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A FUNCTIONAL LIMIT THEOREM FOR DEPENDENT
SEQUENCES WITH INFINITE VARIANCE STABLE LIMITS

BY BOJAN BASRAK1, DANIJEL KRIZMANIĆ AND JOHAN SEGERS2

University of Zagreb, University of Rijeka and Université catholique de Louvain

Under an appropriate regular variation condition, the affinely normalized
partial sums of a sequence of independent and identically distributed ran-
dom variables converges weakly to a non-Gaussian stable random variable.
A functional version of this is known to be true as well, the limit process being
a stable Lévy process. The main result in the paper is that for a stationary, reg-
ularly varying sequence for which clusters of high-threshold excesses can be
broken down into asymptotically independent blocks, the properly centered
partial sum process still converges to a stable Lévy process. Due to clustering,
the Lévy triple of the limit process can be different from the one in the inde-
pendent case. The convergence takes place in the space of càdlàg functions
endowed with Skorohod’s M1 topology, the more usual J1 topology being
inappropriate as the partial sum processes may exhibit rapid successions of
jumps within temporal clusters of large values, collapsing in the limit to a sin-
gle jump. The result rests on a new limit theorem for point processes which is
of independent interest. The theory is applied to moving average processes,
squared GARCH(1,1) processes and stochastic volatility models.

1. Introduction. Consider a stationary sequence of random variables (Xn)n≥1
and its accompanying sequence of partial sums Sn = X1 + · · · + Xn,n ≥ 1. The
main goal of this paper is to investigate the asymptotic distributional behavior of
the D[0,1] valued process

Vn(t) = a−1
n

(
S�nt� − �nt�bn

)
, t ∈ [0,1],

under the properties of weak dependence and regular variation with index α ∈
(0,2), where (an)n is a sequence of positive real numbers such that

nP(|X1| > an) → 1(1.1)
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as n → ∞ and

bn = E
(
X11{|X1|≤an}

)
.

Here, �x� represents the integer part of the real number x, and D[0,1] is the space
of real-valued càdlàg functions on [0,1].

Recall that if the sequence (Xn)n is i.i.d. and if there exist real sequences a′
n > 0

and b′
n and a nondegenerate random variable S such that as n → ∞

Sn − b′
n

a′
n

d→ S,(1.2)

then S is necessarily an α-stable random variable. In standard terminology, the
law of X1 belongs to the domain of attraction of S. The domain of attraction of
non-Gaussian stable random variables can be completely characterized by an ap-
propriate regular variation condition; see (2.1) below. Classical references in the
i.i.d. case are the books by Gnedenko and Kolmogorov [20], Feller [19] and Petrov
[38]. In LePage et al. [32] one can find an elegant probabilistic proof of sufficiency
and a nice representation of the limiting distribution.

Weakly dependent sequences can exhibit very similar behavior. The first results
in this direction were rooted in martingale theory (see Durrett and Resnick [17]). In
[11], Davis proved that if a regularly varying sequence of random variables (Xn)n
has tail index 0 < α < 2 and satisfies a strengthened version of Leadbetter’s D

and D′ conditions familiar from extreme value theory, then (1.2) holds for some
α-stable random variable S and properly chosen normalizing sequences. These
conditions are quite restrictive, however, even excluding m-dependent sequences.
Extensions to Davis’s results were provided in Denker and Jakubowski [16] and
Jakubowski and Kobus [26], the latter paper being the first one in which clustering
of big values is allowed. Using classical blocking techniques, necessary and suf-
ficient conditions for convergence of sums of weakly dependent random variables
to stable laws are given in two papers by Jakubowski [24, 25]. The case of associ-
ated sequences was treated in Dabrowski and Jakubowski [9]. In [12], Davis and
Hsing showed that sequences which satisfy a regular variation condition for some
α ∈ (0,2) and certain mixing conditions also satisfy (1.2) with an α-stable limit.
Building upon the same point process approach, Davis and Mikosch [13] gener-
alized these results to multivariate sequences. A survey of these results is to be
found in Bartkiewicz et al. [3], providing a detailed study of the conditions for the
convergence of the partial sums of a strictly stationary process to an infinite vari-
ance stable distribution. In this paper, the parameters of the limiting distribution
are determined in terms of some tail characteristics of the underlying stationary
sequence.

The asymptotic behavior of the processes Vn as n → ∞ is an extensively studied
subject in the probability literature, too. As the index of regular variation α is
assumed to be less than 2, the variance of X1 is infinite. In the finite-variance case,
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functional central limit theorems differ considerably and have been investigated in
greater depth (see, e.g., Billingsley [7], Herrndorf [23], Merlevède and Peligrad
[34], and Peligrad and Utev [37]).

A functional limit theorem for the processes Vn for infinite variance i.i.d. reg-
ularly varying sequences (Xn) was established in Skorohod [45], a very readable
proof of which can be found in Resnick [41]. For stationary sequences, this ques-
tion was studied by Leadbetter and Rootzén [31] and Tyran-Kamińska [48]. Essen-
tially, what they showed is that the functional limit theorem holds in Skorohod’s J1

topology if and only if certain point processes of extremes converge to a Poisson
random measure, which in turn is equivalent to a kind of nonclustering property for
extreme values. The implication is that for many interesting models, convergence
in the J1 topology cannot hold. This fact led Avram and Taqqu [2] and Tyran-
Kamińska [49] to opt for Skorohod’s M1 topology instead, a choice which turns
out to work for linear processes with regularly varying innovations and nonneg-
ative coefficients; see Section 3 for the definition of the M1 topology. For some
more recent articles with related but somewhat different subjects we refer to Sly
and Heyde [46] who obtained nonstandard limit theorems for functionals of regu-
larly varying sequences with long-range Gaussian dependence structure, and also
to Aue et al. [1] who investigated the limit behavior of the functional CUSUM
statistic and its randomly permuted version for i.i.d. random variables which are in
the domain of attraction of a strictly α-stable law, for α ∈ (0,2).

The main theorem of our article shows that for a stationary, regularly vary-
ing sequence for which clusters of high-threshold excesses can be broken down
into asymptotically independent blocks, the properly centered partial sum process
(Vn(t))t∈[0,1] converges to an α-stable Lévy process in the space D[0,1] endowed
with Skorohod’s M1 metric under the condition that all extremes within one such
cluster have the same sign. Our method of proof combines some ideas used in
the i.i.d. case by Resnick [40, 41] with a new point process convergence result
and some particularities of the M1 metric on D[0,1] that can be found in Whitt
[50]. The theorem can be viewed as a generalization of results in Leadbetter and
Rootzén [31] and Tyran-Kamińska [48], where clustering of extremes is essen-
tially prohibited, and in Avram and Taqqu [2] and Tyran-Kamińska [49], which
are restricted to linear processes.

The paper is organized as follows. In Section 2 we determine precise conditions
needed to separate clusters of extremes asymptotically. We also prove a new limit
theorem for point processes which is the basis for the rest of the paper and which
is of independent interest, too. In Section 3 we state and prove our main func-
tional limit theorem. We also discuss possible extensions of this result to other
topologies. Finally, in Section 4 several examples of stationary sequences covered
by our main theorem are discussed, in particular moving averages and squared
GARCH(1,1) processes.
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2. Stationary regularly varying sequences. The extremal dynamics of a reg-
ularly varying stationary time series can be captured by its tail process, which is
the conditional distribution of the series, given that at a certain moment, it is far
away from the origin (Section 2.1). In particular, the tail process allows explicit
descriptions of the limit distributions of various point processes of extremes (Sec-
tion 2.2). The main result in this section is Theorem 2.3, providing the weak limit
of a sequence of time-space point processes, recording both the occurrence times
and the values of extreme values.

2.1. Tail processes. Denote E = R \ {0} where R = [−∞,∞]. The space E

is equipped with the topology which makes it homeomorphic to [−1,1] \ {0} (Eu-
clidean topology) in the obvious way. In particular, a set B ⊂ E has compact clo-
sure if and only if it is bounded away from zero, that is, if there exists u > 0 such
that B ⊂ Eu = E \ [−u,u]. Denote by C+

K(E) the class of all nonnegative, contin-
uous functions on E with compact support.

We say that a strictly stationary process (Xn)n∈Z is (jointly) regularly varying
with index α ∈ (0,∞) if for any nonnegative integer k, the k-dimensional random
vector X = (X1, . . . ,Xk) is multivariate regularly varying with index α; that is,
for some (and then for every) norm ‖ · ‖ on R

k there exists a random vector � on
the unit sphere S

k−1 = {x ∈ R
k :‖x‖ = 1} such that for every u ∈ (0,∞) and as

x → ∞,
P(‖X‖ > ux,X/‖X‖ ∈ ·)

P(‖X‖ > x)

w→ u−αP(� ∈ ·),(2.1)

the arrow “
w→” denoting weak convergence of finite measures. For an extensive

and highly-readable account of (multivariate) regular variation, see the monograph
by Resnick [41].

Theorem 2.1 in Basrak and Segers [5] provides a convenient characterization
of joint regular variation: it is necessary and sufficient that there exists a process
(Yn)n∈Z with P(|Y0| > y) = y−α for y ≥ 1 such that as x → ∞,(

(x−1Xn)n∈Z | |X0| > x
) fidi→ (Yn)n∈Z,(2.2)

where “
fidi→” denotes convergence of finite-dimensional distributions. The process

(Yn)n∈Z is called the tail process of (Xn)n∈Z. Writing �n = Yn/|Y0| for n ∈ Z, we
also have (

(|X0|−1Xn)n∈Z | |X0| > x
) fidi→ (�n)n∈Z

(see Corollary 3.2 in [5]). The process (�n)n∈Z is independent of |Y0| and is called
the spectral (tail) process of (Xn)n∈Z. The law of �0 = Y0/|Y0| ∈ S

0 = {−1,1}
is the spectral measure of the common marginal distribution of the random vari-
ables Xi . Regular variation of this marginal distribution can be expressed in terms
of vague convergence of measures on E: for an as in (1.1) and as n → ∞,

nP(a−1
n Xi ∈ ·) v→ μ(·),(2.3)
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the Radon measure μ on E being given by

μ(dx) = (
p1(0,∞)(x) + q1(−∞,0)(x)

)
α|x|−α−1 dx,(2.4)

where

p = P(�0 = +1) = lim
x→∞

P(Xi > x)

P(|Xi | > x)
,

q = P(�0 = −1) = lim
x→∞

P(Xi < −x)

P(|Xi | > x)
.

2.2. Point process convergence. Define the time-space point processes

Nn =
n∑

i=1

δ(i/n,Xi/an) for all n ∈ N(2.5)

with an as in (1.1). The aim of this section is to establish weak convergence of
Nn in the state space [0,1] × Eu for u > 0, where Eu = [−∞,−u) ∪ (u,∞]. The
limit process is a Poisson superposition of cluster processes, whose distribution is
determined by the tail process (Yi)i∈Z. Convergence of Nn was already alluded to
without proof in Davis and Hsing [12] with a reference to Mori [36].

To control the dependence in the sequence (Xn)n∈Z we first have to assume that
clusters of large values of |Xn| do not last for too long.

CONDITION 2.1 (Finite mean cluster size). There exists a positive integer se-
quence (rn)n∈N such that rn → ∞ and rn/n → 0 as n → ∞ and such that for
every u > 0,

lim
m→∞ lim sup

n→∞
P
(

max
m≤|i|≤rn

|Xi | > uan

∣∣ |X0| > uan

)
= 0.(2.6)

Put M1,n = max{|Xi | : i = 1, . . . , n} for n ∈ N. In Proposition 4.2 in [5], it has
been shown that under Condition 2.1 we have θ > 0, where

θ = lim
r→∞ lim

x→∞ P(M1,r ≤ x | |X0| > x)

(2.7)
= P

(
sup
i≥1

|Yi | ≤ 1
)

= P
(

sup
i≤−1

|Yi | ≤ 1
)
.

Moreover P(lim|n|→∞ |Yn| = 0) = 1, and, for every u ∈ (0,∞) and as n → ∞,

P(M1,rn ≤ anu | |X0| > anu) = P(M1,rn > anu)

rnP(|X0| > anu)
+ o(1) → θ,(2.8)

and thus

lim
n→∞ E

[
rn∑

t=1

1(anu,∞)(Xt)
∣∣∣ M1,rn > anu

]
= 1

θ
< ∞.
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This explains why we call Condition 2.1 the “finite mean cluster size” condition.
In the setting of Theorem 2.3 below, the quantity θ in (2.7) is the extremal index of
the sequence (|Xn|)n∈Z (see [5], Remark 4.7): for all u ∈ (0,∞) and as n → ∞,

P(M1,n ≤ anu) = (
P(|X1| ≤ anu)

)nθ + o(1) → e−θu−α

.

See Section 3.4.2 for further discussion.
Since P(M1,rn > anu) → 0 as n → ∞, we call the point process

rn∑
i=1

δ(anu)−1Xi
conditionally on M1,rn > anu

a cluster process, to be thought of as a cluster of exceptionally large values occur-
ring in a relatively short time span. Theorem 4.3 in [5] yields the weak convergence
of the sequence of cluster processes in the state space E,(

rn∑
i=1

δ(anu)−1Xi

∣∣∣ M1,rn > anu

)
d→

(∑
n∈Z

δYn

∣∣∣ sup
i≤−1

|Yi | ≤ 1
)
.(2.9)

Note that since |Yn| → 0 almost surely as |n| → ∞, the point process
∑

n δYn is
well defined in E. By (2.7), the probability of the conditioning event on the right-
hand side of (2.9) is nonzero.

To establish convergence of Nn in (2.5), we need to impose a certain mixing
condition denoted by A′(an) which is slightly stronger than the condition A(an)

introduced in Davis and Hsing [12].

CONDITION 2.2 (A′(an)). There exists a sequence of positive integers (rn)n
such that rn → ∞ and rn/n → 0 as n → ∞ and such that for every f ∈
C+

K([0,1] × E), denoting kn = �n/rn�, as n → ∞,

E

[
exp

{
−

n∑
i=1

f

(
i

n
,
Xi

an

)}]
−

kn∏
k=1

E

[
exp

{
−

rn∑
i=1

f

(
krn

n
,
Xi

an

)}]
→ 0.(2.10)

It can be shown that Condition 2.2 is implied by the strong mixing property (see
Krizmanić [30]). Recall Eu = E \ [−u,u].

THEOREM 2.3. If Conditions 2.1 and 2.2 hold, then for every u ∈ (0,∞) and
as n → ∞,

Nn|[0,1]×Eu

d→ N(u) = ∑
i

∑
j

δ
(T

(u)
i ,uZij )

∣∣[0,1]×Eu

in [0,1] × Eu, where:

(1)
∑

i δT
(u)
i

is a homogeneous Poisson process on [0,1] with intensity θu−α ;
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(2) (
∑

j δZij
)i is an i.i.d. sequence of point processes in E, independent of∑

i δT
(u)
i

, and with common distribution equal to the weak limit in (2.9).

It can be shown that Theorem 2.3 is still valid if Eu is replaced by Eu =
[−∞,−u] ∪ [u,∞].

PROOF OF THEOREM 2.3. Let (Xk,j )j∈N, with k ∈ N, be independent copies
of (Xj )j∈N, and define

N̂n =
kn∑

k=1

N̂n,k with N̂n,k =
rn∑

j=1

δ(krn/n,Xk,j /an).

By Condition 2.2, the weak limits of Nn and N̂n must coincide. By Kallenberg
[27], Theorem 4.2, it is enough to show that the Laplace functionals of N̂n converge
to those of N(u). Take f ∈ C+

K([0,1] × Eu). We extend f to the whole of [0,1] ×
E by setting f (t, x) = 0 whenever |x| ≤ u; in this way, f becomes a bounded,
nonnegative and continuous function on [0,1] × E. There exists M ∈ (0,∞) such
that 0 ≤ f (t, x) ≤ M1[−u,u]c (x). Hence as n → ∞,

1 ≥ Ee−N̂n,kf ≥ Ee−M
∑rn

i=1 1(|Xi |>anu)

≥ 1 − MrnP(|X0| > anu) = 1 − O(k−1
n ).

In combination with the elementary bound 0 ≤ − log z − (1 − z) ≤ (1 − z)2/z for
z ∈ (0,1], it follows that as n → ∞,

− log Ee−N̂nf = −
kn∑

k=1

log Ee−N̂n,kf =
kn∑

k=1

(1 − Ee−N̂n,kf ) + O(k−1
n ).

By (2.8), knP(M1,rn > anu) → θu−α for u ∈ (0,∞) and as n → ∞. Hence

kn∑
k=1

(1 − Ee−N̂n,kf )

= knP(M1,rn > anu)
1

kn

kn∑
k=1

E
[
1 − e

−∑rn
j=1 f (krn/n,Xj /an)|M1,rn > anu

]
(2.11)

= θu−α 1

kn

kn∑
k=1

E
[
1 − e

−∑rn
j=1 f (krn/n,Xj /an)|M1,rn > anu

] + o(1).

Let the random variable Tn be uniformly distributed on {krn/n :k = 1, . . . , kn} and
independent of (Xj )j∈Z. By the previous display, as n → ∞,

kn∑
k=1

(1 − Ee−N̂n,kf ) = θu−αE
[
1 − e

−∑rn
j=1 f (Tn,uXj /(uan))|M1,rn > anu

] + o(1).
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The sequence Tn converges in law to a uniformly distributed random variable T

on (0,1). By (2.9) and by independence of sequences (Tn) and (Xn)(
Tn,

rn∑
i=1

δ
a−1
n Xi

∣∣∣ M1,rn > anu

)
d→

(
T ,

∑
n∈Z

δuZn

)
,

where
∑

n δZn is a point process on E, independent of the random variable T and
with distribution equal to the weak limit in (2.9). Thus the expressions in (2.11)
converge as n → ∞ to

θu−αE
[
1 − e−∑

j f (T ,uZj )] =
∫ 1

0
E

[
1 − e−∑

j f (t,uZj )]θu−α dt.(2.12)

It remains to be shown that the right-hand side above equals − log Ee−N(u)f for
N(u) as in the theorem.

Define g(t) = E exp{−∑
j f (t, uZj )} for t ∈ [0,1]. Since

∑
i δT

(u)
i

is indepen-

dent of the i.i.d. sequence (
∑

j δZij
)i ,

Ee−N(u)f = Ee−∑
i

∑
j f (T

(u)
i ,uZij )

= E
[∏

i

E
(
e−∑

j f (T
(u)
i ,uZij ) | (

T
(u)
k

)
k

)] = Ee
∑

i logg(T
(u)
i ).

The right-hand side is the Laplace functional of a homogeneous Poisson process
on [0,1] with intensity θu−α evaluated in the function − logg. Therefore, it is
equal to

exp
(
−

∫ 1

0
{1 − g(t)}θu−α dt

)
(see, e.g., Embrechts et al. [18], Lemma 5.1.12; note that 0 ≤ g ≤ 1). By the defini-
tion of g, the integral in the exponent is equal to the one in (2.12). This completes
the proof of the theorem. �

3. Functional limit theorem. The main result in the paper states convergence
of the partial sum process Vn to a stable Lévy process in the space D[0,1] equipped
with Skorohod’s M1 topology. The core of the proof rests on an application of the
continuous mapping theorem: the partial sum process Vn is represented as the im-
age of the time-space point process Nn in (2.5) under a certain summation func-
tional. This summation functional enjoys the right continuity properties by which
the weak convergence of Nn in Theorem 2.3 transfers to weak convergence of Vn.

The definition and basic properties of the M1 topology are recalled in Sec-
tion 3.1. In Section 3.2, the focus is on the summation functional and its continuity
properties. The main result of the paper then comes in Section 3.3. The conditions
entering this theorem are discussed in Section 3.4, while Section 3.5 provides some
simplifications.
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3.1. The M1 topology. The metric dM1 that generates the M1 topology on
D[0,1] is defined using completed graphs. For x ∈ D[0,1] the completed graph
of x is the set

�x = {(t, z) ∈ [0,1] × R : z = λx(t−) + (1 − λ)x(t) for some λ ∈ [0,1]},
where x(t−) is the left limit of x at t . Besides the points of the graph {(t, x(t)) : t ∈
[0,1]}, the completed graph of x also contains the vertical line segments joining
(t, x(t)) and (t, x(t−)) for all discontinuity points t of x. We define an order on
the graph �x by saying that (t1, z1) ≤ (t2, z2) if either (i) t1 < t2 or (ii) t1 = t2 and
|x(t1−)−z1| ≤ |x(t2−)−z2|. A parametric representation of the completed graph
�x is a continuous nondecreasing function (r, u) mapping [0,1] onto �x , with r

being the time component and u being the spatial component. Let �(x) denote the
set of parametric representations of the graph �x . For x1, x2 ∈ D[0,1] define

dM1(x1, x2) = inf
{‖r1 − r2‖[0,1] ∨ ‖u1 − u2‖[0,1] : (ri, ui) ∈ �(xi), i = 1,2

}
,

where ‖x‖[0,1] = sup{|x(t)| : t ∈ [0,1]}. This definition introduces dM1 as a metric
on D[0,1]. The induced topology is called Skorohod’s M1 topology and is weaker
than the more frequently used J1 topology which is also due to Skorohod.

The M1 topology allows for a jump in the limit function x ∈ D[0,1] to be ap-
proached by multiple jumps in the converging functions xn ∈ D[0,1]. Let, for
instance,

xn(t) = 1
21[1/2−1/n,1/2)(t) + 1[1/2,1](t), x(t) = 1[1/2,1](t)

for n ≥ 3 and t ∈ [0,1]. Then dM1(xn, x) → 0 as n → ∞, although (xn)n does not
converge to x in either the uniform or the J1 metric. For more discussion of the
M1 topology we refer to Avram and Taqqu [2] and Whitt [50].

3.2. Summation functional. Fix 0 < v < u < ∞. The proof of our main theo-
rem depends on the continuity properties of the summation functional

ψ(u) : Mp([0,1] × Ev) → D[0,1]
defined by

ψ(u)

(∑
i

δ(ti ,xi )

)
(t) = ∑

ti≤t

xi1{u<|xi |<∞}, t ∈ [0,1].

Observe that ψ(u) is well defined because [0,1]×Eu is a relatively compact subset
of [0,1] × Ev . The space Mp of Radon point measures is equipped with the vague
topology, and D[0,1] is equipped with the M1 topology.

We will show that ψ(u) is continuous on the set 
 = 
1 ∩ 
2, where


1 = {
η ∈ Mp([0,1] × Ev) :η({0,1} × Eu) = 0 = η([0,1] × {±∞,±u})},


2 = {
η ∈ Mp([0,1] × Ev) :η

({t} × (v,∞]) ∧ η
({t} × [−∞,−v)

) = 0

for all t ∈ [0,1]};
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we write s ∧ t for min(s, t). Observe that the elements of 
2 have the property that
atoms with the same time coordinate are all on the same side of the time axis.

LEMMA 3.1. Assume that with probability one, the tail process (Yi)i∈Z in
(2.2) has no two values of the opposite sign. Then P(N(v) ∈ 
) = 1.

The assumption that the tail process cannot switch sign will reappear in our
main result, Theorem 3.4. For linear processes, for instance, it holds as soon as all
coefficients are of the same sign.

PROOF. From the definition of the tail process (Yi)i∈Z we know that P(Yi =
±∞) = 0 for any i ∈ Z. Moreover, by the spectral decomposition Yi = |Y0|�i into
independent components |Y0| and �i with |Y0| a Pareto random variable, it follows
that Yi cannot have any atoms except possibly at the origin. As a consequence, it
holds with probability one that

∑
j δvYj

({±u}) = 0 and thus that
∑

j δvZij
({±u}) =

0 as well. Together with the fact that P(
∑

i δT
(v)
i

({0,1}) = 0) = 1 this implies

P(N(v) ∈ 
1) = 1.
Second, the assumption that with probability one the tail process (Yi)i∈Z has no

two values of the opposite sign yields P(N(v) ∈ 
2) = 1. �

LEMMA 3.2. The summation functional ψ(u) : Mp([0,1] × Ev) → D[0,1] is
continuous on the set 
, when D[0,1] is endowed with Skorohod’s M1 metric.

PROOF. Suppose that ηn
v→ η in Mp for some η ∈ 
. We will show that

ψ(u)(ηn) → ψ(u)(η) in D[0,1] according to the M1 topology. By Whitt [50],
Corollary 12.5.1, M1 convergence for monotone functions amounts to pointwise
convergence in a dense subset of points plus convergence at the endpoints. Our
proof is based on an extension of this criterion to piecewise monotone functions.
This cut-and-paste approach is justified in view of [50], Lemma 12.9.2, provided
that the limit function is continuous at the cutting points.

As [0,1] × Eu is relatively compact in [0,1] × Ev there exists a nonnegative
integer k = k(η) such that

η([0,1] × Eu) = k < ∞.

By assumption, η does not have any atoms on the horizontal lines at u or −u. As a
consequence, by Resnick [41], Lemma 7.1, there exists a positive integer n0 such
that for all n ≥ n0 it holds that

ηn([0,1] × Eu) = k.

If k = 0, there is nothing to prove, so assume k ≥ 1, and let (ti, xi) for i ∈ {1, . . . , k}
be the atoms of η in [0,1]× Eu. By the same lemma, the k atoms (t

(n)
i , x

(n)
i ) of ηn
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in [0,1] × Eu (for n ≥ n0) can be labeled in such a way that for i ∈ {1, . . . , k}, we
have (

t
(n)
i , x

(n)
i

) → (ti, xi) as n → ∞.

In particular, for any δ > 0 we can find a positive integer nδ such that for all n ≥ nδ ,

ηn([0,1] × Eu) = k,
(3.1) ∣∣t (n)

i − ti
∣∣ < δ and

∣∣x(n)
i − xi

∣∣ < δ for i = 1, . . . , k.

Let the sequence

0 < τ1 < τ2 < · · · < τp < 1

be such that the sets {τ1, . . . , τp} and {t1, . . . , tk} coincide. Note that p ≤ k always
holds, but since η can have several atoms with the same time coordinate, equality
does not hold in general. Put τ0 = 0, τp+1 = 1, and take

0 < r <
1

2
min

0≤i≤p
|τi+1 − τi |.

For any t ∈ [0,1] \ {τ1, . . . , τp} we can find δ ∈ (0, u) such that

δ < r and δ < min
1≤i≤p

|t − τi |.

Then relation (3.1), for n ≥ nδ , implies that t
(n)
i ≤ t is equivalent to ti ≤ t , and we

obtain ∣∣ψ(u)(ηn)(t) − ψ(u)(η)(t)
∣∣ =

∣∣∣∣ ∑
t
(n)
i ≤t

x
(n)
i − ∑

ti≤t

xi

∣∣∣∣ ≤ ∑
ti≤t

δ ≤ kδ.

Therefore

lim
n→∞

∣∣ψ(u)(ηn)(t) − ψ(u)(η)(t)
∣∣ ≤ kδ,

and if we let δ → 0, it follows that ψ(u)(ηn)(t) → ψ(u)(η)(t) as n → ∞. Put

vi = τi + r, i ∈ {1, . . . , p}.
For any δ < u ∧ r , relation (3.1) and the fact that η ∈ 
 imply that the func-
tions ψ(u)(η) and ψ(u)(ηn) (n ≥ nδ) are monotone on each of the intervals
[0, v1], [v1, v2], . . . , [vp,1]. A combination of Corollary 12.5.1 and Lemma 12.9.2
in [50] yields dM1(ψ

(u)(ηn),ψ
(u)(η)) → 0 as n → ∞. The application of

Lemma 12.9.2 is justified by continuity of ψ(u)(η) in the boundary points
v1, . . . , vp . We conclude that ψ(u) is continuous at η. �
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3.3. Main theorem. Let (Xn)n be a strictly stationary sequence of random
variables, jointly regularly varying with index α ∈ (0,2) and tail process (Yi)i∈Z.
The theorem below gives conditions under which its partial sum process satisfies a
nonstandard functional limit theorem with a non-Gaussian α-stable Lévy process
as a limit. Recall that the distribution of a Lévy process V (·) is characterized by its
characteristic triple, that is, the characteristic triple of the infinitely divisible dis-
tribution of V (1). The characteristic function of V (1) and the characteristic triple
(a, ν, b) are related in the following way:

E
[
eizV (1)] = exp

(
−1

2
az2 + ibz +

∫
R

(
eizx − 1 − izx1[−1,1](x)

)
ν(dx)

)
for z ∈ R; here a ≥ 0, b ∈ R are constants, and ν is a measure on R satisfying

ν({0}) = 0 and
∫

R

(|x|2 ∧ 1)ν(dx) < ∞;
that is, ν is a Lévy measure. For a textbook treatment of Lévy processes we refer
to Bertoin [6] and Sato [42]. The description of the Lévy triple of the limit process
will be in terms of the measures ν(u) (u > 0) on E defined for x > 0 by

ν(u)(x,∞) = u−αP
(
u

∑
i≥0

Yi1{|Yi |>1} > x, sup
i≤−1

|Yi | ≤ 1
)
,

(3.2)

ν(u)(−∞,−x) = u−αP
(
u

∑
i≥0

Yi1{|Yi |>1} < −x, sup
i≤−1

|Yi | ≤ 1
)
.

In case α ∈ [1,2), we will need to assume that the contribution of the smaller
increments of the partial sum process is close to its expectation. The name of the
condition is borrowed from Bartkiewicz et al. [3], Section 2.4; see Section 3.4.4
for a discussion on this assumption.

CONDITION 3.3 (Vanishing small values). For all δ > 0,

lim
u↓0

lim sup
n→∞

P

[
max

0≤k≤n

∣∣∣∣∣
k∑

i=1

(
Xi

an

1{|Xi |/an≤u} − E
(

Xi

an

1{|Xi |/an≤u}
))∣∣∣∣∣> δ

]
= 0.

THEOREM 3.4. Let (Xn)n∈N be a strictly stationary sequence of random vari-
ables, jointly regularly varying with index α ∈ (0,2), and of which the tail process
(Yi)i∈Z almost surely has no two values of the opposite sign. Suppose that Condi-
tions 2.1 and 2.2 hold. If 1 ≤ α < 2, also suppose that Condition 3.3 holds. Then
the partial sum stochastic process

Vn(t) =
[nt]∑
k=1

Xk

an

− �nt�E
(

X1

an

1{|X1|/an≤1}
)
, t ∈ [0,1],
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satisfies

Vn
d→ V, n → ∞,

in D[0,1] endowed with the M1 topology, where V (·) is an α-stable Lévy process
with Lévy triple (0, ν, b) given by the limits

ν(u) v→ ν,

∫
x : u<|x|≤1

xν(u)(dx) −
∫
x : u<|x|≤1

xμ(dx) → b

as u ↓ 0, with ν(u) as in (3.2) and μ as in (2.4).

The condition that the tail process cannot switch sign is needed to ensure con-
tinuity of the summation functional; see Lemma 3.1. See Section 3.4.5 for some
discussion of this condition.

PROOF. Note that from Theorem 2.3 and the fact that |Yn| → 0 almost surely
as |n| → ∞, the random variables

u
∑
j

Zij 1{|Zij |>1}

are i.i.d. and almost surely finite. Define

N̂ (u) = ∑
i

δ
(T

(u)
i ,u

∑
j Zij 1{|Zij |>1}).

Then by Proposition 5.3 in Resnick [41], N̂ (u) is a Poisson process (or a Poisson
random measure) with mean measure

θu−αλ × F (u),(3.3)

where λ is the Lebesgue measure, and F (u) is the distribution of the random vari-
able u

∑
j Z1j 1{|Z1j |>1}. But for 0 ≤ s < t ≤ 1 and x > 0, using the fact that the

distribution of
∑

j δZ1j
is equal to the one of

∑
j δYj

conditionally on the event
{supi≤−1 |Yi | ≤ 1}, we have

θu−αλ × F (u)([s, t] × (x,∞)
)

= θu−α(t − s)F (u)((x,∞))

= θu−α(t − s)P
(
u

∑
j

Z1j 1{|Z1j |>1} > x

)

= θu−α(t − s)P
(
u

∑
j

Yj 1{|Yj |>1} > x
∣∣∣ sup
i≤−1

|Yi | ≤ 1
)

= θu−α(t − s)
P(u

∑
j Yj 1{|Yj |>1} > x, supi≤−1 |Yi | ≤ 1)

P(supi≤−1 |Yi | ≤ 1)
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= u−α(t − s)P
(
u

∑
j

Yj 1{|Yj |>1} > x, sup
i≤−1

|Yi | ≤ 1
)

= λ × ν(u)([s, t] × (x,∞)
)
.

The same can be done for the set [s, t] × (−∞,−x), so that the mean measure in
(3.3) is equal to λ × ν(u).

Consider now 0 < u < v and

ψ(u)(Nn|[0,1]×Eu

)
(·) = ψ(u)(Nn|[0,1]×Ev

)
(·) = ∑

i/n≤·

Xi

an

1{|Xi |/an>u},

which by Lemma 3.2 converges in distribution in D[0,1] under the M1 metric to

ψ(u)(N(v))(·) = ψ(u)(N(v)|[0,1]×Eu

)
(·).

However, by the definition of the process N(u) in Theorem 2.3, it holds that

N(u) d= N(v)|[0,1]×Eu

for every v ∈ (0, u). Therefore the last expression above is equal in distribution to

ψ(u)(N(u))(·) = ∑
T

(u)
i ≤·

∑
j

uZij 1{|Zij |>1}.

But since ψ(u)(N(u)) = ψ(u)(N̂ (u))
d= ψ(u)(Ñ (u)), where

Ñ (u) = ∑
i

δ
(Ti ,K

(u)
i )

is a Poisson process with mean measure λ × ν(u), we obtain

�n·�∑
i=1

Xi

an

1{|Xi |/an>u}
d→ ∑

Ti≤·
K

(u)
i as n → ∞

in D[0,1] under the M1 metric. From (2.3) we have, for any t ∈ [0,1], as n → ∞,

�nt�E
(

X1

an

1{u<|X1|/an≤1}
)

= �nt�
n

∫
{x : u<|x|≤1}

xnP
(

X1

an

∈ dx

)
→ t

∫
{x : u<|x|≤1}

xμ(dx).

This convergence is uniform in t , and hence

�n·�E
(

X1

an

1{u<|X1|/an≤1}
)

→ (·)
∫
{x : u<|x|≤1}

xμ(dx)
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in D[0,1]. Since the latter function is continuous, we can apply Corollary 12.7.1
in Whitt [50], giving a sufficient criterion for addition to be continuous. We obtain,
as n → ∞,

V (u)
n (·) =

�n·�∑
i=1

Xi

an

1{|Xi |/an>u} − �n·�E
(

X1

an

1{u<|X1|/an≤1}
)

(3.4)
d→ V (u)(·) := ∑

Ti≤·
K

(u)
i − (·)

∫
{x : u<|x|≤1}

xμ(dx).

Limit (3.4) can be rewritten as∑
Ti≤·

K
(u)
i − (·)

∫
{x : u<|x|≤1}

xν(u)(dx)

+ (·)
(∫

{x : u<|x|≤1}
xν(u)(dx) −

∫
{x : u<|x|≤1}

xμ(dx)

)
.

Note that the first two terms represent a Lévy–Ito representation of the Lévy pro-
cess with characteristic triple (0, ν(u),0) (see Resnick [41], page 150). The remain-
ing term is just a linear function of the form t �→ tbu. As a consequence, the pro-
cess V (u) is a Lévy process for each u < 1, with characteristic triple (0, ν(u), bu),
where

bu =
∫
{x : u<|x|≤1}

xν(u)(dx) −
∫
{x : u<|x|≤1}

xμ(dx).

By Theorem 3.1 in Davis and Hsing [12], for t = 1, V (u)(1) converges to an
α-stable random variable. Hence by Theorem 13.17 in Kallenberg [28], there is a
Lévy process V (·) such that, as u → 0,

V (u)(·) d→ V (·)
in D[0,1] with the M1 metric. It has characteristic triple (0, ν, b), where ν is the
vague limit of ν(u) as u → 0 and b = limu→0 bu (see Theorem 13.14 in [28]). Since
the random variable V (1) has an α-stable distribution, it follows that the process
V (·) is α-stable.

If we show that

lim
u↓0

lim sup
n→∞

P
[
dM1

(
V (u)

n ,Vn

)
> δ

] = 0

for any δ > 0, then by Theorem 3.5 in Resnick [41] we will have, as n → ∞,

Vn
d→ V

in D[0,1] with the M1 metric. Since the Skorohod M1 metric on D[0,1] is
bounded above by the uniform metric on D[0,1], it suffices to show that

lim
u↓0

lim sup
n→∞

P
(

sup
0≤t≤1

∣∣V (u)
n (t) − Vn(t)

∣∣ > δ
)

= 0.
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Recalling the definitions, we have

lim
u↓0

lim sup
n→∞

P
(

sup
0≤t≤1

∣∣V (u)
n (t) − Vn(t)

∣∣ > δ
)

= lim
u↓0

lim sup
n→∞

P

[
sup

0≤t≤1

∣∣∣∣∣
�nt�∑
i=1

Xi

an

1{|Xi |/an≤u} − �nt�E
(

X1

an

1{|X1|/an≤u}
)∣∣∣∣∣ > δ

]

= lim
u↓0

lim sup
n→∞

P

[
sup

0≤t≤1

∣∣∣∣∣
�nt�∑
i=1

{
Xi

an

1{|Xi |/an≤u} − E
(

Xi

an

1{|Xi |/an≤u}
)}∣∣∣∣∣ > δ

]

= lim
u↓0

lim sup
n→∞

P

[
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

{
Xi

an

1{|Xi |/an≤u} − E
(

Xi

an

1{|Xi |/an≤u}
)}∣∣∣∣∣ > δ

]
.

Therefore we have to show

lim
u↓0

lim sup
n→∞

P

[
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

{
Xi

an

1{|Xi |/an≤u} − E
(

Xi

an

1{|Xi |/an≤u}
)}∣∣∣∣∣ > δ

]
= 0.(3.5)

For α ∈ [1,2) this relation is simply Condition 3.3. The proof that (3.5) automat-
ically holds in case α ∈ (0,1) is given at the end of the proof of Theorem 4.1 in
Tyran-Kamińska [48], page 1640. �

3.4. Discussion of the conditions. Here we revisit in detail all the conditions
of Theorem 3.4.

3.4.1. On joint regular variation. As we mentioned in the Introduction, reg-
ular variation of the marginal distribution with index α ∈ (0,2) is both necessary
and sufficient for the existence of an α-stable limit for partial sums of i.i.d. random
variables. In Tyran-Kamińska [48], only marginal regular variation is assumed
from the outset, but in combination with the asymptotic independence condition
on the finite-dimensional distributions, this actually implies joint regular variation.

The joint regular variation assumption (2.2) which underlies our main result
frequently appears in limit theorems for partial sums [3, 12, 13]. The assumption
is relatively straightforward to verify for many applied models; see, for instance,
Section 4. The joint regular variation is the basis for the point process result of
Theorem 2.3. In particular, it allows us to build on the theory developed in [5,
12] to determine the asymptotic behavior of partial sums over shorter blocks of
indices. On the other hand, we note that there are published examples of bounded
sequences whose partial sums have an infinite variance α-stable limit (e.g., see
Gouëzel [22]).
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3.4.2. On the finite mean cluster size Condition 2.1. This assumption, which
appears frequently in the literature [5, 12, 43, 44, 47], restricts the length of clusters
of extremes. It implies that the (max)-stable attractors of appropriately normalized
partial sums and maxima have the same index α as the ones for the associated
i.i.d. sequence. Alternative assumptions of this kind also exist, most of which are
stronger; see, for instance, [3] for a short review.

3.4.3. On the A(an) mixing Condition 2.2. Extremely rich literature exists on
mixing conditions and their relation with limit theorems. Our assumption A′(an)

is a recognizable extension of the mixing condition A(an) due to [12]. Like the
latter condition it is implied by the more frequently used strong mixing property
(see [30]). However, if one is only interested in the limiting behavior of partial
sums, weaker assumptions suffice (see [3]).

3.4.4. On the vanishing small values Condition 3.3. The name of the condi-
tion is borrowed from [3]. Similar conditions are ubiquitous in the related liter-
ature on the limit theory for partial sums [2, 17, 31, 48]. In case α ∈ (0,1), it
is simply a consequence of regular variation, and in the i.i.d. case, it also holds
for α ∈ [1,2) (see Resnick [40]). More generally, Tyran-Kamińska [48] showed
that the condition holds if the sequence has ρ-mixing coefficients which satisfy∑

j≥1 ρ(2j ) < ∞. For linear processes of which the coefficients decay sufficiently
fast, Tyran-Kamińska [49] showed that the condition can be omitted.

3.4.5. About the no sign switching condition. The assumption that the tail pro-
cess has no two values of the opposite sign is crucial to obtain weak convergence
of the partial sum process in the M1 topology. It is admittedly restrictive but un-
avoidable since the M1 topology, roughly speaking, can handle several (asymp-
totically) instantaneous jumps only if they are in the same direction (see Avram
and Taqqu [2], Section 1, and Whitt [50], Chapter 12). Note that unlike Dabrowski
and Jakubowski [9], our assumption does not exclude nonassociated sequences in
general because it involves only the tail dependence in the process.

In Avram and Taqqu [2], Section 1, a conjecture is formulated concerning con-
vergence in Skorohod’s M2 topology, which is somewhat weaker than the M1
topology. Rather than being all of the same sign, extremes values within a clus-
ter should be such that the values of the partial sums during the cluster are all
contained in the interval formed by the partial sums at the beginning and the end
of a cluster.

There appear to be some ways of omitting the no sign switching condition alto-
gether. Neither of them is pursued here, however. First, one could opt for a much
weaker topology on D[0,1], like L1, for instance. Another possibility is to avoid
the within-cluster fluctuations in the partial sum process, for example, by smooth-
ing out its trajectories or by considering the process t �→ Srn�knt�. If we do so,
then convergence actually holds in the stronger J1 topology (see Krizmanić [30],
Chapter 3).
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3.5. Simplifications. In certain cases, the formula for the Lévy measure can
be simplified. Moreover, if α ∈ (0,1), then no centering is needed.

3.5.1. A closed form expression for the limiting Lévy measure. It turns out that
if the spectral tail process (�i)i∈Z satisfies an additional integrability condition,
the formula for the Lévy measure ν simplifies considerably. Note that in our case
the Lévy measure ν satisfies the scaling property

ν(s·) = s−αν(·)
(see Theorem 14.3 in Sato [42]). In particular, ν can be written as

ν(dx) = (
c+1(0,∞)(x) + c−1(−∞,0)(x)

)
α|x|−α−1 dx

for some nonnegative constants c+ and c−, and therefore ν({x}) = 0 for every
x ∈ E. Thus, from Theorem 3.2 in Resnick [41] we have

c+ = ν(1,∞)

= lim
u→0

ν(u)(1,∞)

= lim
u→0

u−αP
(
u

∑
i≥0

Yi1{|Yi |>1} > 1, sup
i≤−1

|Yi | ≤ 1
)

= lim
u→0

u−α
∫ ∞

1
P
(
u

∑
i≥0

r�i1{r|�i |>1} > 1, sup
i≤−1

r|�i | ≤ 1
)

d(−r−α)

= lim
u→0

∫ ∞
u

P
(∑

i≥0

r�j 1{r|�j |>u} > 1, sup
i≤−1

r|�i | ≤ u

)
d(−r−α),

and similarly

c− = lim
u→0

∫ ∞
u

P
(∑

i≥0

r�j 1{r|�j |>u} < −1, sup
i≤−1

r|�i | ≤ u

)
d(−r−α).

Now suppose further that

E
[(∑

i≥0

|�i |
)α]

< ∞.(3.6)

Then by the dominated convergence theorem,

c+ =
∫ ∞

0
P
(∑

i≥0

r�i > 1; ∀i ≤ −1 :�i = 0
)

d(−r−α)

(3.7)

= E
[{

max
(∑

i≥0

�i,0
)}α

1{∀i≤−1 : �i=0}
]
,

c− = E
[{

max
(
−∑

i≥0

�i,0
)}α

1{∀i≤−1 : �i=0}
]
.(3.8)
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These relations can be applied to obtain the Lévy measure ν for certain heavy-
tailed moving average processes (Example 4.3).

3.5.2. About centering. If α ∈ (0,1), the centering function in the definition
of the stochastic process Vn(·) can be removed. This affects the characteristic triple
of the limiting process in the way we describe here.

By Karamata’s theorem, as n → ∞,

nE
(

X1

an

1{|X1|/an≤1}
)

→ (p − q)
α

1 − α

with p and q as in (2.4). Thus, as n → ∞,

�n·�E
(

X1

an

1{|X1|/an≤1}
)

→ (·)(p − q)
α

1 − α

in D[0,1], which leads to

�n·�∑
k=1

Xk

an

d→ V (·) + (·)(p − q)
α

1 − α

in D[0,1] endowed with the M1 topology. The characteristic triple of the limiting
process is therefore (0, ν, b′) with b′ = b + (p − q)α/(1 − α).

4. Examples. In case of asymptotic independence, the limiting stable Lévy
process is the same as in the case of an i.i.d. sequence with the same marginal dis-
tribution (Examples 4.1 and 4.2). Heavy-tailed moving averages and GARCH(1,1)

processes (Examples 4.3 and 4.4, respectively) yield more interesting limits.

EXAMPLE 4.1 (Isolated extremes models). Suppose (Xn) is a strictly station-
ary and strongly mixing sequence of regularly varying random variables with index
α ∈ (0,2) that satisfies the dependence condition D′ in Davis [11], that is,

lim
k→∞ lim sup

n→∞
n

�n/k�∑
i=1

P
( |X0|

an

> x,
|Xi |
an

> x

)
= 0 for all x > 0,

where (an)n is a positive real sequence such that nP(|X0| > an) → 1 as n → ∞.
Condition D′ implies

P(|Xi | > an | |X0| > an) = nP(|X0| > an, |Xi | > an)

nP(|X0| > an)
→ 0 as n → ∞

for all positive integer i; that is, the variables |X0| and |Xi | are asymptotically
independent. As a consequence, the series (Xn)n is regularly varying and its tail
process is the same as that for an i.i.d. sequence; that is, Yn = 0 for n �= 0, and Y0
is as described in Section 2.1. It is trivially satisfied that no two values of (Yn)n are
of the opposite sign.
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Since the sequence (Xn) is strongly mixing, Condition 2.2 is verified. The finite
mean cluster size Condition 2.1 follows from condition D′, for the latter implies

lim
n→∞n

rn∑
i=1

P
( |X0|

an

> x,
|Xi |
an

> x

)
= 0 for all x > 0

for any positive integer sequence (rn)n such that rn → ∞ and rn/n → 0 as
n → ∞.

If we additionally assume that the sequence (Xn) satisfies the vanishing small
values Condition 3.3 in case α ∈ [1,2), then by Theorem 3.4 the sequence of partial
sum stochastic processes Vn(·) converges in D[0,1] with the M1 topology to an
α-stable Lévy process V (·) with characteristic triple (0,μ,0) with μ as in (2.4),
just as in the i.i.d. case. It can be shown that the above convergence holds also in
the J1 topology (see Krizmanić [30]).

Condition 3.3 applies, for instance, if the series (Xn)n is a function of a Gaussian
causal ARMA process, that is, Xn = f (An), for some Borel function f : R → R

and some Gaussian causal ARMA process (An)n. From the results in Brockwell
and Davis [8] and Pham and Tran [39] (see also Davis and Mikosch [15]) it fol-
lows that the sequence (An)n satisfies the strong mixing condition with geomet-
ric rate. In this particular case this implies that the sequence (An)n satisfies the
ρ-mixing condition with geometric rate (see Kolmogorov and Rozanov [29], The-
orem 2), a property which transfers immediately to the series (Xn)n. Hence by
Tyran-Kamińska [48], Lemma 4.8, the vanishing small values Condition 3.3 holds.

EXAMPLE 4.2 (Stochastic volatility models). Consider the stochastic volatil-
ity model

Xn = σnZn, n ∈ Z,

where the noise sequence (Zn) consists of i.i.d. regularly varying random variables
with index α ∈ (0,2), whereas the volatility sequence (σn)n is strictly stationary, is
independent of the sequence (Zn)n and consists of positive random variables with
finite moment of the order 4α.

Since the random variables Zi are independent and regularly varying, it follows
that the sequence (Zn)n is regularly varying with index α. By an application of the
multivariate version of Breiman’s lemma, the sequence (Xn)n is regularly varying
with index α too; see Basrak et al. [4], Proposition 5.1.

From the results in Davis and Mikosch [14], it follows that

n

rn∑
i=1

P(|Xi | > tan, |X0| > tan) → 0 as n → ∞(4.1)

for any t > 0, where (rn)n is a sequence of positive integers such that rn → ∞ and
rn/n → 0 as n → ∞, and (an)n is a positive real sequence such that nP(|X1| >

an) → 1 as n → ∞. From this relation, as in Example 4.1, it follows that the finite
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mean cluster size Condition 2.1 holds. Moreover, the tail process (Yn)n is the same
as in the case of an i.i.d. sequence, that is, Yn = 0 for n �= 0. In particular, the tail
process has no two values of the opposite sign.

Assume that (logσn)n is a Gaussian casual ARMA process. Then (Xn)n satis-
fies the strong mixing condition with geometric rate (see Davis and Mikosch [15]).
Hence the A′(an) mixing Condition 2.2 holds.

In case α ∈ [1,2), we also assume the vanishing small values Condition 3.3
holds. Then all conditions in Theorem 3.4 are satisfied, and we obtain the conver-
gence of the partial sum stochastic process toward an α-stable Lévy process with
characteristic triple (0,μ,0), with μ as in (2.4).

EXAMPLE 4.3 (Moving averages). Consider the finite-order moving average
defined by

Xn =
m∑

i=0

ciZn−i , n ∈ Z,

where (Zi)i∈Z is an i.i.d. sequence of regularly varying random variables with
index α ∈ (0,2), m ∈ N, c0, . . . , cm are nonnegative constants and at least c0 and
cm are not equal to 0. Take a sequence of positive real numbers (an) such that

nP(|Z1| > an) → 1 as n → ∞.(4.2)

The finite-dimensional distributions of the series (Xn)n can be seen to be mul-
tivariate regularly varying by an application of Proposition 5.1 in Basrak et al.
[4] (see also Davis and Resnick [10]). Moreover, if we assume (without loss of
generality) that

∑m
i=0 cα

i = 1, then also

nP(|X0| > an) → 1 as n → ∞.

The tail process (Yn)n in (2.2) of the series (Xn)n can be found by direct calculation
(see also Meinguet and Segers [33], Proposition 8.1, for an extension to infinite-
order moving averages). First, Y0 = |Y0|�0 where |Y0| and �0 = sign(Y0) are in-
dependent with P(|Y0| > y) = y−α for y ≥ 1 and P(�0 = 1) = p = 1 − P(�0 =
−1). Next, let K denote a random variable with values in the set {0, . . . ,m}, inde-
pendent of Y0 and such that P(K = k) = |ck|α (recall the assumption

∑m
i=0 cα

i = 1).
To simplify notation, put ci := 0 for i /∈ {0, . . . ,m}. Then

Yn = (cn+K/cK)Y0, �n = (cn+K/cK)�0, n ∈ Z,

represents the tail process and spectral process of (Xn)n, respectively. Clearly, at
most m + 1 values Yn and �n are different from 0 and all have the same sign.

Since the sequence (Xn)n is m-dependent, it is also strongly mixing, and there-
fore the A′(an) mixing Condition 2.2 holds. By the same property it is easy to
see that the finite mean cluster size Condition 2.1 holds. Moreover, in view of
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Lemma 4.8 in Tyran-Kamińska [48], the vanishing small values Condition 3.3
holds as well when α ∈ [1,2).

As a consequence, the sequence (Xn)n satisfies all the conditions of Theo-
rem 3.4, and the partial sum process converges toward a stable Lévy process V (·).
The Lévy measure ν can be derived from Section 3.5.1: since (3.6) is trivially
fulfilled, we obtain from (3.7) and (3.8),

ν(dx) =
(

m∑
i=0

ci

)α(
p1(0,∞)(x) + q1(−∞,0)(x)

)
α|x|−1−α dx,

which corresponds with the results in Davis and Resnick [10] and Davis and Hsing
[12]. Further, if α ∈ (0,1)∪ (1,2), then in the latter two references it is shown that

b = (p − q)
α

1 − α

{(
m∑

i=0

ci

)α

− 1

}
,

with q = 1 − p. The case when α = 1 can be treated similarly, but the correspond-
ing expressions are much more complicated and are omitted here (see Davis and
Hsing [12], Theorem 3.2 and Remark 3.3).

Infinite-order moving averages with nonnegative coefficients are considered in
Avram and Taqqu [2] and Tyran-Kamińska [49]. The idea is to approximate such
processes by a sequence of finite-order moving averages, for which Theorem 3.4
applies, and to show that the error of approximation is negligible in the limit.

EXAMPLE 4.4 (ARCH/GARCH models). We consider the GARCH(1,1)

model

Xn = σnZn,

where (Zn)n∈Z is a sequence of i.i.d. random variables with E(Z1) = 0 and
var(Z1) = 1, and

σ 2
n = α0 + (α1Z

2
n−1 + β1)σ

2
n−1,(4.3)

with α0, α1, β1 being nonnegative constants. Assume that α0 > 0 and

−∞ ≤ E ln(α1Z
2
1 + β1) < 0.

Then there exists a strictly stationary solution to the stochastic recurrence equation
(4.3) (see Goldie [21] and Mikosch and Stărică [35]). The process (Xn) is then
strictly stationary too. If α1 > 0 and β1 > 0 it is called a GARCH(1,1) process,
while if α1 > 0 and β1 = 0 it is called an ARCH(1) process.

In the rest of the example we consider a stationary squared GARCH(1,1) pro-
cess (X2

n)n. Assume that Z1 is symmetric, has a positive Lebesgue density on R
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and there exists α ∈ (0,2) such that

E[(α1Z
2
1 + β1)

α] = 1 and E[(α1Z
2
1 + β1)

α ln(α1Z
2
1 + β1)] < ∞.

Then it is known that the processes (σ 2
n )n and (X2

n)n are regularly varying with
index α and strongly mixing with geometric rate [4, 35]. Therefore the sequence
(X2

n)n satisfies the A′(an) mixing Condition 2.2. The finite mean cluster size Con-
dition 2.1 for the sequence (X2

n)n follows immediately from the results in Basrak
et al. [4].

The (forward) tail process of the bivariate sequence ((σ 2
n ,X2

n))n is not too dif-
ficult to characterize (see Basrak and Segers [5]). Obviously, the tail process of
(X2

n)n cannot have two values of the opposite sign.
If additionally the vanishing small values Condition 3.3 holds when α ∈ [1,2),

then by Theorem 3.4, the sequence of partial sum stochastic processes (Vn(·))n,
defined by

Vn(t) =
[nt]∑
k=1

X2
k

an

− �nt�E
(

X2
1

an

1{X2
1/an≤1}

)
, t ∈ [0,1],

converges weakly to an α-stable Lévy process V (·) in D[0,1] under the M1 topol-
ogy. Here (an)n is a positive sequence such that nP(X2

0 > an) → 1 as n → ∞.
In case α ∈ (0,1) ∪ (1,2), the characteristic triple (0, ν, b) of the stable random

variable V (1) and thus of the stable Lévy process V (·) can be determined from
Bartkiewicz et al. [3], Proposition 4.8, Davis and Hsing [12], Remark 3.1, and
Section 3.5.2: after some calculations, we find

ν(dx) = c+1(0,∞)(x)αx−α−1 dx, b = α

1 − α
(c+ − 1),

where

c+ = E[(Z2
0 + T̃∞)α − T̃ α∞]
E(|Z1|2α)

, T̃∞ =
∞∑
t=1

Z2
t+1

t∏
i=1

(α1Z
2
i + β1).
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[35] MIKOSCH, T. and STĂRICĂ, C. (2000). Limit theory for the sample autocorrelations and ex-
tremes of a GARCH (1,1) process. Ann. Statist. 28 1427–1451. MR1805791

[36] MORI, T. (1977). Limit distributions of two-dimensional point processes generated by strong-
mixing sequences. Yokohama Math. J. 25 155–168. MR0467887

[37] PELIGRAD, M. and UTEV, S. (2005). A new maximal inequality and invariance principle for
stationary sequences. Ann. Probab. 33 798–815. MR2123210

[38] PETROV, V. V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Ran-
dom Variables. Oxford Studies in Probability 4. Clarendon, Oxford Univ. Press, New
York. MR1353441

[39] PHAM, T. D. and TRAN, L. T. (1985). Some mixing properties of time series models. Stochas-
tic Process. Appl. 19 297–303. MR0787587

[40] RESNICK, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl.
Probab. 18 66–138. MR0827332

[41] RESNICK, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.
Springer, New York. MR2271424

[42] SATO, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Stud.
Adv. Math. 68. Cambridge Univ. Press, Cambridge. MR1739520

[43] SEGERS, J. (2003). Functionals of clusters of extremes. Adv. in Appl. Probab. 35 1028–1045.
MR2014268

[44] SEGERS, J. (2005). Approximate distributions of clusters of extremes. Statist. Probab. Lett. 74
330–336. MR2186477

[45] SKOROHOD, A. V. (1957). Limit theorems for stochastic processes with independent incre-
ments. Theory Probab. Appl. 2 145–177. MR0094842

[46] SLY, A. and HEYDE, C. (2008). Nonstandard limit theorem for infinite variance functionals.
Ann. Probab. 36 796–805. MR2393998

[47] SMITH, R. L. (1992). The extremal index for a Markov chain. J. Appl. Probab. 29 37–45.
MR1147765
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