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Cross-validation (CV) is widely used for tuning a model with respect to
user-selected parameters and for selecting a “best” model. For example, the
method of k-nearest neighbors requires the user to choose k, the number of
neighbors, and a neural network has several tuning parameters controlling the
network complexity. Once such parameters are optimized for a particular data
set, the next step is often to compare the various optimized models and choose
the method with the best predictive performance. Both tuning and model se-
lection boil down to comparing models, either across different values of the
tuning parameters or across different classes of statistical models and/or sets
of explanatory variables. For multiple large sets of data, like the PubChem
drug discovery cheminformatics data which motivated this work, reliable CV
comparisons are computationally demanding, or even infeasible. In this pa-
per we develop an efficient sequential methodology for model comparison
based on CV. It also takes into account the randomness in CV. The number
of models is reduced via an adaptive, multiplicity-adjusted sequential algo-
rithm, where poor performers are quickly eliminated. By exploiting matching
of individual observations, it is sometimes even possible to establish the sta-
tistically significant inferiority of some models with just one execution of CV.

1. Introduction. The application area that motivated this research illustrates
the enormous computational burden that can occur when cross-validation (CV)
is used to tune and select statistical models. Our Exploratory Center for Chem-
informatics Research, funded by the National Institutes of Health Roadmap for
Medical Research, is comparing statistical modeling methods on assay data from
PubChem (http://pubchem.ncbi.nlm.nih.gov). For a given assay, activity (the re-
sponse variable) against a particular biological target is measured for thousands or
tens of thousands of drug-like molecules. Several high-dimensional sets of chem-
ical descriptors (explanatory variables) are available to characterize the chemical
properties of the molecules. A statistical model attempts to relate biological activ-
ity to the chemical descriptors as part of drug discovery. Currently, for each assay,
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the web-based Cheminformatics Modeling Laboratory or ChemModLab [Hughes-
Oliver et al. (2011)] compares, via CV, 16 statistical methods, many of which are
computationally demanding, and five candidate sets of descriptor variables. Thus,
16×5 = 80 modeling strategies are assessed and compared on data sets with thou-
sands of observations and high-dimensional explanatory variables.

Moreover, ideally each of these 80 strategies should be tuned with respect to
one or more user-selected parameters, greatly increasing the number of candidate
models to be compared. For example, a neural network has several user-defined
tuning parameters controlling the network complexity, such as the number of hid-
den units and a decay parameter. If many sets of values for the tuning parameters
are tried, potentially hundreds or thousands of computationally demanding models
need to be compared for the large PubChem data sets.

CV [Stone (1974)] is widely used for this type of study, albeit usually on a much
smaller scale. In a 10-fold cross-validation, for example, the observations are split
into 10 groups or folds, one group is considered as test data for assessing prediction
accuracy, and the other nine groups are used for model fitting. This process is
repeated with each of the groups in turn as test data. Thus, further increasing the
computational burden already described, a fixed model (a statistical model with
given values of all tuning parameters and a descriptor set) has to be fitted 10 times.

There is yet another addition to the computational challenge. CV is based on a
random split of the data, and, as we illustrate in Section 2, there can be considerable
variation from one split to another. Thus, numerous data splits may be necessary
to compare models reliably.

Thus, the overall computational effort appears to be simply infeasible for the
comprehensive comparisons we have outlined for large PubChem assay data sets.
To our knowledge, currently all comparisons of this type hence have some degree
of unreliability and/or suboptimality, due to randomness in CV and lack of effec-
tive tuning, respectively.

Much theoretical work has been done on CV. Stone (1974, 1977) focused mainly
on properties for leave-one-out (or n-fold) CV. Li (1987), Shao (1993) and Zhang
(1993) investigated v-fold CV procedures for linear models and general v. Burman
(1989) established theoretical results for v-fold CV for a wider class of mod-
els. More recently, Dudoit and van der Laan (2005) derived asymptotic proper-
ties for a broad definition of CV (e.g., leave-one-out, v-fold, Monte Carlo, etc.)
for model selection and performance assessment, and Yang (2006) established the
consistency of CV for classification. The theoretical developments parallel the ex-
tremely wide use of CV by researchers for assessing and selecting models, for
example, Dietterich (1998), Hawkins, Basak and Mills (2003), Sinisi and van der
Laan (2004) and Hughes-Oliver et al. (2011).

In this article we will focus on 10-fold CV, though the methodology applies
to v-fold CV for any feasible v. We propose a data-adaptive approach involving
multiple repeats of CV for the candidate models. At any stage, the CV analyses
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available from repeated data splits are used to perform a multiplicity-adjusted sta-
tistical test to eliminate all candidate models that are inferior to at least one other.
Only those models that survive move on to the next stage and have a further CV
performed to increase the test power based on a new, common data split. In this
way, during model tuning, very poor settings of the tuning parameters are quickly
dismissed and computational effort is concentrated on the best settings. The search
terminates when one setting emerges as the winner, or when the differences in per-
formance between the surviving settings are practically unimportant with some
statistical confidence. A similar approach is used to compare optimized models.
In the PubChem application there will be one optimized model for each statistical
modeling strategy, that is, a class of models such as k-nearest neighbors with one of
the available descriptor sets. It is also possible to combine tuning with comparison
across optimized models in one dynamic search.

Second, we develop more efficient tests for comparing models. This extends the
idea of matching by using the same data splits across CV analyses [e.g., Dietterich
(1998)]. By matching at the level of individual observations rather than data split,
moderate differences in performance between models can sometimes be detected
with just one set of CV analyses from one data split. Thus, poor performers are
potentially eliminated with a minimum of computing.

Overall, the aim of this article is to develop a sequential approach for com-
prehensive and reliable model tuning and selection via CV. In particular, for the
PubChem applications, users of ChemModLab will have automatic comparison of
a vast number of tuned modeling strategies, with a reasonable turn-around time.

Related to our sequential tests via CV, Maron and Moore (1997) developed a
“racing” algorithm to test a set of models in parallel. The algorithm sequentially
increases data points to build and test candidate models before using all of the
data. In their paper, leave-one-out CV was used to compute the prediction error. In
contrast, our algorithms use all the data points at all stages, 10-fold CV is imple-
mented to estimate the prediction error, and computational speed-up is achieved
by reducing the number of models.

The paper is organized as follows. In Section 2 we describe a typical PubChem
data set and the performance assessment measures relevant to the application. In
Section 3 we illustrate that there may be substantial variation in CV performance
estimates from one random data split to another, requiring multiple data splits for
reliable comparison. Section 4 describes three data-adaptive algorithms for se-
quentially comparing models. Whereas Section 4 is focused on tuning a given
modeling strategy, that is, a given statistical method and set of data, Section 5 con-
siders tuning and comparisons across qualitatively different modeling strategies,
that is, different types of statistical models and/or different explanatory variable
sets. The PubChem data set is used throughout for illustration. Finally, some con-
clusions are presented in Section 6.
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2. PubChem AID362 data and assessment measures. ChemModLab
[Hughes-Oliver et al. (2011)] catalogs the data for five assays: AID348, AID362,
AID364, AID371 and AID377. (“AID” stands for “Assay ID.”) In this paper we
will focus on AID362, a formylpeptide receptor ligand binding assay that was
conducted by the New Mexico Molecular Libraries Screening Center; the same
CV comparison methodologies would be applied independently to other assays in
PubChem.

AID362 has assay data for 4,275 molecules. Various responses are available, but
here we work with a binary inactive/active (0/1) measure. Of the 4,275 molecules,
only 60 were assayed to be active. Via computational chemistry, ChemModLab
generates five sets of descriptor (explanatory) variables: Burden numbers, phar-
macophore fingerprints, atom pairs, fragment fingerprints and Carhart atom pairs,
with 24, 121, 395, 597 and 1,578 variables, respectively.

The purpose of building a statistical model here is to predict the AID362 inac-
tive/active assay response from the descriptor variables. Note that the descriptor
variables are produced by computational chemistry. Thus, it is feasible to compute
them cheaply for vast numbers of compounds in a chemical library or even in a
virtual library of chemical formulas for molecules that have not yet been synthe-
sized. The aim of the predictive model, built from assay data for relatively few
molecules, is to choose the molecules in the bigger library that are most likely to
be active when assayed. Such a focused search generates “hits” for drug devel-
opment more efficiently than assaying all the compounds available, even if this is
feasible.

The typical rarity of active compounds and the aim of identifying a small num-
ber of promising compounds in a large library means that special predictive per-
formance measures have been developed for modeling in drug discovery. Misclas-
sification rate, often used for a binary response, is not appropriate, as even the
useless, null model that always classifies as “inactive” will have a high accuracy
rate when active molecules are so rare. The objective is more to rank compounds
in terms of their probability of activity, so that a sample of the desired size of the
most promising compounds can be chosen from a library.

A widely used criterion is a simple function of the number of hits found, h300,
among 300 compounds selected using a predictive model. Specifically, suppose
a predictive model generates p̂i , the probability that compound i among N unas-
sayed compounds is active (i = 1, . . . ,N ). We then order the compound indices via
the permutation π such that p̂π(1) ≥ · · · ≥ p̂π(N). Suppose first there are no ties.
The 300 compounds indexed by π(1), . . . , π(300) are selected for assay, and h300 is
simply the number of actives (hits) found among them. In general, if p̂π(300) ties
with the a + b estimated probabilities p̂π(300−a+1), . . . , p̂π(300+b) for a ≥ 1 and
b ≥ 0, then h300 is defined as

h300 = h300−a + a

a + b
htie,(1)
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where h300−a and htie are the number of hits found among the compounds with
indices π(1), . . . , π(300 − a) and π(300 − a + 1), . . . , π(300 + b), respectively.
This is the expected number of hits if a compounds are randomly selected from
the a + b with tied probabilities to make a total of 300 selected. No ties for p̂π(300)

is just a special case of (1) with a = 1 and b = 0.
Initial enhancement (IE), used, for example, by Hughes-Oliver et al. (2011),

is just (h300/300)/r , where r is the activity rate in the entire collection of N

compounds. Thus, it measures the rate of finding actives among the 300 chosen
compounds relative to the expected rate under random selection. A good model
should have IE values much larger than 1. As IE is just a linearly increasing func-
tion of h300, the two criteria are equivalent, and we use the simpler h300 in this
article. Users concerned about the arbitrariness of selecting 300 compounds may
prefer the average hit rate (AHR) proposed by Wang (2005), which averages per-
formance over all selection sizes but favors models which rank active compounds
ahead of inactive compounds in terms of p̂i . Algorithms 1 and 3 in Section 4 could
be applied directly to AHR without modification.

In defining the assessment measure h300, we have assumed there is a training
data set to build a model and a further independent test set of N compounds avail-
able to assess it. This article is concerned with CV, however, where the same n

observations are used for training and for testing. Under 10-fold CV, for instance,
when a particular data fold is removed to serve as test data, the model fitted to
the remaining data generates the p̂i values for the compounds in that fold. After
cycling through all 10 folds, the p̂i values are put together so that there is a p̂i

for all n compounds. We then define h300 (or an alternative criterion) exactly as
above except that we choose 300 compounds from the n ≥ 300 instead of from an
independent set of size N .

3. Variation in cross-validation. We now demonstrate that there can be sub-
stantial variation in the performance estimates from 10-fold CV from one random
split of the data to another, potentially requiring multiple splits for reliable model
tuning or selection. For illustration, the PubChem AID362 assay data will be mod-
eled using a neural network (NN) [see, e.g., Ripley (1996)] with one hidden layer
and a variation of Burden numbers [Burden (1989)] as the descriptor set. For the
AID362 assay, there are 60 active compounds among 4,275 molecules, and the
Burden number descriptor set has 24 variables.

We will tune two important parameters of the NN: the number of units in the
hidden layer, which controls the size or complexity of the network, and a decay
parameter, where smaller values shrink the network weights less and lead again
to a more complex network. In this tuning study, size takes the values 5, 7 and 9,
and decay takes the values 0.1, 0.01 and 0.001. Thus, tuning will select among
3 × 3 = 9 models generated by all combinations of the two tuning parameters.

For each model, 10-fold CV is run for 100 random splits of the data, and the
histograms in Figure 1 show the estimated distributions of the h300 assessment
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FIG. 1. Histograms showing the distribution of h300 values from 10-fold CV across 100 data splits
for neural networks with different values of size and decay, and Burden numbers as the descriptor
set.

measure defined in (1). We can see that there are considerable differences between
the h300 distributions across the tuning parameters values considered, that is, tun-
ing is important. There is also considerable variation within a fixed set of tuning
parameter values. For example, for size = 5 and decay = 0.01, which is one of the
better performing models, h300 ranges from 26 to 37. We will take the population
mean performance over a large number of repeated cross-validations as a reliable
measure of performance, reliable in the sense that random cross-validation varia-



2674 H. SHEN, W. J. WELCH AND J. M. HUGHES-OLIVER

TABLE 1
Sample means of h300 for 10-fold CV across 100 data splits for neural networks with different
values of size and decay, and Burden numbers as the descriptor set, applied to the PubChem

AID362 assay data

Neural network model

1 2 3 4 5 6 7 8 9

Size 5 5 5 7 7 7 9 9 9
Decay 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
# of hits 18.7 31.2 28.7 18.6 30.2 30.7 18.5 30.7 31.4
S.E. 0.18 0.24 0.27 0.19 0.24 0.27 0.18 0.22 0.26
Rank 7 2 6 8 5 3 9 4 1

tion is eliminated. Table 1 displays the observed sample means of h300 with their
standard errors. Models 2, 5, 6, 8 and 9 have better sample means than models 1,
3, 4 and 7. Moreover, the standard errors are fairly small relative to the differences
between the sample means across these two groups, suggesting that the weaker
performers could be dismissed with fewer than 100 random data splits, whereas
finding the best parameter values among the better models will take considerable
work (though perhaps not requiring 100 random data splits). This is the basic idea
underlying the adaptive algorithms of Section 4.

Such a comparison should take into account that data split would naturally be
a blocking factor. Every time a random data split is generated, all models under
consideration are assessed via CV using this same split. Thus, the 100 data splits
leading to the data in Figure 1 are 100 blocks. Figure 2 shows the results for five
blocks, with each line representing one split. The approximate parallelism of the

FIG. 2. h300 values for 10-fold CV and five data splits (five lines) for neural networks with different
values of size and decay, and Burden numbers as the descriptor set.
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curves indicates that including split as a blocking factor will lead to more powerful
comparisons. Figure 2 also suggests that comparing models based on just one split
may lead to a biased estimator of performance. For each curve, suppose we select
the model (set of tuning parameter values) with the largest observed value of h300.
We note first that, probably due to selection bias, the h300 value of the winning
model tends to be in the upper tail of its distribution in Figure 1. Second, for the
fifth split, suboptimal model 3 has the best value of h300. Thus, there is a need for
multiple splits for reliable assessment and comparison.

4. Algorithms for adaptive model search via sequential CV.

4.1. Algorithm 1 (data splits as blocks). Suppose there are m models to be
compared. For much of this article, we will be comparing m sets of values for the
tuning parameters of a given type of statistical modeling method, in the context
of a fixed descriptor (explanatory variable) set. Comparisons across qualitatively
different statistical models and/or different sets of explanatory variables are also
possible, however (Section 5). The algorithm will attempt to remove models se-
quentially until m is reduced to 1.

At each iteration, a new random data split is created for CV, and 10-fold (or
v-fold in general) CV estimates of performance are computed for the surviving
models. For each model, CV requires 10 model fits for the new split. Thus, regular
CV is applied; the various algorithms to be described are efficient by reducing the
number of times such a regular CV analysis has to be performed.

Specifically, suppose there are m surviving models, and results from running
10-fold CV are available for s ≥ 2 random splits. The assessment measure is com-
puted for every model and split. We will use h300 in (1), but for this first version
of the algorithm any user-defined measure could be employed, for example, the
average hit rate in Section 2 or, for a continuous response, the empirical predictive
mean squared error. In general, yij will denote the CV assessment measure for
model i and data split j .

If a randomly chosen split is applied across all models, split is a blocking factor,
and we can model yij as generated by

Yij = μ + τi + βj + εij (i = 1, . . . ,m; j = 1, . . . , s),

where μ is an overall effect, τi is the effect of model i, βj is the effect of split j ,
and εij for i = 1, . . . ,m and j = 1, . . . , s are random errors, assumed to have
independent normal distributions with mean 0 and variance σ 2. This is the model
for a randomized block design, though we point out that randomization within a
block, for example, executing the analyses for the m models in a random order,
has no relevance for such a “computer experiment.”

We want to test the hypotheses

H0 : τi = τi′ versus H1 : τi �= τi′
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for all i �= i′. For a particular pair of models indexed by i and i ′, rejecting H0

in favor of H1 at some significance level implies that one of the models may be
eliminated as inferior to the other. After removing all such dominated models,
at the next iteration, further CV computational effort will be concentrated on the
surviving models.

At least initially, m may be large, and a multiplicity-adjusted test is desirable.
Tukey’s test [Dean and Voss (1999), Chapter 4, Montgomery (1997), Chapter 3]
is a common choice for such multiple comparisons, and we adopt it throughout.
Other tests for multiple comparisons could be applied, such as Fisher’s least sig-
nificant difference test or Duncan’s multiple range test, etc. [Montgomery (1997),
Chapter 3]. Let

ȳi· = 1

s

s∑
j=1

yij(2)

denote the sample mean performance over the s splits for model i (i = 1, . . . ,m).
For any i �= i ′, the null hypothesis H0 is rejected in favor of H1 at level α if

|ȳi· − ȳi′·| > Tα(m, s),

where

Tα(m, s) = qα

(
m, (m − 1)(s − 1)

)√MSE(m, s)

s
(3)

is the Tukey value, qα(m, (m − 1)(s − 1)) is the studentized range statistic with m

and (m−1)(s−1) degrees of freedom, and MSE(m, s) is the mean square for error
under a randomized-block analysis of variance with m models (treatments) and s

splits (blocks). A set of simultaneous 100(1 − α) percent confidence intervals for
all pairwise differences τi − τi′ for i �= i′ is given by

τi − τi′ ∈ (
ȳi· − ȳi′· ± Tα(m, s)

)
.(4)

The properties of statistical tests in analysis of variance models in general are of-
ten justified via randomization [e.g., Kempthorne (1952, 1955)]. As already noted,
randomization of models to a split (block) is irrelevant here, and it is question-
able whether the nominal significance level α is actually achieved under the null
hypothesis. In any case, as the algorithm iterates and more blocks are added, a se-
quence of tests is performed. Even if each stage has the correct significance level
for removing a model when it is not inferior, the entire procedure would not. Over-
all, then, α is best viewed as controlling a greedy algorithm, where larger values
would remove models more aggressively, and the gain in computational speed is
accompanied by more risk of converging to a suboptimal model. We use α = 0.05
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FIG. 3. Adaptive model search via sequential CV (Algorithm 1: iterate until one model is left or a
maximum of S data splits has been performed).

throughout for empirical demonstrations and compare the solutions found with
more exhaustive searches.

Figure 3 gives pseudo code for the above sequential algorithm. It iterates until
only one model is left, subject to a maximum of S random data splits and hence
S CV analyses for any model. We use S = 100 hereafter. Note that this algorithm
needs at least two executions of CV for each initial model from two random data
splits.

For illustration, we revisit the PubChem AID362 example in Section 3, where
the descriptor set is formed from Burden numbers, and the problem is to tune the
parameters decay and size for a neural network model. The nine candidate models,
that is, the nine combinations of decay and size values, were given in Table 1.

Table 2 shows the results of applying Algorithm 1 to this example. After s = 2
splits, the average h300 values for the nine models, ȳ1, . . . , ȳ9, are

17.5,33.0,27.0,17.0,30.0,28.5,16.5,31.5,29.0,

MSE(9,2) = 3.39, and the Tukey value is 7.51 for significance level α = 0.05.
Since ȳ2. − ȳi· > 7.51 for i = 1, 4 and 7, these three models are dismissed. Recall
from Table 1 that they are indeed the worst when averaged over 100 splits, but the
sequential algorithm eliminates them after just two CV splits. Hence, in Table 2,
only models 2, 3, 5, 6, 8 and 9 survive the second split and are included for a
third round of CV based on another split. After five splits, model 3 is removed.
Models 5, 6 and 8 are removed after 58, 69 and 70 splits, respectively. The two
remaining models, 2 and 9, are still in contention when the algorithm stops due
to restricting the computational effort to 100 splits. From the average h300 values
given in Table 1, we know that these two models are very similar in performance,
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TABLE 2
Algorithm 1 applied to tuning the values of size and decay for a neural network for the PubChem

AID362 assay data with Burden numbers as the descriptor set. The models surviving after each split
are denoted by a check mark

Number
of splits

Neural network model

1 2 3 4 5 6 7 8 9

0 � � � � � � � � �
2 � � � � � �
3 � � � � � �
4 � � � � � �
5 � � � � �
...

...
...

...
...

...
...

...
...

...

57 � � � � �
58 � � � �
...

...
...

...
...

...
...

...
...

...

68 � � � �
69 � � �
70 � �

...
...

...
...

...
...

...
...

...
...

100 � �

and are hard to distinguish. This motivates Algorithm 3 in Section 4.3, but next we
improve Algorithm 1.

4.2. Algorithm 2 (observations as blocks). Algorithm 1 in Section 4.1 needs
at least two CV data splits for every one of the m models, which may be compu-
tationally expensive if m is large. We now describe another multiplicity-adjusted
test, aimed at eliminating bad models after only one CV data split.

Unlike Algorithm 1, the revised algorithm is applicable only to an assessment
measure that is a sum or average of contributions from individual observations. The
criterion h300 in (1) is of this form, and we continue to use it, but we note that only
the active compounds in the data set can make a nonzero contribution to h300, and
it is sufficient to consider them only. Specifically, suppose there are A ≥ 2 active
compounds in the data set (A = 60 for the AID362 assay). For any given model,
its CV analysis leads to estimated probabilities of activity p̂π(1) ≥ · · · ≥ p̂π(n) for
the n compounds in the data set. We can write

h300 =
A∑

j=1

y∗
j ,
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where y∗
j is the contribution from active compound j . From the definition of h300

in (1),

y∗
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if active compound j is one of the first
300 − a compounds selected,

a

a + b
, if active compound j appears among the

a + b compounds with p̂ tying with p̂π(300),
0, otherwise.

(5)

(Recall that p̂π(300) ties with the a + b estimated probabilities p̂π(300−a+1), . . . ,

p̂π(300+b) with a ≥ 1 and b ≥ 0, which includes no ties if a = 1 and b = 0.)
For example, suppose a CV analysis leads to estimated probabilities of activ-

ity p̂π(1) ≥ · · · ≥ p̂π(n) such that p̂π(300) has the eight ties p̂π(298), . . . , p̂π(305).
Of the, say, A = 60 active compounds, 25 have estimated probabilities among
p̂π(1), . . . , p̂π(297); they each have y∗

j = 1 in (5) because they must each contribute
one hit to h300. Another two active compounds have estimated probabilities among
p̂π(298), . . . , p̂π(305); they each have y∗

j = 3/8, the probability of being selected
298th, 299th or 300th when the eight selections 298, . . . ,305 are made in random
order.

We now consider CV to compare m models based on one common random
data split. Let y∗

ij be the contribution of active compound j to h300 for model i,
for i = 1, . . . ,m and j = 1, . . . ,A. A multiplicity-adjusted test parallels that in
Section 4.1. In the randomized-block analysis, the blocks are now the A active
compounds rather than data splits (there is only one). If a randomly chosen split is
applied across all models, we can model y∗

ij as generated by

Y ∗
ij = μ∗ + τ ∗

i + β∗
j + ε∗

ij (i = 1, . . . ,m; j = 1, . . . ,A),

where μ∗ is an overall effect, τ ∗
i is the effect of model i, β∗

j is the effect of active
compound j , and the ε∗

ij are random errors, assumed to have independent normal

distributions with mean 0 and variance σ ∗2
. Similarly, the Tukey value in (3) is

replaced by

Tα(m,A) = qα

(
m, (m − 1)(A − 1)

)√MSE(m,A)

A
,

where the studentized range statistic q has degrees of freedom m and (m− 1)(A−
1). Analogous hypothesis tests eliminate all models significantly different from the
one with the best observed performance.

If s ≥ 2 data splits have been made, we could define blocks in terms of active
compounds and data splits, that is, the number of blocks would be sA. Some ex-
perimentation indicates that Algorithm 1 in Section 4.1 eliminates inferior models
faster, however, for s ≥ 2. Thus, for Algorithm 2 we use the Tukey test based on
active compounds as blocks only for the first data split. After very poor models are
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FIG. 4. Algorithm 2 applied to tuning a neural network (NN) for the PubChem AID362 assay data
with Burden numbers as the descriptor set. NN sizes of 5, 7 and 9 are denoted by small, medium
and large plotting symbols, respectively, and decay values of 0.001, 0.01 and 0.1 are denoted by �,
◦ and �, respectively. The two models surviving after 100 splits are connected with dashed lines.

eliminated, a second split is made and the data-adaptive search proceeds for the
surviving models as in Section 4.1 with s ≥ 2 splits as blocks.

We now revisit the example of tuning a neural network in Section 4.1 (the re-
sults for Algorithm 1 were presented in Table 2). Figure 4 depicts Algorithm 2’s
progress, plotting h300 versus split. After running one split of 10-fold CV, the
model with size = 5 and decay = 0.01 has the largest h300 value. The vertical
line drawn down from this value has length Tα(m,A), where m = 9 and A = 60.
It is based on Tukey’s test with the 60 active compounds as blocks. The h300 val-
ues for models 1, 4 and 7 fall below this line and they are eliminated with one
CV split. For 2,3, . . . splits, ȳi·, the average of h300 over the splits, is plotted for
the surviving models, and the vertical lines have length Tα(m, s), where m is the
number of models surviving to s splits. It is seen that after 2, 3 or 4 splits of CV,
no further models are eliminated. After 5 splits, model 3 is dismissed, and after 9
splits models 2, 5, 6, 8 and 9 still survive. The two models with the largest h300 av-
erages, models 2 and 9, are connected with dashed lines in Figure 4. These models
are still competitors after 100 splits of CV. The vertical line drawn at 100 splits is
very short; nonetheless, these models are so close in performance that they cannot
be distinguished. Again, this motivates Algorithm 3.

4.3. Algorithm 3 (modified stopping criterion). As has already been illus-
trated, if the predictive performances for several candidate models are very similar,
it can take many data splits and CV analyses to distinguish them. Particularly for
model tuning, it would be more efficient to modify the stopping criterion so that
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the algorithm stops once it is clear that the current leading performer cannot be
beaten by a practically important amount.

We implement such a stopping criterion via the confidence intervals in (4).
Again, rank the m > 1 models surviving at any iteration in terms of their average
predictive performances, that is, ȳ(1)· ≥ ȳ(2)· ≥ · · · ≥ ȳ(m)·. Notationally, we will
use s (number of splits) for the number of blocks in these averages, but the same
method can be applied with observations as blocks as in Section 4.2. From (4),

τ(i) − τ(1) ∈ (
ȳ(i)· − ȳ(1)· ± Tα(m, s)

)
for i = 2, . . . ,m.

At some confidence level, we want to be sure that τ(i) − τ(1) < p0 for all i =
2, . . . ,m, where p0 is a given practically insignificant performance difference.
Thus, to stop with the model giving ȳ(1)· declared as the winner, ȳ(i)· − ȳ(1)· +
Tα(m, s) < p0 for all i = 2, . . . ,m. As the ȳ(i)· are nonincreasing with i, the re-
vised stopping criterion is simply

ȳ(2)· − ȳ(1)· + Tα(m, s) < p0.(6)

For the example of tuning a neural network for the AID362 assay data and
Burden number descriptors, the values of ȳ(2)· − ȳ(1)· + Tα(m, s) in (6) for data
splits 1–38 are as follows:

10.59,6.96,5.08,3.16,3.27,2.60,2.14,2.20,1.67, . . . ,1.05,0.91.

(The hybrid observations/splits as blocks algorithm of Section 4.2 is being used
here.) If we take p0 = 1 as the practically insignificant performance difference,
the algorithm stops after 38 splits of 10-fold CV, with surviving models 2, 5, 6,
8 and 9. Model 2 with size = 5 and decay = 0.01 would be declared the “tuned”
model for practical purposes. If we set p0 = 2, the algorithm stops after just nine
splits. Models 2, 5, 6, 8 and 9 are again the survivors, and again model 2 is declared
the winner for the neural networks/Burden numbers modeling strategy. Figure 5
illustrates the iterations of the algorithm. In particular, the vertical lines shown to
the right of the performance averages for 8, 9, 37 and 38 splits start at ȳ(2)· and
have length Tα(m, s). If they extend less than p0 past ȳ(1)· [i.e., ȳ(2)· + Tα(m, s) <

ȳ(1)· + p0], then the revised stopping criterion (6) is satisfied.
Recall that when we try to establish the one winning model via Algorithms 1

or 2, 100 data splits and CV analyses are insufficient to separate models 2 and 9.
Therefore, the modified stopping criterion saves considerable computing time here.

5. Comparing statistical methods or explanatory variable sets. Recall that
Section 1 described 80 statistical methods/descriptor set modeling strategies com-
pared by ChemModlab. When comparing qualitatively different statistical methods
and/or explanatory variable sets, there are two possible search implementations:
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FIG. 5. Algorithm 3 applied to tuning a neural network (NN) for the PubChem AID362 assay data
with Burden numbers as the descriptor set. NN sizes of 5, 7 and 9 are denoted by small, medium and
large plotting symbols, respectively, and decay values of 0.001 and 0.01 are denoted by � and ◦,
respectively. The results for splits 1–7 are as in Figure 4 and are not shown. All NNs with decay of
0.1 have been eliminated by split 8, as is the NN with size of 5 and decay of 0.001.

• Tune then compare:
Step 1. Tune each modeling strategy independently by repeating one of the al-

gorithms in Section 4. For ChemModLab, this would mean 80 tuning
searches.

Step 2. Compare the tuned models, again by applying one of the algorithms in
Section 4.

As we shall illustrate, the CV analyses in Step 1 can be reused in Step 2,
possibly leading to minimal further computing at Step 2. This approach is pre-
ferred when one wants to assess the performance of every modeling strategy
after tuning. It requires many searches in Step 1, however.

• Simultaneously tune and compare: Carry out one search, simultaneously tuning
and comparing the model strategies.

This approach, we shall see, can require much less computing. Its drawback,
however, is that it does not necessarily provide accurate estimation of the pre-
dictive performances of suboptimal strategies; we just infer they are dominated
by the winning strategy.

For simplicity, we will illustrate these two search implementations by compar-
ing two statistical methods/descriptor sets for the AID362 PubChem assay. Exten-
sion to all 80 strategies explored by ChemModLab is straightforward. One strategy
is a neural network with Burden number descriptors, which we call NN/Burden.
NN/Burden was investigated in Section 4, and we already know that size = 5 and
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FIG. 6. Algorithms 2 and 3 applied to tuning k-nearest neighbors (KNN) for the PubChem AID362
assay data with Carhart atom pairs as the descriptor set. Values of k = 4, . . . ,10 are denoted by the
plotting symbols 4, . . . ,9,0.

decay = 0.01 provides good values of the tuning parameters. The second strategy
is k-nearest neighbors with Carhart atom pairs as explanatory variables, which we
call KNN/Carhart.

For KNN/Carhart, we need to tune k, the number of neighbors. We consider k in
the range 1,2, . . . ,10. Figure 6 shows the results of running Algorithms 2 and 3 in
Sections 4.2 and 4.3. Algorithm 2 stops after 11 CV data splits, and the model with
k = 8 emerges as the winner. (This agrees with more exhaustive computations to
check our algorithm.) If we use the stopping criterion p0 = 1 in (6), the algorithm
stops after just eight data splits. With p0 = 2, only five data splits are required. All
these variants point to k = 8.

We now consider the tune-then-compare implementation for comparing NN/
Burden with KNN/Carhart. For definiteness, we take p0 = 2 in (6) as the stopping
criterion. In Step 1, the two strategies are tuned independently, which has already
been described. In Step 2, NN/Burden (size = 5 and decay = 0.01) is compared
with KNN/Carhart (k = 8). Running Algorithm 3 in Section 4.3 for three data splits
is sufficient to establish that tuned KNN/Carhart is better than tuned NN/Burden
at significance level 0.05. The 95% confidence interval for the difference in mean
h300 is [2.31,11.29]. In Step 1, the total number of model fits (with 10 fits per
10-fold CV) is 10(9 + 6 × 4 + 5 × 4) = 530 for NN/Burden and 10(10 + 7 + 4 ×
3) = 290 for KNN/Carhart. The same data splits were used for NN/Burden and
KNN/Carhart. Thus, for Step 2, the first splits from Step 1 can be reused and no
further CV computations are required. Therefore, the total number of model fits in
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TABLE 3
Simultaneously tuning NN/Burden and KNN/Carhart models for the PubChem AID362 assay data.
The size and decay values for the NN/Burden models are defined in Table 1; KNN/Carhart model k

has k-nearest neighbors. The models surviving after each split are denoted by a check mark;
KNN/Carhart models 2–5 and 6–10 survive the same number of splits, respectively

Number
of splits

NN/Burden model KNN/Carhart model

1 2 3 4 5 6 7 8 9 1 2–5 6–10

0 � � � � � � � � � � � �
1 � � � � � � � �
2 � �
3 �
4 �
5 �

both steps to establish that KNN/Carhart (with k = 8) is superior is 530 + 290 =
820. No model required more than 10 random splits to define the CV folds.

For the simultaneous tune and compare implementation, the nine NN/Burden
models (with different values of size and decay) and the 10 KNN/Carhart models
(with different values of k) are put together as m = 19 initial models. The results
of running Algorithm 3 in Section 4.3 with p0 = 2 are shown in Table 3. We see
after just one split, with the active compounds as blocks, three NN/Burden models
and one KNN/Carhart model are eliminated. After two data splits, with splits as
blocks, only one NN/Burden model and five KNN/Carhart models survive. After
three splits, the remaining NN/Burden model is eliminated. The five KNN/Carhart
models left survive through five splits, when the stopping criterion is satisfied.
These models have k = 6,7,8,9 and 10 and average h300 values of 35.6, 37.1,
37.7, 35.9 and 36.7, respectively. Therefore, we will again choose KNN/Carhart
with k = 8 as the overall best model. The total number of model fits is 10(19 +
15 + 6 + 5 × 3) = 550, with no model requiring more than five random splits of
the data.

The second approach, simultaneously tuning and comparing models, requires
less computer time here because the best KNN/Carhart models outperform all the
NN/Burden models, and the latter can be quickly eliminated. In contrast, the tune-
then-compare implementation spends much computational effort in tuning the in-
ferior modeling strategy, NN/Burden. It does, however, lead to an accurate, quanti-
tative assessment of the difference in predictive performance between NN/Nurden
and KNN/Carhart.

6. Conclusions and discussion. Throughout we used 10-fold CV, even for k-
nearest neighbors where it is computationally straightforward to use n-fold (leave-
one-out) CV. We used 10-fold CV for consistency across modeling methods: n-
fold CV would be computationally infeasible for the method of neural networks
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also considered here and for many other methods. In addition, n-fold CV has well-
known limitations. Theoretically, Shao (1993) showed its inconsistency in model
selection. For applications like the molecular databases in PubChem, it is also well
known that n-fold CV can give over-optimistic estimates of predictive performance
if the data have sets of similar compounds (“twins”). It is easy to predict one such
compound’s assay value from its near-analogs.

We illustrated that tuning a model may have a large effect on predictive perfor-
mance. We also showed that the variation in CV performance estimates from one
data split to another may necessitate multiple data splits for reliable comparison of
different sets of tuning parameter values or of different tuned statistical modeling
methods/explanatory variable sets. The data-adaptive algorithms developed in Sec-
tions 4 and 5 attempt to make reliable comparisons based on enough data splits,
but sequentially focus the computational effort on models with better predictive
performance.

The basic sequential algorithm in Section 4.1 uses data splits as a blocking
factor, and hence requires at least two data splits for each candidate model. The
variation in Section 4.2 uses individual observations as the blocking factor, and
can sometimes eliminate very inferior models after just one data split and CV
analysis. To use observations as blocks, the performance measure must be an aver-
age over observations. The specialized h300 measure appropriate for the PubChem
data set used throughout is of this type, as are more traditional metrics such as
mean squared prediction error in regression problems or misclassification rate for
classification problems.

The same approach can be applied to tuning a modeling strategy with respect
to user-specified parameters and to comparing tuned modeling strategies. Simulta-
neously tuning and comparing will be computationally efficient relative to nonse-
quential strategies if there are many poor modeling strategies that are dominated
by other methods.

Parallelization of the algorithms is straightforward, as regular 10-fold CV is al-
ways used for a specific model and data split. Thus, with 10 processors, say, each
processor simply performs one of the 10 fits of a single CV analysis. With more
than 10 processors, the 10 fits for each of two or more models on the same split
could be sent to the processors. Reconciling the results from the parallel compu-
tations is fairly trivial; it is model fitting that dominates computational complexity
here.

The proposed data-adaptive CV algorithm is sequential. At each iteration,
a multiplicity-adjusted statistical test is developed to eliminate all inferior mod-
eling strategies. An issue not addressed in this article is how to take account of the
multiple testing across iterations. This is the topic of future study.

We gave an example where two different sets of explanatory variables were
compared. In practice, some statistical models also have to be “tuned” with re-
spect to selection of variables within a given set. This could also be done via our
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sequential CV algorithms, at least for a small number of candidate subsets of vari-
ables. Much adaptation would be necessary if there is a combinatorial explosion
of possible subsets, and again this is future work.

In practice, some tuning parameters are usually treated as continuous factors,
for example, decay for a neural network. Future study will also include sequential
CV algorithms for continuous factors.
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