MIXING TIME OF NEAR-CRITICAL RANDOM GRAPHS

By Jian Ding, Eyal Lubetzky and Yuval Peres
University of California, Berkeley, Microsoft Research and Microsoft Research

Let \mathcal{C}_{1} be the largest component of the Erdős-Rényi random graph $\mathcal{G}(n, p)$. The mixing time of random walk on \mathcal{C}_{1} in the strictly supercritical regime, $p=c / n$ with fixed $c>1$, was shown to have order $\log ^{2} n$ by Fountoulakis and Reed, and independently by Benjamini, Kozma and Wormald. In the critical window, $p=(1+\varepsilon) / n$ where $\lambda=\varepsilon^{3} n$ is bounded, Nachmias and Peres proved that the mixing time on \mathcal{C}_{1} is of order n. However, it was unclear how to interpolate between these results, and estimate the mixing time as the giant component emerges from the critical window. Indeed, even the asymptotics of the diameter of \mathcal{C}_{1} in this regime were only recently obtained by Riordan and Wormald, as well as the present authors and Kim.

In this paper, we show that for $p=(1+\varepsilon) / n$ with $\lambda=\varepsilon^{3} n \rightarrow \infty$ and $\lambda=o(n)$, the mixing time on \mathcal{C}_{1} is with high probability of order $(n / \lambda) \log ^{2} \lambda$. In addition, we show that this is the order of the largest mixing time over all components, both in the slightly supercritical and in the slightly subcritical regime [i.e., $p=(1-\varepsilon) / n$ with λ as above].

1. Introduction. There is a rich interplay between geometric properties of a graph and the behavior of a random walk on it (see, e.g., [1]). A particularly important parameter is the mixing time, which measures the rate of convergence to stationarity. In this paper, we focus on random walks on the classical ErdősRényi random graph $\mathcal{G}(n, p)$.

The geometry of $\mathcal{G}(n, p)$ has been studied extensively since its introduction in 1959 by Erdős and Rényi [10]. A well-known phenomenon exhibited by this model, typical in second-order phase transitions of mean-field models, is the double jump: For $p=c / n$ with c fixed, the largest component \mathcal{C}_{1} has size $O(\log n)$ with high probability (w.h.p.), when $c<1$, it is w.h.p. linear in n for $c>1$, and for $c=1$ its size has order $n^{2 / 3}$ (the latter was proved by Bollobás [5] and Łuczak [20]). Bollobás discovered that the critical behavior extends throughout $p=(1 \pm \varepsilon) / n$ for $\varepsilon=O\left(n^{-1 / 3}\right)$, a regime known as the critical window.

Only in recent years were the tools of Markov chain analysis and the understanding of the random graph sufficiently developed to enable estimating mixing times on \mathcal{C}_{1}. Fountoulakis and Reed [12] showed that, in the strictly supercritical regime ($p=c / n$ with fixed $c>1$), the mixing time of random walk on \mathcal{C}_{1}

[^0]Key words and phrases. Random graphs, random walk, mixing time.
w.h.p. has order $\log ^{2} n$. Their proof exploited fairly simple geometric properties of $\mathcal{G}(n, p)$, while the key to their analysis was a refined bound [11] on the mixing time of a general Markov chain. The same result was obtained independently by Benjamini, Kozma and Wormald [3]. There, the main innovation was a decomposition theorem for the giant component. However, the methods of these two papers do not yield the right order of the mixing time when c is allowed to tend to 1 .

Nachmias and Peres [25] proved that throughout the critical window the mixing time on \mathcal{C}_{1} is of order n. The proof there used branching process arguments, which were effective since the critical \mathcal{C}_{1} is close to a tree.

It was unclear how to interpolate between these results, and estimate the mixing time as the giant component emerges from the critical window, since the methods used for the supercritical and the critical case were so different. The focus of this paper is primarily on the emerging supercritical regime, where $p=(1+\varepsilon) / n$ with $\varepsilon^{3} n \rightarrow \infty$ and $\varepsilon=o(1)$. In this regime, the largest component is significantly larger than the others, yet its size is still sublinear. Understanding the geometry of \mathcal{C}_{1} in this regime has been challenging: Indeed, even the asymptotics of its diameter were only recently obtained by Riordan and Wormald [27], as well as in [8].

Our main result determines the order of the mixing time throughout the emerging supercritical regime (see Section 2.3 for a formal definition of mixing time).

THEOREM 1 (Supercritical regime). Let \mathcal{C}_{1} be the largest component of $\mathcal{G}(n, p)$ for $p=\frac{1+\varepsilon}{n}$, where $\varepsilon \rightarrow 0$ and $\varepsilon^{3} n \rightarrow \infty$. With high probability, the mixing time of the lazy random walk on \mathcal{C}_{1} is of order $\varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)$.

While the second largest component \mathcal{C}_{2} has a mixing time of smaller order (it is w.h.p. a tree, and given that event, it is a uniform tree on its vertices and as such has $t_{\text {MIX }} \asymp\left|\mathcal{C}_{2}\right|^{3 / 2}$ (see, e.g., [25]), that is $t_{\text {MIX }} \asymp \varepsilon^{-3} \log ^{3 / 2}\left(\varepsilon^{3} n\right)$ as $\left|\mathcal{C}_{2}\right| \asymp \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)$ w.h.p.), it turns out that w.h.p. there exists an even smaller component, whose mixing time is of the same order as on \mathcal{C}_{1}. This is captured by our second theorem, which also handles the subcritical regime.

THEOREM 2 (Controlling all components). Let $G \sim \mathcal{G}(n, p)$ for $p=(1 \pm$ $\varepsilon) / n$, where $\varepsilon \rightarrow 0$ and $\varepsilon^{3} n \rightarrow \infty$. Let \mathcal{C}^{\star} be the component of G that maximizes the mixing time of the lazy random walk on it, denoted by t_{MIX}^{\star}. Then with high probability, t_{MIX}^{\star} has order $\varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)$. This also holds when maximizing only over tree components.

In the area of random walk on random graphs, the following two regimes have been analyzed extensively.

- The supercritical regime, where $t_{\mathrm{MIX}} \asymp(\operatorname{diam})^{2}$ with diam denoting the intrinsic diameter in the percolation cluster. Besides $\mathcal{G}\left(n, \frac{c}{n}\right)$ for $c>1$, this also holds in the torus \mathbb{Z}_{n}^{d} by [4] and [23].
- The critical regime on a high dimensional torus, where $t_{\mathrm{MIX}} \asymp(\operatorname{diam})^{3}$. As mentioned above, for critical percolation on the complete graph, this was shown in [25]. For high dimensional tori, this is a consequence of [13].

To the best of our knowledge, our result is the first interpolation for the mixing time between these two different powers of the diameter.

2. Preliminaries.

2.1. Cores and kernels. The k-core of a graph G, denoted by $G^{(k)}$, is the maximum subgraph $H \subset G$ where every vertex has degree at least k. It is well known (and easy to see) that this subgraph is unique, and can be obtained by repeatedly deleting any vertex whose degree is smaller than k (at an arbitrary order).

We call a path $\mathcal{P}=v_{0}, v_{1}, \ldots, v_{k}$ for $k>1$ (i.e., a sequence of vertices with $v_{i} v_{i+1}$ an edge for each i) a 2-path if and only if v_{i} has degree 2 for all $i=$ $1, \ldots, k-1$ (while the endpoints v_{0}, v_{k} may have degree larger than 2 , and possibly $\left.v_{0}=v_{k}\right)$.

The kernel \mathcal{K} of G is obtained by taking its 2-core $G^{(2)}$ minus its disjoint cycles, then repeatedly contracting all 2-paths (replacing each by a single edge). Note that, by definition, the degree of every vertex in \mathcal{K} is at least 3 .
2.2. Structure of the supercritical giant component. The key to our analysis of the random walk on the giant component \mathcal{C}_{1} is the following result from our companion paper [9]. This theorem completely characterizes the structure of \mathcal{C}_{1}, by reducing it to a tractable contiguous model $\tilde{\mathcal{C}}_{1}$.

THEOREM 2.1 [9]. Let \mathcal{C}_{1} be the largest component of $\mathcal{G}(n, p)$ for $p=\frac{1+\varepsilon}{n}$, where $\varepsilon^{3} n \rightarrow \infty$ and $\varepsilon \rightarrow 0$. Let $\mu<1$ denote the conjugate of $1+\varepsilon$, that is, $\mu \mathrm{e}^{-\mu}=(1+\varepsilon) \mathrm{e}^{-(1+\varepsilon)}$. Then \mathcal{C}_{1} is contiguous to the following model $\tilde{\mathcal{C}}_{1}$:

1. Let $\Lambda \sim \mathcal{N}\left(1+\varepsilon-\mu, \frac{1}{\varepsilon n}\right)$ and assign i.i.d. variables $D_{u} \sim \operatorname{Poisson}(\Lambda)(u \in$ $[n])$ to the vertices, conditioned that $\sum D_{u} \mathbb{1}_{\left\{D_{u} \geq 3\right\}}$ is even. Let

$$
N_{k}=\#\left\{u: D_{u}=k\right\} \quad \text { and } \quad N=\sum_{k \geq 3} N_{k} .
$$

Select a random multigraph \mathcal{K} on N vertices, uniformly among all multigraphs with N_{k} vertices of degree k for $k \geq 3$.
2. Replace the edges of \mathcal{K} by paths of lengths i.i.d. Geom $(1-\mu)$.
3. Attach an independent Poisson $(\mu)-G a l t o n-W a t s o n ~ t r e e ~ t o ~ e a c h ~ v e r t e x . ~$

That is, $\mathbb{P}\left(\tilde{\mathcal{C}}_{1} \in \mathcal{A}\right) \rightarrow 0$ implies $\mathbb{P}\left(\mathcal{C}_{1} \in \mathcal{A}\right) \rightarrow 0$ for any set of graphs \mathcal{A} that is closed under graph-isomorphism.

In the above, a Poisson (μ)-Galton-Watson tree is the family tree of a GaltonWatson branching process with offspring distribution Poisson (μ). We will use the abbreviation PGW (μ)-tree for this object. A multigraph is the generalization of a simple graph permitting multiple edges and loops.

Note that conditioning on $\sum D_{u} \mathbb{1}_{\left\{D_{u} \geq 3\right\}}$ being even does not pose a problem, as one can easily use rejection sampling. The 3 steps in the description of $\tilde{\mathcal{C}}_{1}$ correspond to constructing its kernel \mathcal{K} (Step 1), expanding \mathcal{K} into the 2-core $\tilde{\mathcal{C}}_{1}^{(2)}$ (Step 2), and finally attaching trees to it to obtain $\tilde{\mathcal{C}}_{1}$ (Step 3).

Further observe that $N_{k} \asymp \varepsilon^{k} n$ for any fixed $k \geq 2$, and so in the special case where $\varepsilon=o\left(n^{-1 / 4}\right)$ w.h.p. we have $D_{u} \in\{0,1,2,3\}$ for all $u \in[n]$, and the kernel \mathcal{K} is simply a uniform 3 -regular multigraph.

Combining the above description of the giant component with standard tools in the study of random graphs with given degree-sequences, one can easily read off useful geometric properties of the kernel. This is demonstrated by the following lemma of [9], for which we require a few definitions: For a vertex v in G let $d_{G}(v)$ denote its degree and for a subset of vertices S let

$$
d_{G}(S) \triangleq \sum_{v \in S} d_{G}(v)
$$

denote the sum of the degrees of its vertices (also referred to as the volume of S in $G)$. The isoperimetric number of a graph G is defined to be

$$
i(G) \triangleq \min \left\{\frac{e\left(S, S^{c}\right)}{d_{G}(S)}: S \subset V(G), d_{G}(S) \leq e(G)\right\}
$$

where $e(S, T)$ denotes the number of edges between S and T while $e(G)$ is the total number of edges in G.

Lemma 2.2 ([9], Lemma 3.5). Let \mathcal{K} be the kernel of the largest component \mathcal{C}_{1} of $\mathcal{G}(n, p)$ for $p=\frac{1+\varepsilon}{n}$, where $\varepsilon^{3} n \rightarrow \infty$ and $\varepsilon \rightarrow 0$. Then w.h.p.,

$$
|\mathcal{K}|=\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n, \quad e(\mathcal{K})=(2+o(1)) \varepsilon^{3} n
$$

and $i(\mathcal{K}) \geq \alpha$ for some absolute constant $\alpha>0$.
2.3. Notions of mixing of the random walk. For any two distributions φ, ψ on V, the total-variation distance of φ and ψ is defined as

$$
\|\varphi-\psi\|_{\mathrm{TV}} \triangleq \sup _{S \subset V}|\varphi(S)-\psi(S)|=\frac{1}{2} \sum_{v \in V}|\varphi(v)-\psi(v)|
$$

Let $\left(S_{t}\right)$ denote the lazy random walk on G, that is, the Markov chain which at each step holds its position with probability $\frac{1}{2}$ and otherwise moves to a uniformly chosen neighbor. This is an aperiodic and irreducible Markov chain, whose stationary distribution π is given by

$$
\pi(x)=d_{G}(x) / 2|E| .
$$

We next define two notions of measuring the distance of an ergodic Markov chain $\left(S_{t}\right)$, defined on a state-set V, from its stationary distribution π.

Let $0<\delta<1$. The (worst-case) total-variation mixing time of $\left(S_{t}\right)$ with parameter δ, denoted by $t_{\text {MIX }}(\delta)$, is defined to be

$$
t_{\mathrm{MIX}}(\delta) \triangleq \triangleq \min \left\{t: \max _{v \in V}\left\|\mathbb{P}_{v}\left(S_{t} \in \cdot\right)-\pi\right\|_{\mathrm{TV}} \leq \delta\right\}
$$

where \mathbb{P}_{v} denotes the probability given that $S_{0}=v$.
The Cesàro mixing time (also known as the approximate uniform mixing time) of $\left(S_{t}\right)$ with parameter δ, denoted by $\tilde{t}_{\text {MIX }}(\delta)$, is defined as

$$
\tilde{t}_{\mathrm{MIX}}(\delta)=\min \left\{t: \max _{v \in V}\left\|\pi-\frac{1}{t} \sum_{i=0}^{t-1} \mathbb{P}_{v}\left(S_{i} \in \cdot\right)\right\|_{\mathrm{TV}} \leq \delta\right\}
$$

When discussing the order of the mixing-time it is customary to choose $\delta=\frac{1}{4}$, in which case we will use the abbreviations $t_{\mathrm{MIX}}=t_{\mathrm{MIX}}\left(\frac{1}{4}\right)$ and $\tilde{t}_{\mathrm{MIX}}=\tilde{t}_{\mathrm{MIX}}\left(\frac{1}{4}\right)$.

By results of [2] and [18] (see also [19]), the mixing time and the Cesàro mixing time have the same order for lazy reversible Markov chains (i.e., discrete-time chains whose holding probability in each state is at least $\frac{1}{2}$), as formulated by the following theorem.

THEOREM 2.3. Every lazy reversible Markov chain satisfies

$$
c_{1} \tilde{t}_{\mathrm{MIX}}\left(\frac{1}{4}\right) \leq t_{\mathrm{MIX}}\left(\frac{1}{4}\right) \leq c_{2} \tilde{t}_{\mathrm{MIX}}\left(\frac{1}{4}\right)
$$

for some absolute constants $c_{1}, c_{2}>0$.
Proof. The first inequality is straightforward and does not require laziness or reversibility. We include its proof for completeness. Notice that

$$
\begin{aligned}
\left\|\pi-\frac{1}{t} \sum_{i=0}^{t-1} \mathbb{P}_{v}\left(S_{i} \in \cdot\right)\right\|_{\mathrm{TV}} & \leq \frac{1}{8}+\frac{1}{t} \sum_{i=t / 8}^{t-1}\left\|\pi-\mathbb{P}_{v}\left(S_{i} \in \cdot\right)\right\|_{\mathrm{TV}} \\
& \leq \frac{1}{8}+\left\|\pi-\mathbb{P}_{v}\left(S_{t / 8} \in \cdot\right)\right\|_{\mathrm{TV}}
\end{aligned}
$$

where we used the fact that $\left\|\pi-\mathbb{P}_{v}\left(S_{t} \in \cdot\right)\right\|$ is decreasing in t. Taking $t=$ $8 t_{\text {MIX }}\left(\frac{1}{8}\right)$, we obtain that $\tilde{t}_{\text {MIX }}\left(\frac{1}{4}\right) \leq 8 t_{\text {MIX }}\left(\frac{1}{8}\right)$ and conclude the proof of the first inequality using the well-known fact that $t_{\text {MIX }}\left(\frac{1}{8}\right) \leq 4 t_{\text {MIX }}\left(\frac{1}{4}\right)$.

The second inequality of the theorem is significantly more involved: By combining [18], Theorem 5.4, (for a stronger version, see [19], Theorem 4.22) and [2], Theorem C , it follows that the order of the Cesàro mixing time can be bounded by that of the mixing time for the corresponding continuous-time Markov chain. Now, using a well-known fact that the mixing time for the lazy Markov chain and
the continuous-time chain have the same order (see, e.g., [15], Theorem 20.3), the proof is concluded.

Let Γ be a stopping rule (a randomized stopping time) for $\left(S_{t}\right)$. That is, $\Gamma: G \times$ $\Omega \rightarrow \mathbb{N}$ for some probability space Ω, such that $\Gamma(\cdot, \omega)$ is a stopping time for every $\omega \in \Omega$. Let $\sigma^{\Gamma} \triangleq \mathbb{P}_{\sigma}\left(S_{\Gamma} \in \cdot\right)$ when σ is a distribution on V.

Let σ, v be two distributions on V. Note that there is always a stopping rule Γ such that $\sigma^{\Gamma}=v$, for example, draw a vertex z according to v and stop when reaching z. The access time from σ to v, denoted by $H(\sigma, v)$, is the minimum expected number of steps over all such stopping rules:

$$
H(\sigma, \nu) \triangleq \min _{\Gamma: \sigma^{\Gamma}=\nu} \mathbb{E} \Gamma
$$

It is easy to verify that $H(\sigma, \nu)=0$ iff $\sigma=v$ and that $H(\cdot, \cdot)$ satisfies the triangleinequality, however it is not necessarily symmetric.

The approximate forget time of G with parameter $0<\delta<1$ is defined by

$$
\begin{equation*}
\mathcal{F}_{\delta}=\min _{\varphi} \max _{\sigma} \min _{\nu:\|\nu-\varphi\|_{\mathrm{TV}} \leq \delta} H(\sigma, \nu) \tag{2.1}
\end{equation*}
$$

Combining Theorem 3.2 and Corollary 5.4 in [19], one immediately obtains that the approximate forget time and the Cesàro mixing time have the same order, as stated in the following theorem.

THEOREM 2.4. Every reversible Markov chain satisfies

$$
c_{1} \mathcal{F}_{1 / 4} \leq \tilde{t}_{\mathrm{MIX}}\left(\frac{1}{4}\right) \leq c_{2} \mathcal{F}_{1 / 4}
$$

for some absolute constants $c_{1}, c_{2}>0$.
2.4. Conductance and mixing. Let $P=\left(p_{x, y}\right)_{x, y}$ be the transition kernel of an irreducible, reversible and aperiodic Markov chain on Ω with stationary distribution π. For $S \subset \Omega$, define the conductance of the set S to be

$$
\Phi(S) \triangleq \frac{\sum_{x \in S, y \notin S} \pi(x) p_{x, y}}{\pi(S) \pi(\Omega \backslash S)}
$$

We define Φ, the conductance of the chain, by $\Phi \triangleq \min \left\{\Phi(S): \pi(S) \leq \frac{1}{2}\right\}$ (In the special case of a lazy random walk on a connected regular graph, this quantity is similar to the isoperimetric number of the graph, defined earlier). A well-known result of Jerrum and Sinclair [28] states that $t_{\text {MIX }}$ is of order at most $\Phi^{-2} \log \pi_{\min }^{-1}$, where $\pi_{\min }=\min _{x \in \Omega} \pi(x)$. This bound was fine-tuned by Lovász and Kannan [17] to exploit settings where the conductance of the average set S plays a dominant role (rather than the worst set). For our upper bound of the mixing time on the random walk on the 2-core, we will use an enhanced version of the latter bound (namely, Theorem 3.6) due to Fountoulakis and Reed [11].
2.5. Edge set notations. Throughout the paper, we will use the following notations, which will be handy when moving between the kernel and 2-core.

For $S \subset G$, let $E_{G}(S)$ denote the set of edges in the induced subgraph of G on S, and let $\partial_{G} S$ denote the edges between S and its complement $S^{c} \triangleq V(G) \backslash S$. Let

$$
\bar{E}_{G}(S) \triangleq E_{G}(S) \cup \partial_{G}(S)
$$

and define $e_{G}(S) \triangleq\left|E_{G}(S)\right|$. We omit the subscript G whenever its identity is made clear from the context.

If \mathcal{K} is the kernel in the model $\tilde{\mathcal{C}}_{1}$ and \mathcal{H} is its 2-core, let

$$
E_{\mathcal{H}}^{\star}: 2^{E(\mathcal{K})} \rightarrow 2^{E(\mathcal{H})}
$$

be the operator which takes a subset of edges $T \subset E(\mathcal{K})$ and outputs the edges lying on their corresponding 2-paths in \mathcal{H}. For $S \subset V(\mathcal{K})$, we let

$$
E_{\mathcal{H}}^{\star}(S) \triangleq E_{\mathcal{H}}^{\star}\left(E_{\mathcal{K}}(S)\right), \quad \bar{E}_{\mathcal{H}}^{\star}(S) \triangleq E_{\mathcal{H}}^{\star}\left(\bar{E}_{\mathcal{K}}(S)\right)
$$

3. Random walk on the 2-core. In this section, we analyze the properties of the random walk on the 2 -core $\tilde{\mathcal{C}}_{1}^{(2)}$.
3.1. Mixing time of the 2-core. By the definition of our new model $\tilde{\mathcal{C}_{1}}$, we can study the 2 -core $\mathcal{C}_{1}^{(2)}$ via the well-known configuration model (see, e.g., [6] for further details on this method). To simplify the notation, we let \mathcal{H} denote the 2-core of $\tilde{\mathcal{C}}_{1}$ throughout this section.

The main goal of the subsection is to establish the mixing time of the lazy random walk on \mathcal{H}, as stated by the following theorem.

THEOREM 3.1. With high probability, the lazy random walk on \mathcal{H} has a Cesàro mixing time \tilde{t}_{MIX} of order $\varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)$. Consequently, w.h.p. it also satisfies $t_{\mathrm{MIX}} \asymp \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)$.

We will use a result of Fountoulakis and Reed [12], which bounds the mixing time in terms of the isoperimetric profile of the graph (measuring the expansion of sets of various volumes). As a first step in obtaining this data for the supercritical 2-core \mathcal{H}, the next lemma will show that a small subset of the kernel, $S \subset \mathcal{K}$, cannot have too many edges in $\bar{E}_{\mathcal{H}}(S)$.

Lemma 3.2. For $v \in \mathcal{K}$, define

$$
\mathfrak{C}_{v, K} \triangleq\{S \ni v:|S|=K \text { and } S \text { is a connected subgraph of } \mathcal{K}\} .
$$

The following holds w.h.p. for every $v \in \mathcal{K}$, integer K and $S \in \mathfrak{C}_{v, K}$:
(1) $\left|\mathfrak{C}_{v, K}\right| \leq \exp \left[5\left(K \vee \log \left(\varepsilon^{3} n\right)\right)\right]$.
(2) $d_{\mathcal{K}}(S) \leq 30\left(K \vee \log \left(\varepsilon^{3} n\right)\right)$.

Proof. By definition, $\Lambda=(2+o(1)) \varepsilon$ w.h.p., thus standard concentration arguments imply that the following holds w.h.p.:

$$
\begin{equation*}
N_{3}=\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n \quad \text { and } \quad N_{k} \leq \frac{(3 \varepsilon)^{k} \log (1 / \varepsilon)}{k!} n \quad \text { for } k \geq 4 \tag{3.1}
\end{equation*}
$$

Assume that the above indeed holds, and notice that the lemma trivially holds when $K \geq \varepsilon^{3} n$. We may therefore further assume that $K \leq \varepsilon^{3} n$.

Consider the following exploration process, starting from the vertex v. Initialize S to be $\{v\}$, and mark $v_{1}=v$. At time $i \geq 1$, we explore the neighborhood of v_{i} (unless $|S|<i$), and for each its neighbors that does not already belong to S, we toss a fair coin to decide whether or not to insert it to S. Newly inserted vertices are labeled according to the order of their arrival; that is, if $|S|=k$ prior to the insertion, we give the new vertex the label v_{k+1}. Finally, if $|S|<i$ at time i then we stop the exploration process.

Let X_{i} denote the degree of the vertex v_{i} in the above defined process. In order to stochastically dominate X_{i} from above, observe that the worst case occurs when each of the vertices in v_{1}, \ldots, v_{i-1} has degree 3 . With this observation in mind, let A be a set consisting of $N_{3}-K$ vertices of degree 3 and N_{k} vertices k (for $k \geq 4$). Sample a vertex proportional to the degree from A and let Y denote its degree. Clearly, $X_{i} \preceq Y_{i}$, where Y_{i} are independent variables distributed as Y, and so

$$
\begin{equation*}
d_{\mathcal{K}}(S) \preceq \sum_{i=1}^{K} Y_{i} . \tag{3.2}
\end{equation*}
$$

By the definition of our exploration process,

$$
\left|\mathfrak{C}_{v, K}\right| \preceq \sum_{\ell_{1}+\cdots+\ell_{K}=K} \prod_{i=1}^{K}\binom{Y_{i}}{\ell_{i}} .
$$

We can now deduce that

$$
\begin{equation*}
\mathbb{E}\left|\mathfrak{C}_{v, K}\right| \leq \mathbb{E}\left[\sum_{\ell_{1}+\cdots+\ell_{K}=K} \prod_{i=1}^{K}\binom{Y_{i}}{\ell_{i}}\right]=\sum_{\ell_{1}+\cdots+\ell_{K}=K} \prod_{i=1}^{K} \mathbb{E}\left[\binom{Y_{i}}{\ell_{i}}\right] . \tag{3.3}
\end{equation*}
$$

For all $i \geq 4$, we have

$$
\mathbb{P}(Y=i) \leq 27 i \frac{(3 \varepsilon)^{i-3} \log (1 / \varepsilon)}{i!}=27 \frac{(3 \varepsilon)^{i-3} \log (1 / \varepsilon)}{(i-1)!}
$$

and therefore, for sufficiently large n (recall that $\varepsilon=o(1)$),

$$
\mathbb{E}\left[\binom{Y}{k}\right] \leq\binom{ 3}{k}+\sum_{i \geq 4}\binom{i}{k} \cdot 27 \frac{(3 \varepsilon)^{i-3} \log (1 / \varepsilon)}{(i-1)!} \leq \frac{7}{k!} \quad \text { for all } k
$$

Altogether,

$$
\begin{equation*}
\mathbb{E}\left|\mathfrak{C}_{v, K}\right| \leq 7^{K} \sum_{\ell_{1}+\cdots+\ell_{K}=K} \prod_{i=1}^{K} \frac{1}{\ell_{i}!} \tag{3.4}
\end{equation*}
$$

The next simple claim will provide a bound on the sum in the last expression.
CLAIM 3.3. The function $f(n)=\sum_{\ell_{1}+\cdots+\ell_{n}=n} \prod_{k=1}^{n} \frac{1}{\ell_{k}!}$ satisfies $f(n) \leq \mathrm{e}^{n}$.
Proof. The proof is by induction. For $n=1$, the claim trivially holds. Assuming the hypothesis is valid for $n \leq m$, we get

$$
f(m+1)=\sum_{k=0}^{m+1} \frac{1}{k!} f(m-k) \leq \sum_{k=0}^{m+1} \frac{\mathrm{e}^{m-k}}{k!} \leq \mathrm{e}^{m} \sum_{k=0}^{m+1} \frac{1}{k!} \leq \mathrm{e}^{m+1}
$$

as required.
Plugging the above estimate into (3.4), we conclude that $\mathbb{E}\left|\mathfrak{C}_{v, K}\right| \leq(7 \mathrm{e})^{K}$. Now, Markov's inequality, together with a union bound over all the vertices in the kernel \mathcal{K} yield the Part (1) of the lemma.

For Part (2), notice that for any sufficiently large n,

$$
\mathbb{E e}^{Y} \leq \mathrm{e}^{3}+\sum_{i \geq 4} \mathrm{e}^{i} 27 i \frac{(3 \varepsilon)^{i-3} \log (1 / \varepsilon)}{i!} \leq 25,
$$

therefore, (3.2) gives that

$$
\mathbb{P}\left(d_{\mathcal{K}}(S) \geq 30\left(K \vee \log \left(\varepsilon^{3} n\right)\right)\right) \leq \exp \left[-5\left(K \vee \log \left(\varepsilon^{3} n\right)\right)\right]
$$

At this point, the proof is concluded by a union bound over $\mathfrak{C}_{v, K}$ for all $v \in \mathcal{K}$ and $K \leq \varepsilon^{3} n$, using the upper bound we have already derived for $\left|\mathfrak{C}_{v, K}\right|$ in the Part (1) of the lemma.

Lemma 3.4. Let $\mathcal{L} \subset E(\mathcal{K})$ be the set of loops in the kernel. With high probability, every subset of vertices $S \subset \mathcal{K}$ forming a connected subgraph of \mathcal{K} satisfies $\left|\bar{E}_{\mathcal{H}}^{\star}(S)\right| \leq(100 / \varepsilon)\left(|S| \vee \log \left(\varepsilon^{3} n\right)\right)$, and every subset T of $\frac{1}{20} \varepsilon^{3} n$ edges in \mathcal{K} satisfies $\left|E_{\mathcal{H}}^{\star}(T) \cup E_{\mathcal{H}}^{\star}(\mathcal{L})\right| \leq \frac{3}{4} \varepsilon^{2} n$.

Proof. Assume that the events given in Parts (1), (2) of Lemma 3.2 hold. Further note that, by definition of the model $\tilde{\mathcal{C}}_{1}$, a standard application of CLT yields that w.h.p.

$$
|\mathcal{K}|=\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n, \quad e(\mathcal{H})=(2+o(1)) \varepsilon^{2} n, \quad e(\mathcal{K})=(2+o(1)) \varepsilon^{3} n
$$

By Part (2) of that lemma, $d_{\mathcal{K}}(S) \leq 30\left(|S| \vee \log \left(\varepsilon^{3} n\right)\right)$ holds simultaneously for every connected set S, hence there are at most this many edges in $\bar{E}_{\mathcal{K}}(S)$.

Let $S \subset \mathcal{K}$ be a connected set of size $|S|=s$, and let

$$
K=K(s)=s \vee \log \left(\varepsilon^{3} n\right)
$$

Recalling our definition of the graph \mathcal{H}, we deduce that

$$
\left|\bar{E}_{\mathcal{H}}^{\star}(S)\right| \preceq \sum_{i=1}^{30 K} Z_{i}
$$

where Z_{i} are i.i.d. Geometric random variables with mean $\frac{1}{1-\mu}$. It is well known that the moment-generating function of such variables is given by

$$
\mathbb{E}\left(\mathrm{e}^{t Z_{1}}\right)=\frac{(1-\mu) \mathrm{e}^{t}}{1-\mu \mathrm{e}^{t}}
$$

Setting $t=\varepsilon / 2$ and recalling that $\mu=1-(1+o(1)) \varepsilon$, we get that $\mathbb{E}\left(\mathrm{e}^{(\varepsilon / 2) Z_{1}}\right) \leq \mathrm{e}$ for sufficiently large n (recall that $\varepsilon=o(1)$). Therefore, we obtain that for the above mentioned S,

$$
\mathbb{P}\left(\left|\bar{E}_{\mathcal{H}}^{\star}(S)\right| \geq(100 / \varepsilon) K\right) \leq \frac{\exp (30 K)}{\exp ((\varepsilon / 2)(100 / \varepsilon) K)}=\mathrm{e}^{-20 K}
$$

By Part (1) of Lemma 3.2, there are at most $\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n \exp (5 K)$ connected sets of size s. Taking a union bound over the $\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n$ values of s establishes that the statement of the lemma holds except with probability

$$
\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n \sum_{s} \mathrm{e}^{-20 K(s)} \mathrm{e}^{5 K(s)} \leq\left(\frac{16}{9}+o(1)\right)\left(\varepsilon^{3} n\right)^{-13}=o(1)
$$

completing the proof of the statement on all connected subsets $S \subset \mathcal{K}$.
Next, if T contains t edges in \mathcal{K}, then the number of corresponding edges in \mathcal{H} is again stochastically dominated by a sum of i.i.d. geometric variables $\left\{Z_{i}\right\}$ as above. Hence, by the same argument, the probability that there exists a set $T \subset E(\mathcal{K})$ of $\alpha \varepsilon^{3} n$ edges in \mathcal{K}, which expands to at least $\beta \varepsilon^{2} n$ edges in \mathcal{H} for some $0<\alpha<\frac{1}{2}$ and $0<\beta<1$, is at most

$$
\binom{(2+o(1)) \varepsilon^{3} n}{\alpha \varepsilon^{3} n} \frac{\mathrm{e}^{\alpha \varepsilon^{3} n}}{\mathrm{e}^{(\varepsilon / 2) \beta \varepsilon^{2} n}} \leq \exp \left[\left(2 H\left(\frac{\alpha}{2}\right)+\alpha-\frac{\beta}{2}+o(1)\right) \varepsilon^{3} n\right]
$$

[using the well-known fact that $\sum_{i \leq \lambda m}\binom{m}{i} \leq \exp [H(\lambda) m$], where $H(x)$ is the entropy function $H(x) \triangleq-x \log x-(1-x) \log (1-x)$]. It is now easy to verify that a choice of $\alpha=\frac{1}{20}$ and $\beta=\frac{2}{3}$ in the last expression yields a term that tends to 0 as $n \rightarrow \infty$.

It remains to bound $|\mathcal{L}|$. This will follow from a bound on the number of loops in \mathcal{K}. Let $u \in \mathcal{K}$ be a kernel vertex, and recall that its degree D_{u} is distributed as an independent $(\operatorname{Poisson}(\Lambda) \mid \cdot \geq 3)$, where $\Lambda=(2+o(1)) \varepsilon$ with high probability. The expected number of loops that u obtains in a random realization of the degree
sequence (via the configuration model) is clearly at most D_{u}^{2} / D, where $D=(4+$ $o(1)) \varepsilon^{3} n$ is the total of the kernel degrees. Therefore,

$$
\mathbb{E}|\mathcal{L}| \leq\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n \cdot(1 / D) \mathbb{E}\left[D_{u}^{2}\right]=O(1)
$$

and so $\mathbb{E}\left|E_{\mathcal{H}}^{\star}(\mathcal{L})\right|=O(1 / \varepsilon)$. The contribution of $\left|E_{\mathcal{H}}^{\star}(\mathcal{L})\right|$ is thus easily absorbed w.h.p. when increasing β from $\frac{2}{3}$ to $\frac{3}{4}$, completing the proof.

LEMMA 3.5. There exists an absolute constant $\iota>0$ so that w.h.p. every connected set $S \subset \mathcal{H}$ with $(200 / \varepsilon) \log \left(\varepsilon^{3} n\right) \leq d_{\mathcal{H}}(S) \leq e(\mathcal{H})$ satisfies that $\left|\partial_{\mathcal{H}} S\right| / d_{\mathcal{H}}(S) \geq \iota \varepsilon$.

Proof. Let $S \subset \mathcal{H}$ be as above, and write $S_{\mathcal{K}}=S \cap \mathcal{K}$. Observe that $S_{\mathcal{K}}$ is connected (if nonempty). Furthermore, since $d_{\mathcal{H}}(S) \geq(200 / \varepsilon) \log \left(\varepsilon^{3} n\right)$ whereas the longest 2-path in \mathcal{H} contains $(1+o(1))(1 / \varepsilon) \log \left(\varepsilon^{3} n\right)$ edges w.h.p., we may assume that $S_{\mathcal{K}}$ is indeed nonempty.

Next, clearly $\left|\partial_{\mathcal{H}} S\right| \geq\left|\partial_{\mathcal{K}} S_{\mathcal{K}}\right|$ (as each edge in the boundary of $S_{\mathcal{K}}$ translates into a 2-path in \mathcal{H} with precisely one endpoint in S), while $\left|\bar{E}_{\mathcal{H}}(S)\right| \leq\left|\bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right|$ (any $e \in \bar{E}_{\mathcal{H}}(S)$ belongs to some 2-path \mathcal{P}_{e}, which is necessarily incident to some $v \in S_{\mathcal{K}}$ as, crucially, $S_{\mathcal{K}}$ is nonempty. Hence, the edge corresponding to \mathcal{P}_{e} belongs to $\bar{E}_{\mathcal{K}}\left(S_{\mathcal{K}}\right)$, and so $\left.e \in \bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right)$. Therefore, using the fact that $d_{\mathcal{H}}(S) \leq 2\left|\bar{E}_{\mathcal{H}}(S)\right|$,

$$
\begin{equation*}
\frac{\left|\partial_{\mathcal{H}} S\right|}{d_{\mathcal{H}}(S)} \geq \frac{\left|\partial_{\mathcal{K}} S_{\mathcal{K}}\right|}{2\left|\bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right|}=\frac{\left|\partial_{\mathcal{K}} S_{\mathcal{K}}\right|}{2\left|\bar{E}_{\mathcal{K}}\left(S_{\mathcal{K}}\right)\right|} \cdot \frac{\left|\bar{E}_{\mathcal{K}}\left(S_{\mathcal{K}}\right)\right|}{\left|\bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right|} \tag{3.5}
\end{equation*}
$$

Assume that the events stated in Lemma 3.4 hold. Since the assumption on $d_{\mathcal{H}}\left(S_{\mathcal{K}}\right)$ gives that $\left|\bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right| \geq(100 / \varepsilon) \log \left(\varepsilon^{3} n\right)$, we deduce that necessarily

$$
\left|S_{\mathcal{K}}\right| \geq(\varepsilon / 100)\left|\bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right|
$$

and thus (since $S_{\mathcal{K}}$ is connected)

$$
\begin{equation*}
\left|\bar{E}_{\mathcal{K}}\left(S_{\mathcal{K}}\right)\right| \geq\left|E_{\mathcal{K}}\left(S_{\mathcal{K}}\right)\right| \geq(\varepsilon / 100)\left|\bar{E}_{\mathcal{H}}^{\star}\left(S_{\mathcal{K}}\right)\right|-1 . \tag{3.6}
\end{equation*}
$$

Now,

$$
d_{\mathcal{H}}(S) \leq e(\mathcal{H})=(2+o(1)) \varepsilon^{2} n
$$

and since $d_{\mathcal{H}}(S)=2\left|E_{\mathcal{H}}(S)\right|+\left|\partial_{\mathcal{H}} S\right|$ we have $\left|E_{\mathcal{H}}(S)\right| \leq(1+o(1)) \varepsilon^{2} n$. In particular, $\left|E(\mathcal{H}) \backslash E_{\mathcal{H}}(S)\right| \geq \frac{3}{4} \varepsilon^{2} n$ for sufficiently large n.

At the same time, if \mathcal{L} is the set of all loops in \mathcal{K} and $T=\bar{E}_{\mathcal{K}}\left(\mathcal{K} \backslash S_{\mathcal{K}}\right)$, then clearly $E_{\mathcal{H}}^{\star}(T) \cup E_{\mathcal{H}}^{\star}(\mathcal{L})$ is a superset of $E(\mathcal{H}) \backslash E_{\mathcal{H}}(S)$. Therefore, Lemma 3.4 yields that $|T| \geq \frac{1}{20} \varepsilon^{3} n$. Since $d_{\mathcal{K}}\left(S_{\mathcal{K}}\right) \leq 2 e(\mathcal{K})=(4+o(1)) \varepsilon^{3} n$, we get

$$
d_{\mathcal{K}}\left(\mathcal{K} \backslash S_{\mathcal{K}}\right) \geq|T| \geq \frac{\varepsilon^{3} n}{20} \geq \frac{1+o(1)}{80} d_{\mathcal{K}}\left(S_{\mathcal{K}}\right)
$$

At this point, by Lemma 2.2 there exists $\alpha>0$ such that w.h.p. for any such above mentioned subset S :

$$
\begin{equation*}
\left|\partial_{\mathcal{K}} S_{\mathcal{K}}\right| \geq \alpha\left(d_{\mathcal{K}}\left(S_{\mathcal{K}}\right) \wedge d_{\mathcal{K}}\left(\mathcal{K} \backslash S_{\mathcal{K}}\right)\right) \geq \frac{\alpha+o(1)}{80} d_{\mathcal{K}}\left(S_{\mathcal{K}}\right) \tag{3.7}
\end{equation*}
$$

Plugging (3.6), (3.7) into (3.5), we conclude that the lemma holds for any sufficiently large n with, say, $\iota=\frac{1}{2} \cdot 10^{-4} \alpha$.

We are now ready to establish the upper bound on the mixing time for the random walk on \mathcal{H}.

Proof of Theorem 3.1. We will apply the following recent result of [11], which bounds the mixing time of a lazy chain in terms of its isoperimetric profile (a fine-tuned version of the Lovász-Kannan [17] bound on the mixing time in terms of the average conductance).

THEOREM 3.6 ([11]). Let $P=\left(p_{x, y}\right)$ be the transition kernel of an irreducible, reversible and aperiodic Markov chain on Ω with stationary distribution π. Let $\pi_{\min }=\min _{x \in \Omega} \pi(x)$ and for $p>\pi_{\min }$, let

$$
\Phi(p) \triangleq \min \{\Phi(S): S \text { is connected and } p / 2 \leq \pi(S) \leq p\}
$$

and $\Phi(p)=1$ if there is no such S. Then for some absolute constant $C>0$,

$$
\tilde{t}_{\mathrm{MIX}} \leq C \sum_{j=1}^{\left\lceil\log \pi_{\min }^{-1}\right\rceil} \Phi^{-2}\left(2^{-j}\right)
$$

In our case, the P is the transition kernel of the lazy random walk on \mathcal{H}. By definition, if $S \subset \mathcal{H}$ and $d_{\mathcal{H}}(x)$ denotes the degree of $x \in \mathcal{H}$, then

$$
\pi_{\mathcal{H}}(x)=\frac{d_{\mathcal{H}}(x)}{2 e(\mathcal{H})}, \quad p_{x, y}=\frac{1}{2 d_{\mathcal{H}}(x)}, \quad \pi_{\mathcal{H}}(S)=\frac{d_{\mathcal{H}}(S)}{2 e(\mathcal{H})}
$$

and so $\Phi(S) \geq \frac{1}{2}\left|\partial_{\mathcal{H}} S\right| / d_{\mathcal{H}}(S)$. Recall that w.h.p. $e(\mathcal{H})=(2+o(1)) \varepsilon^{2} n$. Under this assumption, for any $p \geq 120 \frac{\log \left(\varepsilon^{3} n\right)}{\varepsilon^{3} n}$ and connected subset $S \subset \mathcal{H}$ satisfying $\pi_{\mathcal{H}}(S) \geq p / 2$,

$$
d_{\mathcal{H}}(S)=2 \pi_{\mathcal{H}}(S) e(\mathcal{H}) \geq(200 / \varepsilon) \log \left(\varepsilon^{3} n\right)
$$

Therefore, by Lemma 3.5, w.h.p.

$$
\begin{equation*}
\Phi(p) \geq \frac{1}{2} \iota \varepsilon \quad \text { for all } 120 \frac{\log \left(\varepsilon^{3} n\right)}{\varepsilon^{3} n} \leq p \leq \frac{1}{2} \tag{3.8}
\end{equation*}
$$

Set

$$
j^{*}=\max \left\{j: 2^{-j} \geq 120 \frac{\log \left(\varepsilon^{3} n\right)}{\varepsilon^{3} n}\right\}
$$

It is clear that $j^{*}=O\left(\log \left(\varepsilon^{3} n\right)\right)$ and (3.8) can be translated into

$$
\begin{equation*}
\Phi\left(2^{-j}\right) \geq \frac{1}{2} \iota \varepsilon, \quad \text { for all } 1 \leq j \leq j^{*} \tag{3.9}
\end{equation*}
$$

On the other hand, if $\pi_{\mathcal{H}}(S) \leq p<1$ then $d_{\mathcal{H}}(S) \leq 2 p e(\mathcal{H})$ while $\left|\partial_{\mathcal{H}} S\right| \geq 1$ (as \mathcal{H} is connected), and so the inequality $\Phi(S) \geq \frac{1}{2}\left|\partial_{\mathcal{H}} S\right| / d_{\mathcal{H}}(S)$ gives $\Phi(S) \geq$ $1 /(4 p e(\mathcal{H}))$. Substituting $p=2^{-j}$ with $j \leq\left\lceil\log \pi_{\min }^{-1}\right\rceil$, we have

$$
\begin{equation*}
\Phi\left(2^{-j}\right) \geq \frac{2^{j-2}}{e(\mathcal{H})} \geq \frac{2^{j}}{10 \varepsilon^{2} n} \tag{3.10}
\end{equation*}
$$

(where the last inequality holds for large n). Combining (3.9) and (3.10) together, we now apply Theorem 3.6 to conclude that there exists a constant $C>0$ such that, w.h.p.,

$$
\begin{aligned}
\tilde{t}_{\mathrm{MIX}} & \leq C \sum_{j=1}^{\left\lceil\log \pi_{\min }^{-1}\right\rceil} \frac{1}{\Phi^{2}\left(2^{-j}\right)}=C\left[\sum_{j=1}^{j^{*}} \frac{1}{\Phi^{2}\left(2^{-j}\right)}+\sum_{j=j^{*}}^{\left\lceil\log \pi_{\min }^{-1}\right\rceil} \frac{1}{\Phi^{2}\left(2^{-j}\right)}\right] \\
& \leq C\left(j^{*}\left(\frac{1}{2} \iota \varepsilon\right)^{-2}+2\left(10 \varepsilon^{2} n \cdot 2^{-j^{*}}\right)^{2}\right)=O\left(\varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)\right)
\end{aligned}
$$

where the last inequality follows by our choice of j^{*}.
The lower bound on the mixing time follows immediately from the fact that, by the definition of $\tilde{\mathcal{C}}_{1}$, w.h.p. there exists a 2 -path in \mathcal{H} whose length is $(1-$ $o(1))(1 / \varepsilon) \log \left(\varepsilon^{3} n\right)$ (see [9], Corollary 1).
3.2. Local times for the random walk on the 2-core. In order to extend the mixing time from the 2 -core \mathcal{H} to the giant component, we need to prove the following proposition.

Proposition 3.7. Let $N_{v, s}$ be the local time induced by the lazy random walk $\left(W_{t}\right)$ on \mathcal{H} to the vertex v up to time s, that is, $\#\left\{0 \leq t \leq s: W_{t}=v\right\}$. Then there exists some $C>0$ such that, w.h.p., for all $s>0$ and any $u, v \in \mathcal{H}$,

$$
\mathbb{E}_{u}\left[N_{v, s}\right] \leq C \frac{\varepsilon s}{\log \left(\varepsilon^{3} n\right)}+(150 / \varepsilon) \log \left(\varepsilon^{3} n\right)
$$

In order to prove Proposition 3.7, we wish to show that with positive probability the random walk W_{t} will take an excursion in a long 2-path before returning to v. Consider some $v \in \mathcal{K}$ (we will later extend this analysis to the vertices in $\mathcal{H} \backslash \mathcal{K}$, i.e., those vertices lying on 2-paths). We point out that proving this statement is simpler in case $D_{v}=O(1)$, and most of the technical challenge lies in the possibility that D_{v} is unbounded. In order to treat this point, we first show that the neighbors of vertex v in the kernel are, in some sense, distant apart.

Lemma 3.8. For $v \in \mathcal{K}$ let \mathcal{N}_{v} denote the set of neighbors of v in the kernel \mathcal{K}. Then w.h.p., for every $v \in \mathcal{K}$ there exists a collection of disjoint connected subsets $\left\{B_{w}(v) \subset \mathcal{K}: w \in \mathcal{N}_{v}\right\}$, such that for all $w \in \mathcal{N}_{v}$,

$$
\left|B_{w}\right|=\left\lceil\left(\varepsilon^{3} n\right)^{1 / 5}\right\rceil \quad \text { and } \quad \operatorname{diam}\left(B_{w}\right) \leq \frac{1}{2} \log \left(\varepsilon^{3} n\right)
$$

Proof. We may again assume (3.1) and furthermore, that

$$
3 \leq D_{v} \leq \log \left(\varepsilon^{3} n\right) \quad \text { for all } v \in \mathcal{K}
$$

Let $v \in \mathcal{K}$. We construct the connected sets B_{w} while we reveal the structure of the kernel \mathcal{K} via the configuration model, as follows: Process the vertices $w \in \mathcal{N}_{v}$ sequentially according to some arbitrary order. When processing such a vertex w, we expose the ball (according to the graph metric) about it, excluding v and any vertices that were already accounted for, until its size reaches $\left\lceil\left(\varepsilon^{3} n\right)^{1 / 5}\right\rceil$ (or until no additional new vertices can be added).

It is clear from the definition that the B_{w} 's are indeed disjoint and connected, and it remains to prove that each B_{w} satisfies $\left|B_{w}\right|=\left\lceil\left(\varepsilon^{3} n\right)^{1 / 5}\right\rceil$ and $\operatorname{diam}\left(B_{w}\right) \leq$ $\log \left(\varepsilon^{3} n\right)$.

Let R denote the tree-excess of the (connected) subset $\{v\} \cup \bigcup_{w} B_{w}$ once the process is concluded. We claim that w.h.p. $R \leq 1$. To see this, first observe that at any point in the above process, the sum of degrees of all the vertices that were already exposed (including v and \mathcal{N}_{v}) is at most

$$
\left\lceil\left(\varepsilon^{3} n\right)^{1 / 5}\right\rceil \log ^{2}\left(\varepsilon^{3} n\right)=\left(\varepsilon^{3} n\right)^{1 / 5+o(1)}
$$

Hence, by the definition of the configuration model (which draws a new half-edge between w and some other vertex proportional to its degree), $R \preceq Z$ where Z is a binomial variable $\operatorname{Bin}\left(\left(\varepsilon^{3} n\right)^{1 / 5+o(1)},\left(\varepsilon^{3} n\right)^{-4 / 5+o(1)}\right)$. This gives

$$
\mathbb{P}(R \geq 2)=\left(\varepsilon^{3} n\right)^{-6 / 5+o(1)}
$$

In particular, since $D_{w} \geq 3$ for any $w \in \mathcal{K}$, this implies that we never fail to grow B_{w} to size $\left(\varepsilon^{3} n\right)^{1 / 5}$, and that the diameter of each B_{w} is at most that of a binary tree (possibly plus $R \leq 1$), that is, for any large n,

$$
\operatorname{diam}\left(B_{w}\right) \leq \frac{1}{5} \log _{2}\left(\varepsilon^{3} n\right)+2 \leq \frac{1}{2} \log \left(\varepsilon^{3} n\right)
$$

A simple union bound over $v \in \mathcal{K}$ now completes the proof.

We distinguish the following subset of the edges of the kernel, whose paths are suitably long:

$$
\mathcal{E} \triangleq\left\{e \in E(\mathcal{K}):\left|\mathcal{P}_{e}\right| \geq \frac{1}{20 \varepsilon} \log \left(\varepsilon^{3} n\right)\right\}
$$

where \mathcal{P}_{e} is the 2-path in \mathcal{H} that corresponds to the edge $e \in E(\mathcal{K})$. Further define $\mathcal{Q} \subset 2^{\mathcal{K}}$ to be all the subsets of vertices of \mathcal{K} whose induced subgraph contains an edge from \mathcal{E} :

$$
\mathcal{Q} \triangleq\left\{S \subset \mathcal{K}: E_{\mathcal{K}}(S) \cap \mathcal{E} \neq \varnothing\right\}
$$

For each $e \in \mathcal{K}$, we define the median of its 2-path, denoted by $\operatorname{med}\left(\mathcal{P}_{e}\right)$, in the obvious manner: It is the vertex $w \in \mathcal{P}_{e}$ whose distance from the two endpoints is the same, up to at most 1 (whenever there are two choices for this w, pick one arbitrarily). Now, for each $v \in \mathcal{H}$ let

$$
\mathcal{E}_{v} \triangleq\left\{\operatorname{med}\left(\mathcal{P}_{e}\right): e \in \mathcal{E}, v \notin \mathcal{P}_{e}\right\}
$$

The next lemma provides a lower bound on the effective conductance between a vertex v in the 2 -core and its corresponding above defined set \mathcal{E}_{v}. See, for example, [22] for further details on conductances/resistances.

LEMmA 3.9. Let $C_{\mathrm{eff}}\left(v \leftrightarrow \mathcal{E}_{v}\right)$ be the effective conductance between a vertex $v \in \mathcal{H}$ and the set \mathcal{E}_{v}. With high probability, for any $v \in \mathcal{H}$,

$$
C_{\mathrm{eff}}\left(v \leftrightarrow \mathcal{E}_{v}\right) / D_{v} \geq \varepsilon /\left(100 \log \left(\varepsilon^{3} n\right)\right)
$$

Proof. In order to bound the effective conductance, we need to prove that for any $v \in \mathcal{K}$, there exist D_{v} disjoint paths of length at most $(100 / \varepsilon) \log \left(\varepsilon^{3} n\right)$ leading to the set \mathcal{E}_{v}. By Lemmas 3.4 and 3.8, it suffices to prove that w.h.p. for any $v \in \mathcal{K}$ and $w \in \mathcal{N}_{v}$, we have that $E\left(B_{w}\right) \cap \mathcal{E} \neq \varnothing$, where \mathcal{N}_{v} and B_{w} are defined as in Lemma 3.8 (in this case, the path from v to some $e \in \mathcal{E}$ within B_{w} will have length at most $\frac{1}{2} \log \left(\varepsilon^{3} n\right)$ in \mathcal{K}, and its length will not be exceed $(100 / \varepsilon) \log \left(\varepsilon^{3} n\right)$ after being expanded in the 2 -core).

Notice that if Y is the geometric variable $\operatorname{Geom}(1-\mu)$ then

$$
\mathbb{P}\left(Y \geq \frac{1}{10 \varepsilon} \log \left(\varepsilon^{3} n\right)\right)=\mu^{(1 / 10 \varepsilon) \log \left(\varepsilon^{3} n\right)} \geq\left(\varepsilon^{3} n\right)^{-1 / 10+o(1)}
$$

Therefore, by the independence of the lengths of the 2-paths and the fact that $\left|B_{w}\right|=\left\lceil\left(\varepsilon^{3} n\right)^{1 / 5}\right\rceil$, we obtain that

$$
\mathbb{P}\left(E\left(B_{w}\right) \cap \mathcal{E}=\varnothing\right) \leq\left(1-\left(\varepsilon^{3} n\right)^{-1 / 10+o(1)}\right)^{\left(\varepsilon^{3} n\right)^{1 / 5}} \leq \mathrm{e}^{-\left(\varepsilon^{3} n\right)^{1 / 10-o(1)}}
$$

At this point, a union bound shows that the probability that for some $v \in \mathcal{K}$ there exists some $w \in \mathcal{N}_{v}$, such that $E\left(B_{w}\right)$ does not intersect \mathcal{E}, is at most

$$
\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n \cdot \log \left(\varepsilon^{3} n\right) \cdot \mathrm{e}^{-\left(\varepsilon^{3} n\right)^{1 / 10-o(1)}}=o(1)
$$

We are ready to prove the main result of this subsection, Proposition 3.7, which bounds the local times induced by the random walk on the 2 -core.

Proof of Proposition 3.7. For some vertex $v \in \mathcal{H}$ and subset $A \subset \mathcal{H}$, let

$$
\tau_{v}^{+} \triangleq \min \left\{t>0: W_{t}=v\right\}, \quad \tau_{A} \triangleq \min \left\{t: W_{t} \in A\right\}
$$

It is well known [see, e.g., [22], equation (2.4)] that the effective conductance has the following form:

$$
\mathbb{P}_{v}\left(\tau_{A}<\tau_{v}^{+}\right)=\frac{C_{\mathrm{eff}}(v \leftrightarrow A)}{D_{v}}
$$

Combined with Lemma 3.9, it follows that

$$
\mathbb{P}_{v}\left(\tau_{\mathcal{E}_{v}}<\tau_{v}^{+}\right)=\frac{C_{\mathrm{eff}}\left(v \leftrightarrow \mathcal{E}_{v}\right)}{D_{v}} \geq \varepsilon /\left(100 \log \left(\varepsilon^{3} n\right)\right)
$$

On the other hand, for any $v \in \mathcal{H}$, by definition $w \in \mathcal{E} v$ is the median of some 2-path, which does not contain v and has length at least $\frac{1}{20 \varepsilon} \log \left(\varepsilon^{3} n\right)$. Hence, by well-known properties of hitting times for the simple random walk on the integers, there exists some absolute constant $c>0$ such that for any $v \in \mathcal{H}$ and $w \in \mathcal{E}_{v}$:

$$
\mathbb{P}_{w}\left(\tau_{v}^{+} \geq c \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)\right) \geq \mathbb{P}_{w}\left(\tau_{\mathcal{K}} \geq c \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)\right) \geq \frac{2}{3}
$$

Altogether, we conclude that

$$
\begin{aligned}
\mathbb{P}_{v}\left(\tau_{v}^{+} \geq c \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)\right) & \geq \mathbb{P}_{v}\left(\tau_{\mathcal{E}_{v}}<\tau_{v}^{+}\right) \min _{w \in \mathcal{E}_{v}}\left\{\mathbb{P}_{w}\left(\tau_{v}^{+} \geq c \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)\right)\right\} \\
& \geq \varepsilon /\left(150 \log \left(\varepsilon^{3} n\right)\right)
\end{aligned}
$$

Setting $t_{c}=c \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)$, we can rewrite the above as

$$
\mathbb{P}_{v}\left(N_{v, t_{c}} \geq 2\right) \leq 1-\varepsilon /\left(150 \log \left(\varepsilon^{3} n\right)\right)
$$

By the strong Markovian property (i.e., $\left(W_{\tau_{v}^{+}+t}\right)$ is a Markov chain with the same transition kernel of $\left(W_{t}\right)$), we deduce that

$$
\mathbb{P}\left(N_{v, t_{c}} \geq k\right) \leq\left[1-\varepsilon /\left(150 \log \left(\varepsilon^{3} n\right)\right)\right]^{k-1}
$$

and hence

$$
\mathbb{E} N_{v, t_{c}} \leq(150 / \varepsilon) \log \left(\varepsilon^{3} n\right)
$$

The proof is completed by observing that $\mathbb{E}_{v}\left(N_{v, s}\right) \leq\left\lceil s / t_{c}\right\rceil \mathbb{E}_{v} N_{v, t_{c}}$ and that $\mathbb{E}_{u} N_{v, s} \leq \mathbb{E}_{v} N_{v, s}$ for any u.
4. Mixing on the giant component. In this section, we prove Theorem 1, which establishes the order of the mixing time of the lazy random walk on the supercritical \mathcal{C}_{1}.
4.1. Controlling the attached Poisson Galton-Watson trees. So far, we have established that w.h.p. the mixing time of the lazy random walk on the 2-core $\tilde{\mathcal{C}}_{1}^{(2)}$ has order $\varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)$. To derive the mixing time for $\tilde{\mathcal{C}}_{1}$ based on that estimate, we need to consider the delays due to the excursions the random walk makes in the attached trees. As we will later see, these delays will be upper bounded by a certain a linear combination of the sizes of the trees (with weights determined by the random walk on the 2 -core). The following lemma will play a role in estimating this expression.

Lemma 4.1. Let $\left\{\mathcal{T}_{i}\right\}$ be independent $\operatorname{PGW}(\mu)$-trees. For any two constants $C_{1}, C_{2}>0$ there exists some constant $C>0$ such that the following holds: If $\left\{a_{i}\right\}_{i=1}^{m}$ is a sequence of positive reals satisfying

$$
\begin{align*}
\sum_{i=1}^{m} a_{i} & \leq C_{1} \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right), \tag{4.1}\\
\max _{1 \leq i \leq m} a_{i} & \leq C_{2} \varepsilon^{-1} \log \left(\varepsilon^{3} n\right) \tag{4.2}
\end{align*}
$$

then

$$
\mathbb{P}\left(\sum_{i=1}^{m} a_{i}\left|\mathcal{T}_{i}\right| \geq C \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)\right) \leq\left(\varepsilon^{3} n\right)^{-2}
$$

Proof. It is well known (see, e.g., [26]) that the size of a Poisson (γ)-GaltonWatson tree \mathcal{T} follows a $\operatorname{Borel}(\gamma)$ distribution, namely,

$$
\begin{equation*}
\mathbb{P}(|\mathcal{T}|=k)=\frac{k^{k-1}}{\gamma k!}\left(\gamma \mathrm{e}^{-\gamma}\right)^{k} \tag{4.3}
\end{equation*}
$$

The following is a well-known (and easy) estimate on the size of a PGW-tree; we include its proof for completeness.

Claim 4.2. Let $0<\gamma<1$, and let \mathcal{T} be a $\operatorname{PGW}(\gamma)$-tree. Then

$$
\mathbb{E}|\mathcal{T}|=\frac{1}{1-\gamma}, \quad \operatorname{Var}(|\mathcal{T}|)=\frac{\gamma}{(1-\gamma)^{3}}
$$

Proof. For $k=0,1, \ldots$, let L_{k} be the number of vertices in the k th level of the tree \mathcal{T}. Clearly, $\mathbb{E} L_{k}=\gamma^{k}$, and so $\mathbb{E}|\mathcal{T}|=\mathbb{E} \sum_{k} L_{k}=\frac{1}{1-\gamma}$.

By the total-variance formula,

$$
\begin{aligned}
\operatorname{Var}\left(L_{i}\right) & =\operatorname{Var}\left(\mathbb{E}\left(L_{i} \mid L_{i-1}\right)\right)+\mathbb{E}\left(\operatorname{Var}\left(L_{i} \mid L_{i-1}\right)\right) \\
& =\gamma^{2} \operatorname{Var}\left(L_{i-1}\right)+\gamma \mathbb{E} L_{i-1}=\gamma^{2} \operatorname{Var}\left(L_{i-1}\right)+\gamma^{i}
\end{aligned}
$$

By induction,

$$
\begin{equation*}
\operatorname{Var}\left(L_{i}\right)=\sum_{k=i}^{2 i-1} \gamma^{k}=\gamma^{i} \frac{1-\gamma^{i}}{1-\gamma} \tag{4.4}
\end{equation*}
$$

We next turn to the covariance of L_{i}, L_{j} for $i \leq j$:

$$
\begin{aligned}
\operatorname{Cov}\left(L_{i}, L_{j}\right) & =\mathbb{E}\left[L_{i} L_{j}\right]-\mathbb{E} L_{i} \mathbb{E} L_{j}=\gamma^{j-i} \mathbb{E} L_{i}^{2}-\gamma^{i+j} \\
& =\gamma^{j-i} \operatorname{Var}\left(L_{i}\right)=\gamma^{j} \frac{1-\gamma^{i}}{1-\gamma}
\end{aligned}
$$

Summing over the variances and covariances of the L_{i} 's, we deduce that

$$
\operatorname{Var}(|\mathcal{T}|)=2 \sum_{i=0}^{\infty} \sum_{j=i}^{\infty} \gamma^{j} \frac{1-\gamma^{i}}{1-\gamma}-\sum_{i=0}^{\infty} \gamma^{i} \frac{1-\gamma^{i}}{1-\gamma}=\frac{\gamma}{(1-\gamma)^{3}}
$$

We need the next lemma to bound the tail probability for $\sum a_{i}\left|\mathcal{T}_{i}\right|$.
Lemma 4.3 ([14], Corollary 4.2). Let X_{1}, \ldots, X_{m} be independent r.v.'s with $\mathbb{E}\left[X_{i}\right]=\mu_{i}$. Suppose there are b_{i}, d_{i} and ξ_{0} such that $\operatorname{Var}\left(X_{i}\right) \leq b_{i}$, and

$$
\left|\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)^{3} \mathrm{e}^{\xi\left(X_{i}-\mu_{i}\right)}\right]\right| \leq d_{i} \quad \text { for all } 0 \leq|\xi| \leq \xi_{0}
$$

If $\delta \xi_{0} \sum_{i=1}^{m} d_{i} \leq \sum_{i=1}^{m} b_{i}$ for some $0<\delta \leq 1$, then for all $\Delta>0$,

$$
\mathbb{P}\left(\left|\sum_{i=1}^{m} X_{i}-\sum_{i=1}^{m} \mu_{i}\right| \geq \Delta\right) \leq \exp \left(-\frac{1}{3} \min \left\{\delta \xi_{0} \Delta, \frac{\Delta^{2}}{\sum_{i=1}^{m} b_{i}}\right\}\right)
$$

Let $T_{i}=\left|\mathcal{T}_{i}\right|$ and $X_{i}=a_{i} T_{i}$ for $i \in[m]$. Claim 4.2 gives that

$$
\mu_{i}=\mathbb{E} X_{i}=a_{i} /(1-\mu)
$$

Now set

$$
\xi_{0}=\varepsilon^{3} /\left(10 C_{2} \log \left(\varepsilon^{3} n\right)\right)
$$

For any $|\xi| \leq \xi_{0}$, we have $a_{i}|\xi| \leq \varepsilon^{2} / 10$ by the assumption (4.2), and so

$$
\begin{align*}
\left|\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)^{3} \mathrm{e}^{\xi\left(X_{i}-\mu_{i}\right)}\right]\right|= & a_{i}^{3}\left|\mathbb{E}\left[\left(T_{i}-\frac{1}{1-\mu}\right)^{3} \mathrm{e}^{\xi a_{i}\left(T_{i}-1 /(1-\mu)\right)}\right]\right| \\
\leq & a_{i}^{3} \mathbb{E}\left[(1-\mu)^{-3} \mathbb{1}_{\left\{T_{i}<(1-\mu)^{-1}\right\}}\right] \tag{4.5}\\
& +a_{i}^{3} \mathbb{E}\left[T_{i}^{3} \mathrm{e}^{\xi a_{i} T_{i}} \mathbb{1}_{\left\{T_{i} \geq(1-\mu)^{-1}\right\}}\right] \\
\leq & a_{i}^{3}(1-\mu)^{-3}+a_{i}^{3} \mathbb{E}\left[T_{i}^{3} \exp \left(\varepsilon^{2} T_{i} / 10\right)\right] .
\end{align*}
$$

Recalling the law of T_{i} given by (4.3), we obtain that

$$
\mathbb{E}\left(T_{i}^{3} \exp \left(\varepsilon^{2} T_{i} / 10\right)\right)=\sum_{k=1}^{\infty} \frac{k^{k-1}}{\mu k!}\left(\mu \mathrm{e}^{-\mu}\right)^{k} k^{3} \mathrm{e}^{\varepsilon^{2} k / 10}
$$

Using Stirling's formula, we obtain that for some absolute constant $c>1$,

$$
\begin{align*}
\mathbb{E}\left(T_{i}^{3} \exp \left(\varepsilon^{2} T_{i} / 10\right)\right) & \leq c \sum_{k=1}^{\infty} \frac{k^{k-1}\left(\mu \mathrm{e}^{-\mu}\right)^{k}}{\mu(k / \mathrm{e})^{k} \sqrt{k}} k^{3} \mathrm{e}^{\varepsilon^{2} k / 10} \\
& =\frac{c}{\mu} \sum_{k=1}^{\infty} k^{3 / 2}\left(\mu \mathrm{e}^{1-\mu}\right)^{k} \mathrm{e}^{\varepsilon^{2} k / 10} \tag{4.6}
\end{align*}
$$

Recalling that $\mu=1-\varepsilon+\frac{2}{3} \varepsilon^{2}+O\left(\varepsilon^{3}\right)$ and using the fact that $1-x \leq \mathrm{e}^{-x-x^{2} / 2}$ for $x \geq 0$, we get that for sufficiently large n (and hence small enough ε),

$$
\begin{equation*}
\mu \mathrm{e}^{1-\mu}=(1-(1-\mu)) \mathrm{e}^{1-\mu} \leq \exp \left(-\frac{1}{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right) \leq \mathrm{e}^{-\varepsilon^{2} / 3} \tag{4.7}
\end{equation*}
$$

Plugging the above estimate into (4.6), we obtain that for large n,

$$
\begin{aligned}
\mathbb{E}\left[T_{i}^{3} \exp \left(\varepsilon^{2} T_{i} / 10\right)\right] & \leq 2 c \sum_{k=1}^{\infty} k^{3 / 2} \mathrm{e}^{-\varepsilon^{2} k / 6} \leq 4 c \int_{0}^{\infty} x^{3 / 2} \mathrm{e}^{-\varepsilon^{2} x / 6} d x \\
& \leq 400 c \varepsilon^{-5} \int_{0}^{\infty} x^{3 / 2} \mathrm{e}^{-x} d x=300 \sqrt{\pi} c \varepsilon^{-5}
\end{aligned}
$$

Going back to (4.5), we get that for some absolute $c^{\prime}>1$ and any large n,

$$
\left|\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)^{3} \mathrm{e}^{\xi\left(X_{i}-\mu_{i}\right)}\right]\right| \leq a_{i}^{3}\left(2 \varepsilon^{-3}+c^{\prime} \varepsilon^{-5}\right) \leq a_{i} \cdot 2 c^{\prime} C_{2}^{2} \varepsilon^{-7} \log ^{2}\left(\varepsilon^{3} n\right) \triangleq d_{i}
$$

where the second inequality used (4.2).
By Claim 4.2, it follows that for large enough n,

$$
\operatorname{Var}\left(X_{i}\right)=a_{i}^{2} \operatorname{Var}\left(T_{i}\right)=a_{i}^{2} \frac{\mu}{(1-\mu)^{3}} \leq 2 a_{i}^{2} \varepsilon^{-3} \leq a_{i} \cdot 2 C_{2} \varepsilon^{-4} \log \left(\varepsilon^{3} n\right) \triangleq b_{i}
$$

Since $\sum_{i} d_{i}=\left(c^{\prime} C_{2} \varepsilon^{-3} \log \left(\varepsilon^{3} n\right)\right) \sum_{i} b_{i}$, by setting $\delta=1$ (and recalling our choice of ξ_{0}) we get

$$
\delta \xi_{0} \sum_{i=1}^{m} d_{i}=\frac{\delta c^{\prime}}{10} \sum_{i} b_{i} \leq \sum_{i=1}^{m} b_{i}
$$

We have thus established the conditions for Lemma 4.3, and it remains to select Δ. For a choice of $\Delta=\left(60 C_{2} \vee \sqrt{12 C_{1} C_{2}}\right) \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)$, by definition of ξ_{0} and the b_{i} 's we have

$$
\begin{aligned}
\xi_{0} \Delta & \geq 6 \log \left(\varepsilon^{3} n\right) \\
\Delta^{2} / \sum_{i} b_{i} & \geq 6 C_{1} \varepsilon^{-2} \log ^{3}\left(\varepsilon^{3} n\right) / \sum_{i} a_{i} \geq 6 \log \left(\varepsilon^{3} n\right),
\end{aligned}
$$

where the last inequality relied on (4.1). Hence, an application of Lemma 4.3 gives that for large enough n,

$$
\mathbb{P}\left(\sum_{i} a_{i} T_{i}-\sum_{i} \mu_{i} \geq \Delta\right) \leq\left(\varepsilon^{3} n\right)^{-2}
$$

Finally, by (4.1) and using the fact that $1-\mu \geq \varepsilon / 2$ for any large n, we have $\sum_{i} \mu_{i}=(1-\mu)^{-1} \sum_{i} a_{i} \leq 2 C_{1} \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)$. The proof of Lemma 4.1 is thus concluded by choosing $C=2 C_{1}+\left(60 C_{2} \vee \sqrt{12 C_{1} C_{2}}\right)$.

To bound the time it takes the random walk to exit from an attached PGW-tree (and enter the 2-core), we will need to control the diameter and volume of such a tree. The following simple lemma of [8] gives an estimate on the diameter of a PGW-tree.

Lemma 4.4 ([8], Lemma 3.2). Let \mathcal{T} be a $\operatorname{PGW}(\mu)$-tree and L_{k} be its k th level of vertices. Then $\mathbb{P}\left(L_{k} \neq \varnothing\right) \asymp \varepsilon \mathrm{e}^{-k\left(\varepsilon+O\left(\varepsilon^{2}\right)\right)}$ for any $k \geq 1 / \varepsilon$.

The next lemma gives a bound on the volume of a PGW-tree.
Lemma 4.5. Let \mathcal{T} be a $\operatorname{PGW}(\mu)$-tree. Then

$$
\mathbb{P}\left(|\mathcal{T}| \geq 6 \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)\right)=o\left(\varepsilon\left(\varepsilon^{3} n\right)^{-2}\right)
$$

Proof. Recalling (4.3) and applying Stirling's formula, we obtain that for any $s>0$,

$$
\begin{equation*}
\mathbb{P}(|\mathcal{T}| \geq s)=\sum_{k \geq s} \frac{k^{k-1}}{\mu k!}\left(\mu \mathrm{e}^{-\mu}\right)^{k} \asymp \sum_{k \geq s} \frac{\left(\mu \mathrm{e}^{1-\mu}\right)^{k}}{k^{3 / 2}} \tag{4.8}
\end{equation*}
$$

Write $r=\log \left(\varepsilon^{3} n\right)$. By estimate (4.7), we now get that for large enough n,

$$
\sum_{k \geq 6 \varepsilon^{-2} r} k^{-3 / 2}\left(\mu \mathrm{e}^{1-\mu}\right)^{k} \leq \sum_{k \geq 6 \varepsilon^{-2} r} k^{-3 / 2} \mathrm{e}^{-\varepsilon^{2} k / 3}=O\left(\mathrm{e}^{-2 r} \varepsilon / \sqrt{r}\right)
$$

and combined with (4.8) this concludes the proof.
Finally, for the lower bound, we will need to show that w.h.p. one of the attached PGW-trees in $\tilde{\mathcal{C}}_{1}$ is suitably large, as we next describe. For a rooted tree \mathcal{T}, let L_{k} be its k th level of vertices and \mathcal{T}_{v} be its entire subtree rooted at v. Define the event

$$
A_{r, s}(\mathcal{T}) \triangleq\left\{\exists v \in L_{r} \text { such that }\left|\mathcal{T}_{v}\right| \geq s\right\}
$$

The next lemma gives a bound on the probability of this event when \mathcal{T} is a PGW (μ)-tree.

Lemma 4.6. Let \mathcal{T} be a $\operatorname{PGW}(\mu)$-tree and take $r=\left\lceil\frac{1}{8} \varepsilon^{-1} \log \left(\varepsilon^{3} n\right)\right\rceil$ and $s=\frac{1}{8} \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)$. Then for any sufficiently large n,

$$
\mathbb{P}\left(A_{r, s}(\mathcal{T})\right) \geq \varepsilon\left(\varepsilon^{3} n\right)^{-2 / 3}
$$

Proof. We first give a lower bound on the probability that $|\mathcal{T}| \geq s$. By (4.8), we have $\mathbb{P}(|\mathcal{T}| \geq s) \geq c \sum_{k \geq s} k^{-3 / 2}\left(\mu \mathrm{e}^{1-\mu}\right)^{k}$ for some absolute $c>0$. Recalling that $\mu=1-\varepsilon+\frac{2}{3} \varepsilon^{2}+O\left(\varepsilon^{3}\right)$, we have that for n large enough,

$$
\mu \mathrm{e}^{1-\mu} \geq \mathrm{e}^{-\left(\varepsilon+\varepsilon^{2}\right)} \mathrm{e}^{\varepsilon-\varepsilon^{2}} \geq \mathrm{e}^{-2 \varepsilon^{2}} .
$$

Therefore, for $s=\frac{1}{8} \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)$ this gives that

$$
\mathbb{P}(|\mathcal{T}| \geq s) \geq c \sum_{s \leq k \leq 2 s} k^{-3 / 2} \mathrm{e}^{-2 \varepsilon^{2} k} \geq c s(2 s)^{-3 / 2} \mathrm{e}^{-4 \varepsilon^{2} s} \geq \varepsilon\left(\varepsilon^{3} n\right)^{-1 / 2+o(1)}
$$

Combining this with the fact that $\left\{\mathcal{I}_{v}: v \in L_{r}\right\}$ are i.i.d. $\operatorname{PGW}(\mu)$-trees given L_{r}, we get

$$
\mathbb{P}\left(A_{r, s}(\mathcal{T}) \mid L_{r}\right)=1-(1-\mathbb{P}(|\mathcal{T}| \geq s))^{\left|L_{r}\right|} \geq 1-\left(1-\varepsilon\left(\varepsilon^{3} n\right)^{-1 / 2+o(1)}\right)^{\left|L_{r}\right|}
$$

Taking expectation over L_{r}, we conclude that

$$
\begin{align*}
\mathbb{P}\left(A_{r, s}(\mathcal{T})\right) & \geq 1-\mathbb{E}\left(\left(1-\varepsilon\left(\varepsilon^{3} n\right)^{-1 / 2+o(1)}\right)^{\left|L_{r}\right|}\right) \\
& \geq \varepsilon\left(\varepsilon^{3} n\right)^{-1 / 2+o(1)} \mathbb{E}\left|L_{r}\right|-\varepsilon^{2}\left(\varepsilon^{3} n\right)^{-1+o(1)} \mathbb{E}\left|L_{r}\right|^{2} \tag{4.9}
\end{align*}
$$

For $r=\left\lceil\frac{1}{8} \varepsilon^{-1} \log \left(\varepsilon^{3} n\right)\right\rceil$, we have

$$
\mathbb{E}\left(\left|L_{r}\right|\right)=\mu^{r} \geq \mathrm{e}^{-\left(\varepsilon+O\left(\varepsilon^{2}\right)\right) r} \geq\left(\varepsilon^{3} n\right)^{-1 / 8+o(1)},
$$

and by (4.4),

$$
\operatorname{Var}\left|L_{r}\right|=\mu^{r} \frac{1-\mu^{r}}{1-\mu} \leq \mathrm{e}^{-\varepsilon r} 2 \varepsilon^{-1} \leq 2 \varepsilon^{-1}\left(\varepsilon^{3} n\right)^{-1 / 8}
$$

Plugging these estimates into (4.9), we obtain that

$$
\mathbb{P}\left(A_{r, s}(\mathcal{T})\right) \geq \varepsilon\left(\varepsilon^{3} n\right)^{-5 / 8+o(1)} \geq \varepsilon\left(\varepsilon^{3} n\right)^{-2 / 3}
$$

where the last inequality holds for large enough n, as required.
4.2. Proof of Theorem 1: Upper bound on the mixing time. By Theorem 2.1, it suffices to consider $\tilde{\mathcal{C}}_{1}$ instead of \mathcal{C}_{1}. As in the previous section, we abbreviate $\tilde{\mathcal{C}}_{1}^{(2)}$ by \mathcal{H}.

For each vertex v in the 2-core \mathcal{H}, let \mathcal{T}_{v} be the PGW-tree attached to v in $\tilde{\mathcal{C}}_{1}$. Let $\left(S_{t}\right)$ be the lazy random walk on $\tilde{\mathcal{C}}_{1}$, define $\xi_{0}=0$ and for $j \geq 0$,

$$
\xi_{j+1}= \begin{cases}\xi_{j}+1, & \text { if } S_{\xi_{j}+1}=S_{\xi_{j}} \\ \min \left\{t>\xi_{j}: S_{t} \in \mathcal{H}, S_{t} \neq S_{\xi_{j}}\right\}, & \text { otherwise }\end{cases}
$$

Defining $W_{j} \triangleq S_{\xi_{j}}$, we observe that $\left(W_{j}\right)$ is a lazy random walk on \mathcal{H}. Furthermore, started from any $w \in \mathcal{H}$, there are two options:
(i) Do a step in the 2-core (either stay in w via the lazy rule, which has probability $\frac{1}{2}$, or jump to one of the neighbor of w in \mathcal{H}, an event that has probability $\left.d_{\mathcal{H}}(w) / 2 d_{\tilde{\mathcal{C}}_{1}}(w)\right)$.
(ii) Enter the PGW-tree attached to w (this happens with probability $d_{\mathcal{T}_{w}}(w) /$ $\left.2 d_{\tilde{\mathcal{C}}_{1}}(w)\right)$.

It is the latter case that incurs a delay for the random walk on $\tilde{\mathcal{C}_{1}}$. Since the expected return time to w once entering the tree \mathcal{T}_{w} is $2\left(\left|\mathcal{T}_{w}\right|-1\right) / d_{\mathcal{T}_{w}}(w)$, and as the number of excursions to the tree follows a geometric distribution with success probability $1-d_{\mathcal{T}_{w}}(w) / 2 d_{\tilde{\mathcal{C}}_{1}}(w)$, we infer that

$$
\mathbb{E}_{w} \xi_{1}=1+\frac{2\left(\left|\mathcal{T}_{w}\right|-1\right)}{d_{\mathcal{T}_{w}}(w)} \cdot \frac{2 d_{\tilde{\mathcal{C}}_{1}}(w)}{2 d_{\tilde{\mathcal{C}}_{1}}(w)-d_{\mathcal{T}_{w}}(w)} \leq 4\left|\mathcal{T}_{w}\right|
$$

For some constant $C_{1}>0$ to be specified later, let

$$
\begin{equation*}
\ell=C_{1} \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right) \quad \text { and } \quad a_{v, w}(\ell)=\sum_{j=0}^{\ell-1} \mathbb{P}_{v}\left(W_{j}=w\right) \tag{4.10}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\mathbb{E}_{v}\left(\xi_{\ell}\right) & =\sum_{j=0}^{\ell-1} \sum_{w \in \mathcal{H}} \mathbb{P}_{v}\left(S_{\xi_{j}}=w\right) \mathbb{E}_{w} \xi_{1} \tag{4.11}\\
& =\sum_{w \in \mathcal{H}} \sum_{j=0}^{\ell-1} \mathbb{P}_{v}\left(W_{j}=w\right) \mathbb{E}_{w} \xi_{1} \leq 4 \sum_{w \in \mathcal{H}} a_{v, w}(\ell)\left|\mathcal{T}_{w}\right|
\end{align*}
$$

We now wish to bound the last expression via Lemma 4.1. Let $v \in \mathcal{K}$. Note that, by definition,

$$
\sum_{w \in \mathcal{H}} a_{v, w}(\ell)=\ell=C_{1} \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)
$$

Moreover, by Proposition 3.7, there exists some constant $C_{2}>0$ (which depends on C_{1}) such that w.h.p.

$$
\max _{w \in \mathcal{H}} a_{v, w}(\ell) \leq C_{2} \varepsilon^{-1} \log \left(\varepsilon^{3} n\right)
$$

Hence, Lemma 4.1 (applied on the sequence $\left\{a_{v, w}(\ell): w \in \mathcal{H}\right\}$) gives that there exists some constant $C>0$ (depending only on C_{1}, C_{2}) such that

$$
\sum_{w \in \mathcal{H}} a_{v, w}(\ell)\left|\mathcal{T}_{v}\right| \leq C \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right) \quad \text { except with probability }\left(\varepsilon^{3} n\right)^{-2}
$$

Since $|\mathcal{K}|=\left(\frac{4}{3}+o(1)\right) \varepsilon^{3} n$ w.h.p., taking a union bound over the vertices of the kernel while recalling (4.11) implies that w.h.p.,

$$
\begin{equation*}
\mathbb{E}_{v}\left(\xi_{\ell}\right) \leq C \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right) \quad \text { for all } v \in \mathcal{K} \tag{4.12}
\end{equation*}
$$

We next wish to bound the hitting time to the kernel \mathcal{K}, defined next:

$$
\tau_{\mathcal{K}}=\min \left\{t: S_{t} \in \mathcal{K}\right\}
$$

Define τ_{x} and τ_{S} analogously as the hitting times of S_{t} to the vertex x and the subset S, respectively. Recall that from any $v \in \tilde{\mathcal{C}}_{1}$, after time ξ_{1} we will have hit a vertex in the 2 -core, hence for any $v \in \tilde{\mathcal{C}}_{1}$ we have

$$
\begin{equation*}
\mathbb{E}_{v} \tau_{\mathcal{K}} \leq \mathbb{E}_{v} \tau_{\mathcal{H}}+\max _{w \in \mathcal{H}} \mathbb{E}_{w} \tau_{\mathcal{K}} \tag{4.13}
\end{equation*}
$$

To bound the first summand, since

$$
\max _{v \in \tilde{\mathcal{C}}_{1}} \mathbb{E}_{v} \tau_{\mathcal{H}}=\max _{w \in \mathcal{H}} \max _{v \in \mathcal{T}_{w}} \mathbb{E}_{v} \tau_{w}
$$

it clearly suffices to bound $\mathbb{E}_{v} \tau_{w}$ for all $w \in \mathcal{H}$ and $v \in \mathcal{T}_{w}$. To this end, let $w \in \mathcal{H}$, and let \tilde{S}_{t} be the lazy random walk on \mathcal{T}_{w}. As usual, define $\tilde{\tau}_{v}=\min \left\{t: \tilde{S}_{t}=v\right\}$. Clearly, for all $v \in \mathcal{T}_{w}$ we have $\mathbb{E}_{v} \tau_{w}=\mathbb{E}_{v} \tilde{\tau}_{w}$. We bound $\mathbb{E}_{v} \tilde{\tau}_{w}$ by $\mathbb{E}_{v} \tilde{\tau}_{w}+\mathbb{E}_{w} \tilde{\tau}_{v}$, that is, the commute time between v and w. Denote by $\mathrm{R}_{\mathrm{eff}}(v, w)$ the effective resistance between v and w when each edge has unit resistance. The commute time identity of [7] (see also [29]) yields that

$$
\begin{equation*}
\mathbb{E}_{v} \tilde{\tau}_{w}+\mathbb{E}_{w} \tilde{\tau}_{v} \leq 4\left|\mathcal{T}_{w}\right| R_{\operatorname{eff}(v \leftrightarrow w)} \leq 4\left|\mathcal{T}_{w}\right| \operatorname{diam}\left(\mathcal{T}_{w}\right) \tag{4.14}
\end{equation*}
$$

Now, Lemmas 4.4 and 4.5 give that for any $w \in \mathcal{H}$, with probability at least $1-$ $O\left(\varepsilon\left(\varepsilon^{3} n\right)^{-2}\right)$,

$$
\begin{equation*}
\left|\mathcal{T}_{w}\right| \leq 6 \varepsilon^{-2} \log \left(\varepsilon^{3} n\right) \quad \text { and } \quad \operatorname{diam}\left(\mathcal{T}_{w}\right) \leq 2 \varepsilon^{-1} \log \left(\varepsilon^{3} n\right) \tag{4.15}
\end{equation*}
$$

Since w.h.p. $|\mathcal{H}|=(2+o(1)) \varepsilon^{2} n$, we can sum the above over the vertices of \mathcal{H} and conclude that w.h.p., (4.15) holds simultaneously for all $w \in \mathcal{H}$. Plugging this in (4.14), we deduce that

$$
\mathbb{E}_{v} \tilde{\tau}_{w}+\mathbb{E}_{w} \tilde{\tau}_{v} \leq 48 \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)
$$

and altogether, as the above holds for every $w \in \mathcal{H}$,

$$
\begin{equation*}
\max _{v \in \tilde{\mathcal{C}}_{1}} \mathbb{E}_{v} \tau_{\mathcal{H}} \leq 48 \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right) \tag{4.16}
\end{equation*}
$$

For the second summand in (4.13), consider $e \in \mathcal{K}$ and let \mathcal{P}_{e} be the 2-path corresponding to e in the 2-core \mathcal{H}. Recall that w.h.p. the longest such 2-path in the 2 -core has length $(1+o(1)) \varepsilon^{-1} \log \left(\varepsilon^{3} n\right)$. Since from each point $v \in \mathcal{P}_{e}$, we have probability at least $2 /\left|\mathcal{P}_{e}\right|$ to hit one of the endpoints of the 2-path (belonging
to \mathcal{K}) before returning to v, it follows that w.h.p., for every $e \in \mathcal{K}$ and $v \in \mathcal{P}_{e}$ we have

$$
\begin{equation*}
\max _{w \in \mathcal{P}_{e}} \mathbb{E}_{w} \#\left\{t \leq \tau_{\mathcal{K}}: W_{t}=v\right\} \leq\left(\frac{1}{2}+o(1)\right) \varepsilon^{-1} \log \left(\varepsilon^{3} n\right) \tag{4.17}
\end{equation*}
$$

We now wish to apply Lemma 4.1 to the sequence $a_{v}=\max _{w \in \mathcal{P}_{e}} \mathbb{E}_{w} \#\{t \leq$ $\left.\tau_{\mathcal{K}}: W_{t}=v\right\}$. Since this sequence satisfies

$$
\max _{v \in \mathcal{P}_{e}} a_{v} \leq\left(\frac{1}{2}+o(1)\right) \varepsilon^{-1} \log \left(\varepsilon^{3} n\right), \quad \sum_{v \in \mathcal{P}_{e}} a_{v} \leq\left(\frac{1}{2}+o(1)\right) \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)
$$

we deduce that there exists some absolute constant $C^{\prime}>0$ such that, except with probability $O\left(\left(\varepsilon^{3} n\right)^{-2}\right)$, every $w \in \mathcal{P}_{e}$ satisfies

$$
\begin{equation*}
\mathbb{E}_{w} \tau_{\mathcal{K}} \leq C^{\prime} \varepsilon^{-3} \log ^{2} \varepsilon^{3} n \tag{4.18}
\end{equation*}
$$

Recalling that $e(\mathcal{K})=(2+o(1)) \varepsilon^{3} n$ w.h.p., we deduce that w.h.p. this statement holds simultaneously for all $w \in \mathcal{H}$. Plugging (4.16) and (4.18) into (4.13) we conclude that w.h.p.

$$
\mathbb{E}_{v} \tau_{\mathcal{K}} \leq\left(C^{\prime}+48\right) \varepsilon^{-3} \log ^{2} \varepsilon^{3} n \quad \text { for all } v \in \tilde{\mathcal{C}}_{1} .
$$

Finally, we will now translate these hitting time bounds into an upper bound on the approximate forget time for S_{t}. Let $\pi_{\mathcal{H}}$ denote the stationary measure on the walk restricted to \mathcal{H} :

$$
\pi_{\mathcal{H}}(w)=d_{\mathcal{H}}(w) / 2 e(\mathcal{H}) \quad \text { for } w \in \mathcal{H}
$$

Theorem 3.1 enables us to choose some absolute constant $C_{1}>0$ so that ℓ, defined in (4.10) as $C_{1} \varepsilon^{-2} \log ^{2}\left(\varepsilon^{3} n\right)$, would w.h.p. satisfy

$$
\begin{equation*}
\max _{w \in \mathcal{H}}\left\|\frac{1}{\ell} \sum_{j=1}^{\ell} \mathbb{P}_{w}\left(W_{j} \in \cdot\right)-\pi_{\mathcal{H}}\right\|_{\mathrm{TV}} \leq \frac{1}{4} \tag{4.19}
\end{equation*}
$$

Define $\bar{\xi}_{0}=\tau_{\mathcal{K}}$ and for $j \geq 0$, define $\bar{\xi}_{j+1}$ as we did for ξ_{j} 's, that is,

$$
\bar{\xi}_{j+1}= \begin{cases}\bar{\xi}_{j}+1, & \text { if } S_{\bar{\xi}_{j}+1}=S_{\bar{\xi}_{j}} \\ \min \left\{t>\bar{\xi}_{j}: S_{t} \in \mathcal{H}, S_{t} \neq S_{\bar{\xi}_{j}}\right\}, & \text { otherwise }\end{cases}
$$

Let Γ be the stopping rule that selects $j \in\{0, \ldots, \ell-1\}$ uniformly and then stops at $\bar{\xi}_{j}$. By (4.19), w.h.p.

$$
\max _{v \in \tilde{\mathcal{C}}_{1}}\left\|\mathbb{P}_{v}\left(S_{\Gamma} \in \cdot\right)-\pi_{\mathcal{H}}\right\|_{\mathrm{TV}} \leq \frac{1}{4}
$$

Going back to the definition of the approximate forget time in (2.1), taking $\varphi=\pi_{\mathcal{H}}$ with the stopping rule Γ yields $\mathcal{F}_{1 / 4} \leq \max _{v \in \tilde{\mathcal{C}}_{1}} \mathbb{E} \Gamma \leq \max _{v \in \tilde{\mathcal{C}}_{1}} \bar{\xi}_{\ell}$.

Furthermore, combining (4.12) and (4.18), we get that w.h.p. for any $v \in \tilde{\mathcal{C}_{1}}$:

$$
\mathbb{E}_{v} \bar{\xi}_{\ell} \leq\left(C+C^{\prime}+48\right) \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)
$$

Altogether, we can conclude that the approximate forget time for S_{t} w.h.p. satisfies that

$$
\mathcal{F}_{1 / 4} \leq \max _{v \in \tilde{\mathcal{C}}_{1}} \mathbb{E}_{v} \bar{\xi}_{\ell} \leq\left(C+C^{\prime}+48\right) \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)
$$

This translates into the required upper bound on $t_{\text {MIX }}$ via an application of Theorems 2.3 and 2.4.
4.3. Proof of Theorem 1: Lower bound on the mixing time. As before, by Theorem 2.1 it suffices to prove the analogous statement for $\tilde{\mathcal{C}}_{1}$.

Let r, s be as in Lemma 4.6, that is,

$$
r=\left\lceil\frac{1}{8} \varepsilon^{-1} \log \left(\varepsilon^{3} n\right)\right\rceil \quad \text { and } \quad s=\frac{1}{8} \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)
$$

Let \mathcal{T}_{v} for $v \in \mathcal{H}$ be the $\operatorname{PGW}(\mu)$-tree that is attached to the vertex v. Lemma 4.6 gives that when n is sufficiently large, every $v \in \mathcal{H}$ satisfies

$$
\mathbb{P}\left(A_{r, s}\left(\mathcal{T}_{v}\right)\right) \geq \varepsilon\left(\varepsilon^{3} n\right)^{-2 / 3}
$$

Since $|\mathcal{H}|=(2+o(1)) \varepsilon^{2} n$ w.h.p. (recall Theorem 2.1), and since $\left\{\mathcal{T}_{v}: v \in \mathcal{H}\right\}$ are i.i.d. given \mathcal{H}, we can conclude that w.h.p. there exists some $\rho \in \mathcal{H}$ such that $A_{r, s}\left(\mathcal{T}_{\rho}\right)$ holds. Let $\rho \in \mathcal{H}$ therefore be such a vertex.

Let $\left(S_{t}\right)$ be a lazy random walk on $\tilde{\mathcal{C}}_{1}$ and π be its stationary distribution. As usual, let $\tau_{v} \triangleq \min \left\{t: S_{t}=v\right\}$. We wish to prove that

$$
\begin{equation*}
\max _{w \in \mathcal{T}_{\rho}} \mathbb{P}_{w}\left(\tau_{\rho} \geq \frac{2}{3} r s\right) \geq \frac{1}{3} \tag{4.20}
\end{equation*}
$$

For $w \in \mathcal{T}_{\rho}$, let \mathcal{T}_{w} be the entire subtree rooted at w. Further let L_{r} be the vertices of the r th level of \mathcal{T}_{ρ}. By our assumption on \mathcal{T}_{ρ}, there is some $\xi \in L_{r}$ such that $\left|\mathcal{T}_{\xi}\right| \geq s$.

We will derive a lower bound on $\mathbb{E}_{\xi} \tau_{\rho}$ from the following well-known connection between hitting-times of random walks and flows on electrical networks (see [29] and also [22], Proposition 2.19).

Lemma 4.7 ([29]). Given a graph $G=(V, E)$ with a vertex z and a subset of vertices Z not containing z, let $v(\cdot)$ be the voltage when a unit current flows from z to Z and the voltage is 0 on Z. Then $\mathbb{E}_{z} \tau_{Z}=\sum_{x \in V} d(x) v(x)$.

In our setting, we consider the graph $\tilde{\mathcal{C}}_{1}$. Clearly, the effective resistance between ρ and ξ satisfies $R_{\text {eff }}(\rho \leftrightarrow \xi)=r$. If a unit current flows from ξ to ρ and
$v(\rho)=0$, it follows from Ohm's law that $v(\xi)=r$. Notice that for any $w \in \mathcal{T}_{\xi}$, the flow between w and ξ is 0 . Altogether, we deduce that

$$
v(w)=r \quad \text { for all } w \in \mathcal{T}_{\xi}
$$

Therefore, Lemma 4.7 implies that

$$
\mathbb{E}_{\xi} \tau_{\rho} \geq r\left|\mathcal{T}_{\xi}\right| \geq r s
$$

Clearly, if $w^{\star} \in \mathcal{T}_{\rho}$ attains $\max \left\{\mathbb{E}_{w} \tau_{\rho}: w \in \mathcal{T}_{\rho}\right\}$ then clearly

$$
\mathbb{E}_{w^{\star}} \tau_{\rho} \leq \frac{2}{3} r s+\mathbb{P}_{w^{\star}}\left(\tau_{\rho} \geq \frac{2}{3} r s\right) \mathbb{E}_{w^{\star}} \tau_{\rho}
$$

On the other hand,

$$
\mathbb{E}_{w^{\star}} \tau_{\rho} \geq \mathbb{E}_{\xi} \tau_{\rho} \geq r s
$$

hence we obtain (4.20).
Recall that w.h.p. $\left|\tilde{\mathcal{C}}_{1}\right|=(2+o(1)) \varepsilon n$. Together with Lemma 4.5, we deduce that w.h.p. every $v \in \mathcal{H}$ satisfies

$$
\left|\mathcal{T}_{v}\right| \leq 6 \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)=o\left(\left|\tilde{\mathcal{C}}_{1}\right|\right)
$$

In particular, $\left|\mathcal{T}_{\rho}\right|=o\left(\left|\tilde{\mathcal{C}}_{1}\right|\right)$, and so (as it is a tree) $\pi\left(\mathcal{T}_{\rho}\right)=o(1)$. However, (4.20) states that with probability at least $\frac{1}{3}$, the random walk started at some $w \in \mathcal{T}_{\rho}$ does not escape from \mathcal{T}_{ρ}, hence

$$
\max _{w \in \tilde{\mathcal{L}}_{1}}\left\|\mathbb{P}_{w}\left(S_{2 r s / 3} \in \cdot\right)-\pi\right\|_{\mathrm{TV}} \geq \frac{1}{4}
$$

where π is the stationary measure for the random walk S_{t} on $\tilde{\mathcal{C}_{1}}$. In other words, we have that

$$
t_{\mathrm{MIX}}\left(\frac{1}{4}\right) \geq \frac{2}{3} r s=\frac{1}{96} \varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)
$$

as required.
5. Mixing in the subcritical regime. In this section, we give the proof of Theorem 2. By Theorem 1 and the well known duality between the subcritical and supercritical regimes (see [20]), it suffices to establish the statement for the subcritical regime of $\mathcal{G}(n, p)$.

For the upper bound, by results of [5] and [20] (see also [24]), we know that the largest component has size $O\left(\varepsilon^{-2} \log \left(\varepsilon^{3} n\right)\right)$ w.h.p., and by results of [21], the largest diameter of a component is w.h.p. $O\left(\varepsilon^{-1} \log \left(\varepsilon^{3} n\right)\right)$. Therefore, by the commute time identity (4.14) the maximal hitting time to a vertex is $O\left(\varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)\right)$ uniformly for all components, and using the well-known fact that $t_{\mathrm{MIX}}=O\left(\max _{x, y} \mathbb{E}_{x} \tau_{y}\right)$ (see, e.g., [1], Chapter 2) we arrive at the desired upper bound on the mixing time.

In order to establish the lower bound, we will demonstrate the existence of a component with a certain structure, and show that the order of the mixing time on this particular component matches the above upper bound.

To find this component, we apply the usual exploration process until εn vertices are exposed. By definition, each component revealed is a Galton-Watson tree (the exploration process does not expose the tree-excess) where the offspring distribution is stochastically dominated by $\operatorname{Bin}\left(n, \frac{1-\varepsilon}{n}\right)$ and stochastically dominates $\operatorname{Bin}\left(n, \frac{1-2 \varepsilon}{n}\right)$.

It is well known [see, e.g., [16], equation (1.12)] that for any $\lambda>0$,

$$
\left\|\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)-\operatorname{Po}(\lambda)\right\|_{\mathrm{TV}} \leq \lambda^{2} / n .
$$

It follows that when discovering the first εn vertices, we can approximate the binomial variables by Poisson variables, at the cost of a total error of at most $\varepsilon n(1 / n)=\varepsilon=o(1)$.

Lemma 5.1. With high probability, once en vertices are exposed in the exploration process, we will have discovered at least $\varepsilon^{2} n / 2$ components.

Proof. Notice that each discovered component is stochastically dominated (with respect to containment) by a Poisson $(1-\varepsilon)$-Galton-Watson tree. Thus, the probability that the first $\varepsilon^{2} n / 2$ components contain more than εn vertices is bounded by the probability that the total size of $\varepsilon^{2} n / 2$ independent $\operatorname{PGW}(1-\varepsilon)$ trees is larger than εn. The latter can be estimated (using Chebyshev's inequality and Claim 4.2) by

$$
\mathbb{P}\left(\sum_{i=1}^{\varepsilon^{2} n / 2}\left|\mathcal{T}_{i}\right| \geq \varepsilon n\right) \leq \frac{\varepsilon^{2} n \varepsilon^{-3}}{(\varepsilon n / 2)^{2}}=4\left(\varepsilon^{3} n\right)^{-1}=o(1)
$$

For a rooted tree \mathcal{T}, we define the following event, analogous to the event $A_{r, s}(\mathcal{T})$ from Section 4.1:

$$
B_{r, s}(\mathcal{T}) \triangleq\left\{\exists v, w \in \mathcal{T} \text { such that }\left|\mathcal{T}_{v}\right| \geq s,\left|\mathcal{T}_{w}\right| \geq s \text { and } \operatorname{dist}(v, w)=r\right\}
$$

The next lemma estimates the probability that the above defined event occurs in a PGW-tree.

Lemma 5.2. Let \mathcal{T} be $a \operatorname{PGW}(1-2 \varepsilon)$-tree and setr $=\left\lceil\frac{1}{20} \varepsilon^{-1} \log \left(\varepsilon^{3} n\right)\right\rceil$ and $s=\frac{1}{64} \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)$. Then for some $c>0$ and any sufficiently large n,

$$
\mathbb{P}\left(B_{r, s}(\mathcal{T})\right) \geq c \varepsilon\left(\varepsilon^{3} n\right)^{-1 / 2}
$$

Proof. The proof follows the general argument of Lemma 4.6. By Lemma 4.4,

$$
\mathbb{P}\left(L_{1 / \varepsilon} \neq \varnothing\right) \asymp \varepsilon .
$$

Combined with the proof of Claim 4.2 [see (4.4) in particular], we get that

$$
\mathbb{E}\left(\left|L_{1 / \varepsilon}\right| \mid L_{1 / \varepsilon} \neq \varnothing\right) \asymp \varepsilon^{-1} \quad \text { and } \quad \operatorname{Var}\left(\left|L_{1 / \varepsilon}\right| \mid L_{1 / \varepsilon} \neq \varnothing\right) \asymp \varepsilon^{-2}
$$

Applying Chebyshev's inequality, we get that for some constants $c_{1}, c_{2}>0$

$$
\mathbb{P}\left(\left|L_{1 / \varepsilon}\right|>c_{1} \varepsilon^{-1} \mid L_{1 / \varepsilon} \neq \varnothing\right) \geq c_{2}
$$

Repeating the arguments for the proof of Lemma 4.6, we conclude that for a $\operatorname{PGW}(1-2 \varepsilon)$-tree \mathcal{T}, the probability that the event $A_{r, s}(\mathcal{T})$ occurs (using r, s as defined in the current lemma) is at least $\varepsilon\left(\varepsilon^{3} n\right)^{-1 / 4}$ for n large enough. Thus [by the independence of the subtrees rooted in the $(1 / \varepsilon)$ th level],

$$
\mathbb{P}\left(\bigcup\left\{A_{r, s}\left(\mathcal{T}_{u}\right) \cap A_{r, s}\left(\mathcal{T}_{u^{\prime}}\right): u, u^{\prime} \in L_{1 / \varepsilon}, u \neq u^{\prime}\right\}\left|\left|L_{1 / \varepsilon}\right|>c_{1} \varepsilon^{-1}\right) \geq c\left(\varepsilon^{3} n\right)^{-1 / 2}\right.
$$

for some $c>0$. Altogether, we conclude that for some $c^{\prime}>0$,

$$
\mathbb{P}\left(\bigcup\left\{A_{r, s}\left(\mathcal{T}_{u}\right) \cap A_{r, s}\left(\mathcal{T}_{u^{\prime}}\right): u, u^{\prime} \in L_{1 / \varepsilon}, u \neq u^{\prime}\right\}\right) \geq c^{\prime} \varepsilon\left(\varepsilon^{3} n\right)^{-1 / 2}
$$

which immediately implies that required bound on $\mathbb{P}\left(B_{r, s}(\mathcal{T})\right)$.
Combining Lemmas 5.1 and 5.2, we conclude that w.h.p., during our exploration process we will find a tree \mathcal{T} which satisfies the event $B_{r, s}(\mathcal{T})$ for r, s as defined in Lemma 5.2. Next, we will show that the component of \mathcal{T} is indeed a tree, namely, it has no tree-excess. Clearly, edges belonging to the tree-excess can only appear between vertices that belong either to the same level or to successive levels (the root of the tree \mathcal{T} is defined to be the vertex in \mathcal{T} that is first exposed). Therefore, the total number of candidates for such edges can be bounded by $4 \sum_{i}\left|L_{i}\right|^{2}$ where L_{i} is the i th level of vertices in the tree. The next claim provides an upper bound for this sum.

Claim 5.3. Let r, s be defined as in Lemma 5.2. Then the PGW $(1-\varepsilon)$-tree \mathcal{T} satisfies $\mathbb{E}\left[\sum_{i}\left|L_{i}\right|^{2} \mid B_{r, s}(\mathcal{T})\right]=O\left(\varepsilon^{-3} \sqrt{\varepsilon^{3} n}\right)$.

Proof. Recalling Claim 4.2 and in particular equation (4.4), it follows that $\mathbb{E}\left(\sum_{i}\left|L_{i}\right|^{2}\right) \leq \varepsilon^{-2}$. Lemma 5.2 now implies the required upper bound.

By the above claim and Markov's inequality, we deduce that w.h.p. there are, say, $O\left(\varepsilon^{-3}\left(\varepsilon^{3} n\right)^{2 / 3}\right)$ candidates for edges in the tree-excess of the component of \mathcal{T}. Crucially, whether or not these edges appear is independent of the exploration process, hence the probability that any of them appears is at most
$O\left(\left(\varepsilon^{3} n\right)^{-1 / 3}\right)=o(1)$. Altogether, we may assume that the component of \mathcal{T} is indeed a tree which satisfies the event $B_{r, s}(\mathcal{T})$.

It remains to establish the lower bound on the mixing time of the random walk on the tree \mathcal{T}. Let v, w be two distinct vertices in the r th level satisfying $\left|\mathcal{T}_{v}\right| \geq s$ and $\left|\mathcal{T}_{w}\right| \geq s$. By the same arguments used to prove (4.20), we have that

$$
\max _{u \in \mathcal{T}_{v}} \mathbb{P}_{u}\left(\tau_{w} \geq 10^{-3} r s\right) \geq 1-10^{-3}
$$

Recall that w.h.p. $|\mathcal{T}| \leq 6 \varepsilon^{-2} \log \left(\varepsilon^{3} n\right)=384 s$. It now follows that w.h.p. the mixing time of the random walk on this components satisfies

$$
t_{\mathrm{MIX}}(\delta) \geq 10^{-3} r s \quad \text { for } \delta=\frac{1}{384}-10^{-3} \geq 10^{-3}
$$

The lower bound on $t_{\text {MIX }}\left(\frac{1}{4}\right)$ now follows from the definition of r, s.
Acknowledgments. We thank Asaf Nachmias for helpful discussions at an early stage of this project.

REFERENCES

[1] Aldous, D. and Fill, J. A. Reversible Markov Chains and random walks on graphs. Unpublished manuscript. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.
[2] Aldous, D., Lovász, L. and Winkler, P. (1997). Mixing times for uniformly ergodic Markov chains. Stochastic Process. Appl. 71 165-185. MR1484158
[3] Benjamini, I., Kozma, G. and Wormald, N. C. The mixing time of the giant component of a random graph. Preprint. Available at http://arxiv.org/abs/math/0610459.
[4] Benjamini, I. and Mossel, E. (2003). On the mixing time of a simple random walk on the super critical percolation cluster. Probab. Theory Related Fields 125 408-420. MR1967022
[5] Bollobás, B. (1984). The evolution of random graphs. Trans. Amer. Math. Soc. 286 257-274. MR0756039
[6] BollobÁs, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge. MR1864966
[7] Chandra, A. K., Raghavan, P., Ruzzo, W. L., Smolensky, R. and Tiwari, P. (1996/97). The electrical resistance of a graph captures its commute and cover times. Comput. Complexity 6 312-340. MR1613611
[8] Ding, J., Kim, J. H., Lubetzky, E. and Peres, Y. (2010). Diameters in supercritical random graphs via first passage percolation. Combin. Probab. Comput. 19 729-751. MR2726077
[9] Ding, J., Kim, J. H., Lubetzky, E. and Peres, Y. (2011). Anatomy of a young giant component in the random graph. Random Structures Algorithms 39 139-178. MR2850267
[10] Erdốs, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen 6 290-297. MR0120167
[11] Fountoulakis, N. and Reed, B. A. (2007). Faster mixing and small bottlenecks. Probab. Theory Related Fields 137 475-486. MR2278465
[12] Fountoulakis, N. and Reed, B. A. (2008). The evolution of the mixing rate of a simple random walk on the giant component of a random graph. Random Structures Algorithms 33 68-86. MR2428978
[13] Heydenreich, M. and van der Hofstad, R. (2011). Random graph asymptotics on highdimensional tori II: Volume, diameter and mixing time. Probab. Theory Related Fields 149 397-415. MR2776620
[14] Kim, J. H. (2006). Poisson cloning model for random graphs. In International Congress of Mathematicians. Vol. III 873-897. Eur. Math. Soc., Zürich. MR2275710
[15] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937
[16] Lindvall, T. (2002). Lectures on the Coupling Method. Dover Publications Inc., Mineola, NY. MR1924231
[17] LOVÁSZ, L. and KANNAN, R. (1999). Faster mixing via average conductance. In Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999) 282-287 (electronic). ACM, New York. MR1798047
[18] LovÁSz, L. and Winkler, P. (1995). Mixing of random walks and other diffusions on a graph. In Surveys in Combinatorics, 1995 (Stirling). London Mathematical Society Lecture Note Series 218 119-154. Cambridge Univ. Press, Cambridge. MR1358634
[19] LovÁsz, L. and Winkler, P. (1998). Mixing times. In Microsurveys in Discrete Probability (Princeton, NJ, 1997). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41 85-133. Amer. Math. Soc., Providence, RI. MR1630411
[20] ŁUCZAK, T. (1990). Component behavior near the critical point of the random graph process. Random Structures Algorithms 1 287-310. MR1099794
[21] Łuczak, T. (1998). Random trees and random graphs. In Proceedings of the Eighth International Conference "Random Structures and Algorithms" (Poznan, 1997) 13 485-500. MR1662797
[22] Lyons, R. and Peres, Y. (2012). Probability on Trees and Networks. Cambridge Univ. Press. To appear. Available at http://mypage.iu.edu/~rdlyons/prbtree/book.pdf.
[23] Mathieu, P. and Remy, E. (2004). Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 100-128. MR2040777
[24] Nachmias, A. and Peres, Y. (2007). Component sizes of the random graph outside the scaling window. ALEA Lat. Am. J. Probab. Math. Stat. 3 133-142. MR2349805
[25] Nachmias, A. and Peres, Y. (2008). Critical random graphs: Diameter and mixing time. Ann. Probab. 36 1267-1286. MR2435849
[26] Pitman, J. (1998). Enumerations of trees and forests related to branching processes and random walks. In Microsurveys in Discrete Probability (Princeton, NJ, 1997). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41 163-180. Amer. Math. Soc., Providence, RI. MR1630413
[27] Riordan, O. and Wormald, N. (2010). The diameter of sparse random graphs. Combin. Probab. Comput. 19 835-926. MR2726083
[28] Sinclair, A. and Jerrum, M. (1989). Approximate counting, uniform generation and rapidly mixing Markov chains. Inform. and Comput. 82 93-133. MR1003059
[29] Tetali, P. (1991). Random walks and the effective resistance of networks. J. Theoret. Probab. 4 101-109. MR1088395

J. Ding	E. LUbetZky
DEPARTMENT OF Statistics	Y. PERES
UNIVERSITY OF CALIFORNIA, BERKELEY	MICROSOFT RESEARCH
BERKELEY, CALIFORNIA 94720	ONE MICROSOFT WAY
USA	REDMOND, WASHINGTON 98052-6399
E-MAIL: jding@stat.berkeley.edu	USA
	E-MAIL: eyal@microsoft.com
	peres@ microsoft.com

[^0]: Received October 2009; revised January 2011.
 MSC2010 subject classifications. 05C80, 05C81, 60 J 10.

