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For a large class of absolutely continuous probabilities P it is shown
that, for r > 0, for n-optimal Lr(P )-codebooks αn, and any Voronoi partition
Vn,a with respect to αn the local probabilities P(Vn,a) satisfy P(Va,n) ≈
n−1 while the local Lr -quantization errors satisfy

∫
Vn,a

‖x − a‖r dP (x) ≈
n−(1+r/d) as long as the partition sets Vn,a intersect a fixed compact set K

in the interior of the support of P .

1. Introduction. The theory of quantization of probability distributions has
its origin in electrical engineering and image processing where it plays a decisive
role in digitizing analog signals and compressing digital images (see Gray and
Neuhoff [11]). More recently, it has also found many applications in numerical
integration (see, e.g., [2, 3, 13, 14]) and mathematical finance (see, e.g., [15] for a
survey).

Optimal (vector) quantization deals with the best approximation of an R
d -

valued random vector X with probability distribution P by R
d -valued random

vectors which attain only finitely many values. If r > 0 and
∫ ‖x‖r dP < ∞ and

n ∈ N, then the nth-level Lr(P )-quantization error is defined to be

en,r = en,r (P )

= inf
{(∫

‖x − q(x)‖r dP (x)

)1/r ∣∣∣q : Rd → R
d Borel measurable(1.1)

with card(q(Rd)) ≤ n

}
,

where ‖ · ‖ is a norm on R
d and card(A) stands for the cardinalility of A.

It is known that the above infimum remains unchanged if the Borel functions
q : Rd → R

d are chosen to be projections onto their range α := q(Rd) ⊂ R
d with

card(α) ≤ n which obey a nearest neighbor rule, that is,

q(x) = ∑
a∈α

a1Vn,a (x),
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where (Vn,a)a∈α is a Voronoi partition of R
d with respect to α, that is, a Borel

partition such that each of the partition sets Vn,a is contained in the Voronoi cell
W(a|αn) := {x ∈ R

d |‖x − a‖ = minb∈α ‖x − b‖}.
If d(x,α) := mina∈α ‖x − a‖ denotes the distance of x to the set α, then

en,r = inf
{(∫

d(x,α)r dP (x)

)1/r ∣∣∣α ⊂ R
d and card(α) ≤ n

}
.

The above infimum is in fact a minimum which is attained at an optimal “code-
book” αn (see [8], Theorem 4.12). If P is absolutely continuous with density h ≥ 0
and

∫ ‖x‖r+δ dP (x) < ∞ for some δ > 0, then

lim
n→∞n1/den,r (P ) = Qr(P )1/r(1.2)

for a positive real constant Qr(P ) (see Zador [17, 18], Bucklew and Wise [1]
and Graf and Luschgy [8], Theorem 6.2). Thus, the sharp asympotics of the se-
quence (er

n,r )n∈N is completely elucidated up to the numerical value of the constant
Qr(P ).

A famous conjecture of Gersho [7] states that the bounded Voronoi-cells of Lr -
optimal codebooks αn have asymptotically the same Lr -inertia and a normalized
shape close to that of a fixed polyhedron H as n tends to infinity.

In particular, this conjecture suggests that the local Lr -quantization errors
(=Lr -local inertia) satisfy

∫
Vn,a

‖x − a‖r dP (x) ∼ 1

n
er
n,r , a ∈ αn,(1.3)

where an ∼ bn abbreviates an = εnbn with limn→∞ εn = 1.
So far, this last statement has only been proved for certain parametric classes of

one-dimensional distributions P (see Fort and Pagès [6]).
In the present paper, we will investigate the asymptotic behavior for n → ∞

of P(W(a|αn)) and
∫
W(a|αn) ‖x − a‖r dP (x) for a large class of distributions on

R
d including the nonsingular normal distributions. To derive a conjecture for the

asymptotic size of P(W(a|αn)), one can use the following heuristics. The empiri-
cal measure theorem (see [8], Theorem 7.5) states that the empirical probabilities
1
n

∑
a∈αn

δa weakly converge as n → ∞ to the “point density measure”

Pr = 1∫
hd/(r+d) dλd

hd/(r+d)λd,

where λd denotes the d-dimensional Lebesgue measure. Thus we obtain, at least
for bounded continuous densities h and an arbitrary bounded continuous function
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f : Rd → R, that

lim
n→∞

∑
a∈αn

1

n

(∫
hd/(r+d) dλd

)
hr/(r+d)(a)

∫
f dδa

=
∫

hd/(r+d) dλd lim
n→∞

(
1

n

∑
a∈αn

hr/(r+d)(a)f (a)

)
(1.4)

=
∫

hd/(r+d) dλd
∫

hr/(r+d)(x)f (x) dPr(x)

=
∫

f (x) dP (x),

so that ∑
a∈αn

(
1

n

∫
hd/(r+d) dλd

)
hr/(r+d)(a)δa

(Rd )�⇒ P,

where
(Rd )�⇒ denotes the weak convergence of finite measures on R

d . Since it is well

known that
∑

a∈αn
P (Vn,a)δa

(Rd )�⇒ P as well (see [13, 14] but also [2, 3] or [8],
Equation (7.6)), it is reasonable to conjecture that

P(Vn,a) ∼ 1

n

(∫
hd/(r+d) dλd

)
hr/(r+d)(a).(1.5)

We were not able to prove this asymptotical behavior of P(Vn,a) in its sharp and
general form. But we will show that, for a large class of absolutely continuous
distributions P , there are real constants c1, c2, c3, c4 > 0 only depending on P

such that ∀K ⊆ R
d , compact, ∃nK ∈ N,∀n ≥ nK,∀a ∈ αn

K ∩ W(a|αn) �= ∅

�⇒ c1

n

(
essinfh|W0(a|αn)

)r/(r+d)(1.6)

≤ P(Vn,a) ≤ c2

n

(
esssuph|W(a|αn)

)r/(r+d)
,

where

W0(a|αn) = {
x ∈ R

d |‖x − a‖ < d(x,αn \ {a})}(1.7)

and
c3

n
er
n,r ≤

∫
Vn,a

‖x − a‖r dP (x) ≤ c4

n
er
n,r .(1.8)

The proofs mainly rely on the following two ingredients:
• A “differentiated Zador’s theorem”

er
n,r − er

n+1,r ≈ n−(1+r/d)(1.9)
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[where an ≈ bn means that the sequence (an

bn
) is bounded and bounded away

from 0] and
• Two micro–macro inequalities which relate the pointwise distance of a quan-

tizer to the global mean quantization error induced on a distribution P by this
quantizer:

For b ∈ (0, 1
2) fixed, there is a constant c5 > 0 with

∀n ∈ N,∀x ∈ R
d c5(e

r
n,r − er

n+1,r ) ≥ d(x,αn)
rP (B(x, bd(x,αn)))(1.10)

and

∀n ≥ 2 er
n−1,r − er

n,r ≤
∫
Vn,a

(
d(x,αn \ {a})r − ‖x − a‖r)dP (x).(1.11)

We have stated and established these inequalities in earlier papers: see espe-
cially [10]; for a preliminary version of (1.11), see [9] and for a one-sided first
version of (1.9), see Lemma 3.2 in [16]. They were somewhat hidden as technical
tools inside proofs but their full impact will become clear here.

The remaining part of the Introduction contains a sketch of the contents of the
paper. In Section 2, we indicate the proofs of the above micro–macro inequali-
ties and the (weak) asymptotics of quantization error differences. In Section 3,
we show that absolutely continuous probabilities P on R

d , which have a peak-
less, connected and compact support as well as a density which is bounded and
bounded away from 0 on the support, have asymptotically uniform local quan-
tization errors (Theorem 3.1). In Section 4, we show that absolutely continuous
probabilities whose densities are the composition of a decreasing function on R+
and a norm or a quasi-concave function outside a compact set satisfy a sharpened
first micro–macro inequality of the following type:

There exist a constant c > 0 such that, for every K ⊂ R
d compact,

∃nK ∈ N,∀n ≥ nK,∀x ∈ K cn−1/dh(x)−1/(r+d) ≥ d(x,αn).

Assuming this inequality, we derive asymptotic estimates for the probabilities of
the quantization cells and local quantization errors (Theorem 4.1). Section 5 deals
with the local quantization behavior of certain Borel probabilities P in the interior
of their support. The results are stated for arbitrary absolutely continuous probabil-
ities with density h satisfying the moment condition

∫ ‖x‖r+δh(x) dλ(x) < +∞
for some δ > 0. They are particularly useful if the density h is bounded and
bounded away from 0 on each compact subset of the interior of the support of P .
Under these very general assumptions, the results are quite similar to those given
in Section 4 but the given constants are a little bit less effective (Theorem 5.1).

ADDITIONAL NOTATION. For x ∈ R
d and ρ > 0 B(x,ρ) = B‖ · ‖(x, ρ) =

{y ∈ R
d |‖y − x‖ < ρ} denotes the open ball with center x and radius ρ. ‖ · ‖2

will denote the canonical Euclidean norm on R
d .

◦
A denotes the interior of a set A ⊂ R

d .



LOCAL QUANTIZATION BEHAVIOR 1799

2. Important inequalities in quantization. In the following, ‖ · ‖ denotes
an arbitrary norm on R

d and P is always an absolutely continuous Borel prob-
ability on R

d which has density h with respect to the d-dimensional Lebesgue
measure λd . Let r ∈ (0,+∞) be fixed. We always assume that there is a δ > 0
with

∫ ‖x‖r+δ dP (x) < +∞. For every n ∈ N, let en,r denote the nth-level Lr(P )-
quantization error. Then we have

er
n,r = er

n,r (P ) = inf
{∫

d(x,α)r dP (x)
∣∣∣α ⊂ R

d, card(α) ≤ n

}
.(2.1)

For each n ∈ N, we choose an arbitrary n-optimal set αn ⊂ R
d , that is, a set αn ⊂

R
d with card(αn) ≤ n and

er
n,r =

∫
d(x,αn)

r dP (x).(2.2)

It is well known that, under the above conditions, such a set exists and satisfies

card(αn) = n.(2.3)

In this section, we will state the fundamental inequalities which relate the behav-
ior of the distance function d(·, αn) to the difference er

n,r − er
n+1,r of successive

r th powers of the quantization errors. Using these inequalities, we will be able to
determine the (weak) asymptotics of er

n,r − er
n+1,r .

2.1. Micro–macro inequalities.

PROPOSITION 2.1 (First micro–macro inequality). For every b ∈ (0, 1
2), for

all n ∈ N and all x ∈ R
d ,

er
n,r − er

n+1,r ≥ (2−r − br)d(x,αn)
rP (B(x, bd(x,αn))).(2.4)

PROOF. The proof can be found as part of the proof of Theorem 2 in [10]. �

REMARKS. (a) Inequality (2.4) holds for arbitrary Borel probabilities P on
R

d for which
∫ ‖x‖r dP (x) < ∞. P need not be absolutely continuous.

(b) By the differentiation theorem for absolutely continuous measures P = hλd

and the fact (see [5]) that limn→∞ d(x,αn) = 0 for every x ∈ supp(P ), we know
that, for λd -a.e. x ∈ R

d ,

lim
n→∞

P(B(x, bd(x,αn)))

λd(B(x, bd(x,αn)))
= h(x).(2.5)

Having this in mind, we can rephrase (2.4) as follows:

∀n ∈ N,∀x ∈ R
d

(2.6)

c5(e
r
n,r − er

n+1,r ) ≥ d(x,αn)
r+d P (B(x, bd(x,αn)))

λd(B(x, bd(x,αn)))
,
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where

c5 = [(2−r − br)bdλd(B(0,1))]−1

(with the convention 0 · undefined = 0).
Suppose that there is a constant c9 > 0 such that

∃n0 ∈ N,∀n ≥ n0,∀x ∈ R
d P (B(x, bd(x,αn)))

λd(B(x, bd(x,αn)))
≥ c9h(x).(2.7)

Then, for c10 = c5c
−1
9 , we have

∀n ≥ n0,∀x ∈ R
d c10(e

r
n,r − er

n+1,r ) ≥ d(x,αn)
r+dh(x).(2.8)

PROPOSITION 2.2 (Second micro–macro inequality). One has

∀n ≥ 2,∀a ∈ αn

(2.9)
er
n−1,r − er

n,r ≤
∫
W0(a|αn)

(
d(x,αn \ {a})r − ‖x − a‖r)dP (x),

where W0(a|αn) is defined by (1.7).

PROOF. The proof is part of the proof of [10], Theorem 2. �

REMARK. Inequality (2.9) holds for arbitrary Borel probabilities P on R
d

with
∫ ‖x‖r dP (x) < +∞.

2.2. A differentiated version of Zador’s theorem. To use the preceding propo-
sitions for concrete calculations, it is essential to know the asymptotic behavior of
the error differences er

n,r − er
n+1,r . We have the following result in that direction.

PROPOSITION 2.3. If P is absolutely continuous on R
d , then

er
n,r − er

n+1,r ≈ n−(1+r/d).

PROOF. In the proof of Theorem 2 in [10], it is shown that there is a constant
c11 > 0 such that

∀n ∈ N er
n,r − er

n+1,r ≤ c11n
−(1+r/d).

To obtain the lower bound for er
n,r − er

n+1,r , we proceed as follows.
It follows from (2.5) and Egorov’s theorem (see [4], Proposition 3.1.3) that there

exists a real constant c > 0 and a Borel set A ⊂ {h > c} of finite and positive
Lebesgue measure such that

the convergence of
P(B(x, bd(x,αn)))

λd(B(x, bd(x,αn)))
to h is uniform in x ∈ A.
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Hence, there exists an n0 ∈ N with

∀n ≥ n0,∀x ∈ A
P(B(x, bd(x,αn)))

λd(B(x, bd(x,αn)))
>

1

2
c.(2.10)

Combining (2.6) and (2.10) and integrating both sides of the resulting inequality
with respect to the Lebesgue measure on A yields

c5(e
r
n,r − er

n+1,r ) ≥ 1

λd(A)

1

2
c

∫
A

d(x,αn)
r+d dλd(x)

≥ 1

2
cer+d

n,r+d(λd(·|A)),

where λd(·|A) denotes the normalized Lebesgue measure on A. By Zador’s theo-
rem (see (1.2) or [8], Theorem 6.2), we have

lim inf
n→∞ n1+r/der+d

n,r+d(λd(·|A)) > 0,

so that lim infn→∞ n1+r/d(er
n,r − er

n+1,r ) > 0. �

REMARK. It would be interesting to know the sharp asymptotic behavior of
er
n,r − er

n+1,r . We conjecture that

lim
n→∞n1+r/d(er

n,r − er
n+1,r ) = d

r
Qr(P ) = d

r
Qr([0,1]d)‖h‖d/(d+r),

where Qr([0,1]d) ∈ (0,∞) is as in [8], Theorem 6.2.

3. Uniform local quantization rate for absolutely continuous distributions
with peakless connected compact support. As before, P is an absolutely con-
tinuous probability with density h. Let (αn)n∈N be a sequence of optimal code-
books of order r ∈ (0,∞) for P . We will investigate the asymptotic size of

W(a|αn), P (W(a|αn)) and
∫
W(a|αn)

‖x − a‖r dP (x)

under some compactness and regularity assumptions on supp(P ) and P .
The main result of this section is stated below. Its proof, which heavily relies on

the following two paragraphs devoted to upper and lower bounds, respectively, is
postponed to the end of this section.

THEOREM 3.1. Suppose that P is an absolutely continuous Borel probabil-
ity on R

d whose density is essentially bounded, whose support is connected and
compact, and which is “peakless” in the following sense:

∃c > 0,∃s0 > 0,∀s ∈ (0, s0),∀x ∈ supp(P ) P (B(x, s)) ≥ cλd(B(x, s)).
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Let (αn) be a sequence of codebooks which are optimal of order r ∈ (0,∞). For
a ∈ αn, let us define the inradius and the circumradius of the Voronoi cell W(a|αn)

by

sn,a = sup{s > 0,B(a, s) ⊂ W(a|αn)}
and

sn,a = inf{s > 0,W(a|αn) ∩ supp(P ) ⊂ B(a, s)},
respectively. Then

1

n
� min

a∈αn
P (W0(a|αn)) ≤ max

a∈αn
P (W(a|αn)) � 1

n
,(3.1)

er
n,r

n
� min

a∈αn

∫
W0(a|αn)

‖x − a‖r dP (x)

(3.2)

≤ max
a∈αn

∫
W(a|αn)

‖x − a‖r dP (x) �
er
n,r

n

and

n−1/d � min
a∈αn

sn,a ≤ max
a∈αn

sn,a � n−1/d .(3.3)

[Here an � bn means that (an

bn
) is bounded from above.]

REMARKS. The name “peakless” given to the above assumption illustrates
that a subset of R

d that satisfies this condition cannot have infinitely thin peaks (or
spines) on its boundary and that the existence of such peaks or spine is the only
way to make the assumption fail.

Inequality (3.3) was proved by Gruber in [12], Theorem 3(ii), under an addi-
tional continuity assumption on h, but with a more general distortion measure.

3.1. Upper bounds. The following proposition is essentially contained in Graf
and Luschgy [9] (Proposition 3.3 and the following remark). It has been indepen-
dently proved by Gruber [12], Theorem 3(ii).

PROPOSITION 3.1. Suppose that supp(P ) is compact and that there exist con-
stants c12 > 0 and s0 > 0 such that

∀s ∈ (0, s0),∀x ∈ supp(P ) P (B(x, s)) ≥ c12λ
d(B(x, s)).(3.4)

Then there is a constant c13 < +∞ such that

∀n ∈ N,∀x ∈ supp(P ) d(x,αn) ≤ c13n
−1/d .(3.5)
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PROOF. Let b ∈ (0, 1
2) be fixed. Since K := supp(P ) is compact it follows

from [5], Proposition 1, that limn→∞ maxx∈K d(x,αn) = 0. Thus, there is an n0 ∈
N with

∀n ≥ n0,∀x ∈ K d(x,αn) < s0

and, hence, by (3.4)

∀n ≥ n0,∀x ∈ K P(B(x, bd(x,αn))) ≥ c12λ
d(B(x, bd(x,αn))).(3.6)

By Proposition 2.3, there exists a constant c11 > 0 such that

∀n ∈ N er
n,r − er

n+1,r ≤ c11n
−(1+r/d).(3.7)

Combining (2.6), (3.6) and (3.7), yields

c−1
12 c11c5n

−(1+r/d) ≥ d(x,αn)
r+d

for every x ∈ K and every n ≥ n0. Inequality (3.5) follows by setting

c13 = max
{
(c−1

12 c11c5)
1/(r+d),max

{
d(x,αn)n

1/d, x ∈ K,n ∈ {1, . . . , n0}}}. �

PROPOSITION 3.2 (Upper-bounds). Suppose that the assumptions of Propo-
sition 3.1 are satisfied and that, in addition, h is essentially bounded. Then there
exist constants c14, c15 ∈ (0,∞) such that

∀n ∈ N,∀a ∈ αn

⎧⎪⎪⎨
⎪⎪⎩

P(W(a|αn)) ≤ c14

n
,∫

W(a|αn)
‖x − a‖r dP (x) ≤ c15n

−(1+r/d).
(3.8)

PROOF. By Proposition 3.1, we have, for every n ∈ N and every a ∈ αn,

W(a|αn) ∩ supp(P ) = {x ∈ supp(P )|‖x − a‖ = d(x,αn)} ⊆ B(a, c13n
−1/d),

which implies

P(W(a|αn)) ≤ P(B(a, c13n
−1/d)) =

∫
B(a,c13n

−1/d )
h dλd

≤ ‖h‖Rd λ
d(B(0,1))cd

13
1

n
,

where ‖h‖B = esssuph|B . Likewise, we obtain∫
W(a|αn)

‖x − a‖r dP (x) ≤
∫
B(a,c13n

−1/d )
‖x − a‖r dP (x)

≤ (c13n
−1/d)rP (B(a, c13n

−1/d)).

Setting c14 = ‖h‖Rd λd(B(0,1))cd
13 and c15 = c14c

r
13 yields (3.8). �
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REMARK. Thus, assumption (3.4) is satisfied if supp(P ) is peakless, that is,

∃c > 0,∃s1 > 0,∀s ∈ (0, s1),∀x ∈ supp(P )
(3.9)

λd(
B(x, s) ∩ supp(P )

) ≥ cλd(B(x, s)),

and h is essentially bounded away from 0 on supp(P ), that is,

∃t > 0, h(x) ≥ t for λd -a.e. x ∈ supp(P ).

As an example, (3.9) holds for finite unions of compact convex sets with positive
λd -measure (see [8], Example 12.7 and Lemma 12.4).

3.2. Lower bounds.

LEMMA 3.1. If supp(P ) is connected then, for every n ≥ 2 and every a ∈ αn,

d(a,αn \ {a}) ≤ 2 sup
({‖y − a‖, y ∈ W(a|αn) ∩ supp(P )}).(3.10)

PROOF. Let n ≥ 2 be fixed. First, we will show that

∀a ∈ αn W(a|αn) ∩ ⋃
b∈αn\{a}

W(b|αn) ∩ supp(P ) �= ∅.(3.11)

Let a ∈ αn. Since the nonempty closed sets (see [8], Theorem 4.1) W(a|αn) ∩
supp(P ) and

⋃
b∈αn\{a} W(b|αn) ∩ supp(P ) cover the connected set supp(P ),

claim (3.11) follows.
By (3.11), there exists b ∈ αn \ {a} with W(a|αn) ∩ W(b|αn) ∩ supp(P ) �= ∅.
Let z be a point in this set. Then ‖z − a‖ = d(z,αn) = ‖z − b‖ and

d(a,αn \ {a}) ≤ ‖a − b‖ ≤ ‖a − z‖ + ‖z − b‖
≤ 2‖z − a‖ ≤ 2 sup{‖y − a‖, y ∈ W(a|αn) ∩ supp(P )}. �

PROPOSITION 3.3 (Lower bounds I). Suppose that supp(P ) is compact and
connected, that P satisfies (3.4) and is absolutely continuous with an essentially
bounded probability density h.

Then there exist constants c16, c17 > 0 such that

∀n ≥ 2,∀a ∈ αn d(a,αn \ {a}) ≥ c16n
−1/d(3.12)

and

∀n ∈ N,∀a ∈ αn P (W0(a|αn)) ≥ c17

n
.(3.13)
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PROOF. Let n ≥ 2 and a ∈ αn be arbitrary. By the second micro–macro in-
equality (2.9), we have

er
n−1,r − er

n,r

≤
∫
W0(a|αn)

(
d(x,αn \ {a})r − ‖x − a‖r)dP (x)(3.14)

≤
∫
W0(a|αn)

((‖x − a‖ + d(a,αn \ {a}))r − ‖x − a‖r)dP (x).

By Proposition 2.3, there exists a real constant c > 0 with

cn−(1+r/d) ≤ er
n−1,r − er

n,r .(3.15)

CASE 1 (r ≥ 1). Combining (3.14) and (3.15) and using the mean value theo-
rem for differentiation yields

cn−(1+r/d) ≤
∫
W0(a|αn)

r
(‖x − a‖ + d(a,αn \ {a}))r−1

(3.16)
× d(a,αn \ {a}) dP (x).

Using Lemma 3.1 and (3.5), we know that

∀x ∈ W(a|αn) ∩ supp(P ) ‖x − a‖ + d(a,αn \ {a}) ≤ 3c13n
−1/d .(3.17)

Combining (3.16) and (3.17) yields

r−1c(3c13)
−(r−1)n−1−1/d ≤ d(a,αn \ {a})P (W0(a|αn)).(3.18)

Since P(W0(a|αn)) ≤ P(W(a|αn)) ≤ c14n
−1 by (3.8), we deduce

c−1
14 r−1c(3c13)

−(r−1)n−1/d ≤ d(a,αn \ {a})
and, hence, (3.12) with c16 = c−1

14 r−1c(3c13)
−(r−1).

Since d(a,αn \ {a}) ≤ 2c13n
−1/d , we deduce from (3.18) that

(2c13)
−1r−1c(3c13)

−(r−1)n−1 ≤ P(W0(a|αn))

and, hence, (3.13) with c17 = (2c13)
−1r−1c(3c13)

−(r−1).

CASE 2 (r < 1). In this case, we have(‖x − a‖ + d(a,αn \ {a}))r ≤ ‖x − a‖r + d(a,αn \ {a})r
for all x ∈ W0(a|αn). Combining this inequality with (3.14) and (3.15) yields

cn−(1+r/d) ≤ d(a,αn \ {a})rP (W0(a|αn)).

Since P(W0(a|αn)) ≤ c14/n by (3.8), we deduce

(c−1
14 c)1/rn−1/d ≤ d(a,αn \ {a})
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and hence, (3.12) with c16 = (c−1
14 c)1/r .

Since d(a,αn \ {a})r ≤ (3c13)
rn−r/d , we obtain

(3c13)
−rcn−1 ≤ P(W0(a|αn))

and, hence, (3.13) with c17 = (3c13)
−rc. �

COROLLARY 3.1. Let the assumptions of Proposition 3.3 be satisfied.
Then there exists a constant c18 > 0 such that

∀n ∈ N,∀a ∈ αn B(a, c18n
−1/d) ⊂ W0(a|αn).(3.19)

PROOF. Set c18 = 1
2c16. For n = 1 and a ∈ αn, the assertion is obviously true

since W0(a|α1) = R
d . Now let n ≥ 2 and let a ∈ αn be arbitrary. We will show that

B(a, c18n
−1/d) ⊂ W0(a|αn).

Let x ∈ R
d with ‖x − a‖ < c18n

−1/d . By (3.12), we know that

‖x − a‖ < 1
2d(a,αn \ {a})

and, hence, for every b ∈ αn \ {a}:
‖x − b‖ ≥ ‖a − b‖ − ‖x − a‖

≥ d(a,αn \ {a}) − ‖x − a‖ > 1
2d(a,αn \ {a})

> ‖x − a‖.
This implies x ∈ W0(a|αn). �

PROPOSITION 3.4 (Lower bounds II). Let the assumptions of Proposition 3.3
be satisfied. Then there exists a real constant c19 > 0 such that

∀n ∈ N,∀a ∈ αn

∫
W0(a|αn)

‖x − a‖r dP (x) ≥ c19n
−(1+r/d).(3.20)

PROOF. Let n ∈ N and a ∈ αn be arbitrary. By (3.13), we have P(W0(a|αn)) >

0. Let sa = inf{s > 0|P(B(a, s)) ≥ 1
2P(W0(a|αn))}. Since s �→ P(B(a, s)) is con-

tinuous with lims↓0 P(B(a, s)) = 0 and lims↑+∞ P(B(a, s)) = 1, we deduce

P(B(a, sa)) = 1
2P(W0(a|αn)).(3.21)

This implies∫
W0(a|αn)

‖x − a‖r dP (x) ≥
∫
W0(a|αn)\B(a,sa)

‖x − a‖r dP (x)

≥ sr
aP

(
W0(a|αn) \ B(a, sa)

)
(3.22)

≥ sr
a

(
P(W0(a|αn)) − P(B(a, sa))

)
= 1

2
sr
aP (W0(a|αn)).
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On the other hand, since h is essentially bounded we have

P(W0(a|αn)) = 2P(B(a, sa))

≤ 2λd(B(a, sa))‖h‖Rd

= 2λd(B(0,1))sd
a ‖h‖Rd .

Hence,

sr
a ≥

(
1

2λd(B(0,1))‖h‖Rd

)r/d

P (W0(a|αn))
r/d .(3.23)

Setting c = 1
2( 1

2λd(B(0,1))‖h‖
Rd

)r/d and combining (3.22) and (3.23) yields∫
W0(a|αn)

‖x − a‖r dP (x) ≥ cP (W0(a|αn))
1+r/d .(3.24)

Since P(W0(a|αn)) ≥ c17
1
n

by (3.12), we deduce∫
W0(a|αn)

‖x − a‖r dP (x) ≥ cc
1+r/d
17 n−(1+r/d)

and, hence, the conclusion (3.20) of the proposition with c19 = cc
1+r/d
17 . �

PROOF OF THEOREM 3.1. The result is a combination of the results in Propo-

sitions 3.1–3.4, Corollary 3.1 and Zador’s theorem which says that limn→∞
er
n,r

n−r/d

exists in (0,+∞) (see, e.g., [8], Theorem 6.2). �

4. The local quantization rate for a class of absolutely continuous proba-
bilities with unbounded support. In this section, we propose extensions of the
results of Section 3 to distributions with an unbounded support which requires to
have a control of the behavior of the distribution at infinity, even if our results are
only locally uniform.

First, we introduce in item (c) of the definition below a class of probability den-
sity functions satisfying the “Peakless Sublevel Tail Property” (PSTP) for which a
sharpened version of the micro–macro inequality (2.6) holds [see (4.4) further on].
This improved inequality is in fact the key to get the main results of this section
(Proposition 4.3 and Theorem 4.1).

Although the PSTP may look rather technical and will not be shown to be nec-
essary for the results in the unbounded framework, it seems clear from the case
of compactly supported distribution, that one needs a restrictive condition of this
nature for the conclusions in the case of distributions with unbounded support. The
“Peakless Sublevel Property” (PSP) [item (a) in the definition below] is in some
way the “core” of the PSTP and the “Convex Sublevel Approximation Property”
(CSAP) [item (b) in the definition below] is simply a tractable criterion for the
PSP.
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DEFINITION 4.1.

(a) A Borel measurable map f : Rd → R satisfies the peakless sublevel property
(PSP) outside B(0,R), R > 0, if there are real constants s0, cf > 0 such that

∀x ∈ R
d \ B(0,R),∀s ∈ (0, s0)

(4.1)
λd({f ≤ f (x)} ∩ B(x, s)

) ≥ cf λd(B(x, s)).

(b) A Borel measurable map f : Rd → R has the convex sublevel approximation
property (CSAP) outside B(0,R), R > 0, if there is a bounded convex set
C ⊂ R

d with nonempty interior such that

∀x ∈ R
d \ B(0,R),∃ϕx : Rd → R

d,Euclidean motion,∃ax ≥ 1

such that x ∈ ϕx(axC) ⊂ {f ≤ f (x)}.
[By Euclidean motion, we mean an affine transform of the form ϕ(y) = Ay +
b, A orthogonal matrix and b ∈ R

d .]
(c) A probability distribution P has the peakless sublevel tail property (PSTP)

outside B(0,R), R > 0, if:
(i) P is absolutely continuous with an essentially bounded density h,

(ii) h is bounded away from 0 on compacts sets, that is,

∀ρ > 0,∃cρ > 0 such that h(x) ≥ cρ for all x ∈ B(0, ρ).(4.2)

(iii) There exist a function f : Rd → I , I interval of R, having the PSP and a
nonincreasing function g : I → (0,+∞) such that

∀x ∈ R
d ‖x‖ ≥ R �⇒ h(x) = g ◦ f (x).

Note that supp(P ) = R
d .

PROPOSITION 4.1. If f : Rd → R
d has the CSAP outside B(0,R), then it has

the PSP outside B(0,R).

PROOF. Let s0 > 0 be arbitrary. By [8], Example 12.7, there exists a constant
c̃ > 0 such that

∀x ∈ C,∀s ∈ (0, s0) λd(
C ∩ B‖ · ‖2(x, s)

) ≥ c̃λd(
B‖ · ‖2(x, s)

)
.(4.3)

There exists a constant κ ∈ (0,∞) such that

1

κ
‖ · ‖2 ≤ ‖ · ‖ ≤ κ‖ · ‖2.
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Now let x ∈ R
d with ‖x‖ ≥ R and let s ∈ (0, s0) be arbitrary. Then we have

λd({f ≤ f (x)} ∩ B(x, s)
)

≥ λd

(
ϕx(axC) ∩ B‖ · ‖2

(
x,

s

κ

))

= λd

(
axC ∩ ϕ−1

x

(
B‖ · ‖2

(
x,

s

κ

)))

= ad
x λd

(
C ∩ 1

ax

ϕ−1
x

(
B‖ · ‖2

(
x,

s

κ

)))

= ad
x λd

(
C ∩ B‖ · ‖2

(
1

ax

ϕ−1
x (x),

s

axκ

))

≥ c̃ad
x λd

(
B‖ · ‖2

(
1

ax

ϕ−1
x (x),

s

axκ

))
owing to (4.3)

= c̃ad
x

1

κdad
x

sdλd(
B‖ · ‖2(0,1)

)

= c̃κ−d λd(B‖ · ‖2(0,1))

λd(B(0,1))
λd(B(x, s)). �

EXAMPLES.

(a) If ‖ · ‖0 is any norm on R
d and f : Rd → R is defined by f (x) = ‖x‖0. Then

f has the CSAP outside B(0,R), for every R > 0.
In particular, every nonsingular normal distribution has the PSTP out-

side B(0,R) for every R > 0 and more generally, this is the case for hyper-
exponential distributions of the forms

h(x) = K‖x‖a
2e

−c‖x‖b
2 , a, b, c,K > 0.

for large enough R > 0 (in fact this is true for any norm).

PROOF. Let R > 0 be arbitrary. Then there is an R̃ > 0 with

B‖ · ‖0(0, R̃) ⊂ B(0,R).

Let C = B‖ · ‖0(0, R̃). Then C is convex with nonempty interior. Let x ∈ R
d \

B‖ · ‖0(0, R̃) be arbitrary. Set ϕx = idRd and ax = 1
R̃

‖x‖0 ≥ 1. Then

x = ϕx

(
axR̃

x

‖x‖0

)
∈ ϕx(axC) = B‖ · ‖0(0,‖x‖0) = {f ≤ f (x)}. �

(b) Let f : Rd → R be semi-concave outside B(0,R) in the following sense:

∃θ > 1,∃L > 0,∃
 : Rd \ B(0,R) → R+ \ {0},∃δ : Rd \ B(0,R) → R
d \ {0}

such that:
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(i) ∀x ∈ R
d \ B(0,R),


(x)
‖δ(x)‖2

≤ L,

(ii) ∀x ∈ R
d \B(0,R),∀y ∈ B(x, ( 1

L
)1/(θ−1)), f (y) ≤ f (x)+δ(x) ·(y −x)+


(x)‖y − x‖θ
2, where w · z denotes the standard scalar product of w,

z ∈ R
d .

Then f has the CSAP outside B(0,R).

PROOF. Set C = {y = (y1, . . . , yd) ∈ R
d |y1 + L‖y‖θ

2 ≤ 0}. We will show that
C is a bounded convex set with nonempty interior. For λ ∈ [0,1] and y, ỹ ∈ C we
have (

λy1 + (1 − λ)ỹ1
) + L‖λy + (1 − λ)ỹ‖θ

2

≤ λy1 + (1 − λ)ỹ1 + L
(
λ‖y‖2 + (1 − λ)‖ỹ‖2

)θ
.

Since θ > 1, we have(
λ‖y‖2 + (1 − λ)‖ỹ‖2

)θ ≤ λ‖y‖θ
2 + (1 − λ)‖ỹ‖θ

2,

which yields

λy + (1 − λ)ỹ ∈ C.

Thus, C is convex. For y ∈ C, we have

0 ≥ y1 + L‖y‖θ
2 ≥ −‖y‖2 + L‖y‖θ

2

= ‖y‖2(L‖y‖θ−1
2 − 1),

hence ‖y‖2 ≤ ( 1
L
)1/(θ−1), so that C is bounded.

There exists a t > 0 with −t + Ltθ = t (Ltθ−1 − 1) < 0. For y = (−t,0, . . . ,0)

this implies y1 + L‖y‖θ
2 < 0. Hence, there exists a neighborhood of y which is

contained in C, that is, the interior of C is not empty.
Now let x ∈ R

d with ‖x‖ > R be arbitrary. Set u = δ(x)
‖δ(x)‖2

. Let ψx be a rotation

which maps e1 = (1,0, . . . ,0) onto u. Define ϕx : Rd → R
d by ϕx(y) = ψx(y)+x.

Then ϕx is a Euclidean motion. Set ax = 1. Since 0 ∈ C we have x ∈ ϕx(C) =
ϕx(axC). For y ∈ ϕx(axC) = ϕx(C) there is a z ∈ C with y = ϕx(z), hence

δ(x) · (y − x) + 
(x)‖y − x‖θ
2 = δ(x) · ψx(z) + 
(x)‖ψx(z)‖θ

2

= ‖δ(x)‖2u · ψx(z) + 
(x)‖ψx(z)‖θ
2

= ‖δ(x)‖2e1 · z + 
(x)‖z‖θ
2

= ‖δ(x)‖2

(
z1 + 
(x)

‖δ(x)‖2
‖z‖θ

2

)

≤ ‖δ(x)‖2(z1 + L‖z‖θ
2) ≤ 0
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since z ∈ C. Moreover, ‖ϕx(z)− x‖2 = ‖ψx(z)‖2 = ‖z‖2 and −‖z‖2 +L‖z‖θ
2 ≤ 0

implies ‖z‖2 ≤ ( 1
L
)1/(θ−1), that is, y = ψx(z) ∈ B(x, ( 1

L
)1/(θ−1)).

By (ii), this yields

f (y) ≤ f (x) + δ(x) · (y − x) + 
(x)‖y − x‖θ
2 ≤ f (x)

and, hence,

ϕx(axC) ⊆ {f ≤ f (x)}. �

(c) Let f : Rd → R be a differentiable function and let R > 0 be such that there
exist real constants α ∈ (0,1), β > 0 and c ∈ (0,+∞) satisfying:
(i) ∀x, y ∈ R

d, [x, y] := {x + t (y − x), t ∈ [0,1]} ⊂ R
d \ B(0,R) �⇒

‖gradf (x) − gradf (y)‖ ≤ c‖x − y‖α(1 + ‖x‖β + ‖y‖β).

(ii) inf‖x‖≥R
‖gradf (x)‖

1+‖x‖β > 0.

Then f is semi-concave outside of B(0,R + 1).

PROOF. For every x, y ∈ R
d with ‖x‖ > R and ‖x − y‖ ≤ 1, we have

‖y‖β ≤ (‖x‖ + ‖y − x‖)β ≤ (‖x‖ + 1)β = ‖x‖β

(
1 + 1

‖x‖
)β

so that

1 + ‖x‖β + ‖y‖β ≤ 1 + ‖x‖β

((
1 + 1

R

)β

+ 1
)

≤
((

1 + 1

R

)β

+ 1
)
(‖x‖β + 1).

Let κ ∈ (0,∞) such that 1
κ
‖ · ‖2 ≤ ‖ · ‖ ≤ κ‖ · ‖2.

Let θ = 1 +α. Define 
 : Rd → R+ \ {0} by 
(x) = κ2c((1 + 1
R

)β + 1)(‖x‖β +
1) and δ : Rd → R

d by δ(x) = gradf (x). Since M := inf‖x‖≥R
‖gradf (x)‖

1+‖x‖β > 0, we

have δ(x) �= 0 for all x ∈ R
d \ B(0,R). Moreover,


(x)

‖δ(x)‖2
≤ 
(x)

(1/κ)‖δ(x)‖ ≤ κ3c

((
1 + 1

R

)β

+ 1
)

1

M
≤ L,

where L = max{1, κ3c((1 + 1
R

)β + 1) 1
M

}. Let x ∈ R
d \ B(0,R + 1) and y ∈

B(x, ( 1
L
)1/(θ−1)) be arbitrary. Since L ≥ 1 we have [x, y] ⊂ R

d \ B(0,R) and,
by the mean value theorem of differentiation,

f (y) − f (x) = (gradf (x)) · (y − x)

+ (
gradf

(
x + t (y − x)

) − gradf (x)
) · (y − x)
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for some t ∈ [0,1]. By our assumption, we obtain(
gradf

(
x + t (y − x)

) − gradf (x)
) · (y − x)

≤ ∥∥gradf
(
x + t (y − x)

) − gradf (x)
∥∥

2‖y − x‖2

≤ κ2∥∥gradf
(
x + t (y − x)

) − gradf (x)
∥∥‖y − x‖

≤ κ2ctα‖y − x‖α(
1 + ‖x‖β + ‖x + t (y − x)‖β)‖y − x‖.

Since ‖x + t (x − y) − x‖ = t‖x − y‖ ≤ ( 1
L
)1/(θ−1) ≤ 1, we deduce(

gradf
(
x + t (y − x)

) − gradf (x)
) · (y − x)

≤ κ2c

((
1 + 1

R

)β

+ 1
)
(‖x‖β + 1)‖y − x‖θ

≤ 
(x)‖y − x‖θ .

It follows that

f (y) ≤ f (x) + δ(x) · (y − x) + 
(x)‖y − x‖θ .

Thus, f is semi-concave outside the ball B(0,R + 1). �

As always in this manuscript αn is an n-optimal codebook for P of order r > 0,
where we assume

∫ ‖x‖r+δ dP (x) < ∞ for some δ > 0.
Our first aim is to prove another variant of the first micro–macro inequality for

distributions P having the PSTP.

PROPOSITION 4.2. Let P , with density h, have the PSTP outside B(0,R) for
a given R > 0. There exists a constant c21 > 0 such that

∀K ⊂ R
d, compact,∃nK ∈ N such that ∀n ≥ nK,∀x ∈ K

(4.4)
c21n

−1/dh(x)−1/(r+d) ≥ d(x,αn).

PROOF. Let K ⊂ R
d be compact. Since supp(P ) = R

d , Proposition 2.2 in [5]
implies

lim
n→∞ max

y∈K
d(y,αn) = 0.

Let f and g be as in Definition 4.1(c)(iii) and let s0 > 0 be related to f by Defini-
tion 4.1(a). Choose nK ∈ N, so that

∀n ≥ nK max
y∈K

d(y,αn) < min(s0,R).

Let n ≥ nK and let x ∈ K be arbitrary. By (2.6), we know that

c5(e
r
n,r − er

n+1,r ) ≥ d(x,αn)
r+d P (B(x, bd(x,αn)))

λd(B(x, bd(x,αn)))
.(4.5)
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Since B(0,2R) is bounded and convex, there exists a constant c̃ > 0 with

∀s ∈ (0, s0),∀y ∈ B(0,2R) λd(
B(0,2R) ∩ B(y, s)

) ≥ c̃λd(B(y, s)).

If x ∈ B(0,2R), by Definition 4.1(c)(ii) there exists a lower bound c2R > 0 of h

on B(0,2R), so that

P(B(x, bd(x,αn))) ≥ c2Rλd(
B(0,R) ∩ B(x, bd(x,αn))

)
≥ c2Rc̃λd(B(x, bd(x,αn))),

hence c5(e
r
n,r − er

n+1,r ) ≥ c2Rc̃d(x,αn)
r+d and consequently

c5(e
r
n,r − er

n+1,r ) ≥ c2Rc̃
1

‖h‖B(0,2R)

h(x)d(x,αn)
r+d(4.6)

for every x ∈ B(0, 2R). If x /∈ B(0,2R) and y ∈ B(x, bd(x,αn)) ∩ {f ≤ f (x)},
then we have

y /∈ B(0,R) and h(y) = g(f (y)) ≥ g(f (x)) = h(x)

since g is nonincreasing and we obtain

P(B(x, bd(x,αn))) ≥ P
(
B(x, bd(x,αn)) ∩ {f ≤ f (x)})

=
∫
{f ≤f (x)}∩B(x,bd(x,αn))

h(y) dλd(y)

≥ h(x)λd({f ≤ f (x)} ∩ B(x, bd(x,αn))
)

≥ cf h(x)λd(B(x, bd(x,αn)))

since f has the PSP. Hence,

c5(e
r
n,r − er

n+1,r ) ≥ cf h(x)d(x,αn)
r+d .(4.7)

Note that, by Proposition 2.3, there exists a constant c11 > 0 such that

∀n ∈ N er
n,r − er

n+1,r ≤ c11n
−(1+r/d).

Setting c21 = (c11c5 max{c−1
f , (c2Rc̃)−1})1/(r+d) and combining the last inequality

with (4.6) and (4.7) yields the conclusion of the proposition. �

REMARK. Note at this stage that the results established in the rest of this sec-
tion depend only on properties (4.2) and (4.4), not directly on PSP.

Our next aim is to give an upper and a lower bound for P(W(a|αn)) and the lo-
cal quantization error

∫
W(a|αn) ‖x − a‖r dP (x), provided all the W(a|αn) intersect

a given compact set. The following lemma provides an essential tool for the proof.
Here and in the rest of the paper, we set

sn,a = sup{‖x − a‖, x ∈ W(a|αn)},
which can be considered as the radius of the Voronoi cell W(a|αn).
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LEMMA 4.1. Let K ⊂
◦︷ ︷

supp(P ) be an arbitrary compact set and let ε > 0 be
arbitrary. Then there exists an nK,ε ∈ N such that

∀n ≥ nK,ε,∀a ∈ αn W(a|αn) ∩ K �= ∅ ⇒ sn,a ≤ ε.(4.8)

PROOF. Let ε > 0. Since K ⊂
◦︷ ︷

supp(P ), one may assume without loss of gen-
erality that ε is small enough so that the ε-neighborhood Kε := {y ∈ R

d |d(y,K) ≤
ε} is included in suppP . Since K is compact and contained in supp(P ), [5], Propo-
sition 2.2 implies limn→∞ maxx∈K d(x,αn) = 0. Hence, there exists an n0 ∈ N

with

∀x ∈ K,∀n ≥ n0 d(x,αn) <
ε

2
.(4.9)

Now assume that (4.8) does not hold for ε
2 in the place of ε. Then there exist

sequences (nk)k∈N in N and (ak) with nk ↑ ∞, ak ∈ αnk
with

W(ak|αnk
) ∩ K �= ∅,

and snk,ak
> ε

2 . Without loss of generality, we assume nk > n0 for all k ∈ N.
For each k ∈ N, there is an x̃k ∈ W(ak,αnk

) with ‖x̃k − ak‖ > ε
2 . Set xk =

ak + ε
2‖x̃k−ak‖(x̃k − ak). Then we have ‖xk − ak‖ = ε

2 and, since W(ak,αnk
) is star

shaped with center ak (see [8], Proposition 1.2), we deduce that xk ∈ [ak, x̃k] ⊂
W(ak|αnk

). Now let zk ∈ W(ak|αnk
) ∩ K . Then ‖zk − ak‖ < ε

2 owing to (4.9) and
‖xk − ak‖ = ε

2 , so that xk ∈ Kε .
Since Kε is compact there exists a convergent subsequence of (xk), whose limit

we denote by x∞ ∈ Kε . Then we have

d(x∞, αnk
) ≥ d(xk,αnk

) − ‖xk − x∞‖
= ‖xk − ak‖ − ‖xk − x∞‖
= ε

2
− ‖xk − x∞‖

so that lim supk→∞ d(x∞, αnk
) ≥ ε

2 .
Since x∞ ∈ Kε ⊂ supp(P ), we know that limn→∞ d(x∞, αn) = 0 (see [8],

Lemma 6.1 and [5], Proposition 2.2) and obtain a contradiction. �

DEFINITION 4.2. For a compact set K ⊂ R
d , let

αn(K) = {a ∈ αn|W(a|αn) ∩ K �= ∅}.

PROPOSITION 4.3. Let P satisfy the micro–macro inequality (4.4). There are
constants c22, c23, c24, c25 > 0 such that, for every compact set K ⊂ R

d and every
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ε > 0, there exists an nK,ε ∈ N such that, for every n ≥ nK,ε , and every a ∈ αn(K)

the Voronoi cell W(a|αn) is contained in Kε and

P(W(a|αn)) ≤ c22
(‖h‖W(a|αn)

)r/(r+d) 1

n
,(4.10)

∫
W(a|αn)

‖x − a‖r dP (x) ≤ c23

(
1 + log

‖h‖W(a|αn)

essinfh|W(a|αn)

)
n−(1+r/d),(4.11)

P(W0(a|αn)) ≥ c24
(
essinfh|W(a|αn)

)r/(r+d) 1

n
,(4.12)

∫
W0(a|αn)

‖x − a‖r dP (x) ≥ c25

(
essinfh|W(a|αn)

‖h‖W(a|αn)

)max(r,1)

n−(1+r/d).(4.13)

PROOF. Let K ⊂ R
d be compact and ε > 0 be arbitrary. By Lemma 4.1 and

Proposition 4.2, there exists an nK,ε ∈ N with nK,ε ≥ 2 such that

∀n ≥ nK,ε,∀a ∈ αn(K) W(a|αn) ⊂ Kε(4.14)

and

∀n ≥ nK,ε,∀x ∈ Kε c21n
−1/dh(x)−1/(r+d) ≥ d(x,αn).(4.15)

Now let n ≥ nK,ε and let a ∈ αn(K) be fixed. Set tn,a = ‖h‖W(a|αn) and tn,a =
essinfh|W(a|αn). Since W(a|αn) ⊂ Kε by (4.14), inequality (4.15) implies

∀t > 0,∀x ∈ {h > t} ∩ W(a|αn) ‖x − a‖ ≤ c21n
−1/d t−1/(r+d).(4.16)

This yields

λd({h > t} ∩ W(a|αn)
) ≤ λd(

B
(
a, c21n

−1/d t−1/(r+d)))
(4.17)

= λd(B(0,1))cd
21t

−d/(r+d)n−1.

Now we will prove (4.10). Observing that λd({h > t} ∩ W(a|αn)) = 0 for t > tn,a

we deduce

P(W(a|αn)) =
∫
W(a|αn)

hdλd

=
∫ ∞

0
λd({h > t} ∩ W(a|αn)

)
dt

=
∫ tn,a

0
λd({h > t} ∩ W(a|αn)

)
dt

≤
(∫ tn,a

0
t−d/(r+d) dt

)
λd(B(0,1))cd

21n
−1 owing to (4.17)

≤ λd(B(0,1))
r + d

r
cd

21
(‖h‖W(a|αn)

)r/(r+d) 1

n
,
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which proves (4.10) with c22 = λd(B(0,1)) r+d
r

cd
21.

Next, we will show (4.11). Using again λd({h > t}∩W(a|αn)) = 0 for t > tn,a ,
we get∫

W(a|αn)
‖x − a‖r dP (x) =

∫
W(a|αn)

‖x − a‖rh(x) dλd(x)

=
∫ ∞

0

∫
{h>t}∩W(a|αn)

‖x − a‖r dλd(x) dt(4.18)

=
∫ tn,a

0

∫
{h>t}∩W(a|αn)

‖x − a‖r dλd(x) dt.

For t ≤ tn,a , we have h(y) ≥ t for λd -a.e. y ∈ W(a|αn) so that∫
{h>t}∩W(a|αn)

‖x − a‖r dλd(x) =
∫
W(a|αn)

‖x − a‖r dλd(x).

By (4.14) and (4.15), we have, for λd -a.e. x ∈ W(a|αn),

‖x − a‖ = d(x,αn) ≤ c21n
−1/dh(x)−1/(r+d) ≤ c21n

−1/d(tn,a)
−1/(r+d)

so that

λd(
W(a|αn) \ B

(
a, c21n

−1/d(tn,a)
−1/(r+d))) = 0.

Consequently,∫ tn,a

0

∫
{h>t}∩W(a|αn)

‖x − a‖r dλd(x) dt

≤
∫ tn,a

0

∫
B(a,c21n−1/d (tn,a)−1/(r+d))

(
c21n

−1/d(tn,a)
−1/(r+d))r dλd(x) dt(4.19)

= c23n
−(1+r/d),

where c23 = cr+d
21 λd(B(0,1)). Using (4.16) and the same argument as before, we

obtain ∫ tn,a

tn,a

∫
{h>t}∩W(a|αn)

‖x − a‖r dλd(x) dt

≤
∫ tn,a

tn,a

∫
B(a,c21n

−1/d t−1/(r+d))
cr

21t
−r/(r+d)n−r/d dP (x) dt

(4.20)

≤ c23n
−(1+r/d)

∫ tn,a

tn,a

t−1 dt

= c23n
−(1+r/d) log

(
tn,a

tn,a

)
.
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Combining (4.19) and (4.20) with (4.18) yields (4.11).
Now we will prove (4.12). It follows from the second micro–macro inequality

(Proposition 2.2) and Proposition 2.3 that there exists a real constant c > 0 (inde-
pendent of n and a) such that

cn−(1+r/d) ≤
∫
W0(a|αn)

(
d(x,αn \ {a})r − ‖x − a‖r)dP (x).(4.21)

Since (4.59) implies that W0(a|αn) is compact and nonempty there exists a z ∈
∂W0(a|αn). Obviously this z satisfies

‖z − a‖ = d(z,αn \ {a})
and, therefore,

d(a,αn \ {a}) ≤ ‖a − z‖ + d(z,αn \ {a}) = 2‖z − a‖.(4.22)

This implies that, for every x ∈ W0(a|αn),

d(x,αn \ {a}) ≤ ‖x − a‖ + d(a,αn \ {a})
≤ ‖x − a‖ + 2‖z − a‖ = d(x,αn) + 2d(z,αn).

Since dαn := d(·, αn) is continuous and every nonempty relatively open subset of
W0(a|αn) has positive Lebesgue measure, we deduce

max{d(y,αn) :y ∈ W0(a|αn)} = esssupdαn|W0(a|αn).

By (4.14) and (4.15) this yields

d(x,αn \ {a}) ≤ 3 esssupdαn|W0(a|αn)

≤ 3c21n
−1/d esssup

(
h|W0(a|αn)

)−1/(r+d)

= 3c21n
−1/d(

essinfh|W0(a|αn)

)−1/(r+d)

≤ 3c21n
−1/d(tn,a)

−1/(r+a)

and, therefore,∫
W0(a|αn)

d(x,αn \ {a})r dP (x) ≤ 3rcr
21n

−r/d(tn,a)
−r/(r+d)P (W0(a|αn)).(4.23)

Using (4.21), we deduce

c3−rc−r
21 (tn,a)

r/(r+d)n−1 ≤ P(W0(a|αn))

and, hence, (4.12) with c24 = c3−rc−r
21 .

Now we will prove (4.13). It follows from (4.21) that

cn−(1+r/d) ≤
∫
W0(a|αn)

((‖x − a‖ + d(a,αn \ {a}))r − ‖x − a‖r)dP (x).(4.24)
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CASE 1 (r ≥ 1). Using the mean value theorem for differentiation yields

cn−(1+r/d)

(4.25)
≤

∫
W0(a|αn)

r
(‖x − a‖ + d(a,αn \ {a}))r−1

d(a,αn \ {a}) dP (x).

By (4.22), (4.14) and (4.15), we know that

‖x − a‖ + d(a,αn \ {a}) ≤ 3c21n
−1/d(tn,a)

−1/(r+d).(4.26)

Combining (4.25) and (4.26) yields

cn−(1+r/d) ≤ d(a,αn \ {a})r(
3c21n

−1/d(tn,a)
−1/(r+d))r−1

P(W0(a|αn)).(4.27)

By (4.10), we have

P(W0(a|αn)) ≤ c22t
r/(r+d)
n,a

1

n

and, hence,

c−1
22 cr−1(3c21)

1−r t (r−1)/(r+d)
n,a t

−r/(r+d)
n,a n−1/d ≤ d(a,αn \ {a}).(4.28)

Set c̃ = c−1
22 cr−1(3c21)

1−r . Then we deduce

B

(
a,

c̃

2
t (r−1)/(r+d)
n,a t

−r/(r+d)
n,a n−1/d

)
⊂ W0(a|αn).(4.29)

It follows that∫
B(a,(c̃/2)t

(r−1)/(r+d)
n,a t

−r/(r+d)
n,a n−1/d )

‖x − a‖rh(x) dλd(x)

(4.30)
≤

∫
W0(a|αn)

‖x − a‖r dP (x).

Since h(x) ≥ tn,a , for λd -a.e. x ∈ B(a, c̃
2 t

(r−1)/(r+d)
n,a t

−r/(r+d)
n,a n−1/d) and∫

B(a,
)
‖x − a‖r dλd(x) = 
r+d

∫
B(0,1)

‖u‖r dλd(u)

for every 
 > 0, the left-hand side of (4.30) is greater or equal to

tn,a

∫
B(0,1)

‖x‖r dλd(x)

(
c̃

2
t (r−1)/(r+d)
n,a t

−r/(r+d)
n,a

)r+d

n−(1+r/d)

=
∫
B(0,1)

‖u‖r dλd(u)

(
c̃

2

)r+d

trn,at
−r
n,an

−(1+r/d).

Inequality (4.13) follows by setting c25 = ∫
B(0,1) ‖u‖r dλd(u)( c̃

2)r+d .
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CASE 2 (r < 1). In this case, we have(‖x − a‖ + d(a,αn \ {a}))r ≤ ‖x − a‖r + d(a,αn \ {a})r
for all x ∈ W0(a|αn), so that, by (4.24),

cn−(1+r/d) ≤
∫
W0(a|αn)

d(a,αn \ {a})r dP (x)

(4.31)
≤ d(a,αn \ {a})rP (W0(a|αn)).

By (4.10), we know that

P(W0(a|αn)) ≤ c22(tn,a)
r/(r+d) 1

n

and, hence,

c1/rc
−1/r
22 t

−1/(r+d)
n,a n−1/d ≤ d(a,αn \ {a}).(4.32)

As above this implies, for c̃ = c1/rc
−1/r
22 ,

tn,a

∫
B(0,1)

‖x‖r dλd(x)

(
c̃

2

)r+d tn,a

tn,a

n−(1+r/d) ≤
∫
W0(a|αn)

‖x − a‖r dP (x)

and (4.13) follows. �

THEOREM 4.1. Let P satisfy the micro–macro inequality (4.4). Then there
are constants c22, c23, c24, c25 > 0 such that, for every compact set K ⊂ R

d , the
following hold:

lim sup
n→∞

n max
a∈αn(K)

P (W(a|αn)) ≤ c22

(
inf
ε>0

‖h‖Kε

)r/(r+d)
,(4.33)

lim sup
n→∞

n1+r/d max
a∈αn(K)

∫
W(a|αn)

‖x − a‖r dP (x)

(4.34)

≤ c23

(
1 + log

(
inf
ε>0

‖h‖Kε

essinfh|Kε

))
,

lim inf
n→∞ n min

a∈αn(K)
P (W0(a|αn)) ≥ c24 sup

ε>0
(essinfh|Kε)

r/(r+d),(4.35)

lim inf
n→∞ n(1+r/d) min

a∈αn(K)

∫
W(a|αn)

‖x − a‖r dP (x)

(4.36)

≥ c25 sup
ε>0

(
essinfh|Kε

‖h‖Kε

)max(1,r)

.

PROOF. The theorem follows immediately from Proposition 4.3. �
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COROLLARY 4.1. For every x ∈ R
d , let an,x ∈ αn satisfy x ∈ W(an,x |αn).

Then

lim sup
n→∞

nP (W(an,x |αn)) ≤ c22

(
lim sup

y→x
h(y)

)r/(r+d)
,(4.37)

lim sup
n→∞

n1+r/d
∫
W(an,x |αn)

‖x − a‖r dP (x)

(4.38)

≤ c23

(
1 + log lim

ε↓0

suph(B(x, ε))

infh(B(x, ε))

)
,

lim inf
n→∞ nP (W0(an,x, |αn)) ≥ c24

(
lim inf
y→x

h(y)
)r/(r+d)

,(4.39)

lim inf
n→∞ n1+r/d

∫
W0(an,x |αn

‖x − a‖r dP (X)

(4.40)

≥ c25

(
lim
ε↓0

infh(B(x, ε))

suph(B(x, ε))

)max(1,r)

.

Moreover, if h is continuous, then lim supy→x h(y) = h(x) = lim infy→x h(y) and

lim
ε↓0

suph(B(x, ε))

infh(B(x, ε)
= lim

ε↓0

infh(B(x, ε))

suph(B(x, ε))
= 1.

PROOF. The corollary follows from Theorem 4.9 if one sets K = {x}. �

REMARKS. (a) For certain one-dimensional distribution functions, sharper
versions of the above corollary have been proved by Fort and Pagès ([6], Theo-
rem 6).

(b) If R > 0 and the density h has the form h(x) = g(‖x‖0) for all x /∈ B(0,R),
where g : [0,+∞) → (0,+∞) is a decreasing function and ‖ · ‖0 is an arbitrary
norm on R

d then there exists a constant c > 0 and an m = m(c) ∈ N such that

∀n ≥ m,∀x ∈ R
d cn−1/dh(x)−1/(r+d) ≥ d(x,αn).

This can be used to show that there is a c̃ > 0 with

∀n ≥ m,∀a ∈ αn P (W(a|αn)) ≤ c̃
(‖h‖W(a|αn)

)r/(r+d) 1

n
.

Under additional assumptions on g (g regularly varying), one can also give a sim-
ilar upper bound for the local Ls -quantization errors, s ∈ (0, r).

5. The local quantization behavior in the interior of the support. In this
section, we will show that weaker versions of the results in Section 4 still hold
without assuming the strong version of the first micro–macro inequality as stated
in (4.4). We have to restrict our investigations to compact sets in the interior of
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the support of the probability in question and also obtain weaker constants in the
corresponding inequalities for the local probabilities and quantization errors.

Let r ∈ (0,∞) be fixed. In this section P is always an absolutely continuous
Borel probability on R

d with density h. We assume that there is a δ > 0 with∫ ‖x‖r+δ dP (x) < +∞. As before, αn is an n-optimal codebook for P of order r .
For n ∈ N and a ∈ αn set sn,a = sup{‖x − a‖, x ∈ W(a|αn)} and sn,a = sup{s >

0,B(a, s) ⊂ W(a|αn)}.
Moreover, we assume that h is essentially bounded and that essinfh|K > 0 for

every compact set K ⊂
◦︷ ︷

supp(P ), where
◦
B denotes the interior of the set B ⊂ R

d .
For the use in the first micro–macro inequality, we fix a b ∈ (0, 1

2).

LEMMA 5.1. There exists a constant c26 > 0 such that, for every n ∈ N and
a ∈ αn,

c26n
−1/d(

essinfh|B(a,(1+b)sn,a)

)−1/(r+d) ≥ sn,a.(5.1)

PROOF. By the first micro–macro inequality (2.6) and Proposition 2.3 there
exists a constant c > 0 with

∀n ∈ N,∀x ∈ R
d cn−(1+r/d) ≥ d(x,αn)

r+d P (B(x, bd(x,αn)))

λd(B(x, bd(x,αn))
.(5.2)

Now let n ∈ N and a ∈ αn be arbitrary.
It follows from (5.2) that

∀x ∈ W(a|αn) ‖x − a‖r+d P (B(x, b‖x − a‖))
λd(B(x, b‖x − a‖)) ≤ cn−(1+r/d).(5.3)

For x ∈ W(a|αn) and y ∈ B(x, bd(x,αn)), we have

‖y − a‖ < ‖y − x‖ + ‖x − a‖ ≤ b‖x − a‖ + ‖x − a‖ ≤ (1 + b)sn,a

so that

B(x, b‖x − a‖) ⊆ B
(
a, (1 + b)sn,a

)
.(5.4)

This yields

P
(
B(x, b‖x − a‖)) =

∫
B(x,b‖x−a‖)

h dλd

(5.5)
≥ essinfh|B(a,(1+b)sn,a)λ

d(
B(x, b‖x − a‖))

owing to (5.4). Thus, (5.3) implies

‖x − a‖r+d essinfh|B(a,(1+b)sn,a) ≤ cn−(1+r/d).(5.6)

Since x ∈ W(a|αn) was arbitrary, we deduce

sr+d
n,a essinfh|B(a,(1+b)sn,a) ≤ cn−(1+r/d)

and, hence, (5.1) with c26 = c1/(r+d). �
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LEMMA 5.2. There exist real constants c27, c28 > 0 such that, for every n ∈ N

and a ∈ αn,

P(W(a|αn)) ≤ c27
‖h‖B(a,sn,a)

(essinfh|B(a,(1+b)sn,a))d/(r+d)
n−1(5.7)

and ∫
W(a|αn)

‖x − a‖r dP (x) ≤ c28
‖h‖B(a,sn,a)

essinfh|B(a(1+b),sn,a)

n−(1+r/d).(5.8)

PROOF. Let n ∈ N and a ∈ αn be arbitrary. Then (5.1) implies

P(W(a|αn)) ≤ P(B(a, sn,a)) ≤ ‖h‖B(a,sn,a)λ
d(B(a, sn,a))

≤ λd(B(0,1))‖h‖B(a,sn,a)s
d
n,a

≤ λd(B(0,1))cd
26‖h‖B(a,sn,a)

(
essinfh|B(a,(1+b)sn,a)

)−d/(r+d)
n−1.

Thus (5.7) follows for c27 = λd(B(0,1))cd
26.

Similarly (5.1) implies∫
W(a|αn)

‖x − a‖r dP (x)

≤
∫
B(a,sn,a)

‖x − a‖r dP (x)

≤ ‖h‖B(a,sn,a)

∫
B(a,sn,a)

‖x − a‖r dλd(x)

≤ λd(B(0,1))‖h‖B(a,sn,a)s
r+d
n,a

≤ λd(B(0,1))cr+d
26 ‖h‖B(a,sn,a)

(
essinfh|B(a,(1+b)sn,a)

)−1
n−(1+r/d)

still owing to (5.1).
Thus, (5.8) follows for c28 = λd(B(0,1))cr+d

26 . �

LEMMA 5.3. There exists real constants c29, c30 > 0 such that, for every n ≥ 2
and every a ∈ αn,

sn,a ≥ c29
(essinfh|B(a,(1+b)sn,a )

1−1/(r+d)

‖h‖B(a,sn,a)

n−1/d for r ≥ 1(5.9)

and

sn,a ≥ c30

(
(essinfh|B(a,(1+b)sn,a))

d/(r+d)

‖h‖B(a,sn,a)

)1/r

n−1/d for 0 < r < 1.(5.10)
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PROOF. By the second micro–macro inequality (Proposition 2.2) combined
with Proposition 2.3, there is a constant c > 0 such that

∀n ≥ 2 cn−(1+r/d) ≤
∫
W0(a|αn)

(
d(x,αn \ {a})r − ‖x − a‖r)dP (x).

CASE 1 (r ≥ 1). As in (4.24) and (4.25), we deduce

cn−(1+r/d) ≤
∫
W0(a|αn)

r
(‖x − a‖ + d(a,αn \ {a}))r−1

(5.11)
× d(a,αn \ {a}) dP (x).

Since n ≥ 2 there exists an ã ∈ αn \ {a} with

W(a|αn) ∩ W(ã|αn) �= ∅.

Let z ∈ W(a|αn) ∩ W(ã|αn) be arbitrary. Then we have

‖z − a‖ = d(z,αn) = ‖z − ã‖
and, hence

d(a,αn \ {a}) ≤ ‖a − ã‖ ≤ ‖a − z‖ + ‖z − ã‖ = 2‖z − a‖
so that

d(a,αn \ {a}) ≤ 2sn,a.

It follows from (5.11) that

cn−(1+r/d) ≤ r(3sn,a)
r−1d(a,αn \ {a})P (W0(a|αn))

≤ r(3sn,a)
r−1d(a,αn \ {a})‖h‖B(a,sn,a)λ

d(B(0,1))sd
n,a(5.12)

= r3r−1sr+d−1
n,a λd(B(0,1))‖h‖B(a,sn,a)d(a,αn \ {a}).

This implies

cr−131−r (λd(B(0,1)))−1(‖h‖B(a,sn,a)

)−1
s1−(r+d)
n,a n−(1+r/d) ≤ d(a,αn \ {a})

and, hence, by (5.1)

cr−131−r (λd(B(0,1)))−1(‖h‖B(a,sn,a)

)−1
c

1−(r+d)
26

× (
essinfh|B(a,(1+b)sn,a)

)−(1−(r+d))/(r+d)
n−1/d

≤ d(a,αn \ {a}).
Since sn,a = 1

2d(a,αn \ {a}) this leads to (5.9) with

c29 = 1
2cr−131−r (λd(B(0,1)))−1c

1−(r+d)
26 .
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CASE 2 (r ≤ 1). As in (4.31), we have

cn−1+r/d ≤ d(a,αn \ {a})rP (W0(a|αn))

≤ d(a,αn \ {a})r‖h‖B(a,sn,a)λ
d(B(0,1))sd

n,a

and, hence, by (5.1)

cn−(1+r/d)(‖h‖B(a,sn,a)

)−1
(λd(B(0,1)))−1c−d

26 n
(
essinfh|B(a,(1+b)sn,a)

)d/(r+d)

≤ d(a,αn \ {a})r ,
which implies

c1/r (‖h‖B(a,sn,a)

)−1/r
(λd(B(0,1)))−1/rc

−d/r
26

× (
essinfh|B(a,(1+b)sn,a)

)d/(r(r+d))
n−1/d

≤ d(a,αn \ {a}).
Since sn,a = 1

2d(a,αn \ {a}) this leads to

c30

(
(essinfhb(a,(1+b)sn,a))

d/(r+d)

‖h‖B(a,sn,a)

)1/r

n−1/d ≤ sn,a

with

c30 = 1
2c1/r (λd(B(0,1)))−1/rc

−d/r
26 . �

LEMMA 5.4. There exist constants c31, c32, c33, c34 > 0 such that, for every
n > 2 and a ∈ αn,

P(W0(a|αn))
(5.13)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c31

(essinfh|B(a,(1+b)sn,a)

‖h‖B(a,sn,a)

)d(
essinfhB(a,(1+b)sn,a)

)r/(r+d)
n−1,

for r ≥ 1,

c32

(essinfh|B(a,(1+b)sn,a)

‖h‖B(a,sn,a)

)d/r(
essinfh|B(a,(1+b)sn,a)

)r/(r+d)
n−1,

for 0 < r < 1,

and ∫
W0(a|αn)

‖x − a‖r dP (x)

(5.14)

≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c33

(essinfh|B(a,(1+b)sn,a)

‖h‖B(a,sn,a)

)r+d

n−(1+r/d), for r ≥ 1,

c34

(essinfh|B(a,(1+b)sn,a)

‖h‖B(a,sn,a)

)1+d/r

n−(1+r/d), for 0 < r < 1.
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PROOF. First, we will prove (5.13). We have

P(W0(a|αn)) ≥ P(B(a, sn,a)) =
∫
B(a,sn,a)

h dλd

≥ essinfh|B(a,sn,a)λ
d(B(0,1))sd

n,a

≥ essinfh|B(a,(1+b)sn,a)λ
d(B(0,1))sd

n,a.

Using (5.9), we obtain

P(W0(a|αn)) ≥ λd(B(0,1))cd
29

(essinfh|B(a,(1+b)sn,a)

‖h‖B(a,sn,a)

)d

× (
essinfh|B(a,(1+b)sn,a)

)r/(r+d)
n−1

for r ≥ 1 and using (5.10) we get

P(W0(a|αn)) ≥ λd(B(0,1))cd
30

(‖h‖B(a,sn,a)

)−d/r

× (
essinfh|B(a,(1+b)sn,a)

)(d/(r+d))(d/r)+1
n−1

= λd(B(0,1))cd
30

(essinfh|B(a,(1+b)sn,a)

‖h‖B(a,sn,a)

)d/r

× (
essinfh|B(a,(1+b)sn,a)

)r/(r+d)
n−1

for 0 < r < 1. With c31 = λd(B(0,1))cd
29 and c32 = λd(B(0,1))cd

30 we deduce
(5.13).

Now we will prove (5.14). We have∫
W0(a|αn)

‖x − a‖r dP (x) ≥
∫
B(a,sn,a)

‖x − a‖r essinfh|B(a,sa,n) dλd(x)

≥ (
essinfh|B(a,sn,a)

) ∫
B(a,sn,a)

‖x − a‖r dλd(x).

Now ∫
B(a,sn,a)

‖x − a‖r dλd(x) = sr+d
n,a

∫
B(0,1)

‖x‖r dλd(x)

so that∫
W0(a|αn)

‖x − a‖r dP (x) ≥
∫
B(0,1)

‖x‖r dλd(x) essinfh|B(a,sn,a)s
r+d
n,a .

Using Lemma 5.3, we obtain (5.14) with c33 = ∫
B(0,1) ‖x‖r dλd(x)cr+d

29 and c34 =∫
B(0,1) ‖x‖r dλd(x)cr+d

30 . �
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LEMMA 5.5. Let K ⊂
◦︷ ︷

supp(P ) be an arbitrary compact set and let

ε ∈ (
0, d

(
K,R

d \
◦︷ ︷

supp(P )
))

be arbitrary [where d(K,∅) = ∞]. Then there exists an nK,ε ∈ N such that

∀n ≥ nK,ε,∀a ∈ αn(K) sn,a ≤ ε,(5.15)

where αn(K) = {a ∈ αn|W(a|αn) ∩ K �= ∅}.
PROOF. The proof is identical to that of Lemma 4.1. �

THEOREM 5.1. Let P be an absolutely continuous Borel probability mea-
sure on R

d with density h and
∫ ‖x‖r+δ dP (x) < ∞ for some δ > 0. Then

there exist constants c27, c28, c31, c32, c33, c34 > 0 such that, for every compact

K ⊂
◦︷ ︷

supp(P ), the following hold:

lim sup
n→∞

n max
a∈αn(K)

P (W(a|αn))

(5.16)

≤ c27 inf
ε>0

‖h‖Kε

(essinfhKε)
d/(r+d)

,

lim sup
n→∞

n1+r/d max
a∈αn(K)

∫
W(a|αn)

‖x − a‖r dP (x)

(5.17)

≤ c28 inf
ε>0

‖h‖Kε

essinfh|Kε

,

lim inf
n→∞ n min

a∈αn(K)
P (W0(a|αn))

(5.18)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c31 inf
ε>0

(
essinfh|Kε

‖h‖Kε

)d

(essinfh|Kε)
r/(r+d),

for r ≥ 1,

c32 inf
ε>0

(
essinfh|Kε

‖h‖Kε

)d/r

(essinfh|Kε)
r/(r+d),

for 0 < r < 1,

and

lim inf
n→∞ n1+r/d min

a∈αn(K)

∫
W0(a|αn)

‖x − a‖r dP (x)

(5.19)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c33 inf
ε>0

(
essinfh|Kε

‖h‖Kε

)r+d

,

for r ≥ 1,

c34 inf
ε>0

(
essinfh|Kε

‖h‖Kε

)1+d/r

,

for 0 < r < 1.
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PROOF. Let ε > 0 satisfy ε < d(K,R
d \

◦︷ ︷
supp(P )). By Lemma 5.5 there exists

an nK,ε ∈ N such that

∀n ≥ nK,ε,∀a ∈ αn(K) sn,a <
ε

2(1 + b)
.

This implies

∀n ≥ nK,ε,∀a ∈ αn(K) B
(
a, (1 + b)sn,a

) ⊂ Kε

and, therefore,

‖h‖B(a,(1+b)sn,a) ≤ ‖h‖Kε

as well as

essinfh|B(a,(1+b)sn,a) ≥ essinfh|Kε

for all n ≥ nK,ε and all a ∈ αn(K).
These inequalities combined with Lemma 5.2 and Lemma 5.4 yield the asser-

tions of the theorem. �

REMARK. The above theorem yields estimates for the asymptotics of the lo-
cal cell probabilities and quantization errors only if the density h is essentially
bounded and bounded away from 0 on each compact subset of the interior of the
support of P .

COROLLARY 5.1. For every x ∈ R
d , let an,x ∈ αn satisfy x ∈ W(an,x |αn).

Assume that x ∈
◦︷ ︷

supp(P ) and h is continuous at x. Then

min(c31, c32)h(x)r/(r+d) ≤ lim inf
n→∞ nP (W0(an,x |αn))

(5.20)
≤ lim sup

n→∞
nP (W(an,x |αn)) ≤ c27h(x)r/(r+d)

and

min(c33, c34) ≤ lim inf
n→∞ n1+r/d

∫
W(an,x |αn)

‖y − an,x‖r dP (y)

(5.21)
≤ lim sup

n→∞
n1+r/d

∫
W(an,x |αn)

‖y − an,x‖r dP (y) ≤ c28.

PROOF. Set K = {x} in Theorem 5.1. �
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