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We analyze the Agatston score of coronary artery calcium (CAC) from
the Multi-Ethnic Study of Atherosclerosis (MESA) using the semiparamet-
ric zero-inflated modeling approach, where the observed CAC scores from
this cohort consist of high frequency of zeroes and continuously distributed
positive values. Both partially constrained and unconstrained models are con-
sidered to investigate the underlying biological processes of CAC develop-
ment from zero to positive, and from small amount to large amount. Dif-
ferent from existing studies, a model selection procedure based on likelihood
cross-validation is adopted to identify the optimal model, which is justified by
comparative Monte Carlo studies. A shrinkaged version of cubic regression
spline is used for model estimation and variable selection simultaneously.
When applying the proposed methods to the MESA data analysis, we show
that the two biological mechanisms influencing the initiation of CAC and the
magnitude of CAC when it is positive are better characterized by an uncon-
strained zero-inflated normal model. Our results are significantly different
from those in published studies, and may provide further insights into the bi-
ological mechanisms underlying CAC development in humans. This highly
flexible statistical framework can be applied to zero-inflated data analyses in
other areas.

1. Introduction. The Multi-Ethnic Study of Atherosclerosis (MESA) [Bild
et al. (2002)] is an ongoing longitudinal study of subclinical cardiovascular disease
(CVD) involving a cohort of more than 6500 men and women from six communi-
ties in the United States (http://www.mesa-nhlbi.org/). It was initiated by the Na-
tional Heart, Lung and Blood Institute in July 2000 to investigate the prevalence,
risk factors and progression of subclinical CVD in a population-based multi-ethnic
cohort. Agatston score [Agatston et al. (1990)], which measures the amount of
coronary artery calcium (CAC), is an important predictor of future coronary heart
disease events [Min et al. (2010); Polonsky et al. (2010)]. However, many healthy

Received April 2011; revised October 2011.
1Supported in part by US National Science Foundation Grant DMS-08-05984.
2Supported by Grant N01-HC95159 from the National Heart, Lung and Blood Institute.
3Supported in part by US National Science Foundation Grant DMS-09-34617.
Key words and phrases. Cardiovascular disease, coronary artery calcium, likelihood cross-

validation, model selection, penalized spline, proportional constraint, shrinkage.

1236

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS534
http://www.imstat.org
http://www.mesa-nhlbi.org/


SEMIPARAMETRIC ZERO-INFLATED MODELING IN MESA 1237

people may have no detectable CAC; consequently, CAC equals zero with sub-
stantial relative frequency, but otherwise it is a continuous positive variable. That
CAC has a mixture distribution with an atom at zero hampers its analysis by stan-
dard statistical methods. Such data are referred to as “zero-inflated” and require
the development of more complex statistical models.

Zero-inflated data actually abound in many areas, for example, in health care
cost studies [Blough, Madden and Hornbrook (1999)], environmental science
[Agarwal, Gelfand and Citron-Pousty (2002)], ecological applications [Liu et al.
(2011)], etc. Among various models for analyzing data with excess zeroes, the
hurdle model [Mullahy (1986)] has been proposed to handle both zero-inflation
and zero-deflation in count data, which consists of two parts: one binary model
to determine whether the response outcome is zero or positive and a second part
conditional on the positive responses if the “hurdle is crossed.” On the other hand,
a zero-inflated model [Lambert (1992)] that assumes an underlying mixture dis-
tribution of probability mass at zero and some continuous or discrete distribution
(e.g., normal, Poisson) has been widely used to analyze zero-inflated continuous
data [Couturier and Victoria-Feser (2010)]. Note that both the hurdle model and
the zero-inflated model are essentially equivalent to the two-part model [Kronmal
(2005); Welsh and Zhou (2006)] when dealing with zero-inflated continuous data
as the CAC score in MESA [see Min and Agresti (2005) for discussion on com-
paring existing models for zero-inflated count data]. Therefore, we will not distin-
guish the aforementioned two models and refer to the approach as the zero-inflated
model in the following discussion. Also note that the two-part model for zero-
inflated continuous data, with the probit link for the binary model part, is a special
case of the Heckman model [also known as Type II Tobit model, see Heckman
(1979); Amemiya (1984)]. Most existing zero-inflated models are in the paramet-
ric setting, assuming that the covariate effects are linear (on proper link scales).
However, the assumption of linearity may not hold in public health or medical re-
search. Instead, the semiparametric regression model [Ruppert, Wand and Carroll
(2003)] provides a powerful tool to describing nonlinear relationships between the
covariates and response variables in such situations. For instance, Lam, Xue and
Cheung (2006) used the sieve estimator to analyze zero-inflated count data from a
public health survey.

In zero-inflated data analyses, it is often of interest to examine whether the
zero and nonzero responses are generated by related mechanisms. In MESA, it
may provide useful insights into the biological process on whether or not the risk
factors of CVD influence the probability of having positive CAC and the pro-
gression of CAC when it is present in a similar way, which could be statistically
verified by introducing proportional constraints into the zero-inflated model. Such
a constrained zero-inflated model can be interpreted by a latent biological mecha-
nism involving an unobservable random threshold and has been studied mostly in
a parametric framework. For example, Han and Kronmal (2006) considered pro-
portional constraints in two-part models in MESA to promote better understanding
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of the mechanism that drives the zero-inflation in CAC, and to estimate the model
parameters more accurately (intuitively because fewer parameters need to be es-
timated in a constrained model) as well. However, they did not take into account
the nonlinear relationships between some covariates and the response variable in
MESA [McClelland et al. (2006)]. Ma et al. (2010) incorporated proportional con-
straints in a semiparametric zero-inflated normal model when analyzing the same
data set, but they only considered a universal proportionality parameter on all co-
variates, which is not flexible enough to handle more complicated zero-inflation
processes (see Section 2 for more discussion). Therefore, it becomes necessary to
study a more flexible partially constrained semiparametric zero-inflated model to
overcome the limitations of the existing investigations. We note that similar tech-
niques of imposing proportional constraints on two sets of regression coefficients
in complex models were investigated by Albert, Follmann and Barnhart (1997),
Moulton, Curriero and Barroso (2002), among others.

In this paper, we propose a partially constrained semiparametric zero-inflated
model to analyze the CAC score in MESA, which provides a highly flexible ap-
proach for delineating the zero-inflated data generating process. Under the general
partially constrained model framework, the unconstrained and constrained zero-
inflated models together make it possible to shed new light on the relationship
between the zero and nonzero data generating processes, and the latter promotes
estimation efficiency when the postulated constraint holds. Cubic regression spline
with shrinkage is adopted to estimate nonparametric regression functions and to
select important variables simultaneously. Because of the complex model speci-
fication with a mixture distribution, a model selection procedure based on cross-
validated likelihood is implemented to examine the prediction performance of the
fitted models, and to choose the optimal zero-inflated model from multiple candi-
date models with various partial proportional constraints, which avoids the prob-
lem of multiple testing by treating each candidate model on an equal basis. Esti-
mation of the proposed zero-inflated model and statistical inference will also be
discussed. The outline of this paper is as follows. We introduce the semiparamet-
ric zero-inflated model methodology in Section 2. Simulation studies are carried
out to illustrate the proposed model estimation and selection methods in Section 3.
The analytical results of the MESA data analysis are presented in Section 4. Some
concluding remarks are discussed in Section 5.

2. Methods.

2.1. Semiparametric zero-inflated model. Statistical analysis of zero-inflated
data cannot proceed under the assumption of regular probability distribution due
to the high frequency of zeroes. If the nonzero responses are continuously dis-
tributed, a zero-inflated normal (ZIN) model can be utilized, which assumes a mix-
ture distribution of probability mass at zero and a normal distribution, after suit-
able transformation. Suppose that given the covariate vectors Z = (Z1, . . . ,Zm)′
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and X = (X1, . . . ,Xk)
′, the conditional distribution of the response variable Y is

zero-inflated normal:

Y |Z,X ∼
{

0, with probability (1 − p),
N (μ,σ 2), with probability p,

(2.1)

where the covariate effects of Z are parametric and those of X are nonparametric.
The above ZIN model consists of two parts:

g(p) = β0 + β ′Z +
k∑

i=1

hi(Xi)(2.2)

links the nonzero-inflation probability p to the covariates via a link function g

(e.g., logit or probit function) in the binary part, and the linear part

μ = γ0 + γ ′Z +
k∑

i=1

si(Xi)(2.3)

describes the covariate effects on the normal mean response μ. In the semi-
parametric setting, β0 and γ0 are two intercept terms, the regression coefficients
β = (β1, . . . , βm)′ and γ = (γ1, . . . , γm)′ correspond to the parametric effects in
the two parts, respectively, and hi, si, i = 1, . . . , k, are two sets of nonparamet-
ric smooth functions. By setting some parametric coefficients and/or some smooth
functions to be identically zero, equations (2.2) and (2.3) subsume the case that the
two parts of the model involve different sets of covariates. Each univariate smooth
function hi(Xi) or si(Xi), i = 1, . . . , k, can be estimated nonparametrically using
a cubic regression spline, which can be readily extended to a high-dimensional
smoother using thin plate spline [Wood (2003)] to accommodate interaction be-
tween several continuous predictor variables.

Equations (2.1), (2.2) and (2.3) formulate an unconstrained semiparametric ZIN
model, which assumes that the covariate effects on the probability of having a
nonzero response and the magnitude of the nonzero response may follow different
data generating mechanisms. However, an interesting research question arises as
to whether the two processes are related to some extent such that some covari-
ates influence the two processes similarly. The partially constrained zero-inflated
modeling approach [Liu and Chan (2011)] could be used to test the above hypoth-
esis, which assumes that some of the smooth components (operating on the same
covariates) in (2.2) and (2.3) bear proportional relationships with the constraints:

hi = δisi, i ∈ C ⊆ {1, . . . , k},(2.4)

where C is the index set of the constrained smooth components; δi, i ∈ C , are un-
known proportionality parameters. The covariates corresponding to those smooth
functions with proportional constraints then affect the nonzero-inflation probabil-
ity and the mean nonzero response proportionally on the link scales. However, the
other covariates with indices not in C may have different impacts on the above two
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processes, which can be flexibly modeled by the unconstrained components. Note
that the unconstrained zero-inflated model is a special case in the general partially
constrained model framework with C = ∅.

We consider proportional constraints in the zero-inflated model not only be-
cause they may result in more parsimonious models, but also because they may
admit biological interpretation connected to some latent threshold model. To illus-
trate this connection, suppose that Y ∗ is a latent response variable following the
N (μ,σ 2) distribution. The observed response Y is zero if the latent mean response
μ is less than a random threshold T which could be due to measurement error or
limits of detection, and it is equal to Y ∗ if μ exceeds the threshold. Hence, the
nonzero-inflation probability p = Pr(Y = Y ∗) = Pr(T ≤ μ) = FT (μ), where FT is
the cumulative distribution function (CDF) of the random threshold variable T . As
a result, we would have g(p) = μ if the link function is taken as the inverse CDF
of T , which is, however, generally unknown. Nevertheless, according to Li and
Duan (1989), under some mild regularity conditions, any maximum likelihood-
type estimator is consistent up to a multiplicative scalar, even under a misspecified
link function. More specifically, if we use, for example, a logit link in (2.2), the
parameter estimators in the binary part are proportional to the true parameters in
(2.3), that is, β̂ = δγ , and ĥi = δsi , i = 1, . . . , k, for some scalar δ. Alternatively,
assuming the zero-inflation is caused by some other biological characteristic de-
pending on the covariates through ξ(Z,X), that is, Y = 0 if ξ(Z,X) < T , we may
have partial proportionality among the parameters in the two parts. Based on this
latent biological process, we further relax the proportionality parameter to be pos-
sibly different across the linear and smooth components, leading to the proposed
partially proportionally constrained zero-inflated model.

As a closely relevant study in the literature, Ma et al. (2010) compared the
unconstrained semiparametric zero-inflated model to a fully proportionally con-
strained model, which assumed (2.2) and μ = α + τ {β ′Z + ∑k

i=1 hi(Xi)}, with τ

being the universal proportionality scale parameter. The fully constrained model
is, however, quite inflexible and it cannot handle the cases with nonidentical sets of
covariates in (2.2) and (2.3) or more complicated zero-inflation mechanisms [e.g.,
ξ(Z,X) �= μ as discussed above]. The partially constrained semiparametric zero-
inflated model, on the other hand, is more flexible by untangling the constrained
and unconstrained smooth components. In addition, when the postulated propor-
tional constraint holds, the more parsimonious partially constrained zero-inflated
model promotes estimation efficiency compared to its unconstrained counterpart.
Compared to a more recent study by Liu et al. (2011) on similar problems in a
constrained semiparametric two-part model, our method is computationally more
affordable and more flexible. In this study, we shall focus on the statistical infer-
ence and model selection regarding proportional constraints on the nonparametric
smooth components, which has not been discussed in the literature to our knowl-
edge. Moreover, the estimation and inference methods proposed below could be
readily lifted to the cases where the parametric terms are also (partially) con-
strained.
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2.2. Model estimation and inference. The proposed semiparametric zero-
inflated model can be estimated by the penalized likelihood approach, which, in the
unconstrained case, maximizes the following penalized log-likelihood function:

Pn	(β0,β, γ0,γ , σ 2, h1, . . . , hk, s1, . . . , sk) −
k∑

i=1

λ2
n,iJ (hi) −

k∑
i=1

ϕ2
n,iJ (si),

where Pn is the empirical measure of n observations, 	 = I (Y = 0) log(1 − p) +
I (Y �= 0){logp − (Y−μ)2

2σ 2 } is the log-likelihood function for a single observation,
J (f ) defines a roughness penalty functional of f , and λn,i, ϕn,i, i = 1, . . . , k, are
the smoothing parameters corresponding to each penalty term, which control the
trade-off between the smoothness of the function estimates and goodness of fit of
the model. In this study, cubic regression spline is adopted with roughness penalty
J (f ) = ∫ {f (2)(x)}2 dx, where f (2)(x) denotes the second derivative of a univari-
ate function f (x). The spline estimate can be represented as a linear combina-
tion of some basis functions: f̂ (x) = θ0 + θ1x + ∑K−1

j=1 θj+1(x − x∗
j )3+, where

x∗
j , j = 1, . . . ,K − 1, are fixed knots placed evenly (in terms of percentiles) over

the corresponding observed covariate values [see Durrleman and Simon (1989)
for more discussion on the knots selection in cubic splines], (x)+ = x if x > 0
and (x)+ = 0 otherwise, θ = (θ0, . . . , θK)′ is the parameter vector. Accordingly,
the roughness penalty could be written as a quadratic form of the corresponding
parameters, such that J (f ) = θ ′Sθ , where S is the penalty matrix. The smooth-
ing parameters can be selected by generalized cross-validation (GCV) or similar
procedures. Under the main regularity conditions as following: (R1) The covariates
{Z,X} and the true parametric coefficients β0, β , γ0, γ are bounded; (R2) hi, si are
nonconstant and satisfy J (hi), J (si) < ∞; (R3) λn,i, ϕn,i = OP(n−2/5); (R4) The
Fisher information matrix is nonsingular, plus some minor technical conditions,
the maximum penalized likelihood estimators of the smooth functions can be
shown to be n2/5 consistent, and the parametric coefficient estimators are n1/2 con-
sistent and asymptotically normal, using similar empirical processes techniques in
Liu and Chan (2011).

Statistical inference including construction of the confidence intervals for the
parametric coefficients and confidence bands for the smooth functions can be based
on the observed Fisher information matrix, which avoids computer-intensive boot-
strap methods used in Ma et al. (2010) and Liu et al. (2011). Monte Carlo stud-
ies reported in Liu and Chan (2011) showed that such confidence intervals/bands
enjoyed desirable empirical properties in that their across-the-function coverage
rates were close to their nominal levels. Estimation and inference of a partially
constrained semiparametric zero-inflated model follow a similar procedure. More
details of the estimation algorithm and theoretical results can be found in Liu and
Chan (2011).

As pointed out by Wood (2006), a disadvantage of the cubic spline smoother
is that the estimated smooth is never completely eliminated in the sense of having
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all corresponding parameters estimated to be zero. In addition, linear components
in the smooth function are always unpenalized by the second derivative penalty.
From a variable selection point of view [Huang, Horowitz and Wei (2010)], it may
be desirable to have the smooth be shrunk completely to zero if the corresponding
smoothing parameter is sufficiently large, and preserve the curvature otherwise.
Wood (2006) proposed to add an extra small amount of ridge-type of penalty to
the original penalty matrix, that is, Sε = S+εI was used as the penalty matrix with
additional shrinkage. The parameters of a smooth function with large smoothing
parameter are set to be exactly zero. But otherwise the additional small fraction
of an identity matrix has almost no influence on the cubic spline estimate if it is
not shrunk to linearity by the roughness penalty. With this slight adjustment, the
resulting cubic smooth with additional shrinkage behaves reasonably well in vari-
able selection empirically, which is illustrated in a simulation study in Section 3. In
the following discussion, the cubic regression spline with shrinkage is adopted to
estimate the nonparametric covariate effects as well as to select relevant variables
simultaneously.

2.3. Partial-constraint selection. One remaining issue with the partially con-
strained zero-inflated model is to choose an optimal model in terms of predic-
tion performance from multiple candidate models with various partial constraints
[model (2.1) to (2.3) with constraint (2.4), note that different index sets C cor-
respond to different partially constrained models, including C = ∅, that is, the
unconstrained model] and justify the selection procedure. Liu and Chan (2011)
proposed a model selection criterion for a nonparametric zero-inflated model based
on the marginal likelihood, which is similar to the Bayesian information criterion
(BIC) [Schwarz (1978)]. However, although the marginal likelihood criterion was
shown to work well for zero-inflated model selection both theoretically and em-
pirically, it was derived for penalized regression splines without additional shrink-
age. Little is known about its behavior when applied to the shrinkaged version
of cubic spline, as we adopted in this study. Instead, cross-validation works al-
most universally [Shao (1993)] for most model selection purposes, which assesses
the prediction performance of the models under comparison. The model selection
method is easier to implement in practice than the hypothesis testing approach
used in other studies [see, e.g., Han and Kronmal (2006)], which usually involves
step-wise search and whose complexity increases dramatically with the number of
candidate models.

Among a variety of cross-validation methodologies [Arlot and Celisse (2010)],
we use the Monte Carlo cross-validation (MCCV) [Picard and Cook (1984)] to ex-
amine the out-of-sample prediction performances of various partially constrained
zero-inflated models under consideration. In particular, the data are randomly par-
titioned into two disjoint sets, one of which with a fixed fraction 1−ν of the whole
data (training set) are used to build the model, and the remaining ν fraction of the
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data (validation set) are used to evaluate some goodness-of-fit criterion (or, equiv-
alently, the risk) for each candidate model. The partition is repeated independently
for B times and the out-of-sample prediction performance of each model is esti-
mated by taking the average over the B validation sets. Furthermore, because of
the complexity of the mixture zero-inflated distribution, the goodness-of-fit cri-
terion need to be chosen with caution. We propose to use cross-validated likeli-
hood as the prediction performance criterion, which is advocated in a probabilistic
clustering problem using mixture modeling [Smyth (2000)]. The cross-validated
(log-)likelihood of the kth candidate model is defined as

	cv
k = 1

B

B∑
j=1

	
(
�̂k(D \ Dv

j )|Dv
j

)
,

where D denotes the original data, Dv
j is the validation set of the j th partition,

�̂k(D \ Dv
j ) is the maximum penalized likelihood estimator of the model param-

eter for the kth candidate model estimated from the j th training set, and 	 is the
(log-)likelihood function evaluated on Dv

j . It can be shown that the expected value
of the likelihood evaluated on an independent validation data set is related to the
Kullback–Leibler divergence between the truth and the model under consideration
[Smyth (2000)].

Other possible model selection criteria include the mean squared error (MSE)
of the nonzero responses, and the area under the receiver operating characteristic
(ROC) curve [AUC, larger is preferred as it indicates better prediction, see, e.g.,
Miller, Hui and Tierney (1991)] of the binary indicators of zero responses. How-
ever, both MSE and AUC have limitations when applied to zero-inflated data. In
particular, the MSE only measures the risk for the nonzero responses, whereas the
AUC takes into account all validation samples, but it fails to assess the accuracy of
the predictive value of the nonzero response. Sometimes the two criteria may point
to different candidate models, which confounds the model selection. In addition,
the bias-corrected MSE [denoted as MSEc, it is not difficult to see that E(Y ) = pμ

from (2.1)] of both the zero and nonzero data can be calculated for each validation
set as

MSEc = 1

nv

nv∑
i=1

(p̂iμ̂i − yv
i )2,

where yv
i is the ith observed response in the validation set with nv samples, p̂i

and μ̂i are the corresponding estimated nonzero-inflation probability and mean
nonzero-inflated response from the fitted model, respectively. A simulation study
is carried out to evaluate the performance in model selection between the partially
constrained and unconstrained zero-inflated models based on the cross-validated
likelihood, AUC, MSE and MSEc in Section 3. In practice, it suffices to set the
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MCCV replication size B to some number between 20 and 50 in most model se-
lection problems in the parametric framework [Shao and Tu (1995)]. In the semi-
parametric setting, as in our study, we repeat the partition with equal size (ν = 0.5)
for B = 100 times in the simulation study and B = 200 in the MESA data analysis
because of its much larger sample size.

3. Simulation study. Before applying the zero-inflated modeling approach to
the MESA data analysis, we first conduct a Monte Carlo study to examine the
performance of the proposed model selection method based on the cross-validated
likelihood, as well as other goodness-of-fit criteria discussed in the previous sec-
tion. The out-of-sample prediction performance is evaluated for two candidate
models, that is, the partially constrained zero-inflated normal model (with the cor-
rect model specification) and its unconstrained counterpart.

The simulated data were generated based on three univariate test functions s1,
s2 and s3 on [0,1]:

s1(x) = {
0.2x11(

10(1 − x)
)6 + 10(10x)3(1 − x)10}

/4,

s2(x) = 2 sin(πx),

s3(x) = exp(3x)/10.

First, n independently uniformly distributed random variables X1,X2 and X3 were
generated on [0,1]. A two-level factor covariate Z was set to be 0 for the first n/2
samples and 1 for the rest. The true nonzero-inflation probability p and nonzero-
inflated mean response μ were generated by

logit(p) = 0.3Z + 0.5s̄1(X1) + s̄2(X2),(3.1)

μ = −1 + 2Z + s̄1(X1) + s̄3(X2),(3.2)

where each smooth component was centered at the observed covariate val-
ues and denoted as s̄j , j = 1,2,3, respectively. The nonzero-inflated responses
Y ∗

i , i = 1, . . . , n, were randomly sampled from normal N (μi, σ ) distributions.
The response variable was then “zero-inflated” according to the indicator ran-
dom variables Ei , which followed independent Bernoulli(pi) distributions, that
is, Yi = Y ∗

i if Ei = 1 and Yi = 0 if Ei = 0. The simulated data set is denoted as
{(Yi,Zi,Xi1,Xi2,Xi3)}ni=1. Note that the above data simulation procedure spec-
ifies a partially constrained ZIN with proportional constraint on the s̄1(X1) com-
ponent. But the covariate X2 affects the probability of nonzero inflation and the
mean nonzero response with different functional forms, namely, s2 and s3 in equa-
tions (3.1) and (3.2), respectively. X3 is a redundant covariate that has no impact
in either p or μ.

For each simulated data set, we fitted the partially constrained ZIN and the un-
constrained counterpart, with nine evenly spaced knots for each cubic spline. We
examined seven sample sizes from n = 200 to 800, with two noise levels σ = 0.5
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FIG. 1. Estimated smooth functions fitted by the partially constrained zero-inflated normal model,
with n = 400 and σ = 0.5. The solid lines show the cubic regression spline estimates, with the dashed
lines representing the 95% point-wise confidence bands. The gray dots denote the true functional
values.

and 1. Figure 1 shows the smooth function estimates by the partially constrained
ZIN fitted to one simulated data set with n = 400 and σ = 0.5. The estimated
smooth functions by the unconstrained ZIN fitted to the same data set are dis-
played in Figure 2. The wide confidence band (i.e., large standard errors of the
smooth function estimates) in the upper left panel of Figure 2 suggests the lack of
efficiency in estimating the logistic part (3.1) by the unconstrained ZIN as com-
pared to the constrained model, if the data were generated from the constrained
model [see Liu and Chan (2011), Section 5, for more discussion on the estimation
efficiency]. It is worthwhile to mention that in both the constrained and uncon-
strained models, the covariate effect of the redundant variable X3 was completely
shrunk to zero by the cubic regression splines with shrinkage.

MCCV were conducted for B = 100 times with ν = 0.5 to evaluate the cross-
validated likelihood, AUC, MSE and MSEc for the constrained and unconstrained
ZIN models. In each of the aforementioned settings, 500 replications were per-
formed and the success rates in selecting the true model by each of the criteria
were compared and summarized in Figure 3. As expected, the success rates of se-
lecting the true model generally increase with the sample size for each criterion.
Except for very small sample sizes (n = 200,300, note that they were zero-inflated
data with nearly 50% zeroes), the cross-validated likelihood outperforms all other
three criteria. Especially for MSE of the nonzero data, the success rates are signif-
icantly lower than the other three in each scenario, which suggests that it is not a
reliable measure of the overall prediction performance for zero-inflated model. On
the other hand, the bias-corrected version of MSE performs reasonably well. By
comparing the levels of error variance, the success rates are observed to be consis-
tently higher across different sample sizes for σ = 0.5 (left panel of Figure 3) than
σ = 1 (right panel), except for MSE. This seemingly implausible phenomena of
MSE may be explained by the bias–variance trade-off of the imposed constraint in
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FIG. 2. Estimated smooth functions with 95% point-wise confidence bands (dashed lines) fitted by
the unconstrained zero-inflated normal model, with n = 400 and σ = 0.5. The gray dots denote the
true functional values.

FIG. 3. Model selection performance of the cross-validated likelihood, AUC, MSE and MSEc .
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the zero-inflated model. More specifically, the constrained model is more parsimo-
nious and hence has smaller estimation variance as compared to the unconstrained
model, which may also introduce bias. When the error variance is reduced, the bias
becomes more dominant than the estimation variance in the MSE decomposition.
Therefore, the unconstrained model tends to be more favored by MSE when the
error variance is smaller.

We also remark that the average discrepancies of all criteria between the uncon-
strained and correctly specified constrained models decrease as the sample size in-
creases, which suggests that the relative predictive gain by the constrained ZIN di-
minishes with increasing sample size. This is not surprising because as the sample
size increases, the estimation error becomes smaller relative to the intrinsic vari-
abilities in the data. So if the data were truly generated from a partially constrained
zero-inflated model and the sample size is large, we would benefit not as much on
the estimation efficiency by fitting a constrained model as for small to moderately
large sample sizes. In situations where there are too few observations to carry out
an unconstrained semiparametric or nonparametric zero-inflated model analysis,
fitting a partially constrained model may provide an elegant alternative—a per-
spective earlier advanced by Lambert (1992) within the parametric zero-inflated
framework.

In summary, as illustrated by the Monte Carlo study, the cross-validated likeli-
hood performs very well in selecting the true model with over 90% success rate
under mid to large sample sizes (n ≥ 400), which provides strong justification for
the proposed model selection procedure.

4. MESA data analysis.

4.1. Model specification. The MESA data consist of 6672 participants 44 to
84 years old (after removing missing values), among which 3343 (50.1%) have
zero Agatston scores of CAC. We use log(CAC + 1) as the response variable
(the log-plus-one transformation is commonly used in many applications to avoid
long tails and preserve the zeroes), and the covariates include gender (0-female,
1-male), race (0-Caucasian, 1-Chinese, 2-African American, 3-Hispanic), diabetes
mellitus (0-normal, 1-otherwise), cigarette smoking status (0-never, 1-former, 2-
current), age, body mass index (BMI), diastolic blood pressure (DBP), systolic
blood pressure (SBP), high-density lipoprotein (HDL) cholesterol and low-density
lipoprotein (LDL) cholesterol, of which the first four could be treated as factor
predictors, and the rest are continuous variables. Because approximately half of
the CAC scores are zeroes, while the remaining are positive and continuously dis-
tributed, we adopt a semiparametric zero-inflated normal regression model for the
response variable Y = log(CAC + 1) (see Figure 4), with the conditional response
distribution as specified by (2.1). The covariate effect of BMI was found to be lin-
ear in a preliminary analysis, hence, it was modeled as a parametric term. There
was only slight interaction between HDL and LDL cholesterol levels, so they were
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FIG. 4. Histogram of log(CAC + 1) from MESA.

modeled additively for ease of interpretation. As a consequence, the probability of
having positive CAC is linked via the logit function (it is referred to as logistic part
and henceforth) to the covariates as follows:

logit(p) = β0 + β1Male + β2Chinese + β3Black + β4Hispanic

+ β5Cigf + β6Cigc + β7DM + β8BMI(4.1)

+ h1(Age) + h2(DBP) + h3(SBP) + h4(HDL) + h5(LDL),

where β0 to β8 are the regression coefficients associated with the parametric terms;
DM stands for abnormal diabetes mellitus status; Cigf and Cigc are binary indi-
cators of former and current smoker respectively; hi, i = 1, . . . ,5, are unknown
smooth functions. The mean positive (transformed) CAC level is specified as fol-
lows (linear part):

μ = γ0 + γ1Male + γ2Chinese + γ3Black + γ4Hispanic

+ γ5Cigf + γ6Cigc + γ7DM + γ8BMI(4.2)

+ s1(Age) + s2(DBP) + s3(SBP) + s4(HDL) + s5(LDL),

where γ0 to γ8 are regression coefficients, si, i = 1, . . . ,5, are smooth functions
possibly distinct from hi . All univariate smooth functions in the logistic and lin-
ear parts above were estimated nonparametrically using cubic regression splines
with shrinkage and nine evenly spaced knots to identify important risk factors, as
discussed in Section 2.

The unconstrained ZIN models (4.1) and (4.2) assume that the covariate effects
on the probability of having a positive CAC score and the mean positive (trans-
formed) CAC may be driven by different physiological processes. As discussed
earlier, a partially constrained zero-inflated model could be used to test whether



SEMIPARAMETRIC ZERO-INFLATED MODELING IN MESA 1249

TABLE 1
Comparison of candidate zero-inflated normal models fitted to the MESA data based on Monte
Carlo cross-validation with B = 200 and ν = 0.5. “�” denotes the proportional constrained

smooth component; “×” denotes the unconstrained smooth component

Model Age DBP SBP HDL LDL loglik AUC MSE MSEc

M1 × × × × × −5018.5 0.79 2.59 4.38
M2 � × × × × −5034.9 0.78 2.60 4.42
M3 × × � × × −5022.3 0.79 2.61 4.38
M4 � × � × × −5034.6 0.78 2.60 4.42

the two processes are related to some extent. For example, we can add a propor-
tional constraint h1 = δ1s1 to examine whether age acts in a similar manner in
affecting CAC from zero to positive, and from small amount to large amount. By
comparing the fitted partially constrained and unconstrained models based on their
cross-validated likelihoods, we can properly address interesting scientific hypothe-
ses as above, which may help elucidate the biological process responsible for CAC
development.

Table 1 lists some partially constrained and unconstrained ZIN models fitted to
the MESA data, with corresponding cross-validated (log-)likelihood, AUC, MSE
and MSEc estimated from B = 200 replications (given that the sample size is con-
siderably larger than that in the simulation study) of MCCV with equal size of
training set and validation set (ν = 0.5). The DBP effect was found to be com-
pletely eliminated in both the logistic and linear parts and, hence, it was treated
as an unconstrained component. We did not include models with constraints on
the HDL and/or LDL components due to convergence problem. This suggests that
the HDL and LDL effects are likely to be very different in the two processes,
namely, the absence/presence of CAC and the level of CAC when it is present,
such that forcing them to be proportional on the link scales will cause numerical
problems in the estimation. Therefore, we considered four candidate semipara-
metric zero-inflated models in the MESA data analysis: M1—no constraint im-
posed, M2—proportional constraint on age, M3—proportional constraint on SBP,
and M4—proportional constraints on both age and SBP (with different proportion-
ality parameters).

According to the cross-validated likelihood, the unconstrained ZIN model M1
has the best prediction performance among all candidate models. The second best
model is the constrained model M3, which imposes a proportional constraint on
the SBP component (estimated proportionality parameter is 0.682 with standard
deviation 0.157). Note that all other three criteria, that is, AUC, MSE, and MSEc,
are very close, especially for M1 and M3. This is expected because, as discussed in
the end of Section 3, the discrepancies between these criteria would be very small
with large sample size. In fact, the AUC and MSEc criteria (which are two reason-
ably reliable measures as demonstrated in the simulation study) of M1 and M3 are



1250 LIU, MA, KRONMAL AND CHAN

so close that it is hard to discern any differences. However, there is still some gain
in the cross-validated likelihood by fitting an unconstrained ZIN as compared to
the constrained models. We also tried other values of the fraction ν between 0.5
and 0.85 with more data in the validation set (ν = 0.85 corresponds to 1000 sam-
ples in the training set) to assess the robustness of the likelihood cross-validation
procedure. The unconstrained model was consistently selected under various sizes
of the validation set. Therefore, according to the prediction performance using
cross-validation, the unconstrained model performs better than the partially con-
strained models, which suggests that the covariates act differently in predicting the
presence of positive CAC and its severity when it is positive. The above result is
significantly different from existing studies, including Han and Kronmal (2006),
Ma et al. (2010) and Liu et al. (2011) in the determination of proportional con-
straint in zero-inflated models of CAC score in MESA.

4.2. Analytical results. We now present the results of the fitted unconstrained
semiparametric zero-inflated model to the MESA data, as selected by the model
selection procedure based on likelihood cross-validation. Table 2 lists the coeffi-
cient estimates of the parametric components. The model results suggest that men
have increased risk of having positive CAC and higher mean CAC score when it
is present, as compared to women. Both African and Hispanic Americans have re-
duced probability of having CAC, as compared with Caucasian. Chinese, African
and Hispanic Americans all have lower average CAC level when it is positive.
Having abnormal diabetes status will increase both the risk of positive CAC and
its progression. Former smokers are more likely to have CAC and, on the aver-
age, they have higher positive CAC scores, as compared with nonsmokers. Cur-
rent smokers have even higher risk and mean positive CAC level. BMI is linearly

TABLE 2
Coefficient estimates of the fitted unconstrained zero-inflated normal model defined by equations

(4.1) and (4.2)

Logistic Linear

Estimate SE p-value Estimate SE p-value

Intercept −1.13 0.18 <0.001 3.46 0.19 <0.001
Male 0.91 0.06 <0.001 0.67 0.06 <0.001
Chinese −0.13 0.10 0.209 −0.28 0.10 0.004
African −0.79 0.07 <0.001 −0.37 0.07 <0.001
Hispanic −0.63 0.08 <0.001 −0.34 0.08 <0.001
DM 0.25 0.07 <0.001 0.27 0.06 <0.001
Cigf 0.37 0.06 <0.001 0.19 0.06 0.002
Cigc 0.61 0.09 <0.001 0.31 0.09 <0.001
BMI 0.03 0.01 <0.001 0.02 0.01 0.002
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FIG. 5. Nonparametric smooth function estimates of the fitted unconstrained zero-inflated normal
model defined by equations (4.1) and (4.2). The dashed lines constitute 95% point-wise confidence
bands. The DBP effects are estimated to be zero in both the logistic and linear parts (not shown).

positively associated with both the probability of having positive CAC (on the link
scale) and CAC score if it is positive.

Among other related MESA studies, Han and Kronmal (2006) included only
gender, race and age as the covariates, and their parameter estimates are similar
to ours in signs and magnitudes, except that they found Chinese had significantly
reduced risk of having positive CAC, as compared to Caucasian. The above find-
ings on the parametric components are consistent with the unconstrained two-part
model in Ma et al. (2010).

The estimated nonparametric smooth functions are displayed in Figure 5. Ta-
ble 3 summarizes the significance test results of the nonparametric terms based
on F tests with the null hypothesis that the smooth function is identically zero
over the observed domain. Age is positively related to both the probability of pos-
itive CAC (p < 0.001) and positive CAC level (p < 0.001). However, its effect
in the positive mean response μ shows some curvature at the right tail, suggest-
ing that the age effect is not as strong in the old as in mid-aged people. Elevated
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TABLE 3
Nonparametric smooth function estimates of the fitted unconstrained zero-inflated normal model

defined by equations (4.1) and (4.2). EDF stands for effective degrees of freedom. The p-values are
based on F tests for significance

Logistic Linear

EDF F statistic p-value EDF F statistic p-value

s(Age) 2.4 816.6 <0.001 2.7 116.7 <0.001
s(DBP) NA NA NA NA NA NA
s(SBP) 1.7 31.1 <0.001 1.0 7.2 0.003
s(HDL) 3.0 19.5 <0.001 2.8 1.8 0.128
s(LDL) 2.2 38.0 <0.001 NA NA NA

systolic blood pressure is associated with increased risk of having positive CAC
(p < 0.001) and higher CAC score when it is present (p = 0.003). Its effect on the
presence of CAC is nonlinear on the logistic scale, whereas it is almost linear in
the positive mean response part. The probability of having positive CAC decreases
as the HDL cholesterol level increases up to around 60 mg/dL, beyond which the
risk then stays stable (p < 0.001). Among the participants who have positive CAC
scores, those with HDL between 40 to 60 mg/dL were observed to have lower
CAC levels, however, its influence is not statistically significant (p = 0.128). LDL
is a pronounced risk factor of CAC initiation (p < 0.001). Nevertheless, the LDL
effect on the extent and severity of CAC when it is positive is completely elimi-
nated by the shrinkaged cubic spline. The same was observed as to the diastolic
blood pressure effects in both logistic and linear parts (not shown in Figure 5).

This study may significantly differ from published MESA studies concerning
the nonparametric covariate effects along the following perspectives. First, the un-
constrained semiparametric zero-inflated model of the Agatston score was found to
have the best prediction performance based on the likelihood cross-validation pro-
cedure. Second, the age effect on the magnitude of CAC when it is positive, and
the systolic blood pressure influence on the probability of having positive CAC,
were both observed to be nonlinear. Third, LDL was shown to have no effect in
predicting CAC level among those with positive CAC. And last, diastolic blood
pressure was found not to be a risk factor in human CAC development by the
cubic regression spline with shrinkage adopted in our study.

5. Discussion and conclusion. We have presented a highly flexible semipara-
metric regression model for analyzing zero-inflated data. Possible partial propor-
tional constraints, whose biological interpretation could be traced to some latent
threshold model under a possibly misspecified link function, were considered to
promote estimation efficiency and help to reveal the connection between the zero
and nonzero data generating processes. In order to choose the optimal model speci-
fication among multiple candidate models with various partial constraints, a model
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selection procedure based on cross-validated likelihood was used, which was em-
pirically corroborated by a simulation study. The proposed partially constrained
zero-inflated model framework makes it possible to provide evidence-based justi-
fication to address research questions concerning the underlying mechanisms that
drive the presence and magnitude of the nonzero response. In particular, it can be
used to identify closely related covariate effects in the zero and nonzero data gen-
erating processes. We have adopted the cubic regression spline with shrinkage to
estimate nonparametric smooth functions and select relevant variables simultane-
ously, which works well empirically in both simulation and real data application.
However, its theoretical properties still need to be investigated in the future.

When applied to the MESA data analysis, the semiparametric zero-inflated
modeling approach indicates that the initiation of calcium in the human coronary
artery and the magnitude of positive calcium (measured by Agatston score) in
the general population are better characterized by an unconstrained zero-inflated
model. It is statistically justified that the initiators of coronary artery disease may
be different from the factors that are related to extent and progression of the dis-
ease which is reflected by the amount of CAC in those with positive CAC scores.
In particular, age and systolic blood pressure are both risk factors in influencing
the development of CAC from zero to positive, and from small to large amount.
But their effects show some extent of nonlinearity at certain stages. HDL and LDL
cholesterol levels both have pronounced nonlinear effects in predicting the pres-
ence of CAC. However, only HDL has some impact (not statistically significant)
on the extent of CAC in those who have positive CAC scores. These results may
reflect the fact that the biological mechanisms underlying the initiation and pro-
gression of CAC are somehow different. The partially constrained semiparametric
zero-inflated modeling approach (including the unconstrained case) with the model
selection procedure based on likelihood cross-validation can be applied widely to
complex data analysis with the zero-inflation problem.
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