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Let C1 be the largest component of the Erdős–Rényi random graph
G(n,p). The mixing time of random walk on C1 in the strictly supercritical
regime, p = c/n with fixed c > 1, was shown to have order log2 n by Foun-
toulakis and Reed, and independently by Benjamini, Kozma and Wormald. In
the critical window, p = (1 + ε)/n where λ = ε3n is bounded, Nachmias and
Peres proved that the mixing time on C1 is of order n. However, it was un-
clear how to interpolate between these results, and estimate the mixing time
as the giant component emerges from the critical window. Indeed, even the
asymptotics of the diameter of C1 in this regime were only recently obtained
by Riordan and Wormald, as well as the present authors and Kim.

In this paper, we show that for p = (1 + ε)/n with λ = ε3n → ∞ and
λ = o(n), the mixing time on C1 is with high probability of order (n/λ) log2 λ.
In addition, we show that this is the order of the largest mixing time over all
components, both in the slightly supercritical and in the slightly subcritical
regime [i.e., p = (1 − ε)/n with λ as above].

1. Introduction. There is a rich interplay between geometric properties of
a graph and the behavior of a random walk on it (see, e.g., [1]). A particularly
important parameter is the mixing time, which measures the rate of convergence
to stationarity. In this paper, we focus on random walks on the classical Erdős–
Rényi random graph G(n,p).

The geometry of G(n,p) has been studied extensively since its introduction
in 1959 by Erdős and Rényi [10]. A well-known phenomenon exhibited by this
model, typical in second-order phase transitions of mean-field models, is the dou-
ble jump: For p = c/n with c fixed, the largest component C1 has size O(logn)

with high probability (w.h.p.), when c < 1, it is w.h.p. linear in n for c > 1,
and for c = 1 its size has order n2/3 (the latter was proved by Bollobás [5] and
Łuczak [20]). Bollobás discovered that the critical behavior extends throughout
p = (1 ± ε)/n for ε = O(n−1/3), a regime known as the critical window.

Only in recent years were the tools of Markov chain analysis and the under-
standing of the random graph sufficiently developed to enable estimating mixing
times on C1. Fountoulakis and Reed [12] showed that, in the strictly supercriti-
cal regime (p = c/n with fixed c > 1), the mixing time of random walk on C1
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w.h.p. has order log2 n. Their proof exploited fairly simple geometric properties
of G(n,p), while the key to their analysis was a refined bound [11] on the mixing
time of a general Markov chain. The same result was obtained independently by
Benjamini, Kozma and Wormald [3]. There, the main innovation was a decompo-
sition theorem for the giant component. However, the methods of these two papers
do not yield the right order of the mixing time when c is allowed to tend to 1.

Nachmias and Peres [25] proved that throughout the critical window the mixing
time on C1 is of order n. The proof there used branching process arguments, which
were effective since the critical C1 is close to a tree.

It was unclear how to interpolate between these results, and estimate the mixing
time as the giant component emerges from the critical window, since the methods
used for the supercritical and the critical case were so different. The focus of this
paper is primarily on the emerging supercritical regime, where p = (1 + ε)/n

with ε3n → ∞ and ε = o(1). In this regime, the largest component is significantly
larger than the others, yet its size is still sublinear. Understanding the geometry of
C1 in this regime has been challenging: Indeed, even the asymptotics of its diameter
were only recently obtained by Riordan and Wormald [27], as well as in [8].

Our main result determines the order of the mixing time throughout the emerg-
ing supercritical regime (see Section 2.3 for a formal definition of mixing time).

THEOREM 1 (Supercritical regime). Let C1 be the largest component of
G(n,p) for p = 1+ε

n
, where ε → 0 and ε3n → ∞. With high probability, the mix-

ing time of the lazy random walk on C1 is of order ε−3 log2(ε3n).

While the second largest component C2 has a mixing time of smaller order
(it is w.h.p. a tree, and given that event, it is a uniform tree on its vertices and
as such has tMIX � |C2|3/2 (see, e.g., [25]), that is tMIX � ε−3 log3/2(ε3n) as
|C2| � ε−2 log(ε3n) w.h.p.), it turns out that w.h.p. there exists an even smaller
component, whose mixing time is of the same order as on C1. This is captured by
our second theorem, which also handles the subcritical regime.

THEOREM 2 (Controlling all components). Let G ∼ G(n,p) for p = (1 ±
ε)/n, where ε → 0 and ε3n → ∞. Let C� be the component of G that maximizes
the mixing time of the lazy random walk on it, denoted by t�MIX. Then with high
probability, t�MIX has order ε−3 log2(ε3n). This also holds when maximizing only
over tree components.

In the area of random walk on random graphs, the following two regimes have
been analyzed extensively.

• The supercritical regime, where tMIX � (diam)2 with diam denoting the intrinsic
diameter in the percolation cluster. Besides G(n, c

n
) for c > 1, this also holds in

the torus Z
d
n by [4] and [23].
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• The critical regime on a high dimensional torus, where tMIX � (diam)3. As men-
tioned above, for critical percolation on the complete graph, this was shown in
[25]. For high dimensional tori, this is a consequence of [13].

To the best of our knowledge, our result is the first interpolation for the mixing
time between these two different powers of the diameter.

2. Preliminaries.

2.1. Cores and kernels. The k-core of a graph G, denoted by G(k), is the max-
imum subgraph H ⊂ G where every vertex has degree at least k. It is well known
(and easy to see) that this subgraph is unique, and can be obtained by repeatedly
deleting any vertex whose degree is smaller than k (at an arbitrary order).

We call a path P = v0, v1, . . . , vk for k > 1 (i.e., a sequence of vertices with
vivi+1 an edge for each i) a 2-path if and only if vi has degree 2 for all i =
1, . . . , k−1 (while the endpoints v0, vk may have degree larger than 2, and possibly
v0 = vk).

The kernel K of G is obtained by taking its 2-core G(2) minus its disjoint cycles,
then repeatedly contracting all 2-paths (replacing each by a single edge). Note that,
by definition, the degree of every vertex in K is at least 3.

2.2. Structure of the supercritical giant component. The key to our analysis
of the random walk on the giant component C1 is the following result from our
companion paper [9]. This theorem completely characterizes the structure of C1,
by reducing it to a tractable contiguous model C̃1.

THEOREM 2.1 [9]. Let C1 be the largest component of G(n,p) for p = 1+ε
n

,
where ε3n → ∞ and ε → 0. Let μ < 1 denote the conjugate of 1 + ε, that is,
μe−μ = (1 + ε)e−(1+ε). Then C1 is contiguous to the following model C̃1:

1. Let � ∼ N (1 + ε − μ, 1
εn

) and assign i.i.d. variables Du ∼ Poisson(�) (u ∈
[n]) to the vertices, conditioned that

∑
Du1{Du≥3} is even. Let

Nk = #{u :Du = k} and N = ∑
k≥3

Nk.

Select a random multigraph K on N vertices, uniformly among all multigraphs
with Nk vertices of degree k for k ≥ 3.

2. Replace the edges of K by paths of lengths i.i.d. Geom(1 − μ).
3. Attach an independent Poisson(μ)–Galton–Watson tree to each vertex.

That is, P(C̃1 ∈ A) → 0 implies P(C1 ∈ A) → 0 for any set of graphs A that is
closed under graph-isomorphism.
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In the above, a Poisson(μ)–Galton–Watson tree is the family tree of a Galton–
Watson branching process with offspring distribution Poisson(μ). We will use the
abbreviation PGW(μ)-tree for this object. A multigraph is the generalization of a
simple graph permitting multiple edges and loops.

Note that conditioning on
∑

Du1{Du≥3} being even does not pose a problem,
as one can easily use rejection sampling. The 3 steps in the description of C̃1 cor-
respond to constructing its kernel K (Step 1), expanding K into the 2-core C̃(2)

1
(Step 2), and finally attaching trees to it to obtain C̃1 (Step 3).

Further observe that Nk � εkn for any fixed k ≥ 2, and so in the special case
where ε = o(n−1/4) w.h.p. we have Du ∈ {0,1,2,3} for all u ∈ [n], and the kernel
K is simply a uniform 3-regular multigraph.

Combining the above description of the giant component with standard tools in
the study of random graphs with given degree-sequences, one can easily read off
useful geometric properties of the kernel. This is demonstrated by the following
lemma of [9], for which we require a few definitions: For a vertex v in G let dG(v)

denote its degree and for a subset of vertices S let

dG(S)
	= ∑

v∈S

dG(v)

denote the sum of the degrees of its vertices (also referred to as the volume of S in
G). The isoperimetric number of a graph G is defined to be

i(G)
	= min

{
e(S,Sc)

dG(S)
:S ⊂ V (G), dG(S) ≤ e(G)

}
,

where e(S,T ) denotes the number of edges between S and T while e(G) is the
total number of edges in G.

LEMMA 2.2 ([9], Lemma 3.5). Let K be the kernel of the largest component
C1 of G(n,p) for p = 1+ε

n
, where ε3n → ∞ and ε → 0. Then w.h.p.,

|K| = (4
3 + o(1)

)
ε3n, e(K) = (

2 + o(1)
)
ε3n,

and i(K) ≥ α for some absolute constant α > 0.

2.3. Notions of mixing of the random walk. For any two distributions ϕ,ψ

on V , the total-variation distance of ϕ and ψ is defined as

‖ϕ − ψ‖TV
	= sup

S⊂V

|ϕ(S) − ψ(S)| = 1

2

∑
v∈V

|ϕ(v) − ψ(v)|.

Let (St ) denote the lazy random walk on G, that is, the Markov chain which at each
step holds its position with probability 1

2 and otherwise moves to a uniformly cho-
sen neighbor. This is an aperiodic and irreducible Markov chain, whose stationary
distribution π is given by

π(x) = dG(x)/2|E|.
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We next define two notions of measuring the distance of an ergodic Markov chain
(St ), defined on a state-set V , from its stationary distribution π .

Let 0 < δ < 1. The (worst-case) total-variation mixing time of (St ) with param-
eter δ, denoted by tMIX(δ), is defined to be

tMIX(δ)
	= min

{
t : max

v∈V
‖Pv(St ∈ ·) − π‖TV ≤ δ

}
,

where Pv denotes the probability given that S0 = v.
The Cesàro mixing time (also known as the approximate uniform mixing time)

of (St ) with parameter δ, denoted by t̃MIX(δ), is defined as

t̃MIX(δ) = min

{
t : max

v∈V

∥∥∥∥∥π − 1

t

t−1∑
i=0

Pv(Si ∈ ·)
∥∥∥∥∥

TV

≤ δ

}
.

When discussing the order of the mixing-time it is customary to choose δ = 1
4 ,

in which case we will use the abbreviations tMIX = tMIX(1
4) and t̃MIX = t̃MIX(1

4).
By results of [2] and [18] (see also [19]), the mixing time and the Cesàro mixing

time have the same order for lazy reversible Markov chains (i.e., discrete-time
chains whose holding probability in each state is at least 1

2 ), as formulated by the
following theorem.

THEOREM 2.3. Every lazy reversible Markov chain satisfies

c1 t̃MIX
(1

4

) ≤ tMIX
(1

4

) ≤ c2 t̃MIX
(1

4

)
for some absolute constants c1, c2 > 0.

PROOF. The first inequality is straightforward and does not require laziness or
reversibility. We include its proof for completeness. Notice that∥∥∥∥∥π − 1

t

t−1∑
i=0

Pv(Si ∈ ·)
∥∥∥∥∥

TV

≤ 1

8
+ 1

t

t−1∑
i=t/8

‖π − Pv(Si ∈ ·)‖TV

≤ 1

8
+ ‖π − Pv(St/8 ∈ ·)‖TV,

where we used the fact that ‖π − Pv(St ∈ ·)‖ is decreasing in t . Taking t =
8tMIX(1

8), we obtain that t̃MIX(1
4) ≤ 8tMIX(1

8) and conclude the proof of the first
inequality using the well-known fact that tMIX(1

8) ≤ 4tMIX(1
4).

The second inequality of the theorem is significantly more involved: By com-
bining [18], Theorem 5.4, (for a stronger version, see [19], Theorem 4.22) and [2],
Theorem C, it follows that the order of the Cesàro mixing time can be bounded
by that of the mixing time for the corresponding continuous-time Markov chain.
Now, using a well-known fact that the mixing time for the lazy Markov chain and
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the continuous-time chain have the same order (see, e.g., [15], Theorem 20.3), the
proof is concluded. �

Let � be a stopping rule (a randomized stopping time) for (St ). That is, � :G ×
� → N for some probability space �, such that �(·,ω) is a stopping time for every

ω ∈ �. Let σ� 	= Pσ (S� ∈ ·) when σ is a distribution on V .
Let σ, ν be two distributions on V . Note that there is always a stopping rule

� such that σ� = ν, for example, draw a vertex z according to ν and stop when
reaching z. The access time from σ to ν, denoted by H(σ, ν), is the minimum
expected number of steps over all such stopping rules:

H(σ, ν)
	= min

� : σ�=ν
E�.

It is easy to verify that H(σ, ν) = 0 iff σ = ν and that H(·, ·) satisfies the triangle-
inequality, however it is not necessarily symmetric.

The approximate forget time of G with parameter 0 < δ < 1 is defined by

Fδ = min
ϕ

max
σ

min
ν : ‖ν−ϕ‖TV≤δ

H(σ, ν).(2.1)

Combining Theorem 3.2 and Corollary 5.4 in [19], one immediately obtains that
the approximate forget time and the Cesàro mixing time have the same order, as
stated in the following theorem.

THEOREM 2.4. Every reversible Markov chain satisfies

c1F1/4 ≤ t̃MIX
(1

4

) ≤ c2F1/4

for some absolute constants c1, c2 > 0.

2.4. Conductance and mixing. Let P = (px,y)x,y be the transition kernel of
an irreducible, reversible and aperiodic Markov chain on � with stationary distri-
bution π . For S ⊂ �, define the conductance of the set S to be

�(S)
	=

∑
x∈S,y /∈S π(x)px,y

π(S)π(� \ S)
.

We define �, the conductance of the chain, by �
	= min{�(S) :π(S) ≤ 1

2} (In the
special case of a lazy random walk on a connected regular graph, this quantity is
similar to the isoperimetric number of the graph, defined earlier). A well-known
result of Jerrum and Sinclair [28] states that tMIX is of order at most �−2 logπ−1

min,
where πmin = minx∈� π(x). This bound was fine-tuned by Lovász and Kannan
[17] to exploit settings where the conductance of the average set S plays a domi-
nant role (rather than the worst set). For our upper bound of the mixing time on the
random walk on the 2-core, we will use an enhanced version of the latter bound
(namely, Theorem 3.6) due to Fountoulakis and Reed [11].
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2.5. Edge set notations. Throughout the paper, we will use the following no-
tations, which will be handy when moving between the kernel and 2-core.

For S ⊂ G, let EG(S) denote the set of edges in the induced subgraph of G on

S, and let ∂GS denote the edges between S and its complement Sc 	= V (G) \ S.
Let

ĒG(S)
	= EG(S) ∪ ∂G(S)

and define eG(S)
	= |EG(S)|. We omit the subscript G whenever its identity is

made clear from the context.
If K is the kernel in the model C̃1 and H is its 2-core, let

E�
H : 2E(K) → 2E(H)

be the operator which takes a subset of edges T ⊂ E(K) and outputs the edges
lying on their corresponding 2-paths in H. For S ⊂ V (K), we let

E�
H(S)

	= E�
H(EK(S)), Ē�

H(S)
	= E�

H(ĒK(S)).

3. Random walk on the 2-core. In this section, we analyze the properties of
the random walk on the 2-core C̃(2)

1 .

3.1. Mixing time of the 2-core. By the definition of our new model C̃1, we
can study the 2-core C(2)

1 via the well-known configuration model (see, e.g., [6]
for further details on this method). To simplify the notation, we let H denote the
2-core of C̃1 throughout this section.

The main goal of the subsection is to establish the mixing time of the lazy
random walk on H, as stated by the following theorem.

THEOREM 3.1. With high probability, the lazy random walk on H has a
Cesàro mixing time t̃MIX of order ε−2 log2(ε3n). Consequently, w.h.p. it also sat-
isfies tMIX � ε−2 log2(ε3n).

We will use a result of Fountoulakis and Reed [12], which bounds the mixing
time in terms of the isoperimetric profile of the graph (measuring the expansion of
sets of various volumes). As a first step in obtaining this data for the supercritical
2-core H, the next lemma will show that a small subset of the kernel, S ⊂ K,
cannot have too many edges in ĒH(S).

LEMMA 3.2. For v ∈ K, define

Cv,K
	= {S  v : |S| = K and S is a connected subgraph of K}.

The following holds w.h.p. for every v ∈ K, integer K and S ∈ Cv,K :
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(1) |Cv,K | ≤ exp[5(K ∨ log(ε3n))].
(2) dK(S) ≤ 30(K ∨ log(ε3n)).

PROOF. By definition, � = (2 + o(1))ε w.h.p., thus standard concentration
arguments imply that the following holds w.h.p.:

N3 =
(

4

3
+ o(1)

)
ε3n and Nk ≤ (3ε)k log(1/ε)

k! n for k ≥ 4.(3.1)

Assume that the above indeed holds, and notice that the lemma trivially holds when
K ≥ ε3n. We may therefore further assume that K ≤ ε3n.

Consider the following exploration process, starting from the vertex v. Initialize
S to be {v}, and mark v1 = v. At time i ≥ 1, we explore the neighborhood of vi

(unless |S| < i), and for each its neighbors that does not already belong to S, we
toss a fair coin to decide whether or not to insert it to S. Newly inserted vertices
are labeled according to the order of their arrival; that is, if |S| = k prior to the
insertion, we give the new vertex the label vk+1. Finally, if |S| < i at time i then
we stop the exploration process.

Let Xi denote the degree of the vertex vi in the above defined process. In order
to stochastically dominate Xi from above, observe that the worst case occurs when
each of the vertices in v1, . . . , vi−1 has degree 3. With this observation in mind, let
A be a set consisting of N3 − K vertices of degree 3 and Nk vertices k (for k ≥ 4).
Sample a vertex proportional to the degree from A and let Y denote its degree.
Clearly, Xi � Yi , where Yi are independent variables distributed as Y , and so

dK(S) �
K∑

i=1

Yi.(3.2)

By the definition of our exploration process,

|Cv,K | � ∑
�1+···+�K=K

K∏
i=1

(
Yi

�i

)
.

We can now deduce that

E|Cv,K | ≤ E

⎡
⎣ ∑

�1+···+�K=K

K∏
i=1

(
Yi

�i

)⎤
⎦ = ∑

�1+···+�K=K

K∏
i=1

E

[(
Yi

�i

)]
.(3.3)

For all i ≥ 4, we have

P(Y = i) ≤ 27i
(3ε)i−3 log(1/ε)

i! = 27
(3ε)i−3 log(1/ε)

(i − 1)!
and therefore, for sufficiently large n (recall that ε = o(1)),

E

[(
Y

k

)]
≤

(
3
k

)
+ ∑

i≥4

(
i

k

)
· 27

(3ε)i−3 log(1/ε)

(i − 1)! ≤ 7

k! for all k.
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Altogether,

E|Cv,K | ≤ 7K
∑

�1+···+�K=K

K∏
i=1

1

�i ! .(3.4)

The next simple claim will provide a bound on the sum in the last expression.

CLAIM 3.3. The function f (n) = ∑
�1+···+�n=n

∏n
k=1

1
�k ! satisfies f (n) ≤ en.

PROOF. The proof is by induction. For n = 1, the claim trivially holds. As-
suming the hypothesis is valid for n ≤ m, we get

f (m + 1) =
m+1∑
k=0

1

k!f (m − k) ≤
m+1∑
k=0

em−k

k! ≤ em
m+1∑
k=0

1

k! ≤ em+1,

as required. �

Plugging the above estimate into (3.4), we conclude that E|Cv,K | ≤ (7e)K . Now,
Markov’s inequality, together with a union bound over all the vertices in the kernel
K yield the Part (1) of the lemma.

For Part (2), notice that for any sufficiently large n,

EeY ≤ e3 + ∑
i≥4

ei27i
(3ε)i−3 log(1/ε)

i! ≤ 25,

therefore, (3.2) gives that

P
(
dK(S) ≥ 30

(
K ∨ log(ε3n)

)) ≤ exp
[−5

(
K ∨ log(ε3n)

)]
.

At this point, the proof is concluded by a union bound over Cv,K for all v ∈ K and
K ≤ ε3n, using the upper bound we have already derived for |Cv,K | in the Part (1)
of the lemma. �

LEMMA 3.4. Let L ⊂ E(K) be the set of loops in the kernel. With high prob-
ability, every subset of vertices S ⊂ K forming a connected subgraph of K satisfies
|Ē�

H(S)| ≤ (100/ε)(|S| ∨ log(ε3n)), and every subset T of 1
20ε3n edges in K sat-

isfies |E�
H(T ) ∪ E�

H(L)| ≤ 3
4ε2n.

PROOF. Assume that the events given in Parts (1), (2) of Lemma 3.2 hold.
Further note that, by definition of the model C̃1, a standard application of CLT
yields that w.h.p.

|K| = (4
3 + o(1)

)
ε3n, e(H) = (

2 + o(1)
)
ε2n, e(K) = (

2 + o(1)
)
ε3n.

By Part (2) of that lemma, dK(S) ≤ 30(|S| ∨ log(ε3n)) holds simultaneously for
every connected set S, hence there are at most this many edges in ĒK(S).
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Let S ⊂ K be a connected set of size |S| = s, and let

K = K(s) = s ∨ log(ε3n).

Recalling our definition of the graph H, we deduce that

|Ē�
H(S)| �

30K∑
i=1

Zi,

where Zi are i.i.d. Geometric random variables with mean 1
1−μ

. It is well known
that the moment-generating function of such variables is given by

E(etZ1) = (1 − μ)et

1 − μet
.

Setting t = ε/2 and recalling that μ = 1 − (1 + o(1))ε, we get that E(e(ε/2)Z1) ≤ e
for sufficiently large n (recall that ε = o(1)). Therefore, we obtain that for the
above mentioned S,

P
(|Ē�

H(S)| ≥ (100/ε)K
) ≤ exp(30K)

exp((ε/2)(100/ε)K)
= e−20K.

By Part (1) of Lemma 3.2, there are at most (4
3 +o(1))ε3n exp(5K) connected sets

of size s. Taking a union bound over the (4
3 + o(1))ε3n values of s establishes that

the statement of the lemma holds except with probability(
4

3
+ o(1)

)
ε3n

∑
s

e−20K(s)e5K(s) ≤
(

16

9
+ o(1)

)
(ε3n)−13 = o(1),

completing the proof of the statement on all connected subsets S ⊂ K.
Next, if T contains t edges in K, then the number of corresponding edges in H is

again stochastically dominated by a sum of i.i.d. geometric variables {Zi} as above.
Hence, by the same argument, the probability that there exists a set T ⊂ E(K) of
αε3n edges in K, which expands to at least βε2n edges in H for some 0 < α < 1

2
and 0 < β < 1, is at most(

(2 + o(1))ε3n

αε3n

)
eαε3n

e(ε/2)βε2n
≤ exp

[(
2H

(
α

2

)
+ α − β

2
+ o(1)

)
ε3n

]

[using the well-known fact that
∑

i≤λm

(m
i

) ≤ exp[H(λ)m], where H(x) is the en-

tropy function H(x)
	= −x logx − (1 − x) log(1 − x)]. It is now easy to verify that

a choice of α = 1
20 and β = 2

3 in the last expression yields a term that tends to 0 as
n → ∞.

It remains to bound |L|. This will follow from a bound on the number of loops
in K. Let u ∈ K be a kernel vertex, and recall that its degree Du is distributed as
an independent (Poisson(�)|· ≥ 3), where � = (2 + o(1))ε with high probability.
The expected number of loops that u obtains in a random realization of the degree
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sequence (via the configuration model) is clearly at most D2
u/D, where D = (4 +

o(1))ε3n is the total of the kernel degrees. Therefore,

E|L| ≤ (4
3 + o(1)

)
ε3n · (1/D)E[D2

u] = O(1),

and so E|E�
H(L)| = O(1/ε). The contribution of |E�

H(L)| is thus easily absorbed
w.h.p. when increasing β from 2

3 to 3
4 , completing the proof. �

LEMMA 3.5. There exists an absolute constant ι > 0 so that w.h.p. ev-
ery connected set S ⊂ H with (200/ε) log(ε3n) ≤ dH(S) ≤ e(H) satisfies that
|∂HS|/dH(S) ≥ ιε.

PROOF. Let S ⊂ H be as above, and write SK = S ∩ K. Observe that SK is
connected (if nonempty). Furthermore, since dH(S) ≥ (200/ε) log(ε3n) whereas
the longest 2-path in H contains (1 + o(1))(1/ε) log(ε3n) edges w.h.p., we may
assume that SK is indeed nonempty.

Next, clearly |∂HS| ≥ |∂KSK| (as each edge in the boundary of SK translates
into a 2-path in H with precisely one endpoint in S), while |ĒH(S)| ≤ |Ē�

H(SK)|
(any e ∈ ĒH(S) belongs to some 2-path Pe, which is necessarily incident to some
v ∈ SK as, crucially, SK is nonempty. Hence, the edge corresponding to Pe belongs
to ĒK(SK), and so e ∈ Ē�

H(SK)). Therefore, using the fact that dH(S) ≤ 2|ĒH(S)|,
|∂HS|
dH(S)

≥ |∂KSK|
2|Ē�

H(SK)| = |∂KSK|
2|ĒK(SK)| · |ĒK(SK)|

|Ē�
H(SK)| .(3.5)

Assume that the events stated in Lemma 3.4 hold. Since the assumption on dH(SK)

gives that |Ē�
H(SK)| ≥ (100/ε) log(ε3n), we deduce that necessarily

|SK| ≥ (ε/100)|Ē�
H(SK)|,

and thus (since SK is connected)

|ĒK(SK)| ≥ |EK(SK)| ≥ (ε/100)|Ē�
H(SK)| − 1.(3.6)

Now,

dH(S) ≤ e(H) = (
2 + o(1)

)
ε2n,

and since dH(S) = 2|EH(S)| + |∂HS| we have |EH(S)| ≤ (1 + o(1))ε2n. In par-
ticular, |E(H) \ EH(S)| ≥ 3

4ε2n for sufficiently large n.
At the same time, if L is the set of all loops in K and T = ĒK(K \ SK), then

clearly E�
H(T ) ∪ E�

H(L) is a superset of E(H) \ EH(S). Therefore, Lemma 3.4
yields that |T | ≥ 1

20ε3n. Since dK(SK) ≤ 2e(K) = (4 + o(1))ε3n, we get

dK(K \ SK) ≥ |T | ≥ ε3n

20
≥ 1 + o(1)

80
dK(SK).



990 J. DING, E. LUBETZKY AND Y. PERES

At this point, by Lemma 2.2 there exists α > 0 such that w.h.p. for any such above
mentioned subset S:

|∂KSK| ≥ α
(
dK(SK) ∧ dK(K \ SK)

) ≥ α + o(1)

80
dK(SK).(3.7)

Plugging (3.6), (3.7) into (3.5), we conclude that the lemma holds for any suffi-
ciently large n with, say, ι = 1

2 · 10−4α. �

We are now ready to establish the upper bound on the mixing time for the ran-
dom walk on H.

PROOF OF THEOREM 3.1. We will apply the following recent result of [11],
which bounds the mixing time of a lazy chain in terms of its isoperimetric profile (a
fine-tuned version of the Lovász–Kannan [17] bound on the mixing time in terms
of the average conductance).

THEOREM 3.6 ([11]). Let P = (px,y) be the transition kernel of an irre-
ducible, reversible and aperiodic Markov chain on � with stationary distribu-
tion π . Let πmin = minx∈� π(x) and for p > πmin, let

�(p)
	= min{�(S) :S is connected and p/2 ≤ π(S) ≤ p},

and �(p) = 1 if there is no such S. Then for some absolute constant C > 0,

t̃MIX ≤ C

�logπ−1
min�∑

j=1

�−2(2−j ).

In our case, the P is the transition kernel of the lazy random walk on H. By
definition, if S ⊂ H and dH(x) denotes the degree of x ∈ H, then

πH(x) = dH(x)

2e(H)
, px,y = 1

2dH(x)
, πH(S) = dH(S)

2e(H)
,

and so �(S) ≥ 1
2 |∂HS|/dH(S). Recall that w.h.p. e(H) = (2 + o(1))ε2n. Under

this assumption, for any p ≥ 120 log(ε3n)

ε3n
and connected subset S ⊂ H satisfying

πH(S) ≥ p/2,

dH(S) = 2πH(S)e(H) ≥ (200/ε) log(ε3n).

Therefore, by Lemma 3.5, w.h.p.

�(p) ≥ 1

2
ιε for all 120

log(ε3n)

ε3n
≤ p ≤ 1

2
.(3.8)

Set

j∗ = max
{
j : 2−j ≥ 120

log(ε3n)

ε3n

}
.
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It is clear that j∗ = O(log(ε3n)) and (3.8) can be translated into

�(2−j ) ≥ 1
2 ιε, for all 1 ≤ j ≤ j∗.(3.9)

On the other hand, if πH(S) ≤ p < 1 then dH(S) ≤ 2pe(H) while |∂HS| ≥ 1
(as H is connected), and so the inequality �(S) ≥ 1

2 |∂HS|/dH(S) gives �(S) ≥
1/(4pe(H)). Substituting p = 2−j with j ≤ �logπ−1

min�, we have

�(2−j ) ≥ 2j−2

e(H)
≥ 2j

10ε2n
(3.10)

(where the last inequality holds for large n). Combining (3.9) and (3.10) together,
we now apply Theorem 3.6 to conclude that there exists a constant C > 0 such
that, w.h.p.,

t̃MIX ≤ C

�logπ−1
min�∑

j=1

1

�2(2−j )
= C

[ j∗∑
j=1

1

�2(2−j )
+

�logπ−1
min�∑

j=j∗

1

�2(2−j )

]

≤ C

(
j∗

(
1

2
ιε

)−2

+ 2(10ε2n · 2−j∗
)2

)
= O(ε−2 log2(ε3n)),

where the last inequality follows by our choice of j∗.
The lower bound on the mixing time follows immediately from the fact that,

by the definition of C̃1, w.h.p. there exists a 2-path in H whose length is (1 −
o(1))(1/ε) log(ε3n) (see [9], Corollary 1). �

3.2. Local times for the random walk on the 2-core. In order to extend the
mixing time from the 2-core H to the giant component, we need to prove the
following proposition.

PROPOSITION 3.7. Let Nv,s be the local time induced by the lazy random
walk (Wt) on H to the vertex v up to time s, that is, #{0 ≤ t ≤ s :Wt = v}. Then
there exists some C > 0 such that, w.h.p., for all s > 0 and any u, v ∈ H,

Eu[Nv,s] ≤ C
εs

log(ε3n)
+ (150/ε) log(ε3n).

In order to prove Proposition 3.7, we wish to show that with positive probability
the random walk Wt will take an excursion in a long 2-path before returning to v.
Consider some v ∈ K (we will later extend this analysis to the vertices in H \ K,
i.e., those vertices lying on 2-paths). We point out that proving this statement is
simpler in case Dv = O(1), and most of the technical challenge lies in the pos-
sibility that Dv is unbounded. In order to treat this point, we first show that the
neighbors of vertex v in the kernel are, in some sense, distant apart.
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LEMMA 3.8. For v ∈ K let Nv denote the set of neighbors of v in the kernel K.
Then w.h.p., for every v ∈ K there exists a collection of disjoint connected subsets
{Bw(v) ⊂ K :w ∈ Nv}, such that for all w ∈ Nv ,

|Bw| = �(ε3n)1/5� and diam(Bw) ≤ 1
2 log(ε3n).

PROOF. We may again assume (3.1) and furthermore, that

3 ≤ Dv ≤ log(ε3n) for all v ∈ K.

Let v ∈ K. We construct the connected sets Bw while we reveal the structure of
the kernel K via the configuration model, as follows: Process the vertices w ∈ Nv

sequentially according to some arbitrary order. When processing such a vertex w,
we expose the ball (according to the graph metric) about it, excluding v and any
vertices that were already accounted for, until its size reaches �(ε3n)1/5� (or until
no additional new vertices can be added).

It is clear from the definition that the Bw’s are indeed disjoint and connected,
and it remains to prove that each Bw satisfies |Bw| = �(ε3n)1/5� and diam(Bw) ≤
log(ε3n).

Let R denote the tree-excess of the (connected) subset {v} ∪ ⋃
w Bw once the

process is concluded. We claim that w.h.p. R ≤ 1. To see this, first observe that
at any point in the above process, the sum of degrees of all the vertices that were
already exposed (including v and Nv) is at most

�(ε3n)1/5� log2(ε3n) = (ε3n)1/5+o(1).

Hence, by the definition of the configuration model (which draws a new half-edge
between w and some other vertex proportional to its degree), R � Z where Z is a
binomial variable Bin((ε3n)1/5+o(1), (ε3n)−4/5+o(1)). This gives

P(R ≥ 2) = (ε3n)−6/5+o(1).

In particular, since Dw ≥ 3 for any w ∈ K, this implies that we never fail to grow
Bw to size (ε3n)1/5, and that the diameter of each Bw is at most that of a binary
tree (possibly plus R ≤ 1), that is, for any large n,

diam(Bw) ≤ 1
5 log2(ε

3n) + 2 ≤ 1
2 log(ε3n).

A simple union bound over v ∈ K now completes the proof. �

We distinguish the following subset of the edges of the kernel, whose paths are
suitably long:

E 	=
{
e ∈ E(K) : |Pe| ≥ 1

20ε
log(ε3n)

}
,
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where Pe is the 2-path in H that corresponds to the edge e ∈ E(K). Further define
Q ⊂ 2K to be all the subsets of vertices of K whose induced subgraph contains an
edge from E :

Q 	= {S ⊂ K :EK(S) ∩ E �= ∅}.
For each e ∈ K, we define the median of its 2-path, denoted by med(Pe), in the
obvious manner: It is the vertex w ∈ Pe whose distance from the two endpoints
is the same, up to at most 1 (whenever there are two choices for this w, pick one
arbitrarily). Now, for each v ∈ H let

Ev
	= {med(Pe) : e ∈ E , v /∈ Pe}.

The next lemma provides a lower bound on the effective conductance between a
vertex v in the 2-core and its corresponding above defined set Ev . See, for example,
[22] for further details on conductances/resistances.

LEMMA 3.9. Let Ceff(v ↔ Ev) be the effective conductance between a vertex
v ∈ H and the set Ev . With high probability, for any v ∈ H,

Ceff(v ↔ Ev)/Dv ≥ ε/(100 log(ε3n)).

PROOF. In order to bound the effective conductance, we need to prove that for
any v ∈ K, there exist Dv disjoint paths of length at most (100/ε) log(ε3n) leading
to the set Ev . By Lemmas 3.4 and 3.8, it suffices to prove that w.h.p. for any v ∈ K
and w ∈ Nv , we have that E(Bw) ∩ E �= ∅, where Nv and Bw are defined as in
Lemma 3.8 (in this case, the path from v to some e ∈ E within Bw will have length
at most 1

2 log(ε3n) in K, and its length will not be exceed (100/ε) log(ε3n) after
being expanded in the 2-core).

Notice that if Y is the geometric variable Geom(1 − μ) then

P

(
Y ≥ 1

10ε
log(ε3n)

)
= μ(1/10ε) log(ε3n) ≥ (ε3n)−1/10+o(1).

Therefore, by the independence of the lengths of the 2-paths and the fact that
|Bw| = �(ε3n)1/5�, we obtain that

P
(
E(Bw) ∩ E = ∅

) ≤ (
1 − (ε3n)−1/10+o(1))(ε3n)1/5 ≤ e−(ε3n)1/10−o(1)

.

At this point, a union bound shows that the probability that for some v ∈ K there
exists some w ∈ Nv , such that E(Bw) does not intersect E , is at most(4

3 + o(1)
)
ε3n · log(ε3n) · e−(ε3n)1/10−o(1) = o(1). �

We are ready to prove the main result of this subsection, Proposition 3.7, which
bounds the local times induced by the random walk on the 2-core.
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PROOF OF PROPOSITION 3.7. For some vertex v ∈ H and subset A ⊂ H, let

τ+
v

	= min{t > 0 :Wt = v}, τA
	= min{t :Wt ∈ A}.

It is well known [see, e.g., [22], equation (2.4)] that the effective conductance has
the following form:

Pv(τA < τ+
v ) = Ceff(v ↔ A)

Dv

.

Combined with Lemma 3.9, it follows that

Pv(τEv < τ+
v ) = Ceff(v ↔ Ev)

Dv

≥ ε/(100 log(ε3n)).

On the other hand, for any v ∈ H, by definition w ∈ Ev is the median of some
2-path, which does not contain v and has length at least 1

20ε
log(ε3n). Hence, by

well-known properties of hitting times for the simple random walk on the integers,
there exists some absolute constant c > 0 such that for any v ∈ H and w ∈ Ev:

Pw

(
τ+
v ≥ cε−2 log2(ε3n)

) ≥ Pw

(
τK ≥ cε−2 log2(ε3n)

) ≥ 2
3 .

Altogether, we conclude that

Pv

(
τ+
v ≥ cε−2 log2(ε3n)

) ≥ Pv(τEv < τ+
v ) min

w∈Ev

{
Pw

(
τ+
v ≥ cε−2 log2(ε3n)

)}
≥ ε/(150 log(ε3n)).

Setting tc = cε−2 log2(ε3n), we can rewrite the above as

Pv(Nv,tc ≥ 2) ≤ 1 − ε/(150 log(ε3n)).

By the strong Markovian property (i.e., (Wτ+
v +t ) is a Markov chain with the same

transition kernel of (Wt)), we deduce that

P(Nv,tc ≥ k) ≤ [1 − ε/(150 log(ε3n))]k−1,

and hence

ENv,tc ≤ (150/ε) log(ε3n).

The proof is completed by observing that Ev(Nv,s) ≤ �s/tc�EvNv,tc and that
EuNv,s ≤ EvNv,s for any u. �

4. Mixing on the giant component. In this section, we prove Theorem 1,
which establishes the order of the mixing time of the lazy random walk on the
supercritical C1.
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4.1. Controlling the attached Poisson Galton–Watson trees. So far, we have
established that w.h.p. the mixing time of the lazy random walk on the 2-core C̃(2)

1
has order ε−2 log2(ε3n). To derive the mixing time for C̃1 based on that estimate,
we need to consider the delays due to the excursions the random walk makes in
the attached trees. As we will later see, these delays will be upper bounded by a
certain a linear combination of the sizes of the trees (with weights determined by
the random walk on the 2-core). The following lemma will play a role in estimating
this expression.

LEMMA 4.1. Let {Ti} be independent PGW(μ)-trees. For any two constants
C1,C2 > 0 there exists some constant C > 0 such that the following holds: If
{ai}mi=1 is a sequence of positive reals satisfying

m∑
i=1

ai ≤ C1ε
−2 log2(ε3n),(4.1)

max
1≤i≤m

ai ≤ C2ε
−1 log(ε3n),(4.2)

then

P

(
m∑

i=1

ai |Ti | ≥ Cε−3 log2(ε3n)

)
≤ (ε3n)−2.

PROOF. It is well known (see, e.g., [26]) that the size of a Poisson(γ )–Galton–
Watson tree T follows a Borel(γ ) distribution, namely,

P(|T | = k) = kk−1

γ k! (γ e−γ )k.(4.3)

The following is a well-known (and easy) estimate on the size of a PGW-tree; we
include its proof for completeness.

CLAIM 4.2. Let 0 < γ < 1, and let T be a PGW(γ )-tree. Then

E|T | = 1

1 − γ
, Var(|T |) = γ

(1 − γ )3 .

PROOF. For k = 0,1, . . . , let Lk be the number of vertices in the kth level of
the tree T . Clearly, ELk = γ k , and so E|T | = E

∑
k Lk = 1

1−γ
.

By the total-variance formula,

Var(Li) = Var(E(Li |Li−1)) + E(Var(Li |Li−1))

= γ 2 Var(Li−1) + γ ELi−1 = γ 2 Var(Li−1) + γ i.



996 J. DING, E. LUBETZKY AND Y. PERES

By induction,

Var(Li) =
2i−1∑
k=i

γ k = γ i 1 − γ i

1 − γ
.(4.4)

We next turn to the covariance of Li,Lj for i ≤ j :

Cov(Li,Lj ) = E[LiLj ] − ELiELj = γ j−i
EL2

i − γ i+j

= γ j−i Var(Li) = γ j 1 − γ i

1 − γ
.

Summing over the variances and covariances of the Li ’s, we deduce that

Var(|T |) = 2
∞∑
i=0

∞∑
j=i

γ j 1 − γ i

1 − γ
−

∞∑
i=0

γ i 1 − γ i

1 − γ
= γ

(1 − γ )3 .
�

We need the next lemma to bound the tail probability for
∑

ai |Ti |.

LEMMA 4.3 ([14], Corollary 4.2). Let X1, . . . ,Xm be independent r.v.’s with
E[Xi] = μi . Suppose there are bi , di and ξ0 such that Var(Xi) ≤ bi , and∣∣E[

(Xi − μi)
3eξ(Xi−μi)

]∣∣ ≤ di for all 0 ≤ |ξ | ≤ ξ0.

If δξ0
∑m

i=1 di ≤ ∑m
i=1 bi for some 0 < δ ≤ 1, then for all � > 0,

P

(∣∣∣∣∣
m∑

i=1

Xi −
m∑

i=1

μi

∣∣∣∣∣ ≥ �

)
≤ exp

(
−1

3
min

{
δξ0�,

�2∑m
i=1 bi

})
.

Let Ti = |Ti | and Xi = aiTi for i ∈ [m]. Claim 4.2 gives that

μi = EXi = ai/(1 − μ).

Now set

ξ0 = ε3/(10C2 log(ε3n)).

For any |ξ | ≤ ξ0, we have ai |ξ | ≤ ε2/10 by the assumption (4.2), and so

∣∣E[
(Xi − μi)

3eξ(Xi−μi)
]∣∣ = a3

i

∣∣∣∣E
[(

Ti − 1

1 − μ

)3

eξai (Ti−1/(1−μ))

]∣∣∣∣
≤ a3

i E
[
(1 − μ)−31{Ti<(1−μ)−1}

]
(4.5)

+ a3
i E

[
T 3

i eξaiTi1{Ti≥(1−μ)−1}
]

≤ a3
i (1 − μ)−3 + a3

i E[T 3
i exp(ε2Ti/10)].
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Recalling the law of Ti given by (4.3), we obtain that

E
(
T 3

i exp(ε2Ti/10)
) =

∞∑
k=1

kk−1

μk! (μe−μ)kk3eε2k/10.

Using Stirling’s formula, we obtain that for some absolute constant c > 1,

E
(
T 3

i exp(ε2Ti/10)
) ≤ c

∞∑
k=1

kk−1(μe−μ)k

μ(k/e)k
√

k
k3eε2k/10

(4.6)

= c

μ

∞∑
k=1

k3/2(μe1−μ)keε2k/10.

Recalling that μ = 1 − ε + 2
3ε2 + O(ε3) and using the fact that 1 − x ≤ e−x−x2/2

for x ≥ 0, we get that for sufficiently large n (and hence small enough ε),

μe1−μ = (
1 − (1 − μ)

)
e1−μ ≤ exp

(−1
2ε2 + O(ε3)

) ≤ e−ε2/3.(4.7)

Plugging the above estimate into (4.6), we obtain that for large n,

E[T 3
i exp(ε2Ti/10)] ≤ 2c

∞∑
k=1

k3/2e−ε2k/6 ≤ 4c

∫ ∞
0

x3/2e−ε2x/6 dx

≤ 400cε−5
∫ ∞

0
x3/2e−x dx = 300

√
πcε−5.

Going back to (4.5), we get that for some absolute c′ > 1 and any large n,∣∣E[
(Xi − μi)

3eξ(Xi−μi)
]∣∣ ≤ a3

i (2ε−3 + c′ε−5) ≤ ai · 2c′C2
2ε−7 log2(ε3n)

	= di,

where the second inequality used (4.2).
By Claim 4.2, it follows that for large enough n,

Var(Xi) = a2
i Var(Ti) = a2

i

μ

(1 − μ)3 ≤ 2a2
i ε

−3 ≤ ai · 2C2ε
−4 log(ε3n)

	= bi.

Since
∑

i di = (c′C2ε
−3 log(ε3n))

∑
i bi , by setting δ = 1 (and recalling our choice

of ξ0) we get

δξ0

m∑
i=1

di = δc′

10

∑
i

bi ≤
m∑

i=1

bi.

We have thus established the conditions for Lemma 4.3, and it remains to select �.
For a choice of � = (60C2 ∨ √

12C1C2)ε
−3 log2(ε3n), by definition of ξ0 and the

bi ’s we have

ξ0� ≥ 6 log(ε3n),

�2/
∑
i

bi ≥ 6C1ε
−2 log3(ε3n)/

∑
i

ai ≥ 6 log(ε3n),
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where the last inequality relied on (4.1). Hence, an application of Lemma 4.3 gives
that for large enough n,

P

(∑
i

aiTi − ∑
i

μi ≥ �

)
≤ (ε3n)−2.

Finally, by (4.1) and using the fact that 1 − μ ≥ ε/2 for any large n, we have∑
i μi = (1 − μ)−1 ∑

i ai ≤ 2C1ε
−3 log2(ε3n). The proof of Lemma 4.1 is thus

concluded by choosing C = 2C1 + (60C2 ∨ √
12C1C2). �

To bound the time it takes the random walk to exit from an attached PGW-tree
(and enter the 2-core), we will need to control the diameter and volume of such
a tree. The following simple lemma of [8] gives an estimate on the diameter of a
PGW-tree.

LEMMA 4.4 ([8], Lemma 3.2). Let T be a PGW(μ)-tree and Lk be its kth
level of vertices. Then P(Lk �= ∅) � εe−k(ε+O(ε2)) for any k ≥ 1/ε.

The next lemma gives a bound on the volume of a PGW-tree.

LEMMA 4.5. Let T be a PGW(μ)-tree. Then

P
(|T | ≥ 6ε−2 log(ε3n)

) = o(ε(ε3n)−2).

PROOF. Recalling (4.3) and applying Stirling’s formula, we obtain that for
any s > 0,

P(|T | ≥ s) = ∑
k≥s

kk−1

μk! (μe−μ)k � ∑
k≥s

(μe1−μ)k

k3/2 .(4.8)

Write r = log(ε3n). By estimate (4.7), we now get that for large enough n,∑
k≥6ε−2r

k−3/2(μe1−μ)k ≤ ∑
k≥6ε−2r

k−3/2e−ε2k/3 = O
(
e−2rε/

√
r
)
,

and combined with (4.8) this concludes the proof. �

Finally, for the lower bound, we will need to show that w.h.p. one of the attached
PGW-trees in C̃1 is suitably large, as we next describe. For a rooted tree T , let Lk

be its kth level of vertices and Tv be its entire subtree rooted at v. Define the event

Ar,s(T )
	= {∃v ∈ Lr such that |Tv| ≥ s}.

The next lemma gives a bound on the probability of this event when T is a
PGW(μ)-tree.
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LEMMA 4.6. Let T be a PGW(μ)-tree and take r = �1
8ε−1 log(ε3n)� and

s = 1
8ε−2 log(ε3n). Then for any sufficiently large n,

P(Ar,s(T )) ≥ ε(ε3n)−2/3.

PROOF. We first give a lower bound on the probability that |T | ≥ s. By (4.8),
we have P(|T | ≥ s) ≥ c

∑
k≥s k−3/2(μe1−μ)k for some absolute c > 0. Recalling

that μ = 1 − ε + 2
3ε2 + O(ε3), we have that for n large enough,

μe1−μ ≥ e−(ε+ε2)eε−ε2 ≥ e−2ε2
.

Therefore, for s = 1
8ε−2 log(ε3n) this gives that

P(|T | ≥ s) ≥ c
∑

s≤k≤2s

k−3/2e−2ε2k ≥ cs(2s)−3/2e−4ε2s ≥ ε(ε3n)−1/2+o(1).

Combining this with the fact that {Tv :v ∈ Lr} are i.i.d. PGW(μ)-trees given Lr ,
we get

P(Ar,s(T )|Lr) = 1 − (
1 − P(|T | ≥ s)

)|Lr | ≥ 1 − (
1 − ε(ε3n)−1/2+o(1))|Lr |.

Taking expectation over Lr , we conclude that

P(Ar,s(T )) ≥ 1 − E
((

1 − ε(ε3n)−1/2+o(1))|Lr |)
(4.9)

≥ ε(ε3n)−1/2+o(1)
E|Lr | − ε2(ε3n)−1+o(1)

E|Lr |2.
For r = �1

8ε−1 log(ε3n)�, we have

E(|Lr |) = μr ≥ e−(ε+O(ε2))r ≥ (ε3n)−1/8+o(1),

and by (4.4),

Var |Lr | = μr 1 − μr

1 − μ
≤ e−εr2ε−1 ≤ 2ε−1(ε3n)−1/8.

Plugging these estimates into (4.9), we obtain that

P(Ar,s(T )) ≥ ε(ε3n)−5/8+o(1) ≥ ε(ε3n)−2/3,

where the last inequality holds for large enough n, as required. �

4.2. Proof of Theorem 1: Upper bound on the mixing time. By Theorem 2.1,
it suffices to consider C̃1 instead of C1. As in the previous section, we abbreviate
C̃(2)

1 by H.
For each vertex v in the 2-core H, let Tv be the PGW-tree attached to v in C̃1.

Let (St ) be the lazy random walk on C̃1, define ξ0 = 0 and for j ≥ 0,

ξj+1 =
{

ξj + 1, if Sξj+1 = Sξj
,

min{t > ξj :St ∈ H, St �= Sξj
}, otherwise.
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Defining Wj
	= Sξj

, we observe that (Wj ) is a lazy random walk on H. Further-
more, started from any w ∈ H, there are two options:

(i) Do a step in the 2-core (either stay in w via the lazy rule, which has prob-
ability 1

2 , or jump to one of the neighbor of w in H, an event that has probability
dH(w)/2dC̃1

(w)).
(ii) Enter the PGW-tree attached to w (this happens with probability dTw(w)/

2dC̃1
(w)).

It is the latter case that incurs a delay for the random walk on C̃1. Since the ex-
pected return time to w once entering the tree Tw is 2(|Tw| − 1)/dTw(w), and as
the number of excursions to the tree follows a geometric distribution with success
probability 1 − dTw(w)/2dC̃1

(w), we infer that

Ewξ1 = 1 + 2(|Tw| − 1)

dTw(w)
· 2dC̃1

(w)

2dC̃1
(w) − dTw(w)

≤ 4|Tw|.

For some constant C1 > 0 to be specified later, let

� = C1ε
−2 log2(ε3n) and av,w(�) =

�−1∑
j=0

Pv(Wj = w).(4.10)

It follows that

Ev(ξ�) =
�−1∑
j=0

∑
w∈H

Pv(Sξj
= w)Ewξ1

(4.11)

= ∑
w∈H

�−1∑
j=0

Pv(Wj = w)Ewξ1 ≤ 4
∑
w∈H

av,w(�)|Tw|.

We now wish to bound the last expression via Lemma 4.1. Let v ∈ K. Note that,
by definition, ∑

w∈H
av,w(�) = � = C1ε

−2 log2(ε3n).

Moreover, by Proposition 3.7, there exists some constant C2 > 0 (which depends
on C1) such that w.h.p.

max
w∈H

av,w(�) ≤ C2ε
−1 log(ε3n).

Hence, Lemma 4.1 (applied on the sequence {av,w(�) :w ∈ H}) gives that there
exists some constant C > 0 (depending only on C1,C2) such that∑

w∈H
av,w(�)|Tv| ≤ Cε−3 log2(ε3n) except with probability (ε3n)−2.
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Since |K| = (4
3 + o(1))ε3n w.h.p., taking a union bound over the vertices of the

kernel while recalling (4.11) implies that w.h.p.,

Ev(ξ�) ≤ Cε−3 log2(ε3n) for all v ∈ K.(4.12)

We next wish to bound the hitting time to the kernel K, defined next:

τK = min{t :St ∈ K}.
Define τx and τS analogously as the hitting times of St to the vertex x and the
subset S, respectively. Recall that from any v ∈ C̃1, after time ξ1 we will have hit a
vertex in the 2-core, hence for any v ∈ C̃1 we have

EvτK ≤ EvτH + max
w∈H

EwτK.(4.13)

To bound the first summand, since

max
v∈C̃1

EvτH = max
w∈H

max
v∈Tw

Evτw,

it clearly suffices to bound Evτw for all w ∈ H and v ∈ Tw . To this end, let w ∈ H,
and let S̃t be the lazy random walk on Tw . As usual, define τ̃v = min{t : S̃t = v}.
Clearly, for all v ∈ Tw we have Evτw = Evτ̃w . We bound Evτ̃w by Evτ̃w + Ewτ̃v ,
that is, the commute time between v and w. Denote by Reff(v,w) the effective
resistance between v and w when each edge has unit resistance. The commute
time identity of [7] (see also [29]) yields that

Evτ̃w + Ewτ̃v ≤ 4|Tw|Reff(v↔w) ≤ 4|Tw|diam(Tw).(4.14)

Now, Lemmas 4.4 and 4.5 give that for any w ∈ H, with probability at least 1 −
O(ε(ε3n)−2),

|Tw| ≤ 6ε−2 log(ε3n) and diam(Tw) ≤ 2ε−1 log(ε3n).(4.15)

Since w.h.p. |H| = (2 + o(1))ε2n, we can sum the above over the vertices of H
and conclude that w.h.p., (4.15) holds simultaneously for all w ∈ H. Plugging this
in (4.14), we deduce that

Evτ̃w + Ewτ̃v ≤ 48ε−3 log2(ε3n),

and altogether, as the above holds for every w ∈ H,

max
v∈C̃1

EvτH ≤ 48ε−3 log2(ε3n).(4.16)

For the second summand in (4.13), consider e ∈ K and let Pe be the 2-path
corresponding to e in the 2-core H. Recall that w.h.p. the longest such 2-path in
the 2-core has length (1 + o(1))ε−1 log(ε3n). Since from each point v ∈ Pe, we
have probability at least 2/|Pe| to hit one of the endpoints of the 2-path (belonging
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to K) before returning to v, it follows that w.h.p., for every e ∈ K and v ∈ Pe we
have

max
w∈Pe

Ew#{t ≤ τK :Wt = v} ≤
(

1

2
+ o(1)

)
ε−1 log(ε3n).(4.17)

We now wish to apply Lemma 4.1 to the sequence av = maxw∈Pe Ew#{t ≤
τK :Wt = v}. Since this sequence satisfies

max
v∈Pe

av ≤
(

1

2
+ o(1)

)
ε−1 log(ε3n),

∑
v∈Pe

av ≤
(

1

2
+ o(1)

)
ε−2 log2(ε3n),

we deduce that there exists some absolute constant C′ > 0 such that, except with
probability O((ε3n)−2), every w ∈ Pe satisfies

EwτK ≤ C′ε−3 log2 ε3n.(4.18)

Recalling that e(K) = (2 + o(1))ε3n w.h.p., we deduce that w.h.p. this statement
holds simultaneously for all w ∈ H. Plugging (4.16) and (4.18) into (4.13) we
conclude that w.h.p.

EvτK ≤ (C′ + 48)ε−3 log2 ε3n for all v ∈ C̃1.

Finally, we will now translate these hitting time bounds into an upper bound on
the approximate forget time for St . Let πH denote the stationary measure on the
walk restricted to H:

πH(w) = dH(w)/2e(H) for w ∈ H.

Theorem 3.1 enables us to choose some absolute constant C1 > 0 so that �, defined
in (4.10) as C1ε

−2 log2(ε3n), would w.h.p. satisfy

max
w∈H

∥∥∥∥∥1

�

�∑
j=1

Pw(Wj ∈ ·) − πH

∥∥∥∥∥
TV

≤ 1

4
.(4.19)

Define ξ̄0 = τK and for j ≥ 0, define ξ̄j+1 as we did for ξj ’s, that is,

ξ̄j+1 =
{

ξ̄j + 1, if Sξ̄j+1 = Sξ̄j
,

min{t > ξ̄j :St ∈ H, St �= Sξ̄j
}, otherwise.

Let � be the stopping rule that selects j ∈ {0, . . . , � − 1} uniformly and then stops
at ξ̄j . By (4.19), w.h.p.

max
v∈C̃1

‖Pv(S� ∈ ·) − πH‖TV ≤ 1

4
.

Going back to the definition of the approximate forget time in (2.1), taking ϕ = πH
with the stopping rule � yields F1/4 ≤ maxv∈C̃1

E� ≤ maxv∈C̃1
ξ̄�.
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Furthermore, combining (4.12) and (4.18), we get that w.h.p. for any v ∈ C̃1:

Evξ̄� ≤ (C + C′ + 48)ε−3 log2(ε3n).

Altogether, we can conclude that the approximate forget time for St w.h.p. satisfies
that

F1/4 ≤ max
v∈C̃1

Evξ̄� ≤ (C + C′ + 48)ε−3 log2(ε3n).

This translates into the required upper bound on tMIX via an application of Theo-
rems 2.3 and 2.4. �

4.3. Proof of Theorem 1: Lower bound on the mixing time. As before, by The-
orem 2.1 it suffices to prove the analogous statement for C̃1.

Let r, s be as in Lemma 4.6, that is,

r = ⌈1
8ε−1 log(ε3n)

⌉
and s = 1

8ε−2 log(ε3n).

Let Tv for v ∈ H be the PGW(μ)-tree that is attached to the vertex v. Lemma 4.6
gives that when n is sufficiently large, every v ∈ H satisfies

P(Ar,s(Tv)) ≥ ε(ε3n)−2/3.

Since |H| = (2 + o(1))ε2n w.h.p. (recall Theorem 2.1), and since {Tv :v ∈ H}
are i.i.d. given H, we can conclude that w.h.p. there exists some ρ ∈ H such that
Ar,s(Tρ) holds. Let ρ ∈ H therefore be such a vertex.

Let (St ) be a lazy random walk on C̃1 and π be its stationary distribution. As

usual, let τv
	= min{t :St = v}. We wish to prove that

max
w∈Tρ

Pw

(
τρ ≥ 2

3
rs

)
≥ 1

3
.(4.20)

For w ∈ Tρ , let Tw be the entire subtree rooted at w. Further let Lr be the
vertices of the r th level of Tρ . By our assumption on Tρ , there is some ξ ∈ Lr such
that |Tξ | ≥ s.

We will derive a lower bound on Eξ τρ from the following well-known connec-
tion between hitting-times of random walks and flows on electrical networks (see
[29] and also [22], Proposition 2.19).

LEMMA 4.7 ([29]). Given a graph G = (V ,E) with a vertex z and a subset of
vertices Z not containing z, let v(·) be the voltage when a unit current flows from
z to Z and the voltage is 0 on Z. Then EzτZ = ∑

x∈V d(x)v(x).

In our setting, we consider the graph C̃1. Clearly, the effective resistance be-
tween ρ and ξ satisfies Reff(ρ ↔ ξ) = r . If a unit current flows from ξ to ρ and
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v(ρ) = 0, it follows from Ohm’s law that v(ξ) = r . Notice that for any w ∈ Tξ , the
flow between w and ξ is 0. Altogether, we deduce that

v(w) = r for all w ∈ Tξ .

Therefore, Lemma 4.7 implies that

Eξ τρ ≥ r|Tξ | ≥ rs.

Clearly, if w� ∈ Tρ attains max{Ewτρ :w ∈ Tρ} then clearly

Ew�τρ ≤ 2
3rs + Pw�

(
τρ ≥ 2

3rs
)
Ew�τρ.

On the other hand,

Ew�τρ ≥ Eξ τρ ≥ rs,

hence we obtain (4.20).
Recall that w.h.p. |C̃1| = (2 + o(1))εn. Together with Lemma 4.5, we deduce

that w.h.p. every v ∈ H satisfies

|Tv| ≤ 6ε−2 log(ε3n) = o(|C̃1|).
In particular, |Tρ | = o(|C̃1|), and so (as it is a tree) π(Tρ) = o(1). However, (4.20)
states that with probability at least 1

3 , the random walk started at some w ∈ Tρ does
not escape from Tρ , hence

max
w∈C̃1

‖Pw(S2rs/3 ∈ ·) − π‖TV ≥ 1

4
,

where π is the stationary measure for the random walk St on C̃1. In other words,
we have that

tMIX
(1

4

) ≥ 2
3rs = 1

96ε−3 log2(ε3n),

as required.

5. Mixing in the subcritical regime. In this section, we give the proof of
Theorem 2. By Theorem 1 and the well known duality between the subcritical
and supercritical regimes (see [20]), it suffices to establish the statement for the
subcritical regime of G(n,p).

For the upper bound, by results of [5] and [20] (see also [24]), we know
that the largest component has size O(ε−2 log(ε3n)) w.h.p., and by results of
[21], the largest diameter of a component is w.h.p. O(ε−1 log(ε3n)). Therefore,
by the commute time identity (4.14) the maximal hitting time to a vertex is
O(ε−3 log2(ε3n)) uniformly for all components, and using the well-known fact
that tMIX = O(maxx,y Exτy) (see, e.g., [1], Chapter 2) we arrive at the desired
upper bound on the mixing time.
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In order to establish the lower bound, we will demonstrate the existence of a
component with a certain structure, and show that the order of the mixing time on
this particular component matches the above upper bound.

To find this component, we apply the usual exploration process until εn ver-
tices are exposed. By definition, each component revealed is a Galton–Watson tree
(the exploration process does not expose the tree-excess) where the offspring dis-
tribution is stochastically dominated by Bin(n, 1−ε

n
) and stochastically dominates

Bin(n, 1−2ε
n

).
It is well known [see, e.g., [16], equation (1.12)] that for any λ > 0,∥∥∥∥Bin

(
n,

λ

n

)
− Po(λ)

∥∥∥∥
TV

≤ λ2/n.

It follows that when discovering the first εn vertices, we can approximate the
binomial variables by Poisson variables, at the cost of a total error of at most
εn(1/n) = ε = o(1).

LEMMA 5.1. With high probability, once εn vertices are exposed in the ex-
ploration process, we will have discovered at least ε2n/2 components.

PROOF. Notice that each discovered component is stochastically dominated
(with respect to containment) by a Poisson(1 − ε)–Galton–Watson tree. Thus,
the probability that the first ε2n/2 components contain more than εn vertices is
bounded by the probability that the total size of ε2n/2 independent PGW(1 − ε)-
trees is larger than εn. The latter can be estimated (using Chebyshev’s inequality
and Claim 4.2) by

P

(ε2n/2∑
i=1

|Ti | ≥ εn

)
≤ ε2nε−3

(εn/2)2 = 4(ε3n)−1 = o(1).
�

For a rooted tree T , we define the following event, analogous to the event
Ar,s(T ) from Section 4.1:

Br,s(T )
	= {∃v,w ∈ T such that |Tv| ≥ s, |Tw| ≥ s and dist(v,w) = r}.

The next lemma estimates the probability that the above defined event occurs in a
PGW-tree.

LEMMA 5.2. Let T be a PGW(1−2ε)-tree and set r = � 1
20ε−1 log(ε3n)� and

s = 1
64ε−2 log(ε3n). Then for some c > 0 and any sufficiently large n,

P(Br,s(T )) ≥ cε(ε3n)−1/2.



1006 J. DING, E. LUBETZKY AND Y. PERES

PROOF. The proof follows the general argument of Lemma 4.6. By Lemma 4.4,

P(L1/ε �= ∅) � ε.

Combined with the proof of Claim 4.2 [see (4.4) in particular], we get that

E(|L1/ε| | L1/ε �= ∅) � ε−1 and Var(|L1/ε| | L1/ε �= ∅) � ε−2.

Applying Chebyshev’s inequality, we get that for some constants c1, c2 > 0

P(|L1/ε| > c1ε
−1 | L1/ε �= ∅) ≥ c2.

Repeating the arguments for the proof of Lemma 4.6, we conclude that for a
PGW(1 − 2ε)-tree T , the probability that the event Ar,s(T ) occurs (using r, s as
defined in the current lemma) is at least ε(ε3n)−1/4 for n large enough. Thus [by
the independence of the subtrees rooted in the (1/ε)th level],

P

(⋃{Ar,s(Tu) ∩ Ar,s(Tu′) :u,u′ ∈ L1/ε, u �= u′} ∣∣ |L1/ε| > c1ε
−1

)
≥ c(ε3n)−1/2

for some c > 0. Altogether, we conclude that for some c′ > 0,

P

(⋃{Ar,s(Tu) ∩ Ar,s(Tu′) :u,u′ ∈ L1/ε, u �= u′}
)

≥ c′ε(ε3n)−1/2,

which immediately implies that required bound on P(Br,s(T )). �

Combining Lemmas 5.1 and 5.2, we conclude that w.h.p., during our explo-
ration process we will find a tree T which satisfies the event Br,s(T ) for r, s as de-
fined in Lemma 5.2. Next, we will show that the component of T is indeed a tree,
namely, it has no tree-excess. Clearly, edges belonging to the tree-excess can only
appear between vertices that belong either to the same level or to successive levels
(the root of the tree T is defined to be the vertex in T that is first exposed). There-
fore, the total number of candidates for such edges can be bounded by 4

∑
i |Li |2

where Li is the ith level of vertices in the tree. The next claim provides an upper
bound for this sum.

CLAIM 5.3. Let r, s be defined as in Lemma 5.2. Then the PGW(1 − ε)-tree
T satisfies E[∑i |Li |2 | Br,s(T )] = O(ε−3

√
ε3n).

PROOF. Recalling Claim 4.2 and in particular equation (4.4), it follows that
E(

∑
i |Li |2) ≤ ε−2. Lemma 5.2 now implies the required upper bound. �

By the above claim and Markov’s inequality, we deduce that w.h.p. there
are, say, O(ε−3(ε3n)2/3) candidates for edges in the tree-excess of the compo-
nent of T . Crucially, whether or not these edges appear is independent of the
exploration process, hence the probability that any of them appears is at most
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O((ε3n)−1/3) = o(1). Altogether, we may assume that the component of T is
indeed a tree which satisfies the event Br,s(T ).

It remains to establish the lower bound on the mixing time of the random walk
on the tree T . Let v,w be two distinct vertices in the r th level satisfying |Tv| ≥ s

and |Tw| ≥ s. By the same arguments used to prove (4.20), we have that

max
u∈Tv

Pu(τw ≥ 10−3rs) ≥ 1 − 10−3.

Recall that w.h.p. |T | ≤ 6ε−2 log(ε3n) = 384s. It now follows that w.h.p. the mix-
ing time of the random walk on this components satisfies

tMIX(δ) ≥ 10−3rs for δ = 1
384 − 10−3 ≥ 10−3.

The lower bound on tMIX(1
4) now follows from the definition of r, s.
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