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META-ANALYSIS OF FUNCTIONAL NEUROIMAGING DATA
USING BAYESIAN NONPARAMETRIC BINARY REGRESSION

BY YU RYAN YUE1, MARTIN A. LINDQUIST2 AND JI MENG LOH

City University of New York, Columbia University and AT&T Labs-Research

In this work we perform a meta-analysis of neuroimaging data, con-
sisting of locations of peak activations identified in 162 separate studies on
emotion. Neuroimaging meta-analyses are typically performed using kernel-
based methods. However, these methods require the width of the kernel to
be set a priori and to be constant across the brain. To address these issues,
we propose a fully Bayesian nonparametric binary regression method to per-
form neuroimaging meta-analyses. In our method, each location (or voxel)
has a probability of being a peak activation, and the corresponding probabil-
ity function is based on a spatially adaptive Gaussian Markov random field
(GMRF). We also include parameters in the model to robustify the proce-
dure against miscoding of the voxel response. Posterior inference is imple-
mented using efficient MCMC algorithms extended from those introduced in
Holmes and Held [Bayesian Anal. 1 (2006) 145–168]. Our method allows
the probability function to be locally adaptive with respect to the covariates,
that is, to be smooth in one region of the covariate space and wiggly or even
discontinuous in another. Posterior miscoding probabilities for each of the
identified voxels can also be obtained, identifying voxels that may have been
falsely classified as being activated. Simulation studies and application to the
emotion neuroimaging data indicate that our method is superior to standard
kernel-based methods.

1. Introduction.

1.1. Meta-analysis of neuroimaging studies. In recent years there has been a
rapid increase in the number and variety of neuroimaging studies being performed
around the world. This growing body of knowledge is accompanied by a need
to integrate research findings and establish consistency across labs and scanning
procedures, and to identify consistently activated regions across a set of studies.
Performing meta-analyses has become the primary research tool for accomplish-
ing this goal [Wager, Lindquist and Kaplan (2007); Wager et al. (2009)]. Evaluat-
ing consistency is important because false positive rates in neuroimaging studies
are likely to be higher than in many fields, as many studies do not adequately
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correct for multiple comparisons. Thus, some of the reported activated locations
are likely to be false positives, and it is important to assess which findings have
been replicated and have a higher probability of being real activations. Individ-
ual imaging studies often use very different analyses [see Lindquist (2008) for an
overview], and effect sizes are only reported for a small number of activated loca-
tions, making combined effect-size maps across the brain impossible to reconstruct
from published reports. Instead, meta-analysis is typically performed on the spa-
tial coordinates of peaks of activation (peak coordinates), reported in the standard
coordinate systems of the Montreal Neurologic Institute (MNI) or Talairach and
Tournoux (1988), and combined across studies. These peak coordinates typically
correspond to the voxel whose t-statistic takes the maximum value in a spatially
coherent cluster of activation, that is, the max statistic among a set of adjacent vox-
els that exceed a certain threshold. This information is typically provided in most
neuroimaging papers and simple transformations between the two standard spaces
exist.

A typical neuroimaging meta-analysis studies the locations of peak activations
from a large number of studies and seeks to identify regions of consistent activa-
tion. This is usually performed using kernel-based methods such as activation like-
lihood estimation [ALE; Turkeltaub et al. (2002)] or kernel density approximation
[KDA; Wager, Jonides and Reading (2004)]. In both methods, maps are created
for each study by convolving an indicator map, consisting of an impulse response
at each study peak, with a kernel of predetermined shape and width. The resulting
maps are thereafter combined across studies to create a meta-analysis map. Monte
Carlo methods are used to find an appropriate threshold to test the null hypothesis
that the n reported peak coordinates are uniformly distributed throughout the grey
matter. A permutation distribution is computed by repeatedly generating n peaks
at random locations and performing the smoothing operation to obtain a series of
statistical maps under the null hypothesis that can be used to compute voxel-wise
p-values. The two approaches differ in the shape of the smoothing kernel. In KDA,
it is assumed to be a sphere with fixed radius, while in ALE it is a Gaussian with
fixed standard deviation.

A major shortcoming of kernel-based approaches is that the width of the ker-
nel, and thus the amount of smoothing, is fixed a priori and assumed to be con-
stant throughout the brain. In order to address these concerns, we propose a fully
Bayesian nonparametric binary regression method for performing neuroimaging
meta-analysis. In our method, each location has a probability of being a peak ac-
tivation, and the corresponding probability function is based on a spatially adap-
tive Gaussian Markov random field (GMRF). The locally adaptive features of our
method allows us to better match the natural spatial resolution of the data across
the brain compared to using an arbitrary chosen fixed kernel size.

In this work, a meta-analysis was performed on the results of 162 neuroimag-
ing studies (57 PET and 105 fMRI) on emotion. The studies were all performed
on healthy adults and published between 1990 and 2005. For each study, the foci
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FIG. 1. Example of the raw data are shown for a representative sagittal, coronal and axial slice of
the brain. Each point represents a reported activation foci in an individual study by criteria desig-
nated by that particular study. All foci are reported and plotted in the MNI brain template to allow
for cross study comparisons.

of activation were included when reported as significant by the criteria designated
in the individual studies. Relative decreases in activation in emotion related tasks
were not analyzed. All coordinates were reported on the MNI coordinate system
to allow for cross study comparisons. Together, these studies yield a data set con-
sisting of 2478 unique peak coordinates. This data set is described in greater detail
in Kober et al. (2008). Due to the relative scarcity of neuroimaging studies on a
particular topic (e.g., emotion), it is standard practice in meta-analysis to combine
data obtained using different imaging modalities, sample sizes and statistical anal-
yses. This is done to ensure that the analysis has enough power to detect effects of
interest. In addition, studies in Wager et al. (2008) have shown no significant dif-
ference between MRI and PET in the assessment of their functional maps and their
foci of activation. Figure 1 shows the raw data for representative slices of the brain
with fixed x, y and z directions, respectively. Each point in the plot represents the
location of the peak of a cluster of reported activation from one of the 162 neu-
roimaging studies. The primary goal for analyzing this data set was to determine
areas of the brain that are consistently active in studies of emotion.

1.2. Statistical modeling for binary response. Let Y be a random binary re-
sponse variable, X a vector of covariates and p(x) the response probability func-
tion, p(x) = Pr(Y = 1|X = x). In the context of fMRI meta-analysis, Y = 1 if
the voxel is reported as being a peak activation. The vector X includes the voxel
location and possibly other covariates related to the patient or the study. In non-
parametric binary regression, we have p(x) = H(z(x)), where H is a specified
cumulative distribution function often referred to as the link function. Popular link
functions are the standard logistic and standard normal cumulative density func-
tions.

The traditional parametric approach to binary regression involves setting z(x) =
α + βT x, with unknown parameters α and β . McCullagh and Nelder (1989) con-
tains a comprehensive treatment of frequentist parametric methods with exponen-
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tial family models, binary regression being a special case. Bayesian binary re-
gression is well documented in, for example, Dey, Ghosh and Mallick (2000). In
particular, Albert and Chib (1993) and Holmes and Held (2006) introduced auxil-
iary variable methods that provide efficient Markov chain Monte Carlo (MCMC)
inference for parametric binary regression.

There is an extensive non-Bayesian literature on nonparametric regression us-
ing exponential family models, with binary regression treated as a special case.
O’Sullivan, Yandell and Raynor (1986) estimated a single function using a pe-
nalized likelihood approach, and their work was extended to additive models by
Hastie and Tibshirani (1990). Gu (1990) and Wahba et al. (1995) used tensor prod-
uct smoothing splines to allow for interactions between variables and estimated
smoothing parameters via a generalized cross-validation technique. Loader (1999)
proposed a local likelihood approach for both univariate and bivariate nonparamet-
ric estimation and provided data-driven bandwidth estimators.

Bayesian methods for nonparametric binary regression were developed in Wood
and Kohn (1998), Holmes and Mallick (2003), Choudhuri, Ghosal and Roy (2007),
and Trippa and Muliere (2009). These methods are not locally adaptive, however.
Krivobokova, Crainiceanu and Kauermann (2008) proposed an adaptive penal-
ized spline estimator for binary regression based on quasi-likelihoods. Wood et al.
(2008) presented a locally adaptive Bayesian estimator for binary regression by
using a mixture of probit regressions where the argument of each probit regres-
sion is a thin-plate spline prior with its own smoothing parameters and the mixture
weights depend on the covariates.

In fMRI meta-analysis, kernel-based smoothing techniques are typically used to
identify regions of consistent activation and Monte-Carlo procedures are used to
establish statistical significance. These techniques count the number of activation
peaks within a radius of each local brain area and compare the observed number to
a null distribution to establish significance. The kernel radius is chosen by the an-
alyst, and kernels that match the natural spatial resolution of the data are the most
statistically powerful [Wager, Lindquist and Kaplan (2007)]. In our method, the
function z(·) is assumed to be a spatially adaptive Gaussian Markov random field
(GMRF) with locally varying variance. The local adaptiveness of the procedure
allows the probability function to be smooth in some regions and wiggly in others,
depending on the data information. The need of adaptive smoothing for fMRI data
has been demonstrated in Brezger, Fahrmeir and Hennerfeind (2007) and Yue,
Loh and Lindquist (2010). The proposed Bayesian nonparametric binary regres-
sion method is an extension to the binary response case of methods developed in
Yue and Speckman (2010) and Yue and Loh (2011). To make this procedure better
suited for application to fMRI meta-analysis, we incorporate additional model pa-
rameters associated with the probabilities of voxels being miscoded. This makes
the modeling more robust to possible errors in the data. The posterior inference is
carried by efficient MCMC algorithms extended from those in Holmes and Held
(2006). From the model fit we obtain a map of the probability of observing a peak
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activation across the brain as well as posterior miscoding probabilities. Regions of
the brain with high probability estimates are identified as activated based on the
meta-analysis. This makes the proposed method far more interpretable than earlier
approaches.

The rest of the paper is organized as follows. The proposed method is described
in Section 2. Section 3 presents simulation studies comparing our method to other
available methods. Results of the data analysis are given in Section 4. Section 5
concludes this work with discussions.

2. Bayesian hierarchical modeling and inference. We describe in this sec-
tion our nonparametric binary regression model using the spatially adaptive
GMRF. Note that our method currently can only be implemented in two dimen-
sions. We apply it to the fMRI setting by fitting the model to brain slices in suc-
cession. This is similar to the staggered approach in Penny, Trujillo-Barreto and
Friston (2005), who used a two-dimensional Laplacian prior that is related to our
GMRF prior.

2.1. Spatially adaptive GMRF on regular lattice. Let us denote by x =
(x11, x21, . . . , xn1,n2)

′ an n-dimensional vector of voxel locations on a regular
n1 ×n2 lattice (n = n1n2). Adopting notation zjk = z(xjk), we assume that the un-
derlying spatial process zjk is an adaptive Gaussian Markov random field (GMRF)
as introduced in Yue and Speckman (2010). This adaptive GMRF is based on the
following spatial Gaussian random walk model:(∇2

(1,0) + ∇2
(0,1)

)
zjk ∼ N(0, δ2γ 2

jk),(1)

where ∇2
(1,0) and ∇2

(0,1) denote the second-order backward difference operators

in the vertical and horizontal directions respectively, that is, ∇2
(1,0)zjk = zj+1,k −

2zjk + zj−1,k and ∇2
(0,1)zjk = zj,k+1 − 2zjk + zj,k−1 for 2 ≤ j ≤ n1 − 1 and 2 ≤

j ≤ n2 − 1. The parameter δ2 is a global smoothing parameter accounting for
large-scale spatial variation while γ 2

jk are the adaptive smoothing parameters that
capture the local structure of the process z(x). The equation (1) essentially defines
an adaptive smoothness prior on the second-order difference (∇2

(1,0) + ∇2
(0,1))zjk .

As a result, the conditional distribution of each zjk given the rest z−jk is Gaussian
and only depends on its neighbors in a specific way. This dependence can be shown
using a graphical notation by expressing the conditional expectation of an interior
zjk as

E(zjk|z−jk) = 1

20

⎛
⎜⎝8

◦ ◦ ◦ ◦ ◦◦ ◦ • ◦ ◦◦ • ◦ • ◦◦ ◦ • ◦ ◦◦ ◦ ◦ ◦ ◦
− 2

◦ ◦ ◦ ◦ ◦◦ • ◦ • ◦◦ ◦ ◦ ◦ ◦◦ • ◦ • ◦◦ ◦ ◦ ◦ ◦
− 1

◦ ◦ • ◦ ◦◦ ◦ ◦ ◦ ◦• ◦ ◦ ◦ •◦ ◦ ◦ ◦ ◦◦ ◦ • ◦ ◦

⎞
⎟⎠ ,(2)

where the locations denoted by a “•” represent those values of z−jk that the condi-
tional expectation of zjk depends on, and the number in front of each grid denotes
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the weight given to the corresponding “•” locations. Therefore, the conditional
mean of zjk is a particular linear combination of the values of its neighbors, and
its conditional variance is Var(zjk|z−jk) = 20δ2γ 2

jk .

The use of γ 2
jk is important for estimating activation probabilities in a fMRI

meta-analysis. To identify consistently activated regions across a set of studies,
we need less smoothing (large γ 2

jk) where there are many reported peak locations

and relatively more smoothing (small γ 2
jk) where very few or no peaks are re-

ported. Standard smoothing techniques (e.g., kernel smoother with fixed width)
suffer from a trade-off between increased detectability and loss of information
about the spatial extent and shape of the activation areas. Adaptive smoothing pro-
vided by γ 2

jk can reduce such loss of information. The need of adaptive smoothing
for processing fMRI imaging data was also demonstrated in Brezger, Fahrmeir and
Hennerfeind (2007) and Yue, Loh and Lindquist (2010). Note that setting γ 2

jk ≡ 1
makes (1) a nonadaptive GMRF on lattice, yielding a Bayesian solution for thin-
plate splines [see Rue and Held (2005), section 3.4.2].

Additional priors need to be specified for γ 2
jk in (1). We use independent inverse

gamma priors for γ 2
jk , that is, γ −2

jk

i.i.d.∼ Gamma(ν/2,1/2), ν > 0. The marginal
prior distribution of the increment in (1) turns out to be a Student-t distribution
with ν degrees of freedom. We choose a Cauchy distribution (ν = 1), which has
been suggested as a default prior for robust nonparametric regression [Carter and
Kohn (1996)] and sparse Bayesian learning [Tipping (2001)]. Yue and Loh (2011)
and Brezger, Fahrmeir and Hennerfeind (2007) also suggested similar priors for
γ 2
jk in their work on adaptive spatial smoothing. Yue and Speckman (2010) and

Yue, Loh and Lindquist (2010), however, assumed another spatial GMRF model
for log(γ 2

jk) in a second hierarchy. Although it has been applied successfully for

modeling spatial data, this two-stage GMRF prior forces the γ 2
jk to be smooth

and it is not suitable for estimating spatial processes with jumps or sharp peaks.
Furthermore, the computation is rather complicated, precluding extensions to more
flexible regression models, for example, the binary hierarchical regression model
considered here.

The prior for δ2 is often chosen to be a conjugate diffuse but proper inverse
gamma prior. We, however, propose to use a half-t distribution as the prior for its
square root, that is,

[δ|ρ,S] ∝
(

1 + 1

ρ

(
δ

S

)2)−(ρ+1)/2

, δ > 0,(3)

where ρ is the parameter of degrees of freedom and S is the scale parameter. The
half-t distribution can be treated as the absolute value of a Student-t distribution
centered at zero [see Psarakis and Panaretos (1990)]. Although it is not commonly
used in statistics, the half-t distribution was used in objective Bayesian inference
by Wiper, Girón and Pewsey (2008) and suggested for use as a default prior for
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a variance component in hierarchical models [e.g., Gelman (2006); Gelman et al.
(2008)]. This family includes, as special cases, the improper uniform density (if
ρ = −1) and the proper half-Cauchy (if ρ = 1). Following Carvalho, Polson and
Scott (2010), we use a standard half-Cauchy prior (ρ = S = 1) due to its heavy
tail and substantial mass around zero. Although it is not conjugate, the half-t prior

on δ can be written as δ
D= |ξ |θ , where ξ ∼ N(0,1) and θ2 ∼ IG(ρ/2, ρS2/2)

[e.g., Psarakis and Panaretos (1990)]. This property enables us to develop efficient
MCMC sampling schemes as shown in the Appendix.

2.2. Posterior inference. Although any cumulative distribution function (cdf)
H that preserves the smoothness of z may be used as a link function, here, we
only consider the case in which the H can be represented as the scale mixture
of mean zero normal cdf’s. Two special examples are the well-known probit and
logit link functions. With a specific link function, the posterior distribution of z is
not analytically tractable, and thus an MCMC algorithm will be used to compute
the posterior distribution. The algorithm is based on the auxiliary variable method
in Holmes and Held (2006) and GMRF simulation techniques in Rue and Held
(2005). Briefly, the data are augmented by introducing an auxiliary variable wi

that follows a normal distribution with mean zi and variance λi . The new data wi

are associated with original binary data yi in the following way: yi = 1 if wi > 0
and yi = 0 if wi ≤ 0. Then, the adaptive GMRF prior is taken on zi and a certain
prior distribution chosen for λi depending on the link function. The full conditional
distributions for the Gibbs sampler are all easily derived and can be efficiently
sampled. In the Appendix we provide the detailed MCMC algorithms for the link
functions that are the probit, logit and general scale mixture of normals.

2.3. Robustification. In this section we describe how to robustify our proce-
dure against miscoding of the response variable. Adopting the idea in Choudhuri,
Ghosal and Roy (2007), we use indicator variables ψ = (ψ1, . . . ,ψn)

′ such that
ψi = 1 indicates that yi is miscoded and ψi = 0 indicates that yi is correctly coded.
In the context of fMRI meta-analysis, ψi = 1 means that yi is either a false posi-
tive or a false negative. Since these variables cannot be observed, we treat them as
unknown parameters that need to be estimated via taking priors on them. The joint
posterior distribution of (ψ, z) is then used to obtain a robust estimate of z, and
also to identify the miscoded observations.

We assume that each observation has equal probability of being miscoded, in-
dependent of other observations and z. Denote by r an a priori guess for the prob-
ability of an observation being miscoded. Given (ψ, z), the yi ’s are independent
Bernoulli random variables with probability of success (1 − ψi)H(zi) + ψi(1 −
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H(zi)). As a result, the conditional distributions of ψi are independent with

P(ψi = 1|y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r[1 − H(zi)]
r[1 − H(zi)] + (1 − r)H(zi)

, if yi = 1,

rH(zi)

rH(zi) + (1 − r)[1 − H(zi)] , if yi = 0.
(4)

Consider the probit link without any hyperprior. As shown in Section A.1, we
adjust latent variables wi for miscoding, that is, yi = 1 if {wi > 0,ψi = 0} or
{wi < 0,ψi = 1}. Then,

(wi |ψ, ξ,η,y) ∼
{

N(ξηi,1)I (wi > 0), if yi + ψi = 1,
N(ξηi,1)I (wi ≤ 0), if yi + ψi 	= 1.

(5)

Hence, samples from the joint distribution (ψi,wi |z,y) can be drawn by first sam-
pling ψi using (4) and then sampling wi using (5). Since the full conditional of z
does not depend on ψ or y, the samples from the conditional distributions of the
rest of the parameters can be drawn as described earlier. Note that the algorithm
of this robust approach may be extended similarly to the logit link or an arbitrary
symmetric link by introducing the relevant latent variables.

3. Simulation studies. We performed two different types of simulation stud-
ies to investigate the performance of our method. The first simulation is in the
setting of nonparametric binary regression, where the proposed method is com-
pared to an adaptive penalized spline model. The second simulation is in the set-
ting of fMRI meta-analysis, where our method is compared to the kernel-based
ALE method, which is commonly used in neuroimaging meta-analysis.

3.1. Simulation I. The true probability function is assumed to be

p(x) = �

{
6 exp

[
−5

2

(
(x1 − 2)2 + (x2 − 2)2)] + 3 exp

[
− 1

10
(x2

1 + x2
2)

]
− 3

}
.

It is a smooth bimodal spatial surface on a 30 × 30 regular lattice as shown in
Figure 2(a). One hundred data sets were simulated and we use the mean squared
probability error (MSPE),

MSPE = 1

n

n∑
i=1

{p(xi ) − p̂(xi )}2,

to measure performance, where p̂(·) is the estimated probability function.
The estimates obtained using our Bayesian nonparametric binary regression

model are compared to those obtained using the fast adaptive penalized splines
(FAPS) model in Krivobokova, Crainiceanu and Kauermann (2008). The FAPS
approach models the regression function as a penalized spline with a smoothly
varying smoothing parameter function which is also modeled as a penalized spline.
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(a) (b)

(c) (d)

FIG. 2. Simulation I: (a) True probability function; (b) Estimated probability function using pro-
posed method with probit link; (c) Estimated probability function using FAPS method; (d) Mean
squared probability errors using proposed method and FAPS method.

Their method handles local smoothing of binary data as a special case. The authors
showed that the FAPS estimator outperformed the penalized spline estimators in
Crainiceanu et al. (2007) and Ruppert and Carroll (2000). The model can be fit
using the AdaptFit R package.

Panels (b) and (c) in Figure 2 show typical fits for the bimodal function using
our method and FAPS method, respectively. It appears that the FAPS model has
difficulty capturing the sharp peak and undersmoothes the flat portion as well.
Figure 2(d) shows the distributions of the MSPE produced by those two methods,
where the FAPS estimator is apparently outperformed. Also, in our method the
two link functions yield similar performances in terms of MSPE. This is because
nonparametric modeling of z makes the model robust against the choice of the link
function. We believe that the underperformance of FAPS stems from using slowly
varying functions to model local smoothing parameters. Although they provide
computational efficiency, such low-rank basis functions are unable to capture sharp
changes in the function. Yue and Speckman (2010) presented similar results for
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FIG. 3. (A) The probability map used to generate random activation peaks; (B) One set of simu-
lated activation peaks.

normal response variables. Note that the robustification procedure is not required
in this simulation study.

3.2. Simulation II. In the second simulation study we began by constructing
a 64 × 64 probability map, denoted p(x, y), where the value at each voxel loca-
tion (x, y) represents the probability that it be recorded as a “peak coordinate”
in a neuroimaging study. The probability map consisted of two circular regions of
heightened probability (see Figure 3A), where the maximum probability is roughly
0.4. Voxels lying outside these two regions were set to have a constant background
probability of 0.01, thus allowing for the possibility of “false positives” outside
the two centers of activation. Next, the probability map was used to generate ran-
dom activation peaks. The voxel at coordinate (x, y) was considered a reported
peak according to a binomial distribution with probability of activation p(x, y).
This process was repeated 100 times and each time gives rise to simulated meta-
analysis data. Figure 3B shows the data for one repetition. The data shows clear
clustering around the two regions of activation, while still allowing for spurious
activations in the rest of the image. This corresponds with the behavior of standard
meta-analysis data (see, e.g., Figure 1).

Each of the 100 repetitions were analyzed using the kernel-based ALE method
as well as our Bayesian nonparametric binary regression model. In the former, a
kernel with bandwidth 10 mm full width at half maximum (FWHM) was used, as
this is the standard in the field. A Monte Carlo procedure was used to determine the
appropriate threshold to test the null hypothesis that the reported peak coordinates
are uniformly distributed throughout the grey matter. A permutation distribution is
computed by repeatedly generating peaks at random locations and performing the
smoothing operation to obtain a series of statistical maps under the null hypothesis
that can be used to determine which voxels had p-values below α, where α was
set to 0.05 and 0.01. Regarding our Bayesian method, the robustification procedure
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FIG. 4. Proportion of times each voxel was deemed significant at the 5% level (A) and the 1% level
(B) using the ALE method.

described in Section 2.3 is implemented since we use the background probability
of 0.01 to produce the false positives. To see how sensitive the results are to the
use of robustification, we fit the model with prior miscoding probability r = 0 (no
robustification), r = 0.01 and r = 0.05. Figures 4A and B show the proportion
of times each voxel was deemed significant at the 5% level and the 1% level,
respectively, in the 100 repetitions, when the ALE method was used. It is clear that
the kernel smoother does a very good job of finding true positives, but tends to have
a large number of false positives in the area immediately surrounding the activated
regions. Figure 5 shows the average probability of activation in each voxel obtained
using our method. The maps in the left column are not thresholded, while those in
the right column are thresholded at 0.01. Apparently, our estimates are closer to the
simulated probability map and produce much fewer false positives than the kernel
estimates. Furthermore, our method yields fewer false positives as the value of r ,
the prior miscoding probability, increases, that is, the fit becomes more robust. The
spatial extent of the activation region, however, is not significantly shrunk, making
a strong case for the use of adaptive smoothing.

3.3. Computational performance and MCMC diagnostics. Thanks to the
sparse structure of the adaptive GMRF prior used, the proposed models provide
fast MCMC computation for nonparametric binary regression. To complete 5000
iterations on a 3.06 GHz Intel iMac desktop with 4GB memory, it took the probit
model 9.23, 46.06 and 11.17 seconds at sample size n = 30 × 30, 60 × 60 and
90 × 90, respectively, for estimating the bimodal function in Simulation I. The lo-
gistic model is a little slower, taking 11.89, 55.83 and 138.69 seconds to finish the
same amount of computations. The computing times of both models increase with
sample sizes at order n, roughly. The programs were written in the FORTRAN
language, making use of the LAPACK and BLAS packages.
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FIG. 5. Average probability of activation in each voxel obtained using the adaptive GMRF method
combined with the robustification procedure under different prior miscoding probabilities: r = 0
(top row), r = 0.01 (middle row) and r = 0.05 (bottom row); The maps in the left column are not
thresholded, while those in the right column are thresholded at 0.01.
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FIG. 6. Assessment of MCMC convergence for Simulation I. The top (bottom) two rows contain the
typical trace plots and autocorrelation functions of the samples of variables z, γ and w from fitting
a probit (logistic) model.

It is well known that the GMRF z are strongly dependent on each other as
well as on the auxiliary variable w [see, e.g., Rue and Held (2005); Holmes and
Held (2006)]. Those posterior correlations are likely to cause slow mixing in the
Markov chain. To combat this issue, we sampled z as a block and employed the
joint updating tricks as used in Holmes and Held (2006) (see the Appendix for
details). Since the computation is fast, we also suggest running a relatively large
number of MCMC iterations and applying a thinning factor of  by collecting
samples after every  iterations. In Simulation I, for instance, we found that it
is sufficient to run 15,000 MCMC iterations (5000 burn-in and 10,000 sampling)
with a thinning factor of 10 to obtain reliable estimates. Figure 6 shows typical
trace plots and autocorrelation functions of the samples of different variables for
Simulation I. As we can see, the mixing of the chain is satisfactory for both probit
and logistic models.
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FIG. 7. Assessment of MCMC convergence for the data analysis. The top row contains the typi-
cal trace plots of the samples of variables z, γ and w; the bottom row contains the corresponding
autocorrelation functions.

4. Data analysis. We describe here the results of our meta-analysis of the
fMRI data. As mentioned before, the data consists of the coordinates of 2478 peaks
representing the locations of voxel activations, collected from 162 neuroimaging
studies. The raw data consists of a three-dimensional image with dimensions 91 ×
109×91 whose elements took the value 1 if an activation had been reported at that
voxel and 0 otherwise. Figure 1 shows the raw data for a representative slice of the
brain with fixed x, y and z directions, respectively.

The binary nature of the meta-analysis data makes it an ideal candidate for
our Bayesian nonparametric binary regression method. As our method is currently
only implemented in two dimensions, we fit our method slice-wise across the brain
for each orientation (i.e., for the fixed x, y and z direction). Prior to performing
our method on a slice, we applied smoothing in the fixed direction by including all
activations located within 10 mm of the slice of interest.

In our simulation studies (Section 3), we found that the binary regression model
is not sensitive to the choice of link function. We therefore fit a probit model to
the data for computational efficiency. To make our estimation robust against false
positives, we incorporated the robustification procedure (Section 4) in the model
with prior miscoding probability r = 0.01 for every voxel. Due to the high dimen-
sion of the data, the MCMC was run for 60,000 iterations with 10,000 burn-in and
a thinning factor of 50 iterations, resulting in posterior samples of size 1000. The
Markov chains mix well as shown in Figure 7.

Once the Bayesian binary regression model was fit, posterior probability maps
were obtained indicating the probability of being a location of peak activation
across the brain. Regions with probability values higher than 0.3 were color-coded
and superimposed onto an anatomical reference image. The relatively low thresh-
old is indicative of the dispersion of foci locations in the data. Figure 8 shows
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FIG. 8. Thresholded posterior probability maps are shown for the sagittal, coronal and axial slice
of the brain depicted in Figure 1. Regions with posterior probability of observing a peak activation
higher than 0.30 are color-coded.

FIG. 9. Miscoding probabilities are shown for the sagittal, coronal and axial slice of the brain
depicted in Figure 1. Points with posterior miscoding probability higher than 0.10 are color-coded.

results for the three slices described above. Key regions of activation observed in
the figure include the thalamus (8A), amygdala (8B) and the ventral striatum (8C).
These regions are known to be associated with emotion, and were also indicated
as active when using kernel-based methods [see Kober et al. (2008)]. It should be
noted we obtain the same regions of activation as Kober et al. (2008), but with sig-
nificantly smaller spatial extent. This is consistent with our simulation study, which
shows how the kernel-based methods tend to overestimate the extent of activation.
Finally, Figure 9 shows the posterior miscoding probabilities (thresholded at 0.10)
for the same three slices. High miscoding probabilities indicate points that were
deemed to be spurious activations and therefore given lower weights when calcu-
lating the posterior activation probabilities. Based on their locations, it appears that
our method is providing an effective means of downweighting false activations.

To see if the adaptive smoothing is preferred to the ordinary smoothing in this
neuroimaging example, we conducted a test on H0 :γjk = 1 using the deviance in-
formation criterion (DIC) introduced by Spiegelhalter et al. (2002). More specif-
ically, we first fitted to our imaging data the proposed adaptive GMRF model
and a (nonadaptive) Bayesian thin-plate spline model (by fixing all γjk to be 1),
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TABLE 1
DIC scores of both adaptive and nonadaptive models for the

fixed x, y and z orientation.

Orientation x y z

Adaptive 9918.372 8216.255 9917.209
Nonadaptive 10,090.460 9512.016 9947.377

and saved the MCMC posterior samples of both models. Then, we define the de-
viance as D(φ) = −2 log(p(y|φ)), where p(y|φ) is the likelihood function and φ
are unknown parameters of the model. The DIC score is finally estimated using
DIC = 2D̄ − D(φ̄), where D̄ is calculated as the average of D(φ) over the sam-
ples of φ, and D(φ̄) as the value of D evaluated at the average of the samples of
φ. The model with smaller DIC should be in favor. Table 1 shows the DIC scores
of the two models for the fixed x, y and z orientations, where the adaptive model
is preferred in every scenario.

5. Discussion. We developed a fully Bayesian method for nonparametric bi-
nary regression and, together with a robustification procedure, applied it to meta-
analysis in fMRI studies. Our analysis identified activated regions of the brain
that are known to be associated with emotion. While similar regions were also
identified in other meta-analyses such as Kober et al. (2008) that use kernel-based
methods, our method has several advantages over such approaches as follows. The
adaptive GMRF used in our model better matches the natural spatial resolution of
the data across the brain compared to using an arbitrary chosen fixed kernel size.
This allows us to avoid the problem of overestimating regions of activation appar-
ent in kernel-based methods. The Bayesian nature of our method allows for the
construction of posterior probability maps indicating the probability of observing
a peak activation in response to the paradigm across the brain. This is in contrast to
kernel methods which simply state that more peaks lie near the voxel than expected
by chance. It should be noted that recently a Bayesian spatial hierarchical model
using a marked independent cluster process [Kang et al. (2011)] was introduced
for dealing with neuroimaging meta-analysis. In future work we will look at com-
paring this method with the nonparametric binary regression approach suggested
in this paper. Finally, our procedure provides estimates of miscoding probabilities
which can help to identify regions that may have been incorrectly tagged as being
activated. This is another feature not provided by kernel-based methods.

It is important to note that in this work the model setup assumes that the input
data is two dimensional. Such 2D smoothing serves a useful purpose, as fMRI
data are often analyzed either slice-wise or using cortical surface-based tech-
niques [Dale, Fischl and Sereno (1999); Fischl, Sereno and Dale (1999)]. In re-
ality, however, fMRI data are three dimensional in space. Therefore, it may ulti-
mately be more appropriate to smooth the three spatial dimensions directly. We
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are actually working on such an extension of our current approach. The main com-
putational constraint stems from inverting a large precision matrix, which is of
91 × 109 × 91 = 902,629 dimensions in our neuroimaging example. We thus need
a practical 3D GMRF, but the construction is nontrivial. One possible solution is
to obtain a highly sparse precision matrix by discretizing a 3D Laplacian operator
with proper boundary conditions as we did in the 2D case. To achieve more com-
putational efficiency, we may use a novel Bayesian inference tool similar to that
introduced in Rue, Martino and Chopin (2009) rather than MCMC.

As shown in the simulation studies, the results obtained by our method are
somewhat sensitive to the prior miscoding probability r in the robustification pro-
cedure. A large r may underestimate the activation clusters, while a small r tends
to allow more false positives. The choice of r is often subjective. One may use in-
formation from, say, previous studies, to find an appropriate r in order to balance
this trade-off. If no prior information is available, Choudhuri, Ghosal and Roy
(2007) proposed letting r be a small number between 0.01 and 0.1. In practice, we
suggest experimenting with several r values and choosing the one that gives the
best results.

APPENDIX: MCMC ALGORITHMS FOR POSTERIOR INFERENCE

A.1. Probit link. Let y = (y1, . . . , yn)
T be the random vector of binary obser-

vations measured and x = (x1, . . . , xn)
T the corresponding covariate values, where

each xi has one or two component variables. Let w = (w1, . . . ,wn)
T be some un-

observable latent variable. Following Holmes and Held (2006), the probit model
can be written as

yi =
{

1, if wi > 0,
0, if wi ≤ 0,

(6)
wi = zi + εi, εi

i.i.d.∼ N(0,1),

where z = (z1, . . . , zn)
T is the adaptive GMRF described in Section 2.1. Since yi

are now deterministic conditional on the sign of the wi , we have P(yi = 0|zi) =
P(wi ≤ 0|zi) = �(−zi), where � is the standard Gaussian c.d.f.

As mentioned earlier, the half-t prior on δ can be written as δ
D= |ξ |θ , where ξ ∼

N(0,1) and θ2 ∼ IG(ρ/2, ρS2/2). A redundant multiplicative reparameterization
can be applied to model (6):

yi =
{

1, if wi > 0,
0, if wi ≤ 0,

wi = ξηi + εi, εi
i.i.d.∼ N(0,1),

where η = (η1, . . . , ηn)
T has a GMRF prior density

[η|θ2,γ ] ∝ |θ−2Aγ |1/2
+ exp

(
− 1

2θ2 ηT Aγ η

)
,
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with Aγ = B′
m diag(γ )Bm for m = 1,2. This expanded model form allows condi-

tionally conjugate prior distributions for both ξ and θ , and these parameters are in-
dependent in the conditional posterior distribution [Gelman (2006); Gelman et al.
(2008)]. Letting d be the dimension of the null space of Aγ , the full conditional
distributions are listed below:

• (η|θ2, ξ,γ ,w) ∼ Nn(μη,�η), where μη = ξ�ηw and �η = (ξ2In +Aγ /θ2)−1;
• (ξ |η,w) ∼ N(μξ , σ

2
ξ ), where μξ = σ 2

ξ η′w and σ 2
ξ = (1 + η′η)−1;

• (wi |ξ,η,y) ∼
{

N(ξηi,1)I (wi > 0), if yi = 1,
N(ξηi,1)I (wi ≤ 0), if yi = 0;

• (γj |θ2,η) ∼ IG(ν+1
2 , 1

2θ2 η̃2
j + 1

2), where η̃ = Bmη (m = 1,2);

• (θ2|η,γ ) ∼ IG(n−d
2 + ρ

2 , 1
2η′Aγ η + ρS2

2 ).

Note that �η is a banded matrix and we can thus use the banded Cholesky decom-
position to simulate η with the cost of O(n). The quantities wi have independent
truncated normal distributions and are also straightforward to sample from.

A.2. Logit link. Again, we use data augmentation and overparameterization
to write the logistic regression model as

yi =
{

1, if wi > 0,
0, if wi ≤ 0,

wi = ξηi + εi, εi ∼ N(0, λi),(7)

λi = (2κi)
2, κi ∼ KS,

where KS denotes the Kolmogorov–Smirnov distribution [e.g., Devroye (1986)].
In this case, εi has the form of a scale mixture of normals with a marginal logistic
distribution.

To improve mixing of the Markov chains, we update {w,λ} jointly given {ξ,η},
[w,λ|ξ,η,y] = [w|ξ,η,y][λ|w, ξ,η].

Letting 	 = diag(λ1, . . . , λn), the posterior conditional distributions are as fol-
lows:

• (η|θ2, ξ,γ ,w,λ) ∼ Nn(μη,�η), where μη = ξ�η	w and �z = (ξ2	 +
Aγ /θ2)−1;

• (ξ |η,w,λ) ∼ N(μξ , σ
2
ξ ), where μξ = σ 2

ξ η′	w and σ 2
ξ = (1 + η′	η)−1;

• (wi |ξ,η,y) ∼
{

Logistic(ξηi,1)I (wi > 0), if yi = 1,
Logistic(ξηi,1)I (wi ≤ 0), if yi = 0;

• [λi |wi, ξ, ηi] ∝ λ−1
i exp{− 1

2λi
(wi − ξηi)

2}KS(
√

λi

2 );

• (γj |θ2,η) ∼ IG(ν+1
2 , 1

2θ2 η̃2
j + ν

2 ), where η̃ = Bmη (m = 1,2);

• (θ2|η,γ ) ∼ IG(n−d
2 + ρ

2 , 1
2η′Aγ η + ρS2

2 ).
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The Logistic(α,β) denotes the density function of the logistic distribution with
mean α and scale parameter β [Devroye (1986), page 39]. Sampling from the
truncated logistic distribution can be done efficiently by the inversion method. Al-
though it is not a standard task, sampling λi is simple using a rejection method as
outlined in Holmes and Held (2006).

A.3. Other scale mixtures of normal links. The auxiliary variable sampling
scheme described above can easily be generalized to work for any link function H

that can be represented as scale mixtures of normal cdfs, and, hence,

H(t) =
∫ ∞

0
�

(
t√
v

)
dG(v),

where v follows some continuous or discrete distribution G on (0,∞). A wide
class of continuous, unimodal and symmetric distributions on the real line may be
constructed as scale mixtures of normals. Many examples, such as discrete mix-
tures or contaminated normals, the Student t family, logistic, Laplace or double-
exponential, and the stable family, are well known; see, for example, Andrews and
Mallows (1974).

Similarly, we introduce two sets of latent variables w = (w1, . . . ,wn)
T and

v = (v1, . . . , vn)
T such that (wi |z,v) ∼ N(zi, vi), vi

i.i.d.∼ G, and yi = I (wi > 0).
Then, conditional on z, the yi ’s are independent Bernoulli random variables with
success probability H(zi). Suppose G has a Lebesgue density or probability mass
function g. Let zi = ξηi and V = diag(v1, . . . , vn). Then, the posterior conditional
distributions are as follows:

• (η|θ2, ξ,γ ,w,v) ∼ Nn(μη,�η), where μη = ξV�ηw and �η = (ξ2V +
Aγ /θ2)−1;

• (ξ |η,w,v) ∼ N(μξ , σ
2
ξ ), where μξ = σ 2

ξ η′Vw and σ 2
ξ = (1 + η′Vη)−1;

• (wi |ξ,η,v,y) ∼
{

N(ξηi, vi)I (wi > 0), if yi = 1,
N(ξηi, vi)I (wi ≤ 0), if yi = 0;

• [vi |ξ,wi, ηi] ∝ v
−1/2
i exp{− 1

2vi
(wi − ξηi)

2}g(vi);

• (γj |θ2,η) ∼ IG(ν+1
2 , 1

2θ2 η̃2
j + ν

2 ), where η̃ = Bmη (m = 1,2);

• (θ2|η,γ ) ∼ IG(n−d
2 + ρ

2 , 1
2η′Aγ η + ρS2

2 ).

Thus, a Gibbs sampler can be used to sample joint posterior distributions. The
only difficult part is sampling θi . For a Student t link, the mixing distribution G

is an inverse gamma distribution, as is the full conditional of each vi . For the
Laplace link, the G is an exponential distribution and the v−1

i follows an inverse
Gaussian conditional distribution. Therefore, one can directly sample vi ’s for those
two links. If [vi |ξ,wi, ηi] does not correspond to any regular density, the samples
may be drawn via acceptance-rejection sampling.
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