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The present paper is concerned with diffusion processes running on tubu-
lar domains with conditions on nonreaching the boundary, respectively, re-
flecting at the boundary, and corresponding processes in the limit where the
thin tubular domains are shrinking to graphs. The methods we use are prob-
abilistic ones. For shrinking, we use big potentials, respectively, reflection
on the boundary of tubes. We show that there exists a unique limit process,
and we characterize the limit process by a second-order differential genera-
tor acting on functions defined on the limit graph, with Kirchhoff boundary
conditions at the vertices.

1. Introduction. The present paper is concerned with diffusion processes
running on tubular domains with Dirichlet (i.e., absorbing-like) (resp., Neumann,
i.e., reflecting) boundary conditions, and the respective processes obtained in the
limit where the thin tubular domains shrink to graphs. Problems of this type have
been intensively studied before in the case of Neumann boundary conditions, both
by probabilistic tools [21, 22] and analytic tools [2, 8–10, 12, 13, 15, 38, 41]. The
case of Dirichlet boundary conditions was known to present special difficulties,
which explains why there have been, up to now, fewer works concerned with this
case, and, in fact, these are only concerned with either special graphs or special
shrinking procedures, leading mainly (with the exception of [2, 9, 10, 12]) to lim-
iting processes which “decouple at vertices” [7, 11, 15].

Before explaining these difficulties and entering into details let us motivate the
reasons to undertake such studies, pointing out also some connections with other
problems and giving some historical remarks.

In many problems of analysis and probability one encounters differential opera-
tors defined on structures which have small dimensions in one or more directions.
Let us mention as examples the modeling of fluid motion in narrow tubes, or in
nearly two-dimensional domains (see, e.g., [42]), the propagation of electric sig-
nals along nearly one-dimensional neurons (see, e.g., [3, 7, 11]), the propagation of
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electromagnetic waves in wave guides [31], the propagation of quantum mechani-
cal effects in thin wires (in the context of nanotechnology); see, for example, [2, 9,
10, 12, 13, 15, 17, 24, 32, 33, 35, 41, 48]. Such geometrical structures tend in a cer-
tain limit (mathematically well described in general through a Gromov topology)
to a graph. Modeling dynamical systems or processes on such structures by corre-
sponding ones on a graph might present certain advantages (e.g., PDEs becoming
ODEs on graphs; more dimensional spectral problems reduced to one-dimensional
ones). In any case the study of dynamics and processes on graphs can be consid-
ered as an idealization or a “first approximation” for the study of the corresponding
objects in more realistic situations.

There is a rich literature on differential operators on graphs. Diffusion opera-
tors and evolution equations were considered originally in work by Lumer [37],
and subsequently by many authors; see, for example, [5, 40, 49, 50]. Elliptic and
parabolic nonlinear equations on graphs have been discussed, for example, in rela-
tions to applications in biology, for example, in [11]; see also, for example, [3, 7]
for nonlinear diffusions on graphs in connection with neurobiology. Heat kernels
on graphs have been studied in particular in [39]. Hyperbolic nonlinear equations
on graphs have been studied, for example, in [31].

In quantum mechanics, Schrödinger equations on graphs are considered as mod-
els of nanostructures; see, for example, [6, 17, 32, 33]. Work has been particularly
intense in the study of spectral properties of Schödinger-type operators on graphs;
see, for example, [24, 32, 33, 35]. Such models of quantum mechanics on graphs
also play an important role in the study of the relation between classical chaos and
quantum chaos; see, for example, [16, 24, 35, 43, 44].

For the study of the limit of differential operators on thin domains of R
n

(and corresponding PDEs) degenerating into geometric graphs (and correspond-
ing ODEs) we refer to [30, 42, 50] and especially to the surveys by Raugel [42]
(which discuss topics like spectral properties, asymptotics and attractors). For the
study of parabolic equations and associated semi-groups and diffusion processes
we also refer to [42]. Corresponding hyperbolic problems in connection with the
modeling of ferroelectric materials have been discussed, for example, in [1].

Probabilistic methods for the study of processes on thin domains of R
n have

been developed by Freidlin and Wentzell in the case of Neumann boundary condi-
tions. They exploit the consideration of slow, respectively fast, components going
back to [20], applied to the thin tubes problem [21]. In these studies the basic
probabilistic observation is that for a Brownian motion in a thin tube along a line,
the component in the transverse direction is fast, and the one in the longitudinal
direction is slow. The control in the limit exploits the assumption on the reflect-
ing properties of the fast component, together with a projection technique onto the
longitudinal direction. In [21] it is shown that the diffusion coefficient for this limit
process is obtained by averaging the diffusion coefficient for the process in tubular
domains with respect to the invariant measure of the fast component with suitable
changed space and time scales.
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Analytically the Laplacian in the transverse direction has a constant eigenvalue
0 (ground state in the transverse direction), which then yields a natural identifi-
cation of the subspace of L2—over the thin tube corresponding to the eigenvalue
0 for the Laplacian in the transverse direction with the L2—space along an edge.
Results about this approximation concern convergence of eigenvalues, eigenfunc-
tions, resolvents and semigroups [13, 15, 25, 38]. Besides, operatorial and varia-
tional methods also methods of Dirichlet form theory have been used [8].

The identification stressed above is no longer possible in the case of Dirichlet
boundary conditions on the boundary of the thin tube, since the lowest eigenvalue
of the Laplacian in the transverse direction diverges like 1/ε2, where ε > 0 is
the width of the narrow tube. (For a probabilistic study of the first-order asymp-
totics of the lowest eigenvalue of the Dirichlet Laplacian in tubular neighborhoods
of submanifolds of Riemannian manifolds, see [28].) This has been pointed out
clearly and posed as an open problem by Exner (see [4]). In order to nevertheless
manage analytically the limit to a graph, one has to perform a renormalization pro-
cedure, first introduced in [2], and extended in [9, 10], for the case of a V-graph
(waveguide). More general cases with Dirichlet boundary conditions have been
managed in the case where the shrinking at vertices is quicker than the one at the
edges; however, then one has “no communication between the different edges”
(i.e., “decoupling”) on the graphs; see [25, 38, 41]. The interest in discussing the
case of Dirichlet-boundary conditions is particularly clear in the physics of con-
ductors, where such boundary conditions arise most naturally, both in classical
and quantum mechanical problems. However, in the other type of applications we
have mentioned there is also an interest in studying boundary conditions that are
different from the Neumann ones, since boundary conditions influence the limit
behavior, and one is interested to obtain on the graphs the most general possible
boundary conditions at the vertices (even in the case of an “N -spider graph” there
are N2-different possible self-adjoint realizations of a Laplacian on the spider; see,
for example, [17, 29]).

The present paper mainly discusses the case of shrinking by potentials, and
the goal is to determine the limit process on a given graph. This shrinking by
potentials corresponds to confining the process in thin tubes around the graph, not
reaching the boundary almost surely, and in this sense is related with Dirichlet
boundary conditions (the latter property corresponding however to a completely
absorbing boundary). In Sections 2 and 3 we consider special cases, because the
consideration of these cases illustrate better the methods we use.

In Section 2 the case of a thin tube �ε in R
n shrinking to a curve γ in R

n is
discussed. The tube �ε has a uniform width ε > 0. In the tube we have a nonde-
generate diffusion process Xε with a drift consisting of two parts, one continuous
and bounded, the other of gradient type, pushing away from the boundary, so that
the first hitting time of Xε at the boundary ∂�ε is infinite almost surely. We also
construct a diffusion process X on γ and show (Theorem 2.2) that if Xε(0) con-
verges weakly to X(0), then also Xε converges weakly to X. If pathwise unique-
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ness holds both for Xε and X, then Xε also converges to X almost surely as ε ↓ 0.
We also state corresponding results for a process in �ε with a reflecting bound-
ary condition on the boundary ∂�ε (Theorem 2.3). These results are obtained in a
similar way as those obtained by our shrinking with potentials in the first part of
Section 2.

In Section 3 we discuss the case of shrinking N thin tubes in R
n to an N -spider

graph in R
n. In this section, we often use the methods discovered by Freidlin and

Wentzell [21], extend their method to the case of diffusion processes instead of
Brownian motions and apply it to the case of shrinking by potentials. The process
Xε in the domain �ε consisting of N tubes is defined in a similar way as in Sec-
tion 2, ε > 0 being the parameter of shrinking to the N -spider graph � for ε ↓ 0.
We prove again that the first hitting time of Xε at the boundary ∂�ε is infinite
and that the laws of {Xε : ε > 0} are tight in the topology of probability measures
on C([0,+∞)), if their initial distributions are tight. We then show that any limit
process is strong Markov and study the transition probabilities from the vertex O

to any edge of the spider graph �. This requires quite detailed estimates of the
behavior of the process Xε in a neighborhood of O in �ε . These results imply that
the boundary condition at O should be a weighted Kirchhoff boundary condition
for the functions in the domain of the generator of the limit processes X. (This is
one of the types of boundary conditions known from the general discussions on
boundary conditions for processes on graphs; see, for example, [12, 17, 29, 32–
34].) The weights are determined explicitly from the construction, as transition
probabilities to the edges (Lemma 3.7). This is crucial to determine the genera-
tor of the unique limit process X (Theorem 3.8). Similar considerations lead to
corresponding results for the case where Xε is a diffusion in �ε with reflecting
boundary conditions on ∂�ε (Theorem 3.9).

In Section 4 we state the results in the case of thin tubes around general graphs,
which are obtained immediately from the results in Sections 2 and 3. These are
systems consisting of thin tubes around finitely ramified graphs in R

n with edges
which consist of C3-curves. Theorem 4.1 presents a result similar to the one for an
N -spider graph, showing, in particular, convergence of the diffusion process Xε

not leaving the system �ε of tubes around the general graph to a diffusion process
X on the graph. Again its generator is determined and an extension is given to the
case of a diffusion with reflecting boundary conditions on ∂�ε . Since the latter
result is not only for a Brownian motion in the thin tubes, but also for reflecting
diffusion processes in the thin tubes, it is also an extension of previous results of
Freidlin and Wentzell [21].

All random variables discussed in the present paper are defined on a probability
space with probability measure P , and E[·] denotes their expectation with respect
to P . For a locally compact topological subspace A of R

n, let C0(A) := {f ∈
C(A) : lim|x|→+∞ f (x) = 0}.
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2. The case of curves. In this section, we consider shrinking of thin tubes to
curves. Let n be an integer larger than or equal to 2. Let γ ∈ C3(R;R

n) such that
|γ̇ | = 1 [with γ̇ the derivatives of t → γ (t), and | · | the norm in R

n], and assume
that γ has no self-crossing point, and γ̈ is a bounded function with a compact
support. Let ε > 0, 〈·, ·〉 be the inner product on R

n, and d(x, γ ) be the distance
between x and γ . Note that d(x, γ ) is Lipschitz continuous in x. Define domains
{�ε} by

�ε := {x ∈ R
n :d(x, γ ) < ε}.

Consider a differentiable function u on [0,1) such that

u(0) = 0, u′ ≥ 0 lim
R↑1

u′(R) = +∞ and − lim
R↑1

u(R)

log(1 − R)
= +∞.

For example, if we define u(r) := rα/(1 − rα) for r ∈ [0,1) where α > 0, then u

satisfies the conditions above. Let

Uε(x) = u(ε−1d(x, γ )), x ∈ �ε.

For ε > 0, consider a diffusion process Xε given by the following equation:

Xε(t) = Xε(0) +
∫ t∧ζ ε

0
σ(Xε(s)) dW(s) +

∫ t∧ζ ε

0
b(Xε(s)) ds

(2.1)

−
∫ t∧ζ ε

0
(∇Uε)(Xε(s)) ds,

where Xε(0) is an �ε-valued random variable, W is an n-dimensional Wiener
process, σ ∈ Cb(R

n;R
n ⊗ R

n), b ∈ Cb(R
n;R

n) and ζ ε is the first hitting time of
Xε at the boundary ∂�ε of �ε . Let a := σσT (with σT the transpose of σ ), and
assume that a is a uniformly positive definite matrix. Then, the solution Xε of (2.1)
exists uniquely; see, for example, [47].

LEMMA 2.1. ζ ε = +∞ almost surely for small ε > 0.

PROOF. Assume n ≥ 3. Note that Xε does not hit γ almost surely in this case.
Let Xε

x be the solution of (2.1) replacing Xε(0) and ζ ε by x and ζ ε
x , respectively,

where ζ ε
x is the first hitting time of Xε

x at ∂�ε . It is sufficient to show that ζ ε
x =

+∞ almost surely for x near to ∂�ε . By the tubular neighborhood theorem and
Theorem 1 in [18], there exists a C2-diffeomorphism φ = (φ1, φ2) from �ε \ γ to
{y = (y1, y2) ∈ R × R

n−1 : 0 < |y2| < ε} which satisfies, for small ε,

φ1(x) = γ −1 ◦ π(x) and φ2(x) = d(x, γ )∇d(x, γ ), x ∈ �ε \ γ,

where π(x) is the nearest point in γ from x. Note that φ is a C2-function on
�ε and 〈∇π,∇Uε〉 = 0 for small ε. Hence, 〈∇φ1,∇Uε〉 = 0 and ∇φ2∇Uε =



2136 S. ALBEVERIO AND S. KUSUOKA

ε−1u′(ε−1d(·, γ ))∇d(·, γ ). By Itô’s formula, we have

φ1(X
ε
x(t)) = φ1(x) +

∫ t∧ζ ε
x

0
∇φ1(X

ε
x(s))σ (Xε

x(s)) dW(s)

+
∫ t∧ζ ε

x

0
∇φ1(X

ε
x(s))b(Xε

x(s)) ds(2.2)

+ 1

2

n∑
i,j=1

∫ t∧ζ ε
x

0
aij (X

ε
x(s)) ∂i∂jφ1(X

ε
x(s)) ds,

φ2(X
ε
x(t)) = φ2(x) +

∫ t∧ζ ε
x

0
∇φ2(X

ε
x(s))σ (Xε

x(s)) dW(s)

+
∫ t∧ζ ε

x

0
∇φ2(X

ε
x(s))b(Xε

x(s)) ds

(2.3)

+ 1

2

n∑
i,j=1

∫ t∧ζ ε
x

0
aij (X

ε
x(s)) ∂i∂jφ2(X

ε
x(s)) ds

− ε−1
∫ t∧ζ ε

x

0
u′(ε−1d(Xε

x(s), γ ))∇d(·, γ )|Xε
x(s) ds.

Moreover, again by Itô’s formula,

|φ2(X
ε
x(t))|2

= |φ2(x)|2 + 2
∫ t∧ζ ε

x

0
〈φ2(X

ε
x(s)),∇φ2(X

ε
x(s))σ (Xε

x(s)) dW(s)〉

+ 2
∫ t∧ζ ε

x

0
〈φ2(X

ε
x(s)),∇φ2(X

ε
x(s))b(Xε

x(s))〉ds

+
∫ t∧ζ ε

x

0

〈
φ2(X

ε
x(s)),

n∑
i,j=1

aij (X
ε
x(s)) ∂i∂jφ2(X

ε
x(s))

〉
ds

− 2ε−1
∫ t∧ζ ε

x

0
|φ2(X

ε
x(s))|u′(ε−1d(Xε

x(s), γ )) ds

+
∫ t∧ζ ε

x

0
trace[∇φ2(X

ε
x(s))σ (Xε

x(s))(∇φ2(X
ε
x(s))σ (Xε

x(s)))
T ]ds.

Let

ā := sup
{|(∇φ2(x)σ (x))T ξ |2 :x ∈ �ε, ξ ∈ {y ∈ R

n : |y| = 1}},
b̄ := sup

x∈�ε

(
2〈φ2(x),∇φ2(x)b(x)〉 +

〈
φ2(x),

n∑
i,j=1

aij (x) ∂i∂jφ2(x)

〉

+ trace[∇φ2(x)σ (x)(∇φ2(x)σ (x))T ]
)
.
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Take c0 ∈ (0,1) such that supx∈[c0,1)(b̄ − 2xu′(x)) ≤ 0 and

f (x) :=
∫ x

c2
0ε2

exp
(
−2
∫ y

c2
0ε2

b̄ − 2ε−1√zu′(ε−1√z)

āz
dz

)
dy, x ∈ [0, ε2).

Then, by Itô’s formula, for δ such that 0 < δ < 1 − c0 and for x such that c0ε ≤
d(x, γ ) ≤ ε(1 − δ), we have that

E
[
f
(∣∣φ2
(
Xε

x

(
T c0ε ∧ T ε(1−δ)))∣∣2)]≤ f (d(x, γ )2),

where T c := inf{t > 0 :d(Xε
x, γ ) = c} for c > 0. Since

E
[
f
(∣∣φ2
(
Xε

x

(
T c0ε ∧ T ε(1−δ)))∣∣2)]

= f (c2
0ε

2)P
(
T c0ε < T ε(1−δ))+ f

(
ε2(1 − δ)2)P (T c0ε > T ε(1−δ))

and

P
(
T c0ε < T ε(1−δ))+ P

(
T c0ε > T ε(1−δ))= 1,

we have

P
(
T c0ε > T ε(1−δ))≤ f (d(x, γ )2) − f (c2

0ε
2)

f (ε2(1 − δ)2) − f (c2
0ε

2)
.

The assumptions on u imply that f (ε2(1 − δ)2) diverges to +∞ as δ → 0. Hence,
the proof is achieved from the fact that T ε(1−δ) converges to ζ ε

x as δ → 0.
In the case where n = 2, since Xε can hit γ , we need a little arrangement. Let

�ε+ and �ε− be the two domains consisting of �ε \ γ , and θε(x) be 1 if x ∈ �ε+,
−1 if x ∈ �ε− and 0 if x ∈ γ . By the tubular neighborhood theorem and Theorem 1
in [18] again, there exists a C2-diffeomorphism φ = (φ1, φ2) from �ε to {y =
(y1, y2) ∈ R × (−ε, ε)} which satisfies, for small ε,

φ1(x) = γ −1 ◦ π(x) and φ2(x) = θε(x)d(x, γ ), x ∈ �ε,

such that (2.2) and (2.3) hold. Thus, we can discuss this case in a similar way as
the case where n ≥ 3. �

THEOREM 2.2. Define a diffusion process X by the solution of the following
equation:

X(t) = X(0) +
∫ t

0
γ̇ ◦ γ −1(X(s))〈γ̇ ◦ γ −1(X(s)), σ (X(s)) dW(s)〉

+
∫ t

0
γ̇ ◦ γ −1(X(s))〈γ̇ ◦ γ −1(X(s)), b(X(s))〉ds

+ 1

2

∫ t

0
γ̈ ◦ γ −1(X(s))|σ(X(s))T γ̇ ◦ γ −1(X(s))|2 ds(2.4)

+
∫ t

0
γ̇ ◦ γ −1(X(s))〈σ(X(s))T γ̈ ◦ γ −1(X(s)),

σ (X(s))T γ̇ ◦ γ −1(X(s))〉ds.
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Note that X is uniquely determined as a process on γ .
If Xε(0) converges to a γ -valued random variable X(0) weakly, then the pro-

cess Xε converges weakly to X in the sense of their laws on C([0,+∞);R
n) as

ε ↓ 0.
Moreover, if pathwise uniqueness holds for (2.4) and (2.1) for all ε > 0, and

Xε(0) converges to a γ -valued random variable X(0) almost surely, then Xε con-
verges to X almost surely, as ε ↓ 0.

PROOF. Note that equation (2.2) holds even if we replace Xε
x , x and ζ ε

x by Xε ,
Xε(0) and ζ ε , respectively. Lemma 2.1 implies

sup
t∈[0,+∞)

d(Xε(t), γ ) → 0, ε ↓ 0,(2.5)

almost surely. Hence, the boundedness of the coefficients implies the tightness of
the process φ1(X

ε). Let X be any limit process of subsequence of Xε . Then, we
have X ∈ C([0,+∞);γ ) almost surely by (2.5). Hence, taking ε ↓ 0 in (2.2) with
replacing Xε

x , x and ζ ε
x by Xε , Xε(0) and ζ ε , respectively,

φ1(X(t)) = φ1(X(0)) +
∫ t

0
∇φ1(X(s))σ (X(s)) dW̃ (s)

+
∫ t

0
∇φ1(X(s))b(X(s)) ds

+ 1

2

n∑
i,j=1

∫ t

0
aij (X(s)) ∂i∂jφ1(X(s)) ds,

where W̃ is an Wiener process.
Noting that φ1(X(·)) is a stochastic process on R and |∇φ1(x)σ (x)| > 0 for

x ∈ γ , the law of φ1(X(·)) is uniquely determined by this equation; see The-
orem 3.3 of Chapter IV in [27]. Applying Itô’s formula to γ (φ1(X(t))) and
noting that γ (φ1(X(·))) = X(·), ∂iφ1 = γ̇i ◦ γ −1 on γ for i = 1,2, . . . ,N and
∂i∂jφ1 = (γ̇i ◦ γ −1)(γ̈j ◦ γ −1) + (γ̇j ◦ γ −1)(γ̈i ◦ γ −1) on γ for i, j = 1,2, . . . ,N ,
we have that X satisfies (2.4); therefore, the first assertion holds. The second as-
sertion is obtained in a similar way. �

The argument above is also available in the case where the boundary ∂�ε carries
a Neumann boundary condition, for the generator of the process, in the following
sense. Consider a diffusion process X̂ε which is associated with

1

2

n∑
i,j=1

aij (x)
∂

∂xi

∂

∂xj

+
n∑

j=1

bj (x)
∂

∂xj

in �ε and reflecting on ∂�ε . Then, X̂ε can be expressed by the following equation:

X̂ε(t) = X̂ε(0) +
∫ t

0
σ(X̂ε(s)) dW(s) +

∫ t

0
b(X̂ε(s)) ds + �ε(X̂ε)(t),(2.6)
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where �ε is a singular drift which forces the reflecting boundary condition on ∂�ε;
see [46]. Discussing this case in a similar way as above, we obtain the following
theorem.

THEOREM 2.3. Define a diffusion process X̂ by the solution of the following
equation:

X̂(t) = X̂(0) +
∫ t

0
γ̇ ◦ γ −1(X̂(s))〈γ̇ ◦ γ −1(X̂(s)), σ (X̂(s)) dW(s)〉

+
∫ t

0
γ̇ ◦ γ −1(X̂(s))〈γ̇ ◦ γ −1(X̂(s)), b(X̂(s))〉ds

+ 1

2

∫ t

0
γ̈ ◦ γ −1(X̂(s))|σ(X̂(s))T γ̇ ◦ γ −1(X̂(s))|2 ds(2.7)

+
∫ t

0
γ̇ ◦ γ −1(X̂(s))〈σ(X̂(s))T γ̈ ◦ γ −1(X̂(s)),

σ (X̂(s))T γ̇ ◦ γ −1(X̂(s))〉ds.

If X̂ε(0) converges to a γ -valued random variable X̂(0) weakly, then the process
X̂ε converges weakly to X̂ in the sense of their laws on C([0,+∞);R

n) as ε ↓ 0.
Moreover, if pathwise uniqueness holds for (2.7) and (2.6) for all ε > 0, and X̂ε(0)

converges to a γ -valued random variable X̂(0) almost surely, then X̂ε converges
to X̂ almost surely, as ε ↓ 0.

REMARK 2.4. In this section, the shape of tubes was taken to be cylindri-
cal and the “confining” potential Uε has been defined by the scaling of a fixed
function U . However, neither the shape of the tubes nor the scaling property are
essential. If Uε is “along γ ” (in the sense that the gradient of Uε is normal to the
tangent of γ ), the same results hold. In the case where Uε is not along γ , some
effect of Uε remains in the limit process; see [19, 45].

3. The case of N -spiders. In this section, we consider the shrinking of thin
tubes to N -spider graphs. The argument in this section is the main part of this
article. Consider an n-dimensional Euclidean space R

n, let d(·, ·) be the distance
function in R

n and let O be the origin. Let {ei}Ni=1 be N different unit vectors in
R

n and Ii := {sei : s ∈ [0,∞)}. Consider an N -spider graph � defined by � :=⋃N
i=1 Ii . � is also called an N -star graph. Let A be the set in R

n given by

A := ⋃
i,j : i �=j

{x ∈ R
n : 〈x, ei〉 = 〈x, ej 〉}.

For x ∈ R
n \ A, let π(x) be the nearest point in � from x. Note that π(x) is

uniquely determined for all x ∈ R
n \ A.
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Let ui be given similarly to u in Section 2 for i = 1,2, . . . ,N (so that ui deter-
mines the potential acting in the thin tube around Ii). Let ci be a positive number
for i = 1,2, . . . ,N ,

κ := max
{
2
√

2ci/
√

1 − 〈ei, ej 〉 : i, j = 1,2, . . . ,N, i �= j
}

and κ0 ∈ (0, κ). ci has the interpretation of width of the tube around Ii . Let U be a
function on R

n with values in [0,∞], and assume

U(x) = ui(c
−1
i d(x,�)), x ∈ {x ∈ R

n :π(x) ∈ Ii, d(x, Ii) < ci, |x| ≥ κ},
U(x) = +∞, x ∈ {x ∈ R

n :π(x) ∈ Ii, d(x, Ii) ≥ ci, |x| ≥ κ},
U(x) < +∞, x ∈ {x ∈ R

n : |x| ≤ κ0},
� := {x :U(x) < ∞} is a simply connected and unbounded domain, ∂� is a C2-
manifold and U |� is a C1-function in �. This structure � is sometimes called a
“fattened” N -spider. In addition, we assume

lim
m→∞〈−∇U(xm),∇d(xm, ∂�)〉 = +∞ and − lim

m→∞
U(xm)

log(d(xm, ∂�))
= +∞

for any sequence {xm} which converges to a point x ∈ ∂�. Define domains
{�i : i = 1,2, . . . ,N} in R

n by

�i := {x ∈ � \ A :π(x) ∈ Ii, |x| ≥ κ}
for i = 1,2, . . . ,N . Let �ε := ε�, �ε

i := ε�i , and Uε(x) = U(ε−1x) for x ∈
R

n for all ε > 0. Note that Uε(x) ∈ [0,+∞) for x ∈ �ε , ∂Uε is a C2-manifold,
and Uε|�ε is a C1-function on �ε . Consider a diffusion process Xε given by the
following equation:

Xε(t) = Xε(0) +
∫ t∧ζ ε

0
σ(Xε(s)) dW(s) +

∫ t∧ζ ε

0
b(Xε(s)) ds

(3.1)

−
∫ t∧ζ ε

0
(∇Uε)(Xε(s)) ds,

where Xε(0) is an �ε-valued random variable, ζ ε is the first hitting time of Xε

at ∂�ε , W is an n-dimensional Wiener process, σ ∈ Cb(R
n;R

n ⊗ R
n) and b ∈

Cb(R
n;R

n). Define a stochastic process Xε
x by the solution of (3.1) with replacing

Xε(0) by x, and P ε
x by the law of Xε

x on C([0,∞);R
n). Let a(x) := σ(x)σT (x),

and assume that a is a uniformly positive definite matrix. Define a second-order
elliptic differential operator L on �ε by

L := 1

2

n∑
i,j=1

aij (x)
∂

∂xi

∂

∂xj

+
n∑

i=1

bi(x)
∂

∂xi

;

then the generator of Xε is a closed extension of (L − ∇Uε · ∇) in L2(�ε, dx) for
any ε > 0. Since a is a uniformly positive definite matrix, the process Xε exists
uniquely for all ε > 0.

The following lemma implies that Xε does not exit from �ε almost surely.
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LEMMA 3.1. ζ ε = +∞ almost surely for all ε > 0.

PROOF. Locally, the discussion in the proof of Lemma 2.1 is available. Hence,
by using the strong Markov property of Xε , we have the assertion. �

Next we shall study the tightness of {Xε : ε > 0}.

LEMMA 3.2. If the laws of {Xε(0) : ε > 0} are tight, then the laws of {Xε :
ε > 0} are also tight in the sense of laws on C([0,∞);R

n).

PROOF. In view of Theorem 2.1 in [21] it is sufficient to show that for any
ρ > 0 there exists a positive constant Cρ such that for all y ∈ R

n there exists a
function f

y
ρ on R

n which satisfies the following:

(i) f
y
ρ (y) = 1, f

y
ρ (x) = 0 for |x − y| ≥ ρ and 0 ≤ f

y
ρ ≤ 1.

(ii) (f
y
ρ (Xε(t)) + Cρt; t ≥ 0) is a submartingale for sufficiently small ε.

Now we choose f
y
ρ and Cρ satisfying the conditions above. Fix ρ > 0, and take

ε0 > 0 such that ε0 < ρ/(16κ). When y ∈ �ε0 (where �ε0 denotes the closure of
�ε0 in R

n) and |y| > ρ/2, choose f
y
ρ ∈ C∞(Rn) such that:

• f
y
ρ (x) = f

y
ρ (π(x)) for x ∈ �ε0 \ A and f

y
ρ (x) = 0 for |x − y| ≥ ρ/4;

• f
y
ρ (y) = 1, 0 ≤ f

y
ρ ≤ 1, ‖∇f ‖∞ ≤ 8/ρ and ‖∇2f ‖∞ ≤ 64/ρ2.

Since f
y
ρ (x) = 0 for |x| ≤ 2κε0 and ∇π(x)∇Uε(x) = 0 for |x| ≥ 2κε0, it follows

by Itô’s formula that

f y
ρ (Xε(t)) −

∫ t

0
Lf y

ρ (Xε(s)) ds

is a martingale for all ε < ε0. Hence, choosing Cρ larger than (8/ρ + 64/ρ2) ×
(‖σ‖2∞/2 + ‖b‖∞), conditions (i) and (ii) are satisfied for ε < ε0.

When y ∈ �ε0 and |y| ≤ ρ/2, choose f
y
ρ ∈ C∞(Rn) such that:

• f
y
ρ (x) = f

y
ρ (π(x)) for x ∈ �ε0 \A, f

y
ρ (x) = 1 for |x| ≤ ρ/4, and f

y
ρ (x) = 0 for

|x − y| ≥ ρ;
• f

y
ρ (y) = 1, 0 ≤ f

y
ρ ≤ 1, ‖∇f ‖∞ ≤ 8/ρ and ‖∇2f ‖∞ ≤ 64/ρ2.

Here, note that 2κε ≤ ρ/4 for ε < ε0. Similarly to the case where y ∈ �ε0 and
|y| > ρ/2, one proves that conditions (i) and (ii) are satisfied for ε < ε0 with the
same Cρ as above.

When y /∈ �ε0 , choose f
y
ρ ∈ C∞(Rn) such that f

y
ρ (y) = 1, f

y
ρ (x) = 0 for x ∈

�ε0 , and f
y
ρ satisfies condition (i) above. Since Xε moves in �ε , f

y
ρ (Xε(t)) = 0

for all t and ε < ε0.
Thus, for all ρ > 0, {f y

ρ :y ∈ R
n} and Cp are chosen in such a way that condi-

tions (i) and (ii) are satisfied. �
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Now, we assume the tightness of {Xε(0) : ε > 0}. By Lemma 3.2 we can choose
a subsequence {Xε′

: ε′ > 0} of {Xε : ε > 0} such that the laws of its members
converge weakly in the sense of laws on C([0,∞);R

n). Define X as the limit
process of this subsequence, and to simplify the notation denote the subsequence
ε′ by ε again. From now on we fix X as the limit process of Xε .

For w ∈ C([0,+∞);R
n), let T̃ c(w) := inf{t > 0 : |w(t)| = c} and T c(w) :=

inf{t > 0 :w(t) /∈ A, |π(w(t))| = c} for c > 0.
Theorem 2.2 determines the behavior of X on � \ O . Hence, to characterize X,

we need to determine the boundary condition for X at O . Now we give some
lemmas. The following lemma implies that the edge which X goes to, starting
from O , is independent of the edge which X comes from. Therefore, we obtain in
particular that X is a strong Markov process on �.

LEMMA 3.3. Let {δ(ε) : ε > 0} be positive numbers satisfying the condition
that limε↓0 ε−1δ(ε) = +∞. For B ∈ B(Rn) [B(Rn) denoting the Borel subsets of
R

n],

sup
{∣∣P ε

x

(
w
(
T δ(ε)) ∈ B

)− P ε
O

(
w
(
T δ(ε)) ∈ B

)∣∣ :x ∈ �ε, |x| ≤ 3κε
}

converges to 0 as ε ↓ 0.

PROOF. Define a process X̂ε
x by the solution of the equation

X̂ε
x(t) = x +

∫ t

0
σ(εX̂ε

x(s)) dŴ (s) + ε

∫ t

0
b(εX̂ε

x(s)) ds

(3.2)

−
∫ t

0
(∇U)(X̂ε

x(s)) ds

for x ∈ � and ε > 0, where Ŵ is an n-dimensional Wiener process defined by
Ŵ (t) = ε−1W(ε2t) for t ∈ [0,∞). It is easy to see that the law of (X̂ε

x(t) : t ≥
0) is equal to (ε−1Xε

εx(ε
2t) : t ≥ 0) for x ∈ �. Letting P̂ ε

x be the law of X̂ε
x on

C([0,∞);R
n), we have

P̂ ε
x

(
w(t) ∈ dx

)= P ε
εx

(
ε−1w(ε2t) ∈ dx

)
(3.3)

for t ∈ [0,∞), x ∈ � and ε > 0. By (3.3), it is sufficient to show that∣∣P̂ ε
x

(
w
(
T δ(ε)/ε) ∈ ε−1B

)− P̂ ε
O

(
w
(
T δ(ε)/ε) ∈ ε−1B

)∣∣→ 0(3.4)

as ε tends to 0, uniformly in x ∈ {y ∈ � : |y| ≤ 3κ}. Define stopping times

τ0(w) := inf{t > 0 :w(t) /∈ A, |π(w(t))| > 3κ},
τ̃k(w) := inf{t > τk−1 :w(t) /∈ A, |π(w(t))| > 4κ}, k ∈ N,

τk(w) := inf{t > τ̃k :w(t) /∈ A, |π(w(t))| < 3κ}, k ∈ N,



DIFFUSION PROCESSES IN THIN TUBES 2143

for w ∈ C([0,∞);R
n). Note that |w(τk)| = 3κ for k = 0,1,2, . . . , and |w(τ̃k)| =

4κ for k = 1,2,3, . . . almost surely under P̂ ε
x for x ∈ � and |x| ≤ 2κε. Since

�π(x) = 0 and ∇π(x)∇U(x) = 0 for |x| ≥ 2κ , Itô’s formula implies

π(X̂ε
x(t)) = π(τ̃k(X̂

ε
x)) +

∫ t

τ̃k(X̂
ε
x)

∇π(X̂ε
x(s))σ (εX̂ε(s)) dŴ (s)

(3.5)

+ ε

∫ t

τ̃k(X̂
ε
x)

∇π(X̂ε
x(s))b(εX̂ε(s)) ds

for t ∈ [τ̃k(X̂
ε
x), τk(X̂

ε
x)], x ∈ � and |x| ≤ 3κε. Since the diffusion coefficient of

the one-dimensional process |π(X̂ε
x(t))| is uniformly elliptic, and T δ(ε)/ε diverges

to infinity as ε ↓ 0 almost surely under P̂ ε
x , there exists a sequence {η(ε)} converg-

ing to 0 as ε ↓ 0 such that

sup
|x|=4κ

P̂ ε
x

(
T δ(ε)/ε < T 3κ)≤ η(ε).

On the other hand, since σσT is uniformly positive definite, X̂ε
x hits {x ∈ � : |x| <

δ′} with positive probability for all x ∈ �, ε > 0, δ′ > 0. Hence, letting α(ε) be
a sequence of positive numbers such that α(ε) ≤ 2κ , and α(ε) converges to 0 as
ε ↓ 0, we obtain that

p(ε) := inf|x|=3κ
P̂ ε

x

(
T̃ α(ε) < T 4κ)> 0

for all ε > 0, and that p(ε) converges to 0 as ε ↓ 0. Moreover, we have

P̂ ε
x

(
T δ(ε)/ε < T̃ α(ε))
=

∞∑
k=1

P̂ ε
x

(
T δ(ε)/ε < τk, τ̃k < T̃ α(ε))

=
∞∑

k=1

∫
{x1∈� : |π(x1)|=3κ}

∫
{y1∈� : |π(y1)|=4κ}

· · ·
∫
{xk∈� : |π(xk)|=3κ}

∫
{yk∈� : |π(yk)|=4κ}

P̂ ε
yk

(
T δ(ε)/ε < T 3κ)

× P̂ ε
xk

(
w(T 4κ) ∈ dyk, T

4κ < T̃ α(ε))
× P̂ ε

yk−1

(
w(T 3κ) ∈ dxk, T

δ(ε)/ε > T 3κ)
× · · · × P̂ ε

x1

(
w(T 4κ) ∈ dy1, T

4κ < T̃ α(ε))
× P̂ ε

x

(
w(T 3κ) ∈ dx1, T

δ(ε)/ε > T 3κ)
≤ η(ε)

∞∑
k=1

(
1 − p(ε)

)k
= η(ε)(1 − p(ε))

p(ε)
.



2144 S. ALBEVERIO AND S. KUSUOKA

Hence, if η(ε)/p(ε) converges to 0 as ε ↓ 0, P̂ ε
x (T δ(ε)/ε < T̃ α(ε)) converges to

0 as ε ↓ 0. Now we choose α(ε) so that η(ε)/p(ε) converges to 0 as ε ↓ 0. Then
P̂ ε

x (T δ(ε)/ε < T̃ α(ε)) converges to 0 as ε ↓ 0. Thus, for (3.4), it is sufficient to prove
that

sup
|x|≤α(ε)

∣∣P̂ ε
x

(
w
(
T δ(ε)/ε) ∈ ε−1B

)− P̂ ε
O

(
w
(
T δ(ε)/ε) ∈ ε−1B

)∣∣→ 0(3.6)

as ε ↓ 0. To show this convergence, we use the coupling method. Let σ l ∈
C∞

b (Rn;R
n ⊗ R

n) and bl ∈ C∞
b (Rn;R

n) for l = 1,2, . . . , such that

lim
l→∞ sup

|x|≤M

|σ l(x)−σ(x)| = 0 and lim
l→∞ sup

|x|≤M

|bl(x)−b(x)| = 0 for M > 0.

Let x be fixed, and consider a pair of stochastic processes (X̃ε,l
x , X̃

ε,l
O ) defined by

X̃ε,l
x (t) = x +

∫ t

0
σ l(εX̃ε,l

x (s)) dŴ (s)

+ ε

∫ t

0
bl(εX̃ε,l

x (s)) ds −
∫ t

0
(∇U)(X̃ε,l

x (s)) ds,

X̃
ε,l
O (t) =

∫ t

0
σ l(εX̃

ε,l
O (s))Hε,l(X̃ε,l

x (s), X̃
ε,l
O (s)) dŴ (s)

+ ε

∫ t

0
bl(εX̃

ε,l
O (s)) ds −

∫ t

0
(∇U)(X̃

ε,l
O (s)) ds,

where

Hε,l(x1, x2) := In − 2σ l(εx2)
−1(x1 − x2)(x1 − x2)

T (σ l(εx2)
−1)T

|σ l(εx2)−1(x1 − x2)|2
for x1, x2 ∈ R

n, and In is the unit matrix. Note that (X̃ε,l
x , X̃

ε,l
O ) is uniquely deter-

mined because of the smoothness of σ l and bl . We define

V (y) := |y|−1y, �ε,l(x1, x2) := σ l(εx1) − σ l(εx2)H
ε,l(x1, x2),

�ε,l(x1, x2) := εbl(εx1) − (∇U)(x1) − εbl(εx2) + (∇U)(x2)

for y ∈ {z ∈ R
n : |z| ≤ 2κ0} and x1, x2 ∈ {z ∈ R

n : |z| ≤ κ0}. Similarly to the
argument in Section 3 in [36], there exists a positive constant K such that
infl{|�ε,l(x1, x2)

T V (x1 − x2)|2} ≥ K for x1, x2 ∈ {z ∈ R
n : |z| ≤ κ0} for small ε.

By the equi-continuity of {σ l}, we can choose ρ ∈ (0,2κ0) satisfying

2〈x1 − x2,�
ε,l(x1, x2)〉 + trace(�ε,l(x1, x2)�

ε,l(x1, x2)
T )

− |�ε,l(x1, x2)
T V (x1 − x2)|2 ≤ K/12

for |x1 − x2| < ρ, |x1| ≤ κ0, |x2| ≤ κ0, l = 1,2,3, . . . (see [36]). For ε′ ∈ [0, ρ),
define a stopping time T ε′

on C([0,∞);R
n) × C([0,∞);R

n) by

T ε′
(w,w′) := inf{t > 0 : |w(t) − w′(t)| /∈ (ε, ρ),

|w(t)| ≥ κ0, or |w′(t)| ≥ κ0}
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for w,w′ ∈ C([0,∞);R
n). By Itô’s formula and the choice of ρ, we have

ρ2/3P
(|X̃ε,l

x (T ε′
(X̃ε,l

x , X̃
ε,l
O )) − X̃

ε,l
O (T ε′

(X̃ε,l
x , X̃

ε,l
O ))| = ρ

)
≤ E[|X̃ε,l

x (T ε′
(X̃ε,l

x , X̃
ε,l
O )) − X̃

ε,l
O (T ε′

(X̃ε,l
x , X̃

ε,l
O ))|2/3]

= |x|2/3 − 1

9
E

[∫ T ε′ (X̃ε,l
x ,X̃

ε,l
O )

0
|X̃ε,l

x (s) − X̃
ε,l
O (s)|−4/3

× ∣∣�ε,l(X̃ε,l
x (s), X̃

ε,l
O (s))T

× V
(
X̃ε,l

x (s) − X̃
ε,l
O (s)

)∣∣2 ds

]

+ 2

3
E

[∫ T ε′ (X̃ε,l
x ,X̃

ε,l
O )

0
|X̃ε,l

x (s) − X̃
ε,l
O (s)|−4/3

× {2〈X̃ε,l
x (s) − X̃

ε,l
O (s),�ε,l(X̃ε,l

x (s), X̃
ε,l
O (s))〉

+ trace
(
�ε,l(X̃ε,l

x (s), X̃
ε,l
O (s))

× �ε,l(X̃ε,l
x (s), X̃

ε,l
O (s))T

)
− ∣∣�ε,l(X̃ε,l

x (s), X̃
ε,l
O (s))T

× V
(
X̃ε,l

x (s) − X̃
ε,l
O (s)

)∣∣2}ds

]

≤ |x|2/3 − K

18
E

[∫ T ε′ (X̃ε,l
x (s),X̃

ε,l
O (s))

0
|X̃ε,l

x (s) − X̃
ε,l
O (s)|−4/3 ds

]
≤ |x|2/3 − K

18ρ4/3 E[T ε′
(X̃ε,l

x , X̃
ε,l
O )].

Hence, letting ε′ ↓ 0, we have the following two estimates:

P
(|X̃ε,l

x (T 0(X̃ε,l
x , X̃

ε,l
O )) − X̃

ε,l
O (T 0(X̃ε,l

x , X̃
ε,l
O ))| = ρ

)
,

(3.7)
≤ ρ−2/3|x|2/3,

E[T 0(X̃ε,l
x , X̃

ε,l
O )] ≤ 18ρ4/3

K
|x|2/3.(3.8)

On the other hand, by Itô’s formula,

E

[{(
|X̃ε,l

x (T 0(X̃ε,l
x , X̃

ε,l
O )) − x| − κ0

2

)
+

}2]

= E

[∫ T 0(X̃
ε,l
x ,X̃

ε,l
O )

0

(
|X̃ε,l

x (s) − x| − κ0

2

)
+
|X̃ε,l

x (s) − x|−1
I{|X̃ε,l

x (s)−x|≥κ0/2}
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×
{

2〈X̃ε,l
x (s) − x, εbl(εX̃ε,l

x (s)) − ∇U(X̃ε,l
x (s))〉

+ trace[σ l(εX̃ε,l
x (s))σ l(εX̃ε,l

x (s))T ]

−
∣∣∣∣σ l(εX̃ε,l

x (s))T
X̃ε,l

x (s) − x

|X̃ε,l
x (s) − x|

∣∣∣∣2}

+ I{|X̃ε,l
x (s)−x|≥κ0/2}

∣∣∣∣σ l(εX̃ε,l
x (s))T

X̃ε,l
x (s) − x

|X̃ε,l
x (s) − x|

∣∣∣∣2 ds

]
≤ CE[T 0(X̃ε,l

x , X̃
ε,l
O )],

where z+ := max{0, z} for z ∈ R and C is a positive constant independent of l

and x. This inequality together with (3.8) implies

P
(|X̃ε,l

x (T 0(X̃ε,l
x , X̃

ε,l
O )) − x| = κ0

)≤ 72Cρ4/3

κ2
0K

|x|2/3.(3.9)

Similarly, we have

P
(|X̃ε,l

O (T 0(X̃ε,l
x , X̃

ε,l
O ))| = κ0

)≤ 72C′ρ4/3

κ2
0K

|x|2/3,(3.10)

where C′ is a positive constant. Noting that X̃ε,l
x and X̃

ε,l
O converge to X̂ε

x and X̂ε
O

in law as l → +∞, respectively, for each ε, by the coupling inequality (see [36])
we have

sup
|x|≤α(ε)

∣∣P̂ ε
x

(
w
(
T δ(ε)/ε) ∈ ε−1B

)− P̂ ε
O

(
w
(
T δ(ε)/ε) ∈ ε−1B

)∣∣
≤ sup

|x|≤α(ε)

sup
l

∣∣P (X̃ε,l
x

(
T δ(ε)/ε) ∈ ε−1B

)− P
(
X̃

ε,l
O

(
T δ(ε)/ε) ∈ ε−1B

)∣∣
≤ sup

|x|≤α(ε)

sup
l

P
(|X̃ε,l

x (T 0(X̃ε,l
x , X̃

ε,l
O )) − X̃

ε,l
O (T 0(X̃ε,l

x , X̃
ε,l
O ))| �= 0

)
≤ sup

|x|≤α(ε)

sup
l

P
(|X̃ε,l

x (T 0(X̃ε,l
x , X̃

ε,l
O )) − X̃

ε,l
O (T 0(X̃ε,l

x , X̃
ε,l
O ))| = ρ

)
+ sup

|x|≤α(ε)

sup
l

P
(|X̃ε,l

x (T 0(X̃ε,l
x , X̃

ε,l
O )) − x| = κ0

)
+ sup

|x|≤α(ε)

sup
l

P
(|X̃ε,l

O (T 0(X̃ε,l
x , X̃

ε,l
O ))| = κ0

)
.

This inequality, together with (3.7), (3.9) and (3.10) yields (3.6). �

The next lemma implies that O is not absorbing for X.
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LEMMA 3.4. ∫ t

0
E
[
I{x : |x|≤δ′}(X(s))

]
ds = O(δ′)

as δ′ ↓ 0, for all t ≥ 0.

PROOF. To simplify the notation, let Xε(0) = xε ∈ �ε . It is sufficient to show
that ∫ t

0
E
[
I{x : |π(x)|≤δ′}(X(s))

]
ds = O(δ′)

as δ′ ↓ 0. By Fatou’s lemma, we have∫ t

0
E
[
I{x : |π(x)|≤δ′}(X(s))

]
ds

≤ lim inf
ε↓0

∫ t

0
E
[
I{x : |π(x)|≤3κε}(Xε(s))

]
ds(3.11)

+ lim inf
ε↓0

∫ t

0
E
[
I{x : 3κε≤|π(x)|≤δ′}(Xε(s))

]
ds.

To show that the second term is O(δ′) as δ′ ↓ 0, let f be a continuous
function on R such that I{x∈R : 3κε≤x≤δ′} ≤ f ≤ I{x∈R : 2κε≤x≤2δ′} and F(x) :=∫ x

0
∫ y

0 f (z) dz dy. Noting that π(x) = 〈ei, x〉ei for x ∈ �i and i = 1,2, . . . ,N , we
have ∇π(x)π(x) = π(x) for x ∈ � such that |x| ≥ 2κ . Since ∇π(x)∇Uε(x) = 0
and �π(x) = 0 for x ∈ �ε such that |x| ≥ 2κε, we have

E[F(|π(Xε(t))|)] − F(|π(xε)|)

= 1

2

∫ t

0
E

[
f (|π(Xε(s))|)

∣∣∣∣σ(Xε(s))T
π(Xε(s))

|π(Xε(s))|
∣∣∣∣2]ds

+
∫ t

0
E

[
F ′(|π(Xε(s))|)

〈
π(Xε(s))

|π(Xε(s))| , b(Xε(s))

〉]
ds.

It is easy to see that E[|Xε(t)|2] is dominated uniformly in ε > 0. Moreover, it
holds that 0 ≤ F ′ ≤ 2δ′ and 0 ≤ F(x) ≤ 2δ′x for x ∈ R+. Thus, by uniform ellip-
ticity of a = σσT , we have the following estimate:∫ t

0
E
[
I{x∈R : 3κε≤x≤δ′}(|π(Xε(s))|)]ds ≤ Cδ′

for some constant C. Hence,

lim inf
ε↓0

∫ t

0
E
[
I{x : 3κε≤|π(x)|≤δ′}(Xε(s))

]
ds = O(δ′)

as δ′ ↓ 0. This yields that the second term of (3.11) is equal to O(δ′) as δ′ ↓ 0.
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The proof is finished by showing that∫ t

0
E
[
I{x : |π(x)|≤3κε}(Xε(s))

]
ds = O(ε)(3.12)

as ε ↓ 0. Define stopping times {τ ε
k , τ̃ ε

k } by

τ ε
0 (w) := 0,

τ̃ ε
k (w) := inf{u > τε

k−1(w) : |π(w(u))| > 4κε}, k ∈ N,

τ ε
k (w) := inf{u > τ̃ ε

k (w) : |π(w(u))| < 3κε}, k ∈ N,

for w ∈ C([0,∞);R
n). Then,∫ t

0
E
[
I{x : |π(x)|≤3κε}(Xε(s))

]
ds

≤
∞∑

k=1

∫ (∫
T 4κε(w)P ε

x (dw)

)
P ε

xε

(
w(τε

k ) ∈ dx, τ ε
k ≤ t

)

≤ sup
x∈{y∈� : |π(y)|=3κε}

(∫
T 4κε(w)P ε

x (dw)

) ∞∑
k=1

P ε
xε (τ

ε
k ≤ t).

By using the notation in the proof of Lemma 3.3, we have

sup
x∈{y∈� : |π(y)|=3κε}

∫
T 4κε(w)P ε

x (dw) = ε2 sup
x∈{y∈� : |π(y)|=3κ}

∫
T 4κ(w)P̂ ε

x (dw).

It is easy to see that

sup
ε>0

sup
x∈{y∈� : |π(y)|=3κ}

∫
T 4κ(w)P̂ ε

x (dw) < +∞.

Hence, for (3.12), it is sufficient to show that
∞∑

k=1

P ε
xε (τ̃

ε
k ≤ t) ≤ Cε−1(3.13)

for some constant C. For w ∈ C([0,∞);�), let Nt (w) be the number of transitions
of w from the set {x ∈ �ε : |π(x)| = 3κ} to the set {x ∈ �ε : |π(x)| = 4κ} during
the time interval [0, t]. Then,

∞∑
k=1

P ε
xε (τ̃

ε
k ≤ t) =

∫
Nε−2t (w)P̂ ε

ε−1xε (dw).(3.14)

Take f ∈ C∞([0,∞)) such that f ≥ 0, 0 ≤ f ′ ≤ 1, f ′′ ≥ 0, suppf ′′ ⊂ [2κ,3κ],
f (x) = 0 for x ≤ 2κ and f (3κ) < f (4κ). Define Ŷ ε,i

x by

Ŷ ε,i
x (t) := f (〈ei, X̂

ε
x(t)〉I�i

(X̂ε
x(t)))
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for x ∈ � and i = 1,2, . . . ,N . Since 〈ei,∇U(x)〉 = 0 for x ∈ {�i : |x| ≥ 2κε}, by
Itô’s formula we have

Ŷ ε,i
x (t) = f (〈ei, x〉I�i

(x))

+
∫ t

0
f ′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))〈ei, σ (εX̂ε

x(s)) dŴ (s)〉

+ ε

∫ t

0
f ′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))〈ei, b(εX̂ε

x(s))〉ds

+ 1

2

∫ t

0
f ′′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))|σ(εX̂ε

x(s))
T ei |2 ds.

It is clear that

E[Nε−2t (X̂
ε
ε−1xε )] ≤

N∑
i=1

sup
x:|π(x)|≤4κ

E[Ñε−2t (Ŷ
ε,i
x )],

where Ñt (w) is the number of up-crossing of w for the interval [f (3κ), f (4κ)]
during the time interval [0, t]. Hence, by (3.13) and (3.14), it is sufficient to show
that

sup
x:|π(x)|≤4κ

E[Ñε−2t (Ŷ
ε,i
x )] ≤ Cε−1(3.15)

with a constant C for all i = 1,2, . . . ,N . Let i be fixed and m ∈ N. Define τk and
τ̃k by

τ̃0 := 0,

τ0 := inf{u > 0 : Ŷ ε,i
x (u) ≤ f (3κ)},

τ̃k := inf{u > τk−1 : Ŷ ε,i
x (u) ≥ f (4κ)}, k ∈ N,

τk := inf{u > τ̃k : Ŷ ε,i
x (u) ≤ f (3κ)}, k ∈ N.

Then,

E[Ŷ ε,i
x (t ∧ τ̃m)] − E[Ŷ ε,i

x (t ∧ τ0)]

=
m∑

k=1

E[Ŷ ε,i
x (τ̃k ∧ t) − Ŷ ε,i

x (τk−1 ∧ t)]

+
m−1∑
k=1

E[Ŷ ε,i
x (τk ∧ t) − Ŷ ε,i

x (τ̃k ∧ t)]

=
m∑

k=1

E[Ŷ ε,i
x (τ̃k ∧ t) − Ŷ ε,i

x (τk−1 ∧ t)]
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+ ε

m−1∑
k=1

E

[∫ τk∧t

τ̃k∧t
f ′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))〈ei, b(εX̂ε

x(s))〉ds

]

+ 1

2

m−1∑
k=1

E

[∫ τk∧t

τ̃k∧t
f ′′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))|σ(εX̂ε

x(s))
T ei |2 ds

]
.

Since f ′′ ≥ 0, we have∣∣∣∣∣
m∑

k=1

E[Ŷ ε,i
x (τ̃k ∧ t) − Ŷ ε,i

x (τk−1 ∧ t)]
∣∣∣∣∣

(3.16)
≤ E[Ŷ ε,i

x (t ∧ τ̃m)] + E[Ŷ ε,i
x (t ∧ τ0)] + C1εt

with a positive constant C1. Let

τ̃∗ := max{τ̃k : τ̃k ≤ t, k = 1,2,3, . . .},
τ∗ := max{τk : τk ≤ t, k = 1,2,3, . . .},

M(t) :=
∫ t

0
f ′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))〈ei, σ (εX̂ε

x(s)) dŴ (s)〉.

When τ̃∗ ≤ τ∗, Ŷ ε,i
x (t) ≤ f (4κ). When τ∗ ≤ τ̃∗, f ′′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s))) = 0 for

s ∈ [τ̃∗, t]. Thus, we have

Ŷ ε,i
x (t) = Ŷ ε,i

x (τ̃∗) + M(t) − M(τ̃∗)

+ ε

∫ t

τ̃∗
f ′(〈ei, X̂

ε
x(s)〉I�i

(X̂ε
x(s)))〈ei, b(εX̂ε

x(s))〉ds.

Hence,

Ŷ ε,i
x (t) ≤ f (4κ) + 2 sup

0≤s≤t

|M(s)| + C2εt

for |x| ≤ 4κ with a constant C2. By the Burkholder–Davis–Gundy inequality we
have

E
[

sup
0≤s≤t

Ŷ ε,i
x (s)

]
≤ f (4κ) + 2C3

√
t + C2εt

for |x| ≤ 4κ with a constant C3. Thus, letting m → +∞ on (3.16), we have for
|x| ≤ 4κ(

f (4κ) − f (3κ)
)
E
[

Ñt (Ŷ
ε,i
x )
]
≤ 2f (4κ) + 4C3

√
t + (C1 + 2C2)εt.

Therefore, replacing t by ε−2t , (3.15) is obtained. �

The lemmas above yield that the boundary condition at O is a weighted Kirch-
hoff boundary condition. Hence, the next step is to determine the weights associ-
ated with the edges. Let Y ε

x be a diffusion process defined by the solution of the
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following stochastic differential equation:

Y ε
x (t) = x + σ(O)W(t) −

∫ t

0
(∇Uε)(Y ε

x (s)) ds.(3.17)

Note that Y ε
x is a special case of Xε with the condition Xε(0) = x, and Y ε

x does not
hit �ε almost surely. Denote the law of Y ε

x on C([0,∞);R
n) by Qε

x . It is easy to
see that the law of Y ε

x is the same as that of εY 1
ε−1x

(ε−2). By (3.2) one has that the

law of X̂ε
x converges to that of Y 1

x as ε ↓ 0, and therefore, the law of Xε
x and that

of Y ε
x are getting closer as ε ↓ 0. In particular, we have

lim
ε↓0

∣∣P ε
O

(
w(T cε) ∈ �ε

i

)− Qε
O

(
w(T cε) ∈ �ε

i

)∣∣= 0

for all c > 0 and i = 1,2, . . . ,N . Since this holds for all c > 0, it is possible
to choose a subsequence of ε (denote the subsequence by ε again) and positive
numbers β(ε) which satisfy limε↓0 β(ε) = +∞, and

lim
ε↓0

∣∣P ε
O

(
w
(
T β(ε)ε) ∈ �ε

i

)− Qε
O

(
w
(
T β(ε)ε) ∈ �ε

i

)∣∣= 0(3.18)

for i = 1,2, . . . ,N . Let δ(ε) := εβ(ε). Then, δ(ε) satisfies the conditions in
Lemma 3.3.

Now we assume that σ(O) = In where In means the unit matrix. This assump-
tion enables us to determine the weights of the edges explicitly. Let

pi := cn−1
i

∫ 1
0 rn−2e−ui(r) dr∑N

i=1 cn−1
i

∫ 1
0 rn−2e−ui(r) dr

.

We remark that when ui is independent of i, then we have pi := cn−1
i /

(
∑N

i=1 cn−1
i ); hence the weights {pi} are determined by the ratio of the area of

the cross-section around the edge Ii . Then, the following lemma holds.

LEMMA 3.5. If σ(O) = In, then

lim
ε↓0

sup
|x|≤3κε

∣∣P ε
x

(
w
(
T δ(ε)) ∈ �ε

i

)− pi

∣∣= 0

for i = 1, . . . ,N .

PROOF. Applying Lemma 3.3 to both Xε· and Y ε· , and using (3.18), it is suffi-
cient to show that

lim
ε↓0

∣∣Qε
O

(
w
(
T δ(ε)) ∈ �ε

i

)− pi

∣∣= 0(3.19)

for i = 1, . . . ,N .
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We make a similar discussion as in the proof of Theorem 6.1 in [21]. Let νε be
the invariant measure of the Markov chain {Y ε(τ ε

k )}, where τ ε
k are stopping times

defined by

τ ε
0 (w) := 0,

τ̃ ε
k (w) := inf{u > τε

k−1(w) : |π(w(u))| > δ(ε)}, k ∈ N,

τ ε
k (w) := inf{u > τ̃ ε

k (w) : |π(w(u))| < 3κε}, k ∈ N.

Define a measure με on �ε by

με(dx) := exp(−Uε(x)) dx, x ∈ �ε,

a function space D(E ε) by {f ∈ C2(�ε) : limx : d(x,∂�ε)→0 f (x) = 0} and a bilin-
ear form E ε by

E ε(f, g) :=
∫
�ε

〈∇f (x),∇g(x)〉με(dx), f, g ∈ D(E ε).

Then, the pre-Dirichlet form (E ε,D(E ε)) on L2(�ε,με) is closable, and Y ε is
associated to the Dirichlet form obtained by closing (E ε,D(E ε)). Note that με is
an invariant measure of Y ε; see [23]. By Theorem 2.1 in [26] we have

με(B) =
∫
{x∈�ε : |π(x)|=3κε}

νε(dx)

∫ [∫ τ ε
1 (w)

0
IB(w(t)) dt

]
Qε

x(dw)

for B ∈ B(Rn). Let Bε
i := {x ∈ �ε

i : δ(ε) ≤ |π(x)| ≤ 2δ(ε)}. Then,

με(Bε
i )

=
∫
{x∈�ε : |π(x)|=3κε}

νε(dx)

∫ [
I�i

(w(τ̃ ε
1 ))

∫ τ ε
1 (w)

τ̃ ε
1 (w)

IBε
i
(w(t)) dt

]
Qε

x(dw)(3.20)

=
∫
{x∈�ε : |π(x)|=3κε}

νε(dx)

∫
I�i

(
w
(
T δ(ε)))Qε

x(dw)

×
∫ [∫ T 3κε

0
IBε

i
(w̃(t)) dt

]
Qε

w(T δ(ε))
(dw̃).

On the other hand, let

Z(t) := −δ(ε) + W̌ (t), Ť := inf{t > 0 : |Z(t)| > 2δ(ε) − 3κε},
where W̌ is a one-dimensional Wiener process starting from 0, and

F(x) :=
∫ x

−2δ(ε)

∫ y

−2δ(ε)
I[−δ(ε),δ(ε)](z) dz dy, x ∈ R.

Then, by Itô’s formula we have

E[F(Z(Ť ))] − F(−δ(ε)) = 1

2
E

[∫ Ť

0
I[−δ(ε),δ(ε)](Zt ) dt

]
.
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Since F can be computed explicitly, we see that F(−δ(ε)) = 0 and

E[F(Z(Ť ))] = F
(
2δ(ε) − 3κε

)
P
(
Z(Ť ) = 2δ(ε) − 3κε

)
= δ(ε) − 3κε

4δ(ε) − 6κε

[
2δ(ε)2 + 2δ(ε)

(
δ(ε) − 3κε

)]
.

Thus, it follows that

E

[∫ Ť

0
I[−δ(ε),δ(ε)](Z(t)) dt

]
= 2δ(ε)2 + o(δ(ε)2).

On the other hand, the strong Markov property and the reflection principle imply
that ∫ (∫ T 3κε

0
IBε

i
(w(t)) dt

)
Qε

y(dw) = E

[∫ Ť

0
I[−δ(ε),δ(ε)](Z(t)) dt

]
for all y ∈ {x ∈ �ε : |π(x)| = δ(ε)}, because the left-hand side is independent of
the behavior of w moving in {x ∈ �ε : |π(x)| ≥ δ(ε)} under Qε

y . Hence, it holds
that ∫ (∫ T 3κε

0
IBε

i
(w(t)) dt

)
Qε

y(dw) = 2δ(ε)2 + o(δ(ε)2)(3.21)

for all y ∈ {x ∈ �ε : |π(x)| = δ(ε)}. By Lemma 3.3, (3.20) and (3.21), we have

με(Bε
i ) = (2δ(ε)2 + o(δ(ε)2)

)
νε({x ∈ �ε : |π(x)| = 3κε})

(3.22)
× (Qε

O

(
w
(
T δ(ε)) ∈ �ε

i

)+ oε(1)
)
.

Since
∑N

i=1 Qε
O(w(T δ(ε)) ∈ �ε

i ) = 1, we have, as ε ↓ 0

νε({x ∈ �ε : |π(x)| = 3κε})= 1

2
δ(ε)−2

N∑
i=1

με(Bε
i ) + oε(1).(3.23)

Dividing both sides of (3.22) by those of (3.23), we obtain that

Qε
O

(
w
(
T δ(ε)) ∈ �ε

i

)= με(Bε
i )∑N

i=1 με(Bε
i )

+ oε(1).

By the definition of με , the continuity of σ and b, and σ(O) = In, με(Bε
i ) can be

expressed explicitly as

με(Bε
i ) = ωn−2δ(ε)c

n−1
i εn−1

∫ 1

0
rn−2e−ui(r) dr,

where ωn−2 is the area of the (n − 2)-dimensional unit sphere. Therefore, (3.19)
is proved. �

The statement in Lemma 3.5 can be improved as follows.
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LEMMA 3.6.

lim
δ′↓0

lim
ε↓0

sup
|x|≤3κε

∣∣P ε
x

(
w(T δ′

) ∈ �ε
i

)− pi

∣∣= 0

for i = 1, . . . ,N .

PROOF. In view of Lemma 3.3, it is sufficient to show

lim
δ′↓0

lim
ε↓0

∣∣P ε
O

(
w(T δ′

) ∈ �ε
i

)− pi

∣∣= 0

for i = 1,2, . . . ,N . Define stopping times {τ ε
k , τ̃ ε

k } by

τ ε
0 (w) := 0,

τ̃ ε
k (w) := inf{u > τε

k−1(w) : |π(w(u))| > δ(ε)}, k ∈ N,

τ ε
k (w) := inf{u > τ̃ ε

k (w) : |π(w(u))| < 3κε}, k ∈ N.

By the strong Markov property, we have

P ε
O

(
w(T δ′

) ∈ �ε
i

)
=

∞∑
k=1

∫
I{τ ε

k−1<T δ′ }(w)P ε
O(dw)(3.24)

×
∫

P ε
y (T δ′

< T 3κε)I�ε
i
(y)Pw(τε

k−1)

(
w
(
T δ(ε)) ∈ dy

)
and

pi = pi

∞∑
k=1

P ε
O(τ ε

k−1 < T δ′
< τε

k )

=
∞∑

k=1

∫
I{τ ε

k−1<T δ′ }(w)P ε
O(dw)(3.25)

×
∫

piP
ε
y (T δ′

< T 3κε)Pw(τε
k−1)

(
w
(
T δ(ε)) ∈ dy

)
for i = 1,2, . . . ,N . Let hε− and hε+ be functions on [0,∞) given by

hε−(z) := max
i

sup
x∈�ε

i :|π(x)|=max{z,3κε}
2〈ei, b(x)〉
|σ(x)T ei |2 ,

hε+(z) := min
i

inf
x∈�ε

i :|π(x)|=max{z,3κε}
2〈ei, b(x)〉
|σ(x)T ei |2 ,

respectively. Define functions sε− and sε+ on [0,∞) by

sε−(z) :=
∫ z

0
exp
(
−
∫ z′

0
hε−(z′′) dz′′

)
dz′,
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sε+(z) :=
∫ z

0
exp
(
−
∫ z′

0
hε+(z′′) dz′′

)
dz′,

respectively. Then, for y ∈ {x ∈ �ε
i : |π(x)| = δ(ε)} we have∫

sε−
(∣∣π(w(T δ′ ∧ T 3κε)

)∣∣)P ε
y (dw) − sε−(δ(ε))

=
∫

sε−
(〈ei,w(T δ′ ∧ T 3κε)〉)P ε

y (dw) − sε−(〈ei, y〉)

= −1

2

∫ [∫ T δ′∧T 3κε

0
hε−(w(s))|σ(w(s))T ei |2

× exp
(
−
∫ w(s)

0
hε−(z′) dz′

)
ds

]
P ε

y (dw)

+
∫ [∫ T δ′∧T 3κε

0
〈ei, b(w(s))〉 exp

(
−
∫ w(s)

0
hε−(z′) dz′

)
ds

]
P ε

y (dw)

≤ 0.

Hence, it holds that

sε−(δ′)P ε
y (T δ′

< T 3κε) + sε−(3κε)P ε
y (T δ′

> T 3κε) ≤ sε−(δ(ε))

for y ∈ {x ∈ �ε : |π(x)| = δ(ε)}. Since

P ε
y (T δ′

< T 3κε) + P ε
y (T δ′

> T 3κε) = 1,

we have

P ε
y (T δ′

< T 3κε) ≤ sε−(δ(ε)) − sε−(3κε)

sε−(δ′) − sε−(3κε)
(3.26)

for y ∈ {x ∈ �ε : |π(x)| = δ(ε)}. Similarly we have

P ε
y (T δ′

< T 3κε) ≥ sε+(δ(ε)) − sε+(3κε)

sε+(δ′) − sε+(3κε)
(3.27)

for y ∈ {x ∈ �ε : |π(x)| = δ(ε)}. Let N
T δ′ (Xε

O) be the number of transitions of Xε
O

from the set {x ∈ �ε : |π(x)| = 3κε} to the set {x ∈ �ε : |π(x)| = δ(ε)} during the
time interval [0, T δ′

(Xε
O)]. By Lemma 3.5, (3.24), (3.25), (3.26) and (3.27), we

have

P ε
O

(
w(T δ′

) ∈ �ε
i

)− pi

≤ sε−(δ(ε)) − sε−(3κε)

sε−(δ′) − sε−(3κε)

×
∞∑

k=1

∫
Pw(τε

k−1)

(
w
(
T δ(ε)) ∈ �ε

i

)
I{τ ε

k−1<T δ′ }(w)P ε
O(dw)
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− sε+(δ(ε)) − sε+(3κε)

sε+(δ′) − sε+(3κε)
pi

∞∑
k=1

∫
I{τ ε

k−1<T δ′ }(w)P ε
O(dw)

≤
(

sε−(δ(ε)) − sε−(3κε)

sε−(δ′) − sε−(3κε)
− sε+(δ(ε)) − sε+(3κε)

sε+(δ′) − sε+(3κε)

)
piE[N

T δ′ (Xε
O)]

+ oε(1)
sε−(δ(ε)) − sε−(3κε)

sε−(δ′) − sε−(3κε)
E[N

T δ′ (Xε
O)].

By the definitions of sε− and sε+, we obtain

lim sup
ε↓0

δ(ε)−1
(

sε−(δ(ε)) − sε−(3κε)

sε−(δ′) − sε−(3κε)
− sε+(δ(ε)) − sε+(3κε)

sε+(δ′) − sε+(3κε)

)
≤ C,

where C is a constant independent of δ′, and for each δ′ > 0

sε−(δ(ε)) − sε−(3κε)

sε−(δ′) − sε−(3κε)
= O(δ(ε)).

On the other hand, a similar discussion as in the proof of Lemma 3.4 implies

E[N
T δ′ (Xε

O)] = δ(ε)−1oδ′(1).

Therefore, we have

lim sup
δ′↓0

lim sup
ε↓0

(
P ε

O

(
w(T δ′

) ∈ �ε
i

)− pi

)≤ 0.

Similarly we obtain

lim sup
δ′↓0

lim sup
ε↓0

(
pi − P ε

O

(
w(T δ′

) ∈ �ε
i

))≤ 0.

These inequalities yield the conclusion. �

We need a little more improvement of Lemma 3.6 as follows.

LEMMA 3.7.

lim
δ′↓0

lim
δ↓0

lim
ε↓0

sup
|x|≤δ

∣∣P ε
x

(
w(T δ′

) ∈ �ε
i

)− pi

∣∣= 0

for i = 1, . . . ,N .

PROOF. In view of Lemma 3.6 it is sufficient to show

lim
δ′↓0

lim
δ↓0

lim
ε↓0

sup
3κε≤|x|≤δ

∣∣P ε
x

(
w(T δ′

) ∈ �ε
i

)− pi

∣∣= 0.
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By Lemma 3.6 again,∣∣P ε
x

(
w(T δ′

) ∈ �ε
i

)− pi

∣∣
=
∣∣∣∣∫{y∈�ε : |π(y)|=3κε}

P ε
y

(
w̃(T δ′

) ∈ �ε
i

)
P ε

x

(
w(T 3κε) ∈ dy,T 3κε < T δ′)

+ P ε
x (T 3κε > T δ′

)I�ε
i
(x) − pi

∣∣∣∣
= ∣∣(pi + oε,δ′(1)

)
P ε

x (T 3κε < T δ′
) + P ε

x (T 3κε > T δ′
)I�ε

i
(x) − pi |

≤ pi |P ε
x (T 3κε < T δ′

) − 1
∣∣+ P ε

x (T 3κε > T δ′
)I�ε

i
(x) + oε,δ′(1).

Here, oε,δ′(1) means a term which converges to 0 as δ′ ↓ 0 after letting ε ↓ 0.
Hence, it is sufficient to show for δ′ > 0 and i = 1,2, . . . ,N

lim
δ↓0

lim
ε↓0

inf
x∈�ε

i :3κε≤|x|≤δ
P ε

x (T 3κε < T δ′
) = 1.(3.28)

Let T O(w) := inf{t ≥ 0 :w(t) = O} and fix i. By Theorem 2.2 the law of
(T 3κε(Xε

xε ), T δ′
(Xε

xε )) converges to that of (T O(Xx), T
δ′
(Xx)) as ε ↓ 0 for xε ∈

{y ∈ �ε : 3κε ≤ |y| ≤ δ} such that xε converges to x ∈ Ii , where the process Xx is
determined by the following stochastic differential equation:

Xx(t) = x +
∫ t

0
〈ei, σ (Xx(s)) dW(s)〉 +

∫ t

0
〈ei, b(Xx(s))〉ds,

t ∈ [0, T O(Xx) ∧ T δ′
(Xx)].

By using Ii =⋂ε′>0
⋃

ε<ε′ �ε
i and compactness of {y ∈ R

n : |y| ≤ δ}, we have

lim
ε↓0

inf
x∈�ε

i :3κε≤|x|≤δ
P ε

x (T 3κε < T δ′
)

= inf
x∈Ii :0≤|x|≤δ

P
(
T O(Xx) < T δ′

(Xx)
)
.

Since σσT is uniformly positive definite, we have

lim
δ↓0

inf
x∈Ii :0≤|x|≤δ

P
(
T O(Xx) < T δ′

(Xx)
)= 1.

This proves (3.28). �

The lemmas above determine the boundary condition for X at O . Now let us
characterize X by a generator of a process on �. Let

∂ei
f (x) := lim

s→0

1

s

(
f (x + sei) − f (x)

)
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for any differentiable function f on Ii and i = 1,2, . . . ,N . Define a second-order
differential operator Li on Ii by

Li := 1
2 |σT (x)ei |2 ∂2

ei
+ 〈b(x), ei〉 ∂ei

(3.29)

for i = 1,2, . . . ,N . Define the second-order differential operator L on C0(�)

D(L) :=
{
f ∈ C0(�) :f |Ii\O ∈ C2

b(Ii \ O) for all i = 1,2, . . . ,N,

lim
s↓0

Lif (sei) has a common value for i = 1,2, . . . ,N,

N∑
i=1

pi

(
lim
s↓0

(∂ei
f )(sei)

)
= 0

}
,

Lf (x) := Lif (x), x ∈ Ii \ O,

Lf (O) := lim
s↓0

Lif (sei).

Note that Lf (O) does not depend on the selection of i = 1,2, . . . ,N . We
call {pi} the weights of the Kirchhoff boundary condition at O , and call∑N

i=1 pi(lims↓0(∂ei
f )(sei)) = 0 the weighted Kirchhoff boundary condition at O .

THEOREM 3.8. Consider diffusion processes Xε defined by (3.1). Assume that
σ(O) = In and the law of Xε(0) converges to a probability measure μ0 on �.
Then, Xε converges weakly on C([0,+∞);R

n) to the diffusion process X as ε ↓ 0,
where X is determined by the conditions that the law of X(0) is equal to μ0 and

E

[
f (X(t)) − f (X(s)) −

∫ t

s
Lf (X(u)) du

∣∣∣Fs

]
= 0(3.30)

for t ≥ s ≥ 0 and f ∈ D(L), where (Ft ) is the filtration generated by X. There-
fore, L is the generator of X.

PROOF. From Lemma 3.2 we have that {Xε} is tight. We are going to show
that there is a unique limit point in this family. Let X be any limit point of {Xε}, and
denote the sequence converging to X by {Xε} again. Since this martingale problem
is well-posed (see [21]; [14] for the relationship between martingale problems and
partial differential equations, and [37] for the uniqueness of the semigroup gener-
ated by L), it is sufficient to prove that X satisfies (3.30). Fix s ≥ 0. Let δ′ be a
positive number. Define the following stopping times:

τ̃0 := s,

τ0 := inf{u ≥ s :X(u) = O},
τ̃k := inf{u > τk−1 : |X(u)| > δ′}, k ∈ N,

τk := inf{u > τ̃k :X(u) = O}, k ∈ N.
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Then, for f ∈ D(L), s ≤ t

E

[
f (X(t)) − f (X(s)) −

∫ t

s
Lf (X(u)) du

∣∣∣Fs

]

= E

[ ∞∑
k=1

(
f
(
X(t ∧ τ̃k)

)− f
(
X(t ∧ τk−1)

)− ∫ t∧τ̃k

t∧τk−1

Lf (X(u)) du

)∣∣∣Fs

]

+
∞∑

k=0

E

[
f
(
X(t ∧ τk)

)− f
(
X(t ∧ τ̃k)

)− ∫ t∧τk

t∧τ̃k

Lf (X(u)) du
∣∣∣Fs

]
.

Because of Theorem 2.2 the second sum vanishes. We estimate the first sum as
follows:∣∣∣∣∣E

[ ∞∑
k=1

(
f
(
X(t ∧ τ̃k)

)− f
(
X(t ∧ τk−1)

)− ∫ t∧τ̃k

t∧τk−1

Lf (X(u)) du

)]∣∣∣Fs

∣∣∣∣∣
≤
∣∣∣∣E[ ∑

k:τ̃k<t

(
f (X(τ̃k)) − f (X(τk−1))

)∣∣∣Fs

]∣∣∣∣
+ ‖Lf ‖∞E

[∫ t

s
I{x : |x|≤δ′}(X(u)) du

∣∣∣Fs

]
+ sup

|x|≤δ′
|f (x) − f (O)|.

Clearly, the third term on the right-hand side converges to 0 as δ′ ↓ 0. By
Lemma 3.4 the second term on the right-hand side converges to 0 as δ′ ↓ 0. The
first sum on the right-hand side is equal to∣∣∣∣∣

∞∑
k=1

N∑
i=1

(
f (δ′ei) − f (O)

)
P
(
X(τ̃k) ∈ Ii, τ̃k < t |Fs

)∣∣∣∣
(3.31)

=
∣∣∣∣∣

∞∑
k=1

N∑
i=1

(
δ′ lim

s↓0
f ′(sei) + o(δ′)

)
P
(
X(τ̃k) ∈ Ii, τ̃k < t |Fs

)∣∣∣∣
Let δ ∈ (0, δ′) and let, for any ε > 0:

τ
ε,δ
0 := inf{u > s : |π(Xε(u))| < δ},

τ̃
ε,δ
k := inf{u > τ

ε,δ
k−1 : |π(Xε(u))| > δ′}, k ∈ N,

τ
ε,δ
k := inf{u > τ̃

ε,δ
k : |π(Xε(u))| < δ}, k ∈ N.

The distributions of the pairs (Xε, τ̃
ε,δ
k , τ

ε,δ
k ) converge weakly to those of

(X, τ̃k, τk) as δ ↓ 0 after ε ↓ 0. Hence, by Lemma 3.7 we have

P
(
X(τ̃k) ∈ Ii, τ̃k < t |Fs

)
= lim

δ↓0
lim
ε↓0

P
(
Xε(τ̃

ε,δ
k ) ∈ �ε

i , τ̃
ε,δ
k < t |Fs

)
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= lim
δ↓0

lim
ε↓0

∫
P ε

y

(
w(T δ′

) ∈ �ε
i

)
P
(
Xε(τ

ε,δ
k−1) ∈ dy, τ̃

ε,δ
k < t |Fs

)
= (pi + oδ′(1)

)
P(τ̃k < t |Fs).

Note that
∑∞

k=1 P(τ̃k < t |Fs) is equal to the expectation of the number of transi-
tions of X from the point O to the set {x ∈ � : |x| = δ′} during the time interval
[s, t] [with respect to a general initial condition X(0)]. Approximating that by the
expectation of the number of transitions of Xε from the set {x ∈ �ε : |π(x)| = δ}
to the set {x ∈ �ε : |π(x)| = δ′} during the time interval [s, t], similarly as in the
proof of Lemma 3.4 we obtain the estimate

∞∑
k=1

P(τ̃k < t |Fs) ≤ Ct

δ′

with a positive constant Ct depending only on t . Hence, by (3.31) we have∣∣∣∣E[ ∑
k:τ̃k<t

(
f
(
X(t ∧ τ̃k)

)− f
(
X(t ∧ τk−1)

))∣∣∣Fs

]∣∣∣∣
≤ Ct

δ′

∣∣∣∣∣
N∑

i=1

δ′ lim
s↓0

f ′(sei)pi + o(δ′)
∣∣∣∣∣.

Since f ∈ D(L), the right-hand side converges to 0 as δ′ ↓ 0. �

Similarly as in Section 2, the argument above is also available in the case where
the boundary of �ε carries a Neumann boundary condition. Consider a diffusion
process Xε which is associated to L in �ε and satisfies the reflecting boundary
condition on ∂�ε . Then, Xε can be expressed by the following equation:

X̂ε(t) = X̂ε(0) +
∫ t

0
σ(X̂ε(s)) dW(s) +

∫ t

0
b(X̂ε(s)) ds + �ε(X̂ε)(t),(3.32)

where �ε is a singular drift which forces the process to be reflecting on ∂�ε; see
[46]. Note that X̂ε depends on �ε but is independent of Uε . Discussing this case
in a similar way as we did in the case of Dirichlet boundary condition we obtain
the following theorem. Let

p̂i := cn−1
i∑N

i=1 cn−1
i

,

D(L̂) :=
{
f ∈ C0(�) :f |Ii\O ∈ C2

b(Ii \ O) for all i = 1,2, . . . ,N,

lim
s↓0

Lif (sei) has a common value for i = 1,2, . . . ,N,

N∑
i=1

p̂i

(
lim
s↓0

(∂ei
f )(sei)

)
= 0

}
,



DIFFUSION PROCESSES IN THIN TUBES 2161

L̂f (x) := Lif (x), x ∈ Ii \ O,

L̂f (O) := lim
s↓0

Lif (sei),

where Li is given by (3.29). Note that L̂f (O) does not depend on the selection of
i = 1,2, . . . ,N .

THEOREM 3.9. Consider the diffusion processes X̂ε defined by (3.32). As-
sume that σ(O) = In and the law of X̂ε(0) converges to a probability measure μ0

on �. Then, {X̂ε} converge weakly on C([0,+∞);R
n) to the diffusion process X̂

as ε ↓ 0, where X̂ is determined by the conditions that the law of X̂(0) is equal to
μ0 and

E

[
f (X̂(t)) − f (X̂(s)) −

∫ t

s
L̂f (X̂(u)) du

∣∣∣Fs

]
= 0

for t ≥ s ≥ 0 and f ∈ D(L̂), where (Ft ) is the filtration generated by X̂. There-
fore, L̂ is the generator of X̂.

REMARK 3.10. The weights {p̂i} of the case of Neumann boundary condition
can be obtained from the wights {pi} discussed in Theorem 3.8 in the heuristic
limit where the potential ui around each edge takes only the value 0 on [0,1) and
+∞ on [1,+∞).

REMARK 3.11. As mentioned in Remark 2.4, we can discuss similarly the
case where the shapes of the tubes {�ε

i } are not cylindrical. However, if Uε is not
defined by a scaling of a fixed function U , the weights of the weighted Kirchhoff
boundary condition cannot be determined uniquely. To handle this more general
case, we have to assume that Uε satisfies some uniform bound.

4. The case of general graphs. In this section we present results obtained by
combining the results of Sections 2 and 3, and, in this way, we cover more general
graphs. Let � be a finite or countable set, � be a subset of � × �, {Vλ :λ ∈ �}
be vertices in R

n, {Eλ,λ′ : (λ,λ′) ∈ �} be C3-curves with ends {Vλ,Vλ′ } and G :=⋃
(λ,λ′)∈� Eλ,λ′ . Denote λ ∼ λ′ if (λ,λ′) ∈ �.
Let us denote the length of Eλ,λ′ by |Eλ,λ′ |. Define (γλ,λ′(s) : s ∈ [0, |Eλ,λ′ |])

as the arc-length parameterization of Eλ,λ′ with γλ,λ′(0) = Vλ. Assume that the
number of {Vλ :λ ∈ �} ∩ {x ∈ R

n : |x| ≤ M} is finite for all M > 0, |Eλ,λ′ | is finite
for all (λ,λ′) ∈ � and

lim
s↓0

〈γ̇λ,λ1(s), γ̇λ,λ2(s)〉 < 1
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for all λ ∼ λ1 and λ ∼ λ2 such that λ1 �= λ2. Let cλ,λ′ be a positive number for
(λ,λ′) ∈ �, and let

κλ := max
{
2
√

2cλ,λ1

/√
1 − lim

s↓0
〈γ̇λ,λ1(s), γ̇λ,λ2(s)〉 :λ1, λ2 ∈ �

such that λ ∼ λ1, λ ∼ λ2, λ1 �= λ2

}
for λ ∈ �. Let π(x) be a point in G which is nearest to x ∈ R

n. Assume
that there exists a small ε0 > 0 and positive numbers {κλ} such that π(x) is
uniquely determined for all x ∈ ⋃λ∼λ′ {x ∈ R

n :d(x,Eλ,λ′) < cλ,λ′ε, d(x,Vλ) ≥
κλε and d(x,Vλ′) ≥ κλ′ε} and for all ε ∈ (0, ε0], and that γ̈λ,λ′(s) = 0 for suffi-
ciently small s for each (λ,λ′) ∈ �.

Let uλ,λ′ be given similarly to u in Section 2 for (λ,λ′) ∈ �. For ε ∈ (0, ε0], let
Uε be a function on R

n with values in [0,+∞], and assume

Uε(x) = uλ,λ′(c−1
λ,λ′ε−1d(x,Eλ,λ′)),

x ∈ {x ∈ R
n :π(x) ∈ Eλ,λ′, d(x,Eλ,λ′) < cλ,λ′ε, d(x,Vλ) ≥ κλε, d(x,Vλ′) ≥ κλ′ε},

Uε(x) = +∞,

x ∈ {x ∈ R
n :π(x) ∈ Eλ,λ′, d(x,Eλ,λ′) ≥ cλ,λ′ε, d(x,Vλ) ≥ κλε, d(x,Vλ′) ≥ κλ′ε},

�ε := {x :Uε(x) < ∞} is a simply connected domain, ∂�ε is an (n − 1)-
dimensional C2-manifold embedded in R

n and Uε|�ε is a C1-function on �ε .
In addition, we assume

lim
m→∞〈−∇U(xm),∇d(xm, ∂�ε)〉 = +∞ and − lim

m→∞
Uε(xm)

log(d(xm, ∂�ε))
= +∞

for any sequence {xm} which converges to a point x ∈ ∂�ε .
Consider a diffusion process Xε given by the following equation:

Xε(t) = Xε(0) +
∫ t

0
σ(Xε(s)) dW(s) +

∫ t

0
b(Xε(s)) ds

(4.1)

−
∫ t

0
(∇Uε)(Xε(s)) ds,

where Xε(0) is an �ε-valued random variable, W is an n-dimensional Wiener pro-
cess, σ ∈ Cb(R

n;R
n ⊗ R

n) and b ∈ Cb(R
n;R

n). Let a := σσT , and assume that
a is uniformly positive definite. Define a second-order elliptic differential operator
L on �ε by

L := 1

2

n∑
i,j=1

aij (x)
∂

∂xi

∂

∂xj

+
n∑

i=1

bi(x)
∂

∂xi

.

Then Xε is associated with (L − 〈∇Uε,∇〉). Similarly to Section 3, it holds that
Xε does not exit from �ε almost surely. Assume that σ(Vλ) = σλIn for all λ ∈ �

where σλ > 0.
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For (λ,λ′) ∈ �, define a second-order differential operator Lλ,λ′ on Eλ,λ′ by

Lλ,λ′f (x)

:= 1

2
|σ(x)T γ̇λ,λ′ ◦ γ −1

λ,λ′(x)|2 d2

ds2 (f ◦ γλ,λ′)(γ −1
λ,λ′(x))

+ [〈b(x), γ̇λ,λ′ ◦ γ −1
λ,λ′(x)〉

+ 〈σ(x)T γ̈λ,λ′ ◦ γ −1
λ,λ′(x),

σ (x)T γ̇λ,λ′ ◦ γ −1
λ,λ′(x)〉] d

ds
(f ◦ γλ,λ′)(γ −1

λ,λ′(x)),

for x ∈ Eλ,λ′ and f ∈ C2
b(Eλ,λ′) where s is the parameter for the arc-length

parametrization γλ,λ′ . Let

pλ,λ′ := cn−1
λ,λ′
∫ 1

0 rn−2 exp(−uλ,λ̃(r)) dr∑
λ̃ : λ̃∼λ cn−2

λ,λ̃

∫ 1
0 rn−1 exp(−uλ,λ̃(r)) dr

.

By using these notations, define the second-order differential operator L on C0(G)

by

D(L) :=
{
f ∈ C0(G) :f |Eλ,λ′ \{Vλ,Vλ′ } ∈ C2

b(Eλ,λ′ \ {Vλ,Vλ′ }) for λ ∼ λ′,

for λ ∈ �, lim
s↓0

Lλ,λ′f (γλ,λ′(s)) has a common value for λ′ :λ ∼ λ′,

∑
λ′ : λ′∼λ

pλ,λ′ lim
s↓0

(
d

ds

(
f ◦ γλ,λ′(s)

))= 0 for λ ∈ �

}
,

Lf (x) := Lλ,λ′f (x), x ∈ Eλ,λ′, (λ,λ′) ∈ �,

Lf (Vλ) := lim
x→Vλ

Lλ,λ′f (x), λ ∈ �,

where the limit x → Vλ is along Eλ,λ′ . Note that Lf (Vλ) does not depend on the
selection of λ′.

Since by locality the behavior of diffusion processes associated with differential
operators is determined in a given point by the behavior in its neighborhoods, we
have the following theorem by Theorem 2.2 and 3.8.

THEOREM 4.1. Consider the diffusion process Xε defined by (4.1). Assume
that the law of Xε(0) converges to a probability measure μ0 on G. Then, {Xε}
converge weakly on C([0,+∞);R

n) to the diffusion process X as ε ↓ 0, where X

determined by the conditions that the law of X(0) is equal to μ0 and

E

[
f (X(t)) − f (X(s)) −

∫ t

s
Lf (X(u)) du

∣∣∣Fs

]
= 0
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for t ≥ s ≥ 0 and all f ∈ D(L), where (Ft ) is the filtration generated by X. The
operator L as defined above is thus the generator of X.

Similarly as in Sections 2 and 3, our discussion is also available for the case
where the boundary �ε carries a Neumann boundary condition for the process.
Consider a diffusion process X̂ε which is associated with L in �ε and reflecting
on ∂�ε [defined similarly as the process described by (3.32)].

Let

p̂λ,λ′ := cn−1
λ,λ′∑

λ̃ : λ̃∼λ cn−1
λ,λ̃

,

D(L̂) :=
{
f ∈ C0(G) :f |Eλ,λ′ \{Vλ,Vλ′ } ∈ C2

b(Eλ,λ′ \ {Vλ,Vλ′ }) for λ ∼ λ′,

for λ ∈ �, lim
s↓0

Lλ,λ′f (γλ,λ′(s)) has a common value for λ′ :λ ∼ λ′,

∑
λ′ : λ′∼λ

p̂λ,λ′ lim
s↓0

(
d

ds
(f ◦ γλ,λ′(s))

)
= 0 for λ ∈ �

}
,

L̂f (x) := Lλ,λ′f (x), x ∈ Eλ,λ′, (λ,λ′) ∈ �,

L̂f (Vλ) := lim
x→Vλ

Lλ,λ′f (x), λ ∈ �,

where the limit x → Vλ is along Eλ,λ′ . Then, we obtain the following theorem.

THEOREM 4.2. Consider the diffusion process X̂ε defined above. Assume that
the law of X̂ε(0) converges to μ0. Then, {X̂ε} converge weakly on C([0,+∞);R

n)

to the diffusion process X̂ as ε ↓ 0, where X̂ is determined by the conditions that
the law of X̂(0) is equal to μ0 and

E

[
f (X̂(t)) − f (X̂(s)) −

∫ t

s
L̂f (X̂(u)) du

∣∣∣Fs

]
= 0

for t ≥ s ≥ 0 and f ∈ D(L̂) where (Ft ) is the filtration generated by X̂. The
operator L̂ as defined above is thus the generator of X̂.

REMARK 4.3. As mentioned in Remarks 2.4 and 3.11, similar discussions can
be given for the case where the shapes of the tubes are not cylindrical. In the case
where σ = In, b = 0, and Eλ,λ′ are straight, the result of Theorem 4.2 coincides
with Theorem 6.1 in [21].
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