first step, providing the expansion of D1

q,t acting on
power sums. A related computation is in [7], Appendix B, Proposition 2.

PROPOSITION 3.2. (a) If f is homogeneous, then

D0
q,tf = f, Dn

q,tf = qdeg(f )f

and

Dn−1
q,t f = tdeg(f )+n(n−1)/2qdeg(f )D1

q−1,t−1f.

(b) If λ = (λ1, . . . , λ�) is a partition, then

D1
q,tpλ = [n]pλ + ∑

J⊆{1,...,�}
J �=∅

pλJc

(∏
k∈J

(qλk − 1)

)

(3.10)

× tn

t − 1

∑
μ|λJ |

(�(μ)∏
m=1

(1 − t−μm)

)
1

zμ

pμ.

PROOF. (a) If f is homogeneous, then

Dn
q,tf = ∑

I⊆{1,...,n}
|I |=n

AI (x; t)∏
i∈I

Tq,xi
f = Tq,x1Tq,x2 · · ·Tq,xnf = qdeg(f )f.(3.11)

By definition,

AI (x; t) = 1

aδ

(∏
i∈I

Tt,xi

)
aδ = t r(r−1)/2

∏
i∈I
j /∈I

txi − xj

xi − xj

.(3.12)

Letting xγ = x
γ1
1 · · ·xγn

n for γ = (γ1, . . . , γn),

Tq,x1Tq,x2 · · · T̂q,xj
· · ·Tq,xnx

γ = qγ1+···+γn−γj x
γ1
1 · · ·xγn

n

= qdeg(xγ )q−γj xγ

= qdeg(xγ )Tq−1,xj
xγ ,

and it follows that

Tq,x1Tq,x2 · · · T̂q,xj
· · ·Tq,xnf = qdeg(f )Tq−1,xj

f,(3.13)
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if f is homogeneous. Thus,

Dn−1
q,t f = ∑

I⊆{1,...,n}
|I |=n−1

AI (x; t)
(∏

i∈I

Tq,xi

)
f

=
n∑

j=1

A{j}c (x; t)Tq,x1 · · · T̂q,xj
· · ·Tq,xnf

=
n∑

j=1

1

aδ

Tt,x1 · · · T̂t,xj
· · ·Tt,xnaδTq,x1 · · · T̂q,xj

· · ·Tq,xnf

=
n∑

j=1

1

aδ

tdeg(f )+deg(aδ)Tt−1,xj
aδq

deg(f )Tq−1,xj
f

= tdeg(f )+n(n−1)/2qdeg(f )
n∑

j=1

Aj(x; t−1)Tq−1,xj
f

= tdeg(f )+n(n−1)/2qdeg(f )D1
q−1,t−1f.

Hence,

Dn−1
q,t f = tdeg(f )+n(n−1)/2qdeg(f )D1

q−1,t−1f.(3.14)

(b) By [42], Chapter VI, (3.7), (3.8),

D1,t (z)mλ = ∑
β∈Snλ

(
n∏

i=1

(1 + ztn−i)

)
sβ =

(
n∏

i=1

(1 + ztn−i)

) ∑
β∈Snλ

sβ

=
(

n∏
i=1

(1 + ztn−i)

)
mλ =

n∑
r=0

t r(r−1)/2
[
n

r

]
zrmλ,

where mλ denotes the monomial symmetric function. Thus, since Dq,t (z) =∑n
r=0 Dr

q,t z
r and

Dr
1,t = ∑

I⊆{1,...,n}
|I |=r

AI (x; t)∏
i∈I

T1,xi
= ∑

I⊆{1,...,n}
|I |=r

AI (x; t),

it follows that
n∑

j=1

Aj(x; t)f = D1
1,tf = [n]f(3.15)

for a symmetric function f . By [42], Chapter VI, Section 3, Example 2,

(t − 1)

n∑
i=1

Ai(x; t)xr
i = tngr(x;0, t−1) − δ0r ,(3.16)
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where, from [42], Chapter VI, (2.9),

gr(x;q, t) =∑
λn

zλ(q, t)−1pλ(x)

with zλ(q, t) as in (1.1).
Let λ = (λ1, . . . , λ�) be a partition, and

for J ⊆ {1, . . . , �} let λJ = (λj1, . . . , λjk
) if J = {j1, . . . , jk}.

Then, using

Tq,xi
pr = qrxr

i − xr
i + pr = (qr − 1)xr

i + pr,(3.17)

(3.16) and (3.15),

D1
q,tpλ =

n∑
j=1

Aj(x; t)Tq,xj
pλ1 · · ·pλ�

=
n∑

j=1

Aj(x; t)((qλ1 − 1)x
λ1
j + pλ1

) · · · ((qλ� − 1)x
λ�

j + pλ�

)

=
n∑

j=1

Aj(x; t) ∑
J⊆{1,...,�}

(∏
k∈J

(qλk − 1)

)
x

|λJ |
j

∏
s /∈J

pλs

= ∑
J⊆{1,...,�}

∏
s /∈J

pλs

(∏
k∈J

(qλk − 1)

) n∑
j=1

Aj(x; t)x|λJ |
j

= ∑
j=1

Aj(x; t)pλ + ∑
J⊆{1,...,�}

J �=∅

pλJc

(∏
k∈J

(qλk − 1)

)
tn

t − 1
g|λJ |(x;0, t−1)

= [n]pλ + ∑
J⊆{1,...,�}

J �=∅

pλJc

(∏
k∈J

(qλk − 1)

)
tn

t − 1

∑
μ|λJ |

1

zμ(0; t−1)
pμ

= [n]pλ + ∑
J⊆{1,...,�}

J �=∅

pλJc

(∏
k∈J

(qλk − 1)

)

× tn

t − 1

∑
μ|λJ |

(
�(μ)∏
m=1

(1 − t−μm)

)
1

zμ

pμ.
�

Let us show that the measure πq,t (λ) is properly normalized and compute the
normalization of the eigenvectors.
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LEMMA 3.3. Let πq,t (λ) be as in (1.2) and let fλ(ρ) = Xλ
ρ

∏�(ρ)
i=1 (1 − qρi ) be

as in Theorem 3.1(3). Then

∑
λk

πq,t (λ) = 1 and
∑
ρk

f 2
λ (ρ)πq,t (λ) = (q, q)k

(t, q)k
cλc

′
λ.

PROOF. From [42], Chapter VI, (2.9), (4.9), the Macdonald polynomial
P(k)(x;q, t) can be written

P(k) = (q, q)k

(t, q)k
· gk = (q, q)k

(t, q)k

∑
λk

zλ(q, t)−1pλ.

From [42], Chapter VI, (4.11), (6.19),

〈Pλ,Pλ〉 = c′
λ/cλ,

and it follows that

∑
λk

πq,t (λ) = (q, q)k

(t, q)k

∑
λk

zλ(q, t)−1 = (t, q)k

(q, q)k

〈
P(k),P(k)

〉= (t, q)k

(q, q)k

c′
(k)

c(k)

= 1.

To get the normalization of fλ(ρ) = Xλ
ρ

∏�(ρ)
i=1 (1 − qρi ) in Theorem 3.1(4), use

(3.5) and

cλc
′
λ = (cλ)

2〈Pλ,Pλ〉 = 〈Jλ, Jλ〉

= ∑
ρk

z−2
ρ

(
Xλ

ρ(q, t)

�(ρ)∏
i=1

(1 − tρi )

)2

〈pρ,pρ〉

= ∑
ρk

z−1
ρ

(
Xλ

ρ(q, t)
∏

(1 − tρi )
)2 �(ρ)∏

i=1

(1 − qρi )

(1 − tρi )

= ∑
ρk

f 2
λ (ρ)z−1

ρ (q, t) = (t, q)k

(q, q)k

∑
ρk

f 2
λ (ρ)πq,t (λ).

�

We next show that an affine renormalization of the discrete version M̄ (3.5) of
the Macdonald operator equals the auxiliary variables Markov chain of Section 2.3.
Along with Macdonald [42], Chapter VI, (4.1), define

Ek = t−kD1
q,t −

k∑
i=1

t−i and let Ẽk = t

qk − 1
Ek,

operating on �k
n. From (3.3), the eigenvalues of Ek are βλ =∑�(λ)

i=1 (qλi − 1)t−i .

Noting that β(k) = qk−1
t

, the operator Ẽk is a normalization of Ek with top eigen-
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value 1. From Proposition 3.2(b), for λ a partition with � parts,

Ẽkpλ = 1

(1 − t−1)(qk − 1)

∑
J⊆{1,...,�}

J �=∅

∏
k∈J

(qλk − 1)pλJc

∑
μ|λJ |

�(μ)∏
i=1

(1 − t−k)
pμ

zμ

.

Using pλ as a surrogate for λ as in Section 3.2, the coefficient of ν = λJcμ is
exactly M(λ, ν) of Section 2.3.

This completes the proof of Theorem 3.1.

EXAMPLE 3. When k = 2, from the definitions

Ẽ2p2 =
(

1 − t−1

2

)
p12 +

(
1 + t−1

2

)
p2,

Ẽ2p12 = 1

2(q + 1)

(
(q + 3 − qt−1 + t−1)p12 + (q − 1)(1 + t−1)p2

)
.

Thus, on partitions of 2, the matrix of Ẽ2 is the matrix of (2.15), derived there from
the probabilistic description.

4. Jack polynomials and Hanlon’s walk. The Jack polynomials are a one-
parameter family of bases for the symmetric polynomials, orthogonal for the
weight 〈pλ,pμ〉α = α�(λ)zλδλμ. They are an important precursor to the full two-
parameter Macdonald polynomial theory, containing several classical bases: the
limits α = 0, α = ∞, suitably interpreted, give the {eλ}, {mλ} bases; α = 1 gives
Schur functions; α = 2 gives zonal polynomials for GLn/On; α = 1

2 gives zonal
polynomials for GLn(H)/Un(H) where H is the quaternions (see [42], Chap-
ter VII). A good deal of the combinatorial theory for Macdonald polynomials was
first developed in the Jack case. Further, the Jack theory has been developed in
more detail [34, 39, 53] and [42], Chapter VI, Section 10.

Hanlon [34] managed to interpret the differential operators defining the Jack
polynomials as the transition matrix of a Markov chain on partitions with station-
ary distribution πα(λ) = Zα−�(λ)/zλ, described in Section 2.4.2 above. In later
work [16], this Markov chain was recognized as the Metropolis algorithm for gen-
erating πα from the proposal of random transpositions. This gives one of the few
cases where this important algorithm can be fully diagonalized. See [36] for a
different perspective.

Our original aim was to extend Hanlon’s findings, adding a second “sufficient
statistic” to �(λ), and discovering a Metropolis-type Markov chain with the Mac-
donald coefficients as eigenfunctions. It did not work out this way. The auxiliary
variables Markov chain makes more vigorous moves than transpositions, and there
is no Metropolis step. Nevertheless, as shown below, Hanlon’s chain follows from
interpreting a limiting case of D1

α , one of Macdonald’s Dr
α operators. We believe



1882 P. DIACONIS AND A. RAM

that all of the operators Dr
α should have interesting interpretations. In this section,

we indicate how to derive Hanlon’s chain from the Macdonald operator perspec-
tive.

Overview. There are several closely-related operators used to develop the Jack
theory. Macdonald [42], Chapter VI, Section 3, Example 3, uses Dα(u) and Dr

α ,
defined by

Dα(u) =
n∑

r=0

Dr
αun−r = 1

aδ

∑
w∈Sn

det(w)xwδ
n∏

i=1

(
u + (wδ)i + αxi

∂

∂xi

)
,(4.1)

where δ = (n − 1, n − 2, . . . ,1,0), aδ is the Vandermonde determinant, and
xγ = x

γ1
1 · · ·xγn

n for γ = (γ1, . . . , γn). He shows [42], Chapter VI, Section 3, Ex-
ample 3c, that

Dα(u) = lim
t→1

zn

(t − 1)n
Dtα,t (z

−1) if z = (t − 1)u − 1,(4.2)

so that the Jack operators are a limiting case of Macdonald polynomials. Macdon-
ald [42], Chapter VI, Section 4, Example 2b, shows that the Jack polynomials Jα

λ

are eigenfunctions of Dα(u) with eigenvalues βλ(α) =∏n
i=1(u + n − i + αλi).

Stanley [53], proof of Theorem 3.1, and Hanlon [34], (3.5), use D(α) defined
as follows. Let

∂i = ∂

∂xi

, Un = 1

2

n∑
i=1

x2
i ∂2

i , Vn =∑
i �=j

x2
i

xi − xj

∂i and(4.3)

D(α) = αUn + Vn.(4.4)

Hanlon computes the action of D(α) on the power sums in the form [see (4.7)]

D(α)pλ = (n − 1)rpλ + α

(
r

2

)∑
μ

�μλ(α)pμ,(4.5)

where n is the number of variables, and λ is a partition of r .
The matrix �μλ(α) can be interpreted as the transition matrix of the following

Markov chain on the symmetric group Sr . For w ∈ Sr , set c(w) = # cycles. If the
chain is currently at w1, pick a transposition (i, j) uniformly; set w2 = w1(i, j). If
c(w2) = c(w1)+1, move to w2. If c(w2) = c(w1)−1, move to w2 with probability
1/α; else stay at w1. This Markov chain has transition matrix

Hα(w1,w2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(r
2

) , if w2 = w1(i, j) and c(w2) = c(w1) + 1,

1

α
(r
2

) , if w2 = w1(i, j) and c(w2) = c(w1) − 1,

n(w1)(1 − α−1)(r
2

) , if w1 = w2,
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where n(w1) =∑
i (i − 1)λi for w1 of cycle type λ. Hanlon notes that this chain

only depends on the conjugacy class of w1, and the induced process on conjugacy
classes is still a Markov chain for which the transition matrix is the matrix of
�μλ(α) of (4.5).

The Jack polynomial theory now gives the eigenvalues of the Markov chain
Hα(w1,w2), and shows that the corresponding eigenvectors are the coefficients
when the Jack polynomials are expanded in the power sum basis. The formulas
available for Jack polynomials then allow for a careful analysis of rates of conver-
gence to stationarity; see [16, 37].

We may see this from the present perspective as follows.

PROPOSITION 4.1. Let Dα(u) and D(α) be defined by (4.1), (4.4).

(a) Let Dt
α be the coefficient of un−t in Dα(u) (see [42], Chapter VI, Section 3,

Example 3d). If f is a homogeneous polynomial in x1, . . . , xn of degree r , then

D0
αf = f, D1

α(f ) = (
αr + 1

2n(n − 1)
)
f and

(4.6)
D2

αf = (−α2Un − αVn + cn)f,

where

cn = 1
2α2r(r − 1) + 1

2αrn(n − 1) + 1
24n(n − 1)(n − 2)(3n − 1).

(b) From [53], proof of Theorem 3.1,

D(α)pλ = 1

2
pλ

(
s∑

k=1

αλk(λk − 1) + α

s∑
j,k=1
j �=k

λjλkpλj+λk

pλj
pλk

(4.7)

+
s∑

k=1

λk(2n − λk − 1) +
s∑

k=1

λk

pλk

λk−1∑
m=1

pλk−mpm

)
.

From part (a), up to affine rescaling, D2
α is the Stanley–Hanlon operator. From

part (b), this operates on the power sums in precisely the way that the Metropolis
algorithm operates. Indeed, multiplying a permutation w by a transposition (i, j)

changes the number of cycles by one; the change takes place by fusing two cy-
cles [the first term in (4.7)] or by breaking one of the cycles in w into parts [the
second term in (4.7)]. The final term constitutes the “holding” probability from the
Metropolis algorithm. The proof of Proposition 4.1 is a lengthy but straightforward
computation. See [20] for the details.

5. Rates of convergence. This section uses the eigenvectors and eigenval-
ues derived above to give rates of convergence for the auxiliary variables Markov
chain. Section 5.1 states the main results: starting from the partition (k) a bounded
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number of steps suffice for convergence, independent of k. Section 5.2 contains
an overview of the argument and needed lemmas. Section 5.3 gives the proof of
Theorem 5.1, and Section 5.4 develops the analysis starting from (1k), showing
that logq(k) steps are needed.

5.1. Statement of main results. Fix q, t > 1 and k ≥ 2. Let Pk be the partitions
of k,πq,t (λ) = Z/zλ(q, t) the stationary distribution defined in (1.2), and M(λ, ν)

the auxiliary variables Markov chain defined in Proposition 2.1. The total variation
distance ‖M�

(k) − πq,t‖TV used below is defined in (2.7).

THEOREM 5.1. Consider the auxiliary variables Markov chain on partitions
of k ≥ 4. Then, for all � ≥ 2,

4
∥∥M�

(k) − πq,t

∥∥2
TV ≤ 1

(1 − q−1)3/2(1 − q−2)2

(
1

q
+ 1

tqk/2

)2�

(5.1)

+ k

(
t

t − 1

)(
2

qk/4

)2�

.

For example, if q = 4, t = 2 and k = 10 the bound becomes 1.76(0.26)2� +
20(1/512)2�. Thus, when � = 2 the total variation distance is at most 0.05 in this
example.

5.2. Outline of proof and basic lemmas. Let {fλ,βλ}λk be the eigenfunctions
and eigenvalues of M given in Theorem 3.1. From Section 2.2, for any starting
state ρ,

4‖M�
ρ − πq,t‖2

TV ≤∑
λ

(M�(ρ,λ) − πq,t (λ))2

πq,t (λ)
= ∑

λ�=(k)

f̄ 2
λ (ρ)β2�

λ(5.2)

with f̄λ right eigenfunctions normalized to have norm one. At the end of this sub-
section we prove the following:

∑
λ

f̄ 2
λ (ρ) = 1

πq,t (ρ)
for any ρ ∈ Pk,(5.3)

(
1 − t−k

1 − t−1

)
1

kπq,t (k)
is an increasing sequence bounded by (1 − q−1)−1/2,(5.4)

βλ is monotone increasing in the usual partial order (moving up boxes);
in particular, βk−1,1 is the second largest eigenvalue and all βλ > 0,

(5.5)

βk−r,r ∼ 2

qr
.(5.6)
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Using these results, consider the sum on the right-hand side of (5.2), for λ with
largest part λ1 less than k − r . Using monotonicity, (5.5) and the bound (5.3),

∑
λ : λ1≤k−r

f̄ 2
λ (k)β2�

λ ≤
(

2

qr

)�

π−1
q,t (k) ≤ t

t − 1

(
2

qr

)�

k.(5.7)

By taking r = k/4 gives the second term on the right-hand side of (5.1).
Using monotonicity again,

∑
λ�=(k)

λ1>k−j∗

f̄ 2
λ (k)β2�

λ ≤
j∗∑

r=1

β2�
(k−r,r)

∑
γr

f̄ 2
(k−r,γ )(k).(5.8)

The argument proceeds by looking carefully at f̄ 2
λ and showing

f̄ 2
(k−r,γ )(k) ≤ cf̄ 2

γ (r)(5.9)

for a constant c. In (5.9) and throughout this section, c = c(q, t) denotes a positive
constant which depends only on q and t , but not on k. Its value may change from
line to line. Using (5.3) on Pr shows

∑
λ′r f̄ 2

λ′(r) = π−1
q,t (r) ∼ cr . Using this and

(5.6) in (5.8) gives an upper bound

∑
λ�=(k)

λ1≥k−j∗

f̄ 2
λ (ρ)β2�

λ ≤ c

j∗∑
r=1

(
2

qr

)�

r.(5.10)

This completes the outline for starting state (k).
This section concludes by proving the preliminary results announced above.

LEMMA 5.2. For any ρ ∈ Pk , the normalized eigenfunctions f̄λ(ρ) satisfy

∑
λk

f̄λ(ρ)2 = 1

πq,t (ρ)
.

PROOF. The {f̄λ} are orthonormal in L2(πq,t ). Fix ρ ∈ Pk , and let δρ(ν) = δρν

be the measure concentrated at ρ. Expand the function g(ν) = δρ(ν)/πq,t (ρ)

in this basis: g(ν) = ∑
λ〈g|f̄λ〉f̄λ(ν). Using the Plancherel identity,

∑
g(ν)2 ×

πq,t (ν) = ∑
λ〈g|f̄λ〉2. Here, the left-hand side equals π−1

q,t (ρ) and 〈g|f̄λ〉 =∑
ν g(ν)f̄λ(ν)πq,t (ν) = f̄λ(ρ). So the right-hand side is the needed sum of

squares. �

The asymptotics in (5.4) follow from the following lemma.
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LEMMA 5.3. For q, t > 1, the sequence

Pk =
(

1 − t−k

1 − t−1

)
1

kπq,t (k)
= (1 − q−k)

(1 − t−1)

qk

tk

(t, q)k

(q, q)k

=
k−1∏
j=1

1 − t−1q−j

1 − q−j

is increasing and bounded by 1√
1−q−1

.

PROOF. The equalities follow from the definitions of πq,t (λ), (t, q)k and

(q, q)k . Since 1−t−1q−k

1−q−k > 1, the sequence is increasing. The bound follows from

∞∏
j=1

1 − t−1q−j

1 − q−j
= exp

( ∞∑
j=1

log(1 − t−1q−j ) − log(1 − q−j )

)

= exp

( ∞∑
j=1

∞∑
n=1

(
q−jn

n
− t−nq−jn

n

))

= exp

( ∞∑
n=1

∞∑
j=1

q−jn(1 − t−n)

n

)

= exp

( ∞∑
n=1

(1 − t−n)

n

q−n

1 − q−n

)

= exp

( ∞∑
n=1

(1 − t−n)

qn − 1

1

n

)
≤ exp

( ∞∑
n=1

1

2qnn

)

= exp
(
−1

2
log(1 − q−1)

)
= 1√

1 − q−1
.

�

REMARK. The function P∞ = limk→∞ Pk is an analytic function of q, t for
|q|, |t | > 1, thoroughly studied in the classical theory of partitions [4], Section 2.2.

For the next lemma, recall the usual dominance partial order on Pk :λ ≥ μ if
λ1 + · · · + λi ≥ μ1 + · · · + μi for all i [42], Chapter I, Section 1. This amounts
to “moving up boxes” in the diagram for μ. Thus (k) is largest, (1k) smallest.
When k = 6, (5,1) > (4,2) > (3,3), but (3,3) and (4,1,1) are not comparable.
The following result shows that the eigenvalues βλ are monotone in this order.
A similar monotonicity holds for the random transpositions chain [21], the Ewens
sampling chain [16] and the Hecke algebra deformation chain [19].
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LEMMA 5.4. For q, t > 1, the eigenvalues

βλ = t

qk − 1

�(λ)∑
j=1

(qλj − 1)t−j

are monotone in λ.

PROOF. Consider first a partition λ, i < j , with a = λi ≥ λj = b, where mov-
ing one box from row i to row j is allowed. It must be shown that qa+1t−i +
qb−1t−j > qat−i + qbt−j . Equivalently,

qa+1 + qb−1t−(j−i) > qa + qbt−(j−i)

or

qa+1tj−i + qb−1 > qatj−i + qb

or

qatj−i(q − 1) > qb−1(q − 1).

Since tj−i > 1 and qa−b+1 > 1, this always holds. �

By elementary manipulations, qa−1
qb−1

<
qa

qb = 1
qb−a for 1 < a < b, so that

β(k−r,r) = t

qk − 1

(
qk−r − 1

t
+ qr − 1

t2

)
≤ 1

qr
+ 1

tqk−r

(5.11)

= 1

qr

(
1 + 1

tqk−2r

)
,

which establishes (5.6).

5.3. Proof of Theorem 5.1. From Theorem 3.1, the normalized eigenvectors
are given by

f̄λ(k)2 = (Xλ
(k)(q

k − 1))2

cλc
′
λ

· (t, q)k

(q, q)k
(5.12)

where Xλ
(k) = ∏

(i,j)∈λ

(i,j) �=(1,1)

(t i−1 − qj−1),

and cλ and c′
λ are given by (3.1).
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LEMMA 5.5. For λ = (k − r, γ ), with γ  r and r ≤ k/2,

f̄λ(k)2 ≤ f̄γ (r)2 (1 − q−k)2

(1 − q−r )2

qk

tk

(t, q)k

(q, q)k

tr

qr

(q, q)r

(t, q)r
,

PROOF. Let λ = (k − r, γ ) with γ  r and r ≤ k/2. Let U be the boxes in the
first row of λ, and let L be the shaded boxes in the figure above.

For a box s in λ, let i(s) be the row number and j (s) the column number of s.
Then (Xλ

(k)

X
γ
(r)

)2

=
∏

(i,j)∈λ,(i,j) �=(1,1)(t
i−1 − qj−1)2∏

(i,j)∈γ,(i,j) �=(1,1)(t
i−1 − qj−1)2

= ∏
s∈L

(
t i(s)−1 − qj (s)−1)2 = ∏

s∈U

(
t l(s) − qj (s)−1)2

=
γ1∏

m=1

(tγ
′
m − qm−1)2

k−r∏
m=γ1+1

(1 − qm−1)2,

where γ ′
m is the length of the mth column of γ . Next,

cλc
′
λ

cγ c′
γ

=
∏

s∈λ(1 − qa(s)t l(s)+1)(1 − qa(s)+1t l(s))∏
s∈γ (1 − qa(s)t l(s)+1)(1 − qa(s)+1t l(s))

= ∏
s∈U

(
1 − qa(s)t l(s)+1)(1 − qa(s)+1t l(s)

)

=
γ1∏

m=1

(1 − qk−r−mtγ
′
m+1)(1 − qk−r−m+1tγ

′
m)

×
k−r∏

m=γ1+1

(1 − qk−r−mt)(1 − qk−r−m+1)

= q−2(k−r)(k−r−1)
γ1∏

m=1

(tγ
′
m+1qk−r−1 − qm−1)(tγ

′
mqk−r − qm−1)

×
k−r∏

m=γ1+1

(tqk−r−1 − qm−1)(qk−r − qm−1).
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Thus,(Xλ
(k)

X
γ
(r)

)2 cγ c′
γ

cλc
′
λ

= q2(k−r)(k−r−1)
γ1∏

m=1

(tγ
′
m − qm−1)

(tγ
′
m+1qk−r−1 − qm−1)

(tγ
′
m − qm−1)

(tγ
′
mqk−r − qm−1)

×
k−r∏

m=γ1+1

(1 − qm−1)

(tqk−r−1 − qm−1)

(1 − qm−1)

(qk−r − qm−1)
.

Since k − r − 1 ≥ m − 1 and t > 1, then tγ
′
m+1qk−r−1 − qm−1 > 0, so that

q−(k−r−1)t−1 < 1 implies

(tγ
′
m − qm−1)

(tγ
′
m+1qk−r−1 − qm−1)

< q−(k−r−1)t−1.

Similarly, since k − r > m − 1 and t > 1, then tγ
′
mqk−r − qm−1 > 0, so that

q−(k−r) < 1 implies

(tγ
′
m − qm−1)

(tγ
′
mqk−r − qm−1)

< q−(k−r).

Similarly, t−1q−(k−r−1) and q−(k−r) < 1 imply

(1 − qm−1)

(tqk−r−1 − qm−1)
< t−1q−(k−r−1) and

(1 − qm−1)

(qk−r − qm−1)
< q−(k−r).

So (Xλ
(k)

X
γ
(r)

)2 cγ c′
γ

cλc
′
λ

≤ q2(k−r)(k−r−1)
γ1∏

m=1

(
q−(k−r−1)t−1)(q−(k−r))

×
k−r∏

m=γ1+1

(
t−1q−(k−r−1))(q−(k−r))

= q2(k−r)(k−r−1)t−(k−r)q−(k−r)2
q−(k−r−1)(k−r)

= q−(k−r)t−(k−r).

Thus,

f̄λ(k)2

f̄γ (r)2
=
(Xλ

(k)

X
γ
(r)

)2 cγ c′
γ

cλc
′
λ

(qk − 1)2

(qr − 1)2

(t, q)k

(q, q)k

(q, q)r

(t, q)r

≤ 1

qk−r tk−r

(qk − 1)2

(qr − 1)2

(t, q)k

(q, q)k

(q, q)r

(t, q)r
. �

We may now bound the upper bound sum on the right-hand side of (5.2). Fix
j∗ ≤ k/2. Using monotonicity (Lemma 5.4), Lemmas 5.2, 5.3 and the definition
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of πq,t (r) from (1.2),

∑
λ�=(k)

λ1≥k−j∗

f̄λ(k)2β2�
λ =

j∗∑
r=1

∑
λ=(k−r,γ )

β2�
(k−r,γ )f̄λ(k)2

≤
j∗∑

r=1

∑
λ=(k−r,γ )

β2�
(k−r,r)f̄λ(k)2

≤
j∗∑

r=1

β2�
(k−r,r)

∑
γr

f̄γ (r)2 (1 − q−k)2

(1 − q−r )2

qk

tk

(t, q)k

(q, q)k

tr

qr

(q, q)r

(t, q)r

≤
j∗∑

r=1

β2�
(k−r,r)

1

πq,t (r)

(1 − q−k)2

(1 − q−r )2

qk

tk

(t, q)k

(q, q)k

tr

qr

(q, q)r

(t, q)r

≤
j∗∑

r=1

β2�
(k−r,r)r

qr

tr

(t, q)r

(q, q)r

(1 − q−r )

(1 − t−r )

(1 − q−k)2

(1 − q−r )2

× qk

tk

(t, q)k

(q, q)k

tr

qr

(q, q)r

(t, q)r

≤ (1 − q−k)2 qk

tk

(t, q)k

(q, q)k

j∗∑
r=1

rβ2�
(k−r,r)

1

(1 − q−r )(1 − t−r )

≤ (1 − q−k)2

(1 − q−1)(1 − t−1)

qk

tk

(t, q)k

(q, q)k

j∗∑
r=1

rβ2�
(k−r,r).

Using (5.11) and Lemma 5.3 gives

∑
λ�=(k)

λ1≥k−j∗

f̄λ(k)2β2�
λ ≤ (1 − q−k)

(1 − q−1)

(
k−1∏
j=1

1 − t−1q−j

1 − q−j

) j∗∑
r=1

r

q2r�

(
1 + 1

tqk−2r

)2�

≤ (1 − q−k)

(1 − q−1)

( ∞∏
j=1

1 − t−1q−j

1 − q−j

)(
1 + 1

tqk−2j∗

)2� j∗∑
r=1

r

q2r�

≤ (1 − q−k)

(1 − q−1)3/2

(
1 + 1

tqk−2j∗

)2� 1

q2�

(
1 − 1

q2�

)−2

≤ (1 − q−k)

(1 − q−1)3/2

1

(1 − q−2)2

(
1

q
+ 1

tqk−2j∗+1

)2�
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by Lemma 5.2. Choose j∗ (of order k/4) so that k − 2j∗ + 1 = k/2. Then

∑
λ�=(k)

λ1≥k−j∗

f̄λ(k)2β2�
λ ≤ 1

(1 − q−1)3/2(1 − q−2)2

(
1

q
+ 1

tqk/2

)2�

with a as in the statement of Theorem 5.1.
Now use∑

λ
λ1<3k/4

f̄λ(k)2β2�
λ ≤ ∑

λ
λ1<3k/4

f̄λ(k)2β2�
(3k/4,k/4)

≤∑
λ

f̄λ(k)2β2�
(3k/4,k/4) ≤ 1

πq,t (k)
β2�

(3k/4,k/4)

= tk

qk

(q, q)k

(t, q)k

(1 − t−k)

(1 − q−k)
kβ2�

(3k/4,k/4)

≤ k
(1 − t−k)

(1 − t−1)

(
k−1∏
j=1

1 − q−j

1 − t−1q−j

)(
1

qk/4

(
1 + 1

tqk/2

))2�

so that ∑
λ

λ1<3k/4

f̄λ(k)2β2�
λ ≤ k

t

t − 1

(
2

qk/4

)2�

.(5.13)

This completes the proof of Theorem 5.1.

5.4. Bounds starting at (1k). We have not worked as seriously at bounding the
chain starting from the partition (1k). The following results show that logq(k) steps
are required, and offer evidence for the conjecture that logq(k) + θ steps suffice
[where the distance to stationarity tends to zero with θ , so there is a sharp cutoff at
logq(k)].

The L2 or chi-square distance on the right-hand side of (5.2) has first term
β2�

k−1,1f̄
2
k−1,1(1

k).

LEMMA 5.6. For fixed q, t > 1, as k tends to infinity,

f̄(k−1,1)(1
k)2 =

(X
(k−1,1)

(1k)
(q − 1)k)2

c(k−1,1)c
′
(k−1,1)(q, q)k/(t, q)k

∼
(

1 − q−1

1 − t−1

)
k2.

PROOF. From (3.3) and the definition of ϕT (q, t) from [42], Chapter VI,
page 341, (1), and [42], Chapter VI, (7.11),

X
(k−1,1)

(1k)
= c′

(k−1,1)(q, t)

(1 − t)k

∑
T

ϕT (q, t) = c′
(k−1,1)

(1 − t)k

(
(1 − t)k

(1 − q)k
p

)
= c′

(k−1,1)

(1 − q)k
p
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with

p =
(

(1 − t2)/(1 − qt)

(1 − t)/(1 − q)
+ (1 − qt2)/(1 − q2t)

(1 − qt)/(1 − q2)

+ (1 − q2t2)/(1 − q3t)

(1 − q2t)/(1 − q3)
+ · · · + (1 − qk−2t2)/(1 − qk−1t)

(1 − qk−2t)/(1 − qk−1)

)
.

Using the definition of c(k−1,1) and c′
(k−1,1) from (3.1), and the definition of (t, q)k

and (q, q)k from (1.2),

f̄(k−1,1)(1
k)2

=
(X

(k−1,1)

(1k)
(1 − q)k)2(t, q)k

c(k−1,1)c
′
(k−1,1)(q, q)k

= c′
(k−1,1)p

2

c(k−1,1)

(t, q)k

(q, q)k

= (t, q)k

(q, q)k

(1 − q)(1 − tqk−1)(1 − q)(1 − q2) · · · (1 − qk−2)

(1 − t)(1 − t2qk−2)(1 − t)(1 − tq) · · · (1 − tqk−3)
p2

= (1 − tqk−2)(1 − tqk−1)

(1 − qk−1)(1 − qk)

(1 − q)(1 − tqk−1)

(1 − t)(1 − t2qk−2)
p2

= (1 − t−1q−(k−2))(1 − t−1q−(k−1))

(1 − q−(k−1))(1 − q−k)

(1 − q−1)(1 − t−1q−(k−1))

(1 − t−1)(1 − t−2q−(k−2))
p2,

and the result follows, since p ∼ k for k large. �

COROLLARY 5.7. There is a constant c such that, for all k, � ≥ 2,

χ2
(1k)

(�) =∑
λ

(M�((1k), λ) − πq,t (λ))2

πq,t (λ)
≥ c

(
1 − q−1

1 − t−1

)
k2

q2�
.

PROOF. Using only the lead term in the expression for χ2
(1k)

(�) in (5.4) gives

the lower bound β2�
(k−1,1)f̄

2
(k−1,1)(1

k). The formula for β(k−1,1) in Theorem 3.1(2)

gives β(k−1,1) ≥ 1
q

, and the result then follows from Lemma 5.6. �

The corollary shows that if � = logq(k) + θ,χ2
1k (�) ≥ c

q2θ . Thus, more than
logq(k) steps are required to drive the chi-square distance to zero. In many ex-
amples, the asymptotics of the lead term in the bound (5.2) sharply controls the
behavior of total variation and chi-square convergence. We conjecture this is the
case here, and that there is a sharp cut-off at logq(k).

It is easy to give a total variation lower bound:

PROPOSITION 5.8. For the auxiliary variables chain M(λ,λ′), after � steps
with � = logq(k) + θ , for k large and θ < − t−1

q−1 ,∥∥M�
(1k)

− πq,t

∥∥
TV ≥ e−(t−1)/(q−1) − e−1/qθ + o(1).
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PROOF. Consider the Markov chain starting from λ = (1k). At each stage, the
algorithm chooses some parts of the current partition to discard, with probability
given by (1.3). From the detailed description given in Section 2.4.3, the chance of
a specific singleton being eliminated is 1/q . Of course, in the replacement stage
(1.4) this (and more singletons) may reappear. Let T be the first time that all of the
original singletons have been removed at least once; this T depends on the history
of the entire Markov chain. Then T is distributed as the maximum of k independent
geometric random variables {Xi}ki=1 with P(Xi > �) = 1/q� (here Xi is the first
time that the ith singleton is removed).

Let A = {λ ∈ Pk :a1(λ) > 0}. From the definition∥∥M�
(1k)

− πq,t

∥∥
TV = max

B⊆Pk

|M�((1k),B) − πq,t (B)| ≥ |M�((1k),A) − πq,t (A)|
and

M�((1k),A) ≥ P {T > �} = 1 − P {T ≤ �}
= 1 − P {maxXi ≤ �}
= 1 − P(X1 ≤ �)k

= 1 − ek log(1−P(X1>�))

= 1 − ek log(1−1/q�)

∼ 1 − e−k/q�

= 1 − e−1/qθ

.

From the limiting results in Section 2.4.5, under πq,t , a1(λ) has an approximate
Poisson ( t−1

q−1) distribution. Thus, πq,t (A) ∼ 1 − e−(t−1)/(q−1). The result follows.
�
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