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Public data repositories have enabled researchers to compare results
across multiple genomic studies in order to replicate findings. A common
approach is to first rank genes according to an hypothesis of interest within
each study. Then, lists of the top-ranked genes within each study are com-
pared across studies. Genes recaptured as highly ranked (usually above some
threshold) in multiple studies are considered to be significant. However, this
comparison strategy often remains informal, in that type I error and false dis-
covery rate (FDR) are usually uncontrolled. In this paper, we formalize an
inferential strategy for this kind of list-intersection discovery test. We show
how to compute a p-value associated with a “recaptured” set of genes, us-
ing a closed-form Poisson approximation to the distribution of the size of the
recaptured set. We investigate operating characteristics of the test as a func-
tion of the total number of studies considered, the rank threshold within each
study, and the number of studies within which a gene must be recaptured to be
declared significant. We investigate the trade off between FDR control and ex-
pected sensitivity (the expected proportion of true-positive genes identified as
significant). We give practical guidance on how to design a bioinformatic list-
intersection study with maximal expected sensitivity and prespecified control
of type I error (at the set level) and false discovery rate (at the gene level).
We show how optimal choice of parameters may depend on particular alter-
native hypothesis which might hold. We illustrate our methods using prostate
cancer gene-expression datasets from the curated Oncomine database, and
discuss the effects of dependence between genes on the test.

1. Introduction. Given several independent genomic data sets which address
a similar question, it is common to compare the lists of the top-ranked genes from
each study. Genes selected as highly ranked in multiple studies may be considered
validated or replicated. Curated databases of gene lists are available which include
tools for comparing lists and intersecting lists of top-ranked genes across multiple
similar studies [Glez-Pena et al. (2008), Culhane et al. (2010)]. The “correspon-
dence at the top” concordance statistic is an example of this approach Irizarry et al.
(2005). Perhaps the most well known example is the study by Tomlins et al. of gene
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expression in solid tumors, Tomlins et al. (2005) which compared the top 10 genes
from each of 132 cancer studies in a publicly available microarray data repository.
Within each study, the genes were ranked according to a statistic scoring potential
“fusion gene” properties, as such fusion genes are known to be important drivers
of malignancy in several hematologic cancers. Tomlins et al. targeted a candidate
gene list of 300 known cancer genes; any candidate gene which ranked among
the top 10 in two or more of the studies was considered to be a potential hit. Two
significant genes were found, one which ranked among the top 10 in two different
studies and another in five studies. For these two genes, a fusion product was sub-
sequently experimentally confirmed in prostate cancer and these remain the only
common fusion transcripts discovered in an epithelial tumor.

In this paper we show how to conduct such an intersection-of-lists approach to
assessing significance while controlling type I error (at the set level) and false dis-
covery rate (at the gene level). Given N independent studies, there are two parame-
ters which define a “hit”: the rank threshold, r , above which a gene must lie in each
study (r = 10 in the Tomlins example), and the number of lists, n, among which
a gene must be ranked (n = 2 in the Tomlins example) in order to be declared
significant. Our first goal is to define an exact p-value which is easy to compute,
when assessing the intersection of n lists of top-ranked genes, at rank r or above.
This entails defining an appropriate test statistic and corresponding hypothesis test,
which we call a list-intersection discovery test, as this is an “unsupervised” or dis-
covery approach. We apply these ideas to the related “supervised” case of an a
priori candidate gene list which is compared against N other independent studies,
as in Tomlins et al. (2005). Here the aim is to validate the genes appearing in the
researcher’s a priori list with a formal test of hypothesis. Following Irizarry et al.
(2005), we call this a list-intersection concordance test. We then develop practical
guidelines for choices of r and n which maximize the expected sensitivity at a
given false discovery rate (FDR), that is, which maximize the expected proportion
of true-positive genes that are declared to be significant at a given FDR. We give
example applications of both the discovery and concordance test using data from
the Tomlins study.

To state the discovery problem more precisely, consider data from N indepen-
dent (gene-expression) studies. Within each study, suppose T genes are indepen-
dent and are ranked according to a statistic, and consider the list of the r top-ranked
genes in each study. The set of genes which lie in the intersection of n or more of
these lists, Sn(r), are those genes “recaptured” as significant at least n times across
N independent studies. However, the degree of confidence in this validation re-
mains to be assessed. For example, considering N = 6 independent studies, each
with 10,000 possible genes, it may be very likely that by chance alone at least 50
genes would be recaptured among the top r = 200 genes in n = 2 or more studies
(as we shall demonstrate, probability 0.84), somewhat likely that 5 or more genes
would be so recaptured across n = 3 studies (probability 0.02), and very unlikely
that any one gene would be recaptured in n = 5 out of 6 studies just by chance
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(probability 0.0002). In this paper we show how to compute these probabilities
(these examples are computed in Section 2.2), how to assess the statistical signifi-
cance of the recaptured set for given r and n, and how to estimate the false discov-
ery rate within the recaptured set. The test statistic we use is |Sn(r)|, the size of the
intersection set; in the above three examples |Sn(r)| ≥ 50, 5 and 1, respectively.
In making these computations we have assumed the genes behave independently,
which is no doubt not true in practice, and this is addressed theoretically and in
simulations in the last section of the paper.

The paper is organized as follows: in Section 2 we derive the distribution of the
list-intersection test statistic under the null hypothesis and show how to compute
a p-value for a gene-set and how to estimate the within-set false discovery rate
(FDR). In Section 3 we derive the distribution of the list-intersection concordance
test statistic. In Section 3.2 we apply the test to data in Tomlins et al. (2005). In
Section 4 we discuss how to control the type I error of the discovered set, and
how to control the false discovery rate of the genes within the discovered set. We
give a strategy for finding good choices of r and n (Section 4.2). In Section 5 we
give an example of how to mine a data repository for a “statistically significant”
discovered gene set while controlling the type I error at the set level and the within-
set FDR. Section 6 addresses what happens if independence on genes does not
hold, and then gives conclusions and future directions. Simulation studies, code,
and additional proofs are described in the supplemental article [Natarajan, Pu and
Messer (2011)].

2. The list-intersection discovery test. The list-intersection test compares
the top-ranked gene lists from multiple studies in order to discover a common
significant set of genes. Suppose we consider N studies, each of which investigate
T genes, and that the genes within a study are ranked according to a prespecified
scoring procedure which might be fold change, a between group t-test, or might
differ from study to study. Consider the list of “top r” genes within each study,
and consider the set of genes, Sn(r), which lie in n or more of these top-ranked
lists. (We will often omit the dependence on r for convenience.) In this section
we find the expected count EH0 |Sn| under the null hypothesis of random ranking
of the genes. We show that |Sn| has an approximately Poisson distribution under
the assumptions the genes within a study are independent, and that T � r and
E|Sn| � r where both T and r are large, and use this to compute a p-value.

2.1. Null distribution of |Sn(r)|, estimated FDR and p-values. For an arbitrary
gene g, let the Bernoulli trial Bg = 1 if the gene ranks among the top r genes in n

or more studies, with Bg = 0 otherwise. Then

|Sn| =
T∑

g=1

Bg.(2.1)
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Let P 0
n = P(Bg = 1) denote the associated probability under the null hypothe-

sis. (Note that we have suppressed the dependence of P 0
n on r for convenience.)

While the Bernoulli trials Bg are not independent even under the assumption of
independent genes (given that one gene lies among the top r genes, the next gene
is less likely to do so), they are identically distributed, and so it is immediate that

EH0 |Sn| = T P 0
n .(2.2)

To evaluate P 0
n under the null hypothesis of random ranking among T genes

in each study, index the studies from i = 1 to N and again consider an arbitrary
gene g. Let Ai be the Bernoulli trial that counts a success if g ranks among the top r

genes in study i, with P(Ai = 1) = pi . Under the null hypothesis, pi = r/T ≡ p0,
and the Ai are independent. Let X count the number of successes for gene g. Then
X ∼ Bin(N,p0), and the probability P 0

n that gene g is listed among the top r genes
in n or more studies is given by

P 0
n = P(X ≥ n),(2.3)

an easily computed binomial probability. Using (2.2) and (2.3), one may then esti-
mate the within-set FDR by comparing the expected number of discoveries under
the null hypothesis to the total number of discoveries made:

F̂DR = EH0[|Sn|]/|Sn|.(2.4)

Under the null hypothesis of independent random ranking of the genes, we can
derive the distribution of |Sn|. Note that for large T with T � r , selection of the r

top-ranked genes within a study has nearly the same distribution as random sam-
pling with replacement. If, in addition, E|Sn| � r , then Bg and Bh are approx-
imately independent for any pair of genes g and h. In this case |Sn| will have
an approximate Binomial distribution with parameters T and P 0

n . If, in addition,
T is large and P 0

n small, it follows that the distribution of |Sn| is approximately
Poisson with mean T P 0

n . We consider the effects of correlation between genes in
Section 6.1.

2.2. Example computations using the list-intersection statistic. Here we show
how to use (2.2) and (2.3) to compute the expected number of genes recaptured just
by chance, as well as the p-value of the size of the recaptured set and the estimated
FDR for genes within the set. These quantities depend on the total number of
studies considered, N , the depth of the top-ranked list, r , and the number of lists
intersected, n. Throughout we let T = 10,000. We also investigate the quality of
the Binomial and Poisson approximations for these examples:

(i) As in the Introduction, consider that we have ranked T = 10,000 genes,
and that the top r = 200 genes are the top-ranked set. Then, under the null hypoth-
esis of independent random ranking, p0 = r/T = 0.02. From (2.3), given N = 6
studies to compare, the probability of seeing a given gene in the top 200 from n = 2
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or more studies is P 0
2 = 0.0057. It follows from (2.2) that |S2(200)|, the number

of genes captured in 2 or more studies, is then approximately Poisson with mean
T P 0

2 = 57.
To evaluate the accuracy of p-values computed from this Poisson approxima-

tion, note that two of the three key assumptions, that T � r and P 0
n be small, are

met. However, E|S2|/r ≈ 0.30, so that E|S2| is not particularly small compared
to r . Suppose the observed value of |S2(200)| = 50. Then, from simulation under
the null hypothesis of random ranking, P(|S2(200)| ≥ 50) = 0.86, compared to the
corresponding Poisson p-value of 0.84, yielding a relative error of 2.3%. Further
examples show the simulated 95th percentile of the null distribution is 68, while the
Poisson approximation gives 70 (relative error, 2.9%). At 1% significance level,
the relative error is 2.7% (simulated value 73; Poisson approximation 75). Thus,
the Poisson approximation appears to work well in this case.

(ii) Continuing the example, if we require the genes to be recaptured in three
or more studies (so that n = 3 rather than 2), the mean number of genes captured
under the null is only 1.53. As in the Introduction, suppose the observed value of
|S3(200)| = 5. Under the null hypothesis of random ranking the probability that 5
or more genes would be in the intersection list is P(|S3(200)| ≥ 5) = 0.02, where
|S3(200)| is Poisson with mean 1.53. Thus, we would have seen a statistically
significant event with a p-value of 0.02. The estimated within-set FDR would
be 1.53/5, or 31%. Note that from simulation, P(|S3(200)| ≥ 5) = 0.018, again
demonstrating the adequacy of the Poisson approximation.

(iii) Now suppose only N = 4 rather than 6 total studies are considered, and
n = 2 as before. Then the expected number of genes captured by chance falls by
half, to a mean of 23 genes.

Again the relative error of the 95th and 99th percentiles of |S2(200)| from the
Poisson approximation is 3% (the simulated 95th percentile of the null distribution
is 31, while the Poisson approximation gives 32; the simulated 99th percentile
is 34, while the Poisson approximation gives 35).

(iv) When N = 6 but the depth of the list is halved so that only the top r = 100
genes are considered, the mean number of genes captured by chance falls by 3/4,
from 57 to 15. The relative approximation error of the Poisson distribution is 0%
for the 95th percentile, and 4% for the 99th percentile.

These examples show how to use the Poisson approximation to the distribution
of Sn(r) to calculate p-values and FDRs. Over the range of parameters considered
here, the Poisson approximation appears to be very good. Additional simulations
are reported in Section 5 and Section 1.1 of the supplemental article [Natarajan,
Pu and Messer (2011)].

3. The list-intersection concordance test. The concordance test evaluates
whether an a priori candidate list of m genes, say, from the researcher’s new study,
is significantly reproduced among the top r genes in N independent ranked lists
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of genes, say, from other experiments or from the literature. Suppose each study
investigates T genes and consider the set of genes, Cm

n (r), from the a priori candi-
date list which also lie in n or more of these top-ranked lists. As before, we show
that |Cm

n | has an approximately Poisson distribution under the null hypothesis of
independent random ranking of the genes, however, with a different mean, under
the assumptions that T � r and E|Cm

n | � r and both T and r are large.

3.1. Null distribution of |Cm
n (r)|. Again, index the studies from i = 1 to N .

Consider an arbitrary gene g drawn from the a priori list of m genes of interest,
and, as before, for study i let Ai be the event that gene g is listed among the top
r genes. Under the null hypothesis of random ranking among T genes in each
study, pi = r/T ≡ p0, as before. As in Section 2.1, equation (2.3) gives P 0

n , the
probability under the null hypothesis that n or more of the events A1, . . . ,AN occur
simultaneously. Now consider the m genes on the a priori list, and let Bg = 1
if the gth gene ranks among the top r genes in n or more studies, with Bg = 0
otherwise. Under the null hypothesis P(Bg = 1) = P 0

n , and as |Cm
n | = ∑m

g=1 Bg , it
is immediate that

E|Cm
n | = mP 0

n(3.1)

under the null. Further, for large T with T � r , selection of the r top-ranked genes
within a study has nearly the same distribution as random sampling with replace-
ment. If in addition E|Cm

n | � r , then Bg and Bh are approximately independent
for any pair of genes g and h. In this case |Cm

n | will have an approximate Binomial
distribution with parameters m and P 0

n , which in turn is approximately Poisson
with mean mP 0

n for m large and P 0
n small.

3.2. Example test using data from Tomlins et al. We apply these computa-
tions to the data from Tomlins et al. (2005). They considered the Cancer Gene
Census [Futreal et al. (2004)] published list of 300 genes known to be involved
in cancer, and compared this candidate gene list across 132 studies from the On-
comine [Rhodes et al. (2007)] repository of microarray data. Within each study,
they ranked all genes according to a score characteristic of a fusion gene. They
then looked for the occurrence of any candidate cancer genes among the 10 top-
ranked genes in each study, and for each cancer gene, reported how many times it
was “captured” in a top-10 list. To define parameters, each microarray platform in-
terrogated about 10,000 expressed genes. Thus, we have T = 10,000 genes across
N = 132 studies, with the top r = 10 genes considered from each study. The length
of the a priori list is m = 300.

We applied (2.3) and (3.1) to find the expected number of cancer genes which
appear in the intersection of n multiple lists under the null hypothesis of indepen-
dent random ranking, for n ranging from 2 (the case considered by Tomlins et al.)
to 5. These results are given in Table 1, in the row labeled E|Cn|. We give the
set of actual genes found by Tomlins et al. in the intersection of n or more lists
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TABLE 1
Example: expected and observed number of recaptured candidate genes, p-values and estimated

FDR within the recaptured set. Data from Tomlins et al. (2005); T = 10,000 genes across
N = 132 studies, with the top r = 10 genes considered from each study. The length

of the a priori candidate gene list is m = 300. The recapture rate n varies
from 2 to 5; n = 2 was the choice used in Tomlins et al. (2005)

n = 2 n = 3 n = 4 n = 5

E|Cn| under null 2.5 0.11 <0.01 <0.01

Observed Cn {ERBB2, ERG, ETV1, IRTA1} ERG ERG ERG

Observed |Cn| 4 1 1 1

p-value 0.25 0.006 7 × 10−6 5 × 10−9

Estimated FDR 0.63 0.11 <0.01 <0.01

(the observed set Cn), taken from their supplementary Table S1. We also record
the count of cancer genes recaptured n or more times (the observed count |Cn|).
We then compute the p-value for each value of n, computed as the probability
that a Poisson variate with the given mean would lie above the observed value
of |Cn|, and the estimated FDR within each recaptured set. Notably, the observed
set of cancer genes which is in the intersection of 2 or more lists, the set consid-
ered by Tomlins et al., has a p-value of 0.25, indicating it is plausible that this
many genes would reappear just by chance. Four genes were “discovered” in this
recaptured set, while the expected number recaptured under the null is 2.5 for an
estimated FDR of 2.5/4 or 63%. However, the p-values attached to the single gene
ERG, which reappears in 5 studies, is highly significant. Both ERG and the related
ETV1 were subsequently validated as fusion genes.

This example illustrates how to compute the p-value for the size of an observed
set of concordant genes. However, notice that multiple p-values are presented in
Table 1, corresponding to multiple choices of r and n. Unless we specify r and n in
advance, we are open to charges of data snooping, that is, of tailoring the choice of
r and n to the results they yield in a given data set, rendering the nominal p-values
invalid. Thus, this example also highlights the need for a strategy for choosing
r and n, and, importantly, the need to specify the choice of r and n before the
analysis is carried out. We discuss these issues in the remainder of the paper.

4. Control of type I error and within-set FDR. For a given prespecified
choice of r and n, the list-intersection test will declare a gene set to be significant
only if |Sn(r)| [or |Cm

n (r)|] has a p-value below the stated significance level α.
This procedure will strictly control the type I error rate; that is, under the null
model, the probability will be at least 1 − α that no gene set will be declared to
be significant. Given a statistically significant gene set, it remains to investigate
the FDR within set, and the expected proportion of true positive genes that are
captured (the expected sensitivity).
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Importantly, as noted above, control of type I error requires both n and r to
be specified in advance. For example, there may be several sets Sn(r) with p-
values falling below any given significance level, and post hoc selection of one or
more of these sets without correction for multiple testing would of course leave
both the type I error and the set-level FDR uncontrolled. In addition, failure to
prespecify r and n is likely to lead to data snooping, in which the chosen r and
n are consciously or unconsciously tailored to yield the most “interesting” set of
selected genes. Thus, it remains to consider how to make good a priori choices of
r and n. In this section, we give an example which illustrates how good choices
of r and n may depend on which particular alternative hypothesis holds, and then
propose a general design strategy. We leave as future work discussion of the more
computationally and mathematically involved data-driven strategies to control the
FDR.

4.1. Example choices of r and n: Expected sensitivity and false discovery rate.
Different choices of the threshold r and the recapture rate n will trade off between
an increased false discovery rate within the set Sn(r) and increased power to cap-
ture any truly positive genes. For example, for fixed n, as r increases and more
genes are included in the set of “top-r” genes, any truly significant genes (“true
positives”) will be more likely to be selected within each study and thus more
likely to land in the intersection set Sn(r). However, at the same time more null
genes will be captured, thereby potentially increasing the FDR within Sn(r), and
possibly reducing power to call Sn(r) a statistically significant set. Good choices
for r and n will evidently depend on how many truly positive genes exist, as well as
the effect size for each, as the latter determines the probability that a given positive
gene rises to the top of the list.

To illustrate these trade-offs, in Table 2 we compute the expected number of true
discoveries and false discoveries for several choices of r and n, under two simple
alternative hypothesis scenarios. We considered N = 4 independent studies, each
investigating T = 10,000 genes. We assume that the statistic used to rank the genes
has an approximately normal null distribution, such as a two sample t-statistic or a
maximum likelihood statistic. We assume a total of tp genes are true positives, and
for each such gene, the statistic is assumed to be normally distributed with mean μ

and standard deviation 1. We constructed two scenarios: alternative I had 25 true
positive genes, each upregulated by 3 standard deviations as compared to the null
genes, with the remaining T − tp constituting the null genes. In alternative II, we
considered tp = 2 true positive genes, each with expression levels upregulated by 4
standard deviations as compared to the null genes. Thus, alternative I has multiple
significant genes, each with moderate effect-sizes, and alternative II has a few true
hits with large effect-sizes. Under each of these illustrative alternative hypothe-
ses, we computed the expected number of null and significant genes recaptured
by the list-intersection statistic. The mathematical argument for these expectations
uses an argument from Feller (1957) and is given in the supplement (Section 2)
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TABLE 2
Expected sensitivity (ESns) and FDR under different alternative hypotheses and choices of r

(within-study significance threshold), and n (recapture rate)

Recapture-rate (n) r = 500 r = 100 r = 50 r = 25 r = 10

Alternative hypothesis I: # of true positive genes = 25, each with 3-σ upregulation
as compared to null genes

2 EFP 128.43 3.99 0.71 0.10 0.003
ETP 24.93 23.36 21.02 16.91 9.05
ESns 0.99 0.93 0.84 0.68 0.36
FDR 0.84 0.15 0.03 0.006 <0.001

3 EFP 4.21 0.02 0.002 <0.001 <0.001
ETP 23.90 17.42 12.65 7.54 2.24
ESns 0.96 0.70 0.51 0.30 0.09
FDR 0.15 0.001 <0.001 <0.001 <0.001

4 EFP 0.05 <0.001 <0.001 <0.001 <0.001
ETP 17.06 6.94 3.64 1.47 0.22
ESns 0.68 0.28 0.15 0.059 0.009
FDR 0.003 <0.001 <0.001 <0.001 <0.001

Alternative hypothesis II: # of true positive genes = 2, each with 4-σ upregulation
as compared to null genes

2 EFP 139.14 5.70 1.38 0.32 0.04
ETP 2.00 2.00 2.00 1.99 1.95
ESns 1.00 1.00 1.00 1.00 0.98
FDR 0.99 0.74 0.41 0.14 0.02

3 EFP 4.76 0.04 0.005 <0.001 <0.001
ETP 2.00 1.97 1.93 1.85 1.65
ESns 1.00 0.99 0.97 0.93 0.83
FDR 0.70 0.02 0.002 <0.001 <0.001

4 EFP 0.06 <0.001 <0.001 <0.001 <0.001
ETP 1.93 1.64 1.44 1.19 0.84
ESns 0.97 0.82 0.72 0.60 0.42
FDR 0.03 <0.001 <0.001 <0.001 <0.001

Note: N = 4 independent studies; T = 10,000 genes measured in each study; EFP = expected
# of false positives; ETP = expected # of true positives; ESns = ETP/# true positives; FDR =
EFP/(EFP + ETP).

[Natarajan, Pu and Messer (2011)]. For our two chosen scenarios, and for given
r and n, Table 2 displays the FDR within the intersection gene set as well as the
expected sensitivity (the expected proportion of true-positive genes that are cap-
tured). We considered recapture rates n from 2 to 4, and within-study thresholds r

from 500 to 10.
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For alternative hypothesis I (25 true-positive genes, each with 3σ upregulation),
when n = 2, a high expected sensitivity can be achieved by choosing r to be large.
For example, r = 500 has an expected capture rate of 24.93 true positives out of
25 total, for an expected sensitivity of 99.7%. However, this is at the cost of an
FDR of over 80%, as the expected number of false positives is over 128 with a
total expected set size of 153.36. Hence, the pair r = 500, n = 2 does not appear
to be a good choice here. Lowering r from 500 to 100 reduces the expected num-
ber of false positives to 4 while maintaining the expected number of true positives
captured at about 23 out of 25 (92% expected sensitivity); thus, (r = 100, n = 2)

appears to be a reasonable choice. Lowering r further achieves a lower FDR, but
at the cost of lower expected sensitivity: with n = 2 as r decreases from 50 to 10,
the expected sensitivity decreases from 84% to 36%. A better trade-off would be
to require a larger recapture rate with n = 3 while maintaining r = 500, as this
combination maintains a sensitivity of 95.6% (ETP = 23.9 out of 25) while reduc-
ing false discoveries (EFP = 4.2 and FDR = 15%). Requiring a recapture rate of
4 out of 4 studies is too stringent for the scenario considered here. Thus, either
(r = 100, n = 2) or (r = 500, n = 3) appear to be good choices for alternative
hypothesis I; both have expected sensitivity over 90% and FDR under 15%. Note
that it may not always be possible to achieve high sensitivity and low FDR; in this
case, as is evident in Figure 1 below, the number of studies N must be increased.

For alternative hypothesis II (2 true positive genes, each upregulated by 4σ ),
for a recapture rate of n = 2, thresholds of r = 500,100 or 50 all have expected
sensitivity of 100%, but also have FDR over 40%. (However, note that the number
of false discoveries may not be prohibitive.) A cutoff of r = 25 or r = 10 gives
better control of the FDR, while maintaining a high expected sensitivity. When
n = 3, stringent thresholds such as r = 25 or 10 result in capture of fewer true
positives, whereas setting r = 100 appears to be a good trade-off. Again, requiring
a recapture rate of n = 4 reduces the expected sensitivity, so the reasonable pairs
among those considered appear to be either (r = 100, n = 3) or (r = 10, n = 2).

We have illustrated how equations (2.3) and Supplement (2.1) [Natarajan, Pu
and Messer (2011)] can be used to calculate the expected number of true and false
positives, and FDR and expected sensitivity for various postulated hypotheses. In
the next section we examine how these methods might be applied when designing
a bioinformatic search to test a priori hypotheses of interest.

4.2. Choosing r and n to maximize sensitivity, with FDR ≤ q . The example in
Section 4.1 illustrates that the best choice of threshold r and recapture rate n will
depend on the number of true positive genes, as well as the effect size for these
genes. These considerations suggest how to design a list-intersection test: given
an acceptable FDR q , find r and n that maximize the expected sensitivity while
maintaining the gene-wise FDR ≤ q . This can be computed for a prespecified al-
ternative hypothesis which postulates tp true positive genes and corresponding
effect-sizes as outlined below:
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FIG. 1. Expected sensitivity at r(n) versus recapture rate n, given N studies in total and
FDR ≤ 0.01, under two alternative scenarios. For each recapture rate n, the expected sensitivity
at the optimal threshold r(n) is plotted. The filled circle represents the maximum expected sensitiv-
ity achievable for a given N . As expected, sensitivity increases as the total number of studies N in-
creases. The recapture rate (n) and threshold [r(n)] which maximize sensitivity represent the optimal
design choices which control FDR at the prescribed rate. Here # of features/genes = T = 10,000,
and FDR ≤ 0.01; the value of r(n) is from Table 3. Left: alternative I: 25 true-positive genes each
with effect-size = 3σ . Optimal design for (i) N = 4 at n = 3, r = 195; (ii) N = 6 at n = 4, r = 384;
(iii) N = 8 at n = 5, r = 575; (iv) N = 10 at n = 6, r = 755. Right: alternative II: 2 true-positive
genes each with effect-size 4σ . Optimal design for (i) N = 4 at n = 3, r = 81; (ii) N = 6 at n = 4,
r = 194; (iii) N = 8 at n = 5, r = 332; (iv) N = 10 at n = 6, r = 475.

(1) Set an acceptable FDR = q .
(2) For each possible recapture rate n = 1,2, . . . ,N , find the maximum threshold

r(n) which still maintains FDR < q:
(a) For each r = 1, . . . , T :

(i) compute the expected number of recaptured false positive genes
EFP(n, r) = (T − tp)P 0

n (r) [see Supplement equation (2.1)].
(ii) Given tp true positive genes and their effect-sizes, calculate

ETP(n, r), the expected number of recaptured true positive genes.
This can be obtained using Supplement equation (2.1) as ETP(n, r) =∑tp

a=1 P a
n (r).

(iii) Calculate FDR(n, r) as EFP(n,r)
EFP(n,r)+ETP(n,r)

.

(b) Let r(n) = maxT
r=1{r|FDR(n, r) < q}.

(3) For each pair (n, r(n)), calculate its expected sensitivity, ETP(n, r(n))/tp.
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TABLE 3
The maximum threshold r(n) that satisfies FDR ≤ 0.01, for a given number of studies N and

recapture rate n. Two alternative scenarios, T = 10,000 genes. Expected sensitivity
of the test at the maximum threshold is plotted in Figure 1, as a function of n

Total # of studies (N)

Recapture rate (n) 4 6 8 10

Alternative hypothesis I:
25 significant genes, each upregulated by 3-σ

2 30 24 20 18
3 195 126 95 77
4 683 384 270 210
5 – 869 575 434
6 – 1698 1034 755

Alternative hypothesis II:
2 significant genes, each upregulated by 4-σ

2 7 5 4 3
3 81 48 34 27
4 373 194 133 102
5 – 513 332 247
6 – 1123 659 475

(4) Choose the optimal pair, (n, r(n)), as the pair for which this expected sensi-
tivity is maximized.

To illustrate this strategy, we again examined the two alternative scenarios dis-
cussed in Section 4.1. We set T = 10,000, as before, and let N vary from 4 to 10
studies. We bounded the FDR by q = 0.01. Table 3 lists the maximum threshold
r(n) which satisfies the FDR bound, as obtained from step 2 of the above algo-
rithm, for each possible recapture rate n. Note that r(n) increases rapidly with in-
creasing n. For example, under alternative hypothesis I, with N = 4 studies and
n = 2, the maximum threshold which maintains the FDR cutoff is r(2) = 30,
whereas if we consider intersections across all 4 studies (i.e., n = 4), the maxi-
mum threshold is, as expected, larger at 683, since null genes will be less likely to
be recaptured across all studies. Note that r(n) decreases as the number of studies
N increases since the chance of a false positive increases with the total number
of studies and, hence, the size of the recaptured list would need to be smaller to
satisfy the prespecified FDR.

For each given number of total studies N , Figure 1 plots the expected sensitiv-
ity, ETP/tp, against n for the optimal r(n) from Table 3. Given N studies in total,
the pair (n, r(n)) that maximizes sensitivity would be the optimal a priori design
choice for the study. For instance, under alternative hypothesis I and an FDR cut-
off of 0.01, with N = 4 total studies, the maximal expected sensitivity of ∼84%
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is achieved at recapture rate n = 3, which from Table 3 is achieved at thresh-
old r(3) = 195. The other two scenarios corresponding to (n, r(n)) = (2,30) or
(4,683) achieve an expected sensitivity of less than 80%. Hence, for alternative I
and 4 total studies [n = 3, r(3) = 195] is the optimal design choice. Note that un-
der a given alternative, as the total number of studies N increases, the best choice
of recapture rate n increases, as does the expected proportion of true positive genes
recaptured [the expected sensitivity at the optimal choice of (n, r(n)].

The calculations in Table 3 and Figure 1 illustrate how a good choice of r and
n involves maintaining control of the FDR while maximizing the chance of cap-
turing true positive genes. The best choice of the pair (n, r(n)) of course depends
on whether one expects many significant genes with small-moderate effect sizes
similar to alternative I, or few differentially expressed genes at large effect sizes,
similar to alternative II. For a given alternative hypothesis, our design strategy
chooses the optimal combination of r and n which maximizes the expected sen-
sitivity, while controlling the FDR at the desired level. Note that, if the expected
sensitivity at the optimal pair (n, r(n)) is not satisfactory, then either the number of
studies considered N must be increased or the desired FDR level must be relaxed.

If multiple alternatives are proposed with no clear “winner,” the above pro-
cedure can be used to choose the optimal design for several proposed alterna-
tives. Then a Bonferroni correction could be applied, and the gene-sets that pass
a Bonferroni corrected significance level would be candidates for further research.
Specifically, for a given alternative and optimal design choice (n, r(n)), a p-value
can be calculated for each |Sn(r(n))| the test statistic of the observed data. This p-
value might be computed using the approximate Binomial or Poisson distributions
(Section 2) or via simulation. Then for m possible alternatives, and a significance
level α, the gene-sets for which the corresponding p-values are less than α/m are
considered “significant.” This procedure strictly controls the type I error rate on
the selected significant sets. Thus, under the null model, the probability is α or
less of declaring a set of genes to be significant.

5. Example: Mining the Oncomine database for candidate fusion genes
in prostate cancer. To illustrate our methods, we carried out an example list-
intersection discovery study using the publicly available Oncomine database
[Rhodes et al. (2007)], as in the original Tomlins study [Tomlins et al. (2005)].
We identified 4 suitable microarray gene expression prostate cancer studies
[Dhanasekaran et al. (2004), Lapointe et al. (2004), Tiwari et al. (2003), Tomlins
et al. (2006)]; our selection criterion was that all use a similar cDNA microarray
platform, and, as is common in such studies [Tomlins et al. (2005)], we assumed
that ∼10,000 genes would be expressed. Thus, we have N = 4 and T = 10,000.
Note that here, unlike in Tomlins et al. (2005), we are conducting a genome-wide
discovery test, rather than a concordance test based on a list of candidate cancer
genes. A second major difference is that Tomlins et al. considered N = 132 studies
across all cancer types and all platforms. Of course, Tomlins et al. used an ad hoc
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strategy to select interesting sets of genes for validation, rather than the statistically
motivated use of p-values we are illustrating here. In this setting we know there to
be least two true positive genes (the fusion genes identified in Tomlins et al.), and
we are interested to see whether our a priori search strategy will find them.

We set the significance level to α = 0.05. We next will prespecify the pair
(n, r(n)), in order to avoid data snooping. Thus, under the null hypothesis there
would be only 5% probability that the study will declare any gene set to be sig-
nificant (see example in Section 3.2 and Section 4). As discussed in Section 4.2,
good choice of r and n depends on the particular alternative hypothesis postulated.
Because in this somewhat artificial setting we know that fusion genes are rare and
that at least two exist, alternative hypotheses II (see Table 2) with 2 significant
genes, each with an effect-size of 4, is a reasonable choice for our study design.
As in Table 2, we chose a stringent FDR cutoff of 0.01, with the rationale that then
all discoveries within a significant set are likely to be true. Under these conditions,
the optimal design choice is (n = 3, r = 81), so that the set of genes S3(81) will
be tested for statistical significance (Table 3 and Figure 1).

Next, within each of the 4 identified prostate cancer studies, we ranked the
genes according to the “cancer outlier profile analysis” (COPA) procedure im-
plemented in the Oncomine website [Rhodes et al. (2007)]. This statistic measures
“fusion-like” properties, and was used by Tomlins et al. (2005). We computed
the observed test statistic |S3| = |S3(81)| with N = 4 (Section 2) by counting the
number of genes that were among the top 81 genes in at least 3 studies (Table 4).
As seen in Table 4, the set S3(81) contained 1 “hit.” To compute the associated

TABLE 4
List-intersection discovery of fusion-gene candidates across N = 4 independent prostate cancer

studies. The test statistic |Sn(r)| is the observed number of genes that are ranked among the top r

genes in at least n studies; p-value represents the probability of observing |Sn(r)| or more genes
under the null hypothesis of independent random ranking. The entry in bold corresponds to our a
priori choice of n = 3, r = 81; as the p-value for this entry is less than 0.05, the corresponding

gene set is declared significant

# of studies (n) r = 100 r = 81 r = 50 r = 25 r = 10

|S2(r)| 10 6 4 4 2
2 p-value 0.08 0.20 0.06 0.0006 0.002

est.FDR∗ 0.59 0.65 0.37 0.09 0.03

|S3(r)| 1 1 1 1 1
3 p-value 0.04 0.02 0.005 0.0006 <0.0001

est.FDR∗ 0.04 0.02 0.005 0.0006 <0.0001

|S4(r)| 0 0 0 0 0
4 p-value 1 1 1 1 1

∗est.FDR = estimated FDR = E|Sn(r)|/|Sn(r)|.
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p-value, we obtained the expected value of |S3(81)| under the null hypothesis as
10,000P 0

3 (81) = 0.021 using equation (2.3). Then the probability that a Poisson
variate with mean 0.021 will exceed 4 is 0.02, giving the p-value reported in Ta-
ble 4. Thus, we declare the set S3(81) to be a statistically significant set. The single
gene in the set S3(81) is ERG, a gene also found by Tomlins et al. in their study,
and this would be the single gene recommended for further investigation from our
study. At the stringent within-set FDR, we would have confidence at about the
95% level that this was not a false positive result.

To gain additional insight, Table 4 presents p-values and FDRs for recaptured
sets over a range of thresholds r and recapture rates n. Note that only S3(81)

(Table 4) is considered a discovery according to our prespecified analysis strategy;
other sets could be presented as exploratory descriptive results. For completeness
we also examined the four genes corresponding to |S2(25)|, as this had a highly
significant p-value and a reasonable 9% FDR: these are ERG, ETV1, EST and
VGLL3, of which the first two were validated as participants in a fusion gene by
Tomlins et al. (2005). Thus, by setting our FDR to the stringent level of 0.01, we
accomplished the goal of identifying a significant set which contained no false
discoveries, however, we missed one of the truly positive genes. Since validation
of such bioinformatic searches using rtPCR or other experimental techniques is
expected, applying a less stringent a priori FDR may be a reasonable approach.

To investigate the adequacy of the Poisson approximation, the p-values in
Table 4 were also verified by direct simulation as in Supplement Section 2.1
[Natarajan, Pu and Messer (2011)]. The p-value for the observed |S3(81)| = 1
(Table 4) via direct simulation was 0.0188 compared to the Poisson approx-
imation p-value of 0.0209. Considering the observed counts |S2(r)| in Ta-
ble 4, the p-values derived from the simulated null distribution of S2(r) were
0.0775,0.2001,0.0602,0.0004 and 0.0018, respectively, for the corresponding
thresholds r of 100,81,50,25 and 10. Thus, the Poisson approximation p-values
and simulated p-values show good concordance.

6. Discussion.

6.1. Dependence between genes. In this paper we have assumed independence
of the genes within each study, however, in fact, expression levels may be posi-
tively or negatively correlated between genes. Importantly, our strategy for study
design (i.e., for choice of r and n, given in Section 4) depends only the mean
of the test statistic |Sn|, which is unchanged under arbitrary dependence. [To see
this, note that if genes g and h are correlated, (2.2) and (2.3) still hold.] However,
correlation between genes will induce correlation between the Bernoulli trials in
expression (2.1), and, thus, p-values computed under the assumption of indepen-
dence under the null hypothesis may no longer be correct. How to adjust for cor-
relation between genes in the analysis of gene expression studies is an active area
of research [Efron (2010), Benjamini and Yekutieli (2001), Sun and Cai (2009)].
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Here we give some quantitative guidance in the current setting, using simulation
and by considering theoretical cases of extreme dependence. More detailed analy-
sis will be the subject of future work.

First, it is easy to see that negative correlation between genes may be generally
expected to reduce, and positive correlation to increase, p-values as compared to
the independent case. This is because correlation between genes will induce cor-
relation between the Bernoulli trials Bg in (2.1). The variance of the sum will be
correspondingly decreased or increased with the mean remaining unchanged, ren-
dering the distribution of |Sn(r)| either more or less concentrated about its mean. It
thus is most important to consider the effect of positive correlation between genes
because this will potentially increase p-values and thus type I error, if p-values are
computed under the (incorrect) assumption of independence. The magnitude of the
perturbation to p-values clearly depends on both the number of correlated genes
and the strength of their correlation, while the exact perturbation depends on the
joint distribution of the correlated genes. Simulation studies reported in the supple-
mental article (Section 1.2) [Natarajan, Pu and Messer (2011)] show that moderate
correlation (half of genes with weak correlation or a few genes with strong cor-
relation) does not appear to appreciably affect p-values. Further support for these
observations is found in the literature on models for correlated Bernoulli trials, of
which [Yu and Zelterman (2002), Gupta and Tao (2010)] give relevant examples.

Quantitative insight on the potential magnitude of a perturbation can be gained
by considering the following extreme model: suppose the T genes can be parti-
tioned into modules of size m, where two genes within a module have correlation
ρ > 0 but any two genes in different modules are independent. In the limiting case
with ρ = 1, it is easy to see that |Sn(r)| has the same null distribution as the statistic
|mS̃n(r/m)|, where the distribution of |S̃n| is computed using T̃ = T/m indepen-
dent genes, and is thus approximately Poisson with mean T P 0

n /m. It follows that,
under this model, |Sn(r)| has unchanged mean, variance inflated by a factor of m,
and that corrected probabilities can be computed using the relation

P(|Sn| > x) = P(|S̃n| > x/m).(6.1)

As the postulated within-module correlation decreases from ρ = 1 toward zero,
the correct tail probabilities will smoothly interpolate from the correction given in
(6.1) to the original values as computed in Section 2.1 under independence. Thus,
given correlated gene modules of postulated maximum size m, relation (6.1) might
be used to give a conservative ballpark correction to computed p-values.

An example can be computed using the data in Table 4, Section 5. For example,
four genes were recaptured by S2(25) (line 1 of Table 4), which had a p-value of
0.0006 under the null hypothesis of independent random ranking of genes. Sup-
pose we wondered if correlation under the null hypothesis would be sufficient
to account for the observed data. After consideration, suppose we decided there
were several pairs of strongly correlated genes, so that we wanted to conserva-
tively adjust for many correlated gene modules of size 2, so m = 2. As before,
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p0 = r/T = 25/10,000 and P 0
2 = P(X ≥ 2) = 3.74 × 10−5, so that under inde-

pendence |S2(25)| is approximately Poisson with mean T P 0
n = 0.374. However,

under the correlated model with ρ = 1, |S2(25)| is distributed as |2S̃2(25)|, where
|S̃2(25)| is approximately Poisson with mean T P 0

n /2 = 0.187. The p-value ad-
justed for correlation would be P(|S̃n| ≥ 4/2) = 0.015. Thus, the maximum corre-
lation assuming pair-wise modules would be unable to completely account for the
observed data. Several simulation examples showing the effect of other correlation
structures are presented in the Supplement [Natarajan, Pu and Messer (2011)].

6.2. Conclusions and future directions. Public repositories of genomic data
continue to grow, and list-intersection approaches similar to those considered here
are likely to become even more common in the future, as several repositories of
curated gene lists have recently been published which include tools for compar-
ing lists and intersecting lists of top-ranked genes across multiple similar studies
[Glez-Pena et al. (2008), Culhane et al. (2010)]. The primary statistical challenges
for analyzing data from such repositories are controlling the number of false pos-
itive results and maintaining a valid basis for inference when combining multiple
studies [Benjamini, Heller and Yekutieli (2009)].

A well-established method for pooling results across multiple studies is meta-
analysis. This approach is usually conducted gene-by-gene, and produces a com-
bined p-value (or effect-size) for each gene [Zaykin et al. (2002), Benjamini and
Heller (2008), Garrett-Mayer et al. (2008), Pyne, Futcher and Skiena (2006)].
However, under this approach it is possible that a significant gene can be de-
clared based on a few studies which display large effects, with null effects observed
in most studies, and this can lead to high false positive rates [Pyne, Futcher and
Skiena (2006)]. Garrett-Mayer and others [Garrett-Mayer et al. (2008)] discuss the
importance of first identifying genes that are consistently measured across different
microarray platforms, which is clearly a useful preliminary analysis for reducing
false positives. There is evidence that rank-based approaches may be more robust
and better guard against false discoveries, while maintaining adequate power, com-
pared to more traditional methods of meta-analysis [Hong and Breitling (2008)].
Formal or informal rank-based meta analyses for combining effect sizes across
multiple studies have been proposed in the applied and methodological literature
[Chan et al. (2008), Jeffries et al. (2009), Deng et al. (2008), Miller and Stamatoy-
annopoulos (2010)].

Our approach compares within-study ranks to a common threshold, and is an
effort to explore the inferential basis of the list-intersection approach. We provide
exact formulas which allow examination of power and false discovery rates. Our
rank-threshold method does not combine individual per-gene effect sizes, such as
ranks, across multiple studies. Instead, we evaluate the entire set of genes recap-
tured as above a rank threshold across multiple studies. Loosely speaking, this is
akin to acceptance sampling procedures, where a “lot” [i.e., the set Sn(r) in our
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notation] may be deemed “acceptable” if the number of “defectives” (i.e., false
discoveries) is below some level (defined by the FDR). However, a salient point
in our setup is that many “lots” [Sn(r)] may be acceptable, in that they satisfy the
FDR criteria. How to choose among these multiple “acceptable” gene-sets is a a
major focus of our work. We discuss expected sensitivity of the gene-sets, and also
obtain a p-value per recaptured set, with tight control of the set-wise type I error
rate. In this sense our method is more stringent than an approach which combines
gene-by-gene effect sizes across studies. Our set-based method may also provide
tighter control of gene-level type I error and false discovery rates, although this is
the subject of future research.

In related work [Pyne, Futcher and Skiena (2006)], a pooled p-value is cal-
culated together with a consensus parameter defined as the number of studies in
which a feature has to be declared significant before it is considered significantly
validated across studies. Thus, the consensus parameter plays a similar role as our
recapture rate n. Pyne, Futcher and Skiena (2006) describe results for different
values of such consensus parameters but do not give guidelines on how to choose
this parameter. Our work provides the applied practitioner with p-values and ex-
pected number of false positives under various choices for within-study signifi-
cance thresholds r and recapture rates n, which could be used to guide decisions
on significant “gene-sets.”

Another method, the partial conjunction hypothesis test [Benjamini and Heller
(2008)], uses a p-value threshold to consider among how many studies out of N a
given gene is found to be significant at a given level, where each study addresses a
different research hypothesis. For each gene g, the set of hypotheses that the gene
is null in n or fewer studies is simultaneously tested, for 1 ≤ n ≤ N . A general
data-driven method for controlling the FDR across all genes is presented, where
the number of false discoveries is defined as the number of genes which have been
called significant in at least one study in which the gene was truly null. In this
setting the studies may address differing alternative hypotheses, and the focus is on
the situation where a gene can be truly null in some but not other studies, and where
this may differ from gene to gene. Thus, it is of interest to ascertain for each gene
in which studies among all N considered it is truly significant. This differs from
the scenario considered in the present paper, in which the studies are assumed to
each test the same hypothesis. In the setting of Benjamini et al. power necessarily
declines as the total number of studies N increases [Benjamini and Heller (2008)].
This is in contrast to our Figure 1, in which the expected sensitivity increases with
the total number of studies N . Benjamini et al. have the advantage, however, of
controlling the false discovery rate in a data-driven manner. By contrast, we allow
the user to set the number of studies n that a gene is required to be captured by,
and we study how the expected true positive proportion and false discovery rates
are affected by which alternative is considered to hold. Our interest is in scenarios
where the alternative hypothesis is the same across studies, as is often the case in
genomic studies.
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In another approach to the problem, Lu, Gamst and Xu (2008) develop a boot-
strap methodology for assessing the average frequency with which significant
genes will be rediscovered under independent validation. This approach is use-
ful at the end of a study when significant gene-lists have been identified, and no
external validation data set is available. In particular, it can be used to estimate the
internal stability of discovered genes, and also to compare different ranking proce-
dures applied within the same study. Our focus is on external validation. We aim to
provide a formal statistical method for evaluating genes that replicate across mul-
tiple studies. We discuss how one might a priori choose within-study significance
thresholds (i.e., r) and cross-study recapture rates (i.e., n) to ensure (i) adequate
probability of capturing true positives, and (ii) low false discovery rate within the
recaptured set, when designing a bioinformatic search across multiple genomic
data sets. After this search is complete, our methods can be applied to obtain p-
values for observed recaptured sets, although permutation tests could also be used
to obtain p-values, while the bootstrap could be used to obtain distributions of test
statistics.

Our approach has some limitations. We assume that the threshold r for deter-
mining high-ranking genes is the same for all studies, as are the corresponding
probabilities p0 of selecting a null gene (used in computing p-values) and pa of
selecting a differentially expressed gene (used in computing the expected propor-
tion of true positives for study design). These assumptions could be relaxed com-
putationally, although the distributional calculations would lose their simple closed
form solutions. Often when comparing results across studies the technology used
to generate the data will be similar, in which case requiring similar parameters
across studies should not pose a serious problem. In fact, this assumption is anal-
ogous to the homogeneity test in meta-analysis where only studies with similar
design, populations, and measurement methods are pooled. Further, as with many
methods in common use in the analysis of gene-expression data, our calculations
assume that genes are independent, which is unlikely to be the case in practice,
as discussed in Section 6.1. As with any analysis of gene-expression data using
microarrays, RNA-seq, or other technologies, it is expected that results will be
independently verified using different experimental methods.

In summary, in this article we describe a simple and rigorous inferential method
for evaluating the consistency of results across multiple independent studies, us-
ing a combined type I error for discovery of a significant gene set, and an esti-
mated FDR within the gene set. We show how to choose study parameters to max-
imize the expected number of significant genes that will be captured. Future work
will consider related approaches which are based on FDR control. The framework
we describe for selecting a significant set of genes is used widely by biologists
and bioinformaticians [Tomlins et al. (2005), Pyne, Futcher and Skiena (2006),
Benjamini, Heller and Yekutieli (2009), Glez-Pena et al. (2008), Culhane et al.
(2010)]. We hope that providing a simple computational and statistical underpin-
ning for such studies will lead to more formal use of these methods with corre-
sponding improved control of type I error rates.
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SUPPLEMENTARY MATERIAL

Online supplement: Statistical tests for the intersection of independent lists
of genes (DOI: 10.1214/11-AOAS510SUPP; .pdf). Simulation studies and proofs
are in the online supplement. In Section S1 we show by simulation that the Poisson
approximation to the null distribution of the test statistic gives reliable p-values
under a wide range of parameters, both for the independent case (Section S1.1)
and under a range of moderate positive correlation structures (Section S1.2). We
confirm that the Poisson approximation computed under assumed independence
yields conservative p-values under examples of extreme positive correlation, as
conjectured in the text (Section 6.1). In Section S2 we derive the alternative distri-
bution of the test statistic for some useful special cases, using combinatorial results
Feller (1957).
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