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BAYESIAN MATCHING OF UNLABELED MARKED POINT SETS
USING RANDOM FIELDS, WITH AN APPLICATION TO

MOLECULAR ALIGNMENT1

BY IRINA CZOGIEL, IAN L. DRYDEN AND CHRISTOPHER J. BRIGNELL

Max Planck Institute for Molecular Genetics, University of South Carolina and
University of Nottingham

Statistical methodology is proposed for comparing unlabeled marked
point sets, with an application to aligning steroid molecules in chemoinfor-
matics. Methods from statistical shape analysis are combined with techniques
for predicting random fields in spatial statistics in order to define a suitable
measure of similarity between two marked point sets. Bayesian modeling of
the predicted field overlap between pairs of point sets is proposed, and pos-
terior inference of the alignment is carried out using Markov chain Monte
Carlo simulation. By representing the fields in reproducing kernel Hilbert
spaces, the degree of overlap can be computed without expensive numerical
integration. Superimposing entire fields rather than the configuration matri-
ces of point coordinates thereby avoids the problem that there is usually no
clear one-to-one correspondence between the points. In addition, mask pa-
rameters are introduced in the model, so that partial matching of the marked
point sets can be carried out. We also propose an adaptation of the general-
ized Procrustes analysis algorithm for the simultaneous alignment of multiple
point sets. The methodology is illustrated with a simulation study and then
applied to a data set of 31 steroid molecules, where the relationship between
shape and binding activity to the corticosteroid binding globulin receptor is
explored.

1. Introduction. In many application areas it is of interest to compare marked
point sets, where measurements (marks) are available at various point locations,
and often the configurations of points are unlabeled in the sense that there is no nat-
ural correspondence between the points in each configuration. The task of compar-
ing unlabeled marked point sets has been of recent interest in statistical shape anal-
ysis, for example, Green and Mardia (2006), Dryden, Hirst and Melville (2007)
and Schmidler (2007). As opposed to these previous approaches, our method does
not aim to model point correspondences. Instead, the objects are compared by
assuming a common underlying reference field which gives rise to the spatial dis-
tribution of the marks.
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One example where the alignment of unlabeled marked point sets is of practical
importance comes from the fields of structural bioinformatics and chemoinformat-
ics, where it is of great interest to align molecules. However, the task is often
very difficult. The motivating application in this paper is a data set comprising 31
steroid molecules which bind to the corticosteroid binding globulin (CBG) recep-
tor. For each molecule, the Cartesian coordinates of the atom positions, as well
as the associated van der Waals radii, and the partial atomic charge values at the
atom positions are provided. Here the marks at each point (atom) are either the van
der Waals radii or the partial charges. The steroids fall into three activity classes
with respect to their binding activity to the CBG receptor [Good, So and Richards
(1993)], and the main objective in this application is to compare the molecules in
order to obtain the common features in each of the three groups and to examine
whether these features are associated with the type of binding activity.

We consider a simple model under which spatial prediction of a reference field
is carried out using the observed marks in each configuration. A measure of simi-
larity between the two predicted fields is then used to describe the similarity, taking
into account an unknown transformation between the point sets which gave rise to
the actually observed point coordinates. The parsimonious model does not attempt
to model accurately all aspects of the molecules in our application. It is rather used
to develop a Bayesian algorithm based on Markov chain Monte Carlo (MCMC)
simulations for matching, which is demonstrated to work well in our applications.
In this setting it is also possible to introduce additional parameters (mask vectors)
which allow for the fact that only part of the point sets may be similar. By deter-
mining and aligning only the similar parts of the given point sets, a meaningful
comparison can be carried out.

In Section 2 we motivate and describe our newly developed measure of simi-
larity for comparing unlabeled marked point sets. The Bayesian framework for the
pairwise alignment and similarity calculation is introduced in Section 3. An ex-
tension of this methodology to the simultaneous alignment of multiple point sets
is described in Section 3.3. In Section 4 we carry out simulation studies in two
and three dimensions to validate our method. In Section 5 we apply our methods
to the steroids data and assess the results with respect to their chemical relevance.
Finally, Section 6 concludes the paper with a discussion.

2. Similarity measures using spatial prediction.

2.1. Random field model. The starting point for our model is an underly-
ing reference random field {Z(x) : x ∈ R

m} which is assumed to be second-order
stationary with a constant mean E(Z(x)) = μ and a positive definite covari-
ance function σ(h) = Cov(Z(x),Z(x + h)) = σ(−h). Consider two marked point
sets A and B , say, which are z-values at point locations in the field given by
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x′A
i ∈ R

m, i = 1, . . . , kA, and x′B
j ∈ R

m, j = 1, . . . , kB . In a vector representation,
the marked point sets A and B can therefore be written as

zA = {zA(x′A
1 ), . . . , zA(x′A

kA
)}, zB = {zB(x′B

1 ), . . . , zB(x′B
kB

)},
respectively. Note that the relative position of A and B as given by {x′A

1 , . . . ,x′A
kA

}
and {x′B

1 , . . . ,x′B
kB

} is special because the spatial distribution of the marks within
each point set and also the spatial distribution of the joint set of marks zAB =
{zA(x′A

1 ), . . . , zA(x′A
kA

), zB(x′B
1 ), . . . , zB(x′B

kB
)} directly reflect the properties of

{Z(x) : x ∈ R
m}. In that sense it can be regarded as the true relative position.

However, in real-life data sets the given marked point sets are often provided
in arbitrary locations, that is, before being recorded each point set is transformed
to new locations xA

i = �A(x′A
i ), i = 1, . . . , kA, and xB

j = �B(x′B
j ), j = 1, . . . , kB,

where �A : Rm → R
m and �B : Rm → R

m are unknown transformation functions
which are assumed to be 1–1 and onto. Hence, the inverse transformations �−1

A
and �−1

B exist and satisfy �−1
A {�A(x)} = x = �A{�−1

A (x)} and �−1
B {�B(x)} =

x = �B{�−1
B (x)}, respectively.

The basic inference problem we consider in this paper can now be formulated as
follows: if we are given the two marked point sets A and B with zA recorded at lo-
cations {xA

1 , . . . ,xA
kA

} and zB recorded at locations {xB
1 , . . . ,xB

kB
}, can we measure

how similar they are, taking into account the unknown transformation � = �A�−1
B

from B to A? The method involves aligning the point sets by estimating the trans-
formation parameters in �.

The particular choice of the set of potential transformations will depend on the
application. In our case the marked point sets are the partial charges or the van
der Waals radii of the steroid molecules which are recorded in arbitrary positions
and orientations. As steroid molecules in general are rigid (the word is derived
from “stereos” = “rigid” in Greek), we consider the rigid body transformations of
translation and rotation, that is,

�(x) = �x + γ , � ∈ SO(m),γ ∈ R
m,(1)

where the space of special orthogonal matrices SO(m) contains the rotation matri-
ces which satisfy �T � = ��T = Im and |�| = 1. Other more complicated trans-
formations could be used, such as when more dynamic aspects of molecule shape
need to be taken into account. For example, movement around rotatable bonds
could be added if desired in other applications. The choice of μ and σ(h) in the
random field will also depend on the application.

In order to estimate the transformation parameters in �, we first consider pre-
dicting the underlying reference field Z(x) using each point set separately. A sim-
ilarity measure is then defined which measures how close the two predicted fields
are in a certain relative position. Finally, we can estimate the unknown transfor-
mation by maximizing the similarity measure or, alternatively, by developing a
statistical model based on the similarity measure.
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2.2. Kriging. In order to predict the underlying reference random field from
each point set, we consider simple kriging [e.g., Cressie (1993), page 110] which
assumes the mean field μ = 0. For the steroid molecules with partial charge or van
der Waals radius marks, it makes sense to fix μ = 0, so that a long way from the
molecular skeleton the predicted field is zero. We will use a sample variogram to
help suggest an appropriate covariance function.

Consider a general marked point set z = {z(x1), . . . , z(xk)}. If simple kriging is
used to predict the value of the underlying random field {Z(x) : x ∈ R

m} at a lo-
cation of interest x0, say, a weighted average of the form Ẑ(x0) = ∑k

i=1 uiz(xi )

is sought so as to minimize the prediction mean squared error PMSE(u) =
E[(Ẑ(x0) − Z(x0))

2] with respect to the weight vector u = (u1, . . . , uk)
T . Given

the observed values in z, the corresponding system of equations has the solution
u = �−1σ , and the predicted value for Z(x0) is given by Ẑ(x0) = σ (x0)

T �−1z =
uT z, where σ (x0) = (σ (x1 − x0), . . . , σ (xk − x0))

T and (�)ij = σ(xi − xj ),
1 ≤ i, j ≤ k. For a general location x this yields the predicted field

Ẑ(x) = zT �−1σ (x) =
k∑

i=1

wiσ(xi − x),(2)

where the weight vector w = (w1, . . . ,wk)
T = �−1z is optimal in terms of mini-

mizing the PMSE if the underlying assumptions are met. Note that in some appli-
cations it may not be appropriate to assume μ = 0, in which case one would work
with the mean corrected field Z(x) − μ, where μ is either known or estimated
using generalized least squares from each marked point set.

Using (2) and based on the observed data vectors zA and zB, we can obtain a
different prediction of the underlying reference random field from each of the two
marked point sets A and B , and the resulting predicted fields ẐA(x) and ẐB(x)

then need to be compared.

2.3. Function similarity and the Kernel Carbo index. In order to measure the
similarity of the predicted fields ẐA(x) and ẐB(x), we require a metric space where
the notion of similarity can be defined by means of the corresponding inner prod-
uct. A commonly used metric space for functions is the space of Lebesgue square-
integrable functions L2, where the inner product has the form

〈f,g〉L2 =
∫

f (x)g(x) dx.(3)

Based on (3), an intuitive measure of similarity between two functions f and g

can be formulated which does not depend on the scales of f and g, that is,

Rfg =
∫

f (x)g(x) dx
(
∫

f (x)2 dx)1/2(
∫

g(x)2 dx)1/2 = 〈f,g〉L2

(〈f,f 〉L2〈g,g〉L2)
1/2 ,

and so Rfg = 1 if f = cg, where c > 0 is a positive constant, and Rfg = −1 if c < 0.
Note that Rfg is a generalization of Pearson’s correlation coefficient for comparing
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two functions. Also note that, in general, calculation of Rfg would involve numer-
ical integration over the domain, which may be computationally demanding.

An alternative metric space for functions is a reproducing kernel Hilbert space
(RKHS) that, for a given reproducing kernel, can easily be constructed and is much
simpler and quicker to use in practice. This alternative is very useful for our model
because the covariance function σ of the reference random field can be viewed as
a reproducing kernel on R

m × R
m due to the properties of a general covariance

function (e.g., symmetric and positive definite). Hence, the corresponding RKHS
exists [Aronszajn (1950)] and can be written as Hσ = {f |f (x) = ∑kA

i=1 αiσ (xA
i −

x)}. In this space the inner product of f (x) = ∑kA
i=1 αiσ (xA

i − x) ∈ Hσ and g(x) =∑kB
j=1 βjσ (xB

j − x) ∈ Hσ has the form

〈f,g〉Hσ =
kA∑
i=1

kB∑
j=1

αiβjσ (xA
i − xB

j ),

which can be evaluated without expensive numerical integration.
Note that we can view the kriging predictor (2) as a member of Hσ , and, hence,

we can use the RKHS inner product 〈·, ·〉Hσ to measure the similarity between
the predicted fields of A and B . Let ẐA(x) = ∑kA

i=1 wA
i σ (xA

i − x) and ẐB(x) =∑kB
j=1 wB

j σ (�(xB
j ) − x) denote the predicted fields of the marked point sets A

and B in the relative position defined by � = �A�−1
B . The similarity measure we

propose in this paper has the form

CAB(φ) = 〈ẐA, ẐB〉Hσ

‖ẐA‖Hσ ‖ẐB‖Hσ

,(4)

where ‖ẐM‖2
Hσ

= 〈ẐM, ẐM〉Hσ (M ∈ {A,B}), and φ denotes the parameter vector
of the unknown transformation �. The numerator term measures the “overlap” of
the fields (in a certain relative position), whereas the denominator is a transfor-
mation invariant normalizing constant which ensures that CAB(φ) ∈ [−1,1]. Note
that (4) can also be interpreted as the cosine of the angle between the two predicted
fields in a certain relative position.

We shall call the above similarity function the “Kernel Carbo function,” as it
is a modification of a similarity function proposed by Carbo, Leyda and Arnau
(1980) in the context of field-based molecular alignment. The fields considered in
that original paper are the electron densities of the two molecules under study, and
the similarity was defined in terms of the L2 inner product given in (3). As both
fields in our setting are members of the RKHS Hσ , the Carbo similarity function
can be “kernelized” by replacing 〈·, ·〉L2 with 〈·, ·〉Hσ , which has the advantage
that calculating (4) does not require evaluation of overlap integrals over R

m for
any choice of positive definite covariance function.
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For the reproducing kernel we shall consider the istropic Matérn covariance
function, where the covariance of the field between any pair of points x,y is given
by

σ(x − y) = 1

2ν−1�(ν)

(
2ν1/2‖x − y‖

ρ

)ν

Kν

(
2ν1/2‖x − y‖

ρ

)
.(5)

This provides a flexible family of stationary covariance functions [Stein (1999),
page 31]. With this particular parameterization [e.g., Handcock and Wallis (1994)],
ρ is a range parameter and ν determines the smoothness of the random field. More-
over, Kν(·) is the modified Bessel function of the third kind of order ν and �(·)
is the Gamma function. Note that ν → ∞ corresponds to the Gaussian covariance
function

σ(x − y) = exp{−‖x − y‖2/ρ2},(6)

and in this particular case the L2-Carbo index of our predicted fields could be
calculated analytically.

Optimizing (4) with respect to the transformation parameters yields the “Kernel
Carbo index”

C(A,B) = sup
φ

CAB(φ) = sup
φ

〈ẐA, ẐB〉Hσ

‖ẐA‖Hσ ‖ẐB‖Hσ

,(7)

in which configuration B is transformed (by the relative transformation func-
tion �) to be as similar as possible to configuration A. In the case (1) where the
rigid body transformations in R

m are considered, the parameter vector φ contains
m(m − 1)/2 Euler angles for rotation and m translation parameters, and in this
case the Kernel Carbo index is invariant under the rigid body transformations of A

and B .
Note that the optimization in (7) is not straightforward in practice due to local

maxima. As an approximation to using the Kernel Carbo index in (7), we will
therefore propose a Bayesian model and find the value of the similarity index (4)
at the maximum a posteriori (MAP) estimates of the transformation parameters.
Also note that, in situations where a dissimilarity rather than a similarity measure
is required, (4) can be uniquely mapped into the appropriate codomain using

DAB(φ) = 1 − CAB(φ)

1 + CAB(φ)
∈ [0,∞),(8)

and applying the same transformation to (7) or its MAP equivalent then yields a
transformation invariant dissimilarity index between two marked point sets.

2.4. Masks. In many applications it is of interest to match parts of objects
rather than the entire configurations. Our steroids application is one such exam-
ple because only a part of each molecule may fit into the binding pocket of the
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common receptor and is hence relevant for the binding mechanism. As a tool for
matching only parts of the given configurations, we consider a set of masks (indi-
cator parameters) which signify if individual points are included in the predicted
field or not. The masks therefore allow for the possibility that only parts of the
structures match, whereas other parts may have been generated by different under-
lying reference fields or may be largely affected by noise.

From now on we will just consider rigid body transformations between the
point sets, with rotation matrix � and translation vector γ , although, as mentioned
above, the approach can be extended to other transformations.

Let λM = (λM
1 , . . . , λM

kM
)T be the mask vector for point set M (M ∈ {A,B}).

Each entry of the mask vector is an indicator function, that is, λM
i ∈ {0,1} which

determines if the ith point of set M is considered to contribute to the matching
parts (λM

i = 1) or not (λM
i = 0), i = 1, . . . , kM . Taking the mask vector into ac-

count, the predicted version of the common reference field based on M then has
the form ẐM(x;λM) = ∑

i : λM
i =1 wM

i (λM)σ (xM
i − x), and the resulting partial Ker-

nel Carbo function for two masked fields ẐA(x;λA) and ẐB(x;λB) in a certain
relative position becomes

CAB(�,γ ,λA,λB) = ∑
i : λA

i =1

∑
j : λB

j =1

w̃A
i (λA)w̃B

j (λB)σ
(
xA
i − (�xB

j + γ )
)
,(9)

where the tilde indicates that the kriging weights are normalized by the correspond-
ing term in the normalizing constant, that is, w̃M

i (λM) = wM
i (λM)/NM(λM), with

NM(λM) = ‖ẐM(x;λM)‖Hσ . The partial Kernel Carbo index can then be obtained
by maximizing (9) over the transformation and mask parameters.

Optimizing the similarity measure (9) over all possible subsets is very challeng-
ing due to the combinatorial nature of the search space. Instead we use a Bayesian
model to obtain the MAP estimates of the similarity transformations and masks and
then evaluate (9) at the MAP, which approximates the maximization of (9). Rather
than trying to develop a realistic probabilistic model for the data, we therefore
view the Bayesian model and the resulting MCMC scheme as a practical approach
for generating an algorithm to match two spatial point patterns. Also, apart from
transforming the problem into a more tractable one, the Bayesian setting allows
the introduction of prior information about the parameters which will be useful,
for example, to prevent excessive masking.

3. Bayesian pairwise alignment of marked point sets.

3.1. Likelihood. With the assumption that the similar parts of the two point
sets are noisy pointwise observations of the same underlying reference field, we
define the likelihood for the two marked point sets zA = {zA(xA

1 ), . . . , zA(xA
kA

)}
and zB = {zB(xB

1 ), . . . , zB(xB
kB

)} in the relative position defined by � and γ as

L(zA, zB|θ ,γ ,λA,λB, τ ) ∝ τ exp(−τDAB(�,γ ,λA,λB)),(10)
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where θ denotes the vector of the Euler angles which specifies a rotation ma-
trix �(θ), γ denotes a displacement vector between A and B , τ ∈ R

+ is a preci-
sion parameter, and DAB(�,γ ,λA,λB) is the dissimilarity function based on (8)
and (9). Here, the mask vectors play a similar role as the labeling matrices in Green
and Mardia (2006), Dryden, Hirst and Melville (2007) and Schmidler (2007), ex-
cept in our framework there is no need to establish correspondences between points
in A and B . Instead, the mask vectors are defined separately for each point set. The
pairwise correspondence does not need be estimated because all possible pairs of
atoms are considered in the model, and the pairs are weighted according to how
far apart they are during the matching.

Note that if τ is fixed, the likelihood is maximized at the same rotation, trans-
lation and mask parameter estimates that give the maximum value of the partial
Kriged Carbo index (9). This, and the fact that it performed well in pilot simula-
tions, provides the motivation for the use of this likelihood. Other choices include
the half-normal likelihood

L(A,B|θ ,γ ,λA,λB, τ ) ∝ τ 1/2 exp(−τD2
AB(�,γ ,λA,λB)),

which is less accommodating of outliers but might be preferable in some situations.

3.2. Prior distributions and posterior sampling. We do not have any prior in-
formation about the rigid body parameters θ and γ so that they are treated as uni-
formly distributed on SO(m) and on a large bounded region in R

m, respectively.
The uniform distribution on SO(m) is determined by the probability measure
which is invariant under the group action. In the two-dimensional case, fU(θ) ∝ 1.
For m = 3, the appropriate density with respect to the Lebesgue measure depends
on the parametrization of SO(3), and in this paper we use the Euler angles in the
so-called x-convention where

�(θ) =
⎛
⎝ cos θ3 sin θ3 0

− sin θ3 cos θ3 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0

0 cos θ2 sin θ2
0 − sin θ2 cos θ2

⎞
⎠

⎛
⎝ cos θ1 sin θ1 0

− sin θ1 cos θ1 0
0 0 1

⎞
⎠ .

In that case, fU(θ) ∝ cos(θ2) and with the domains −π ≤ θ1, θ3 < π and −π/2 ≤
θ2 < π/2, every � ∈ SO(3) is uniquely determined apart from a singularity at
θ2 = −π/2.

To prevent the situation where only very few points are used in the field com-
parison, we introduce a (fixed) penalty parameter ζ ≥ 0 and a (fixed) interaction
parameter ζI ≥ 0 to define the joint prior density of the mask vectors as

π(λA,λB|ζ, ζI ) ∝ ζ
∑

i λA
i +∑

i λB
i + ζ

∑
i
A∼j

|λA
i −λA

j |+∑
i
B∼j

|λB
i −λB

j |
I ,

where i
M∼ j means that points i and j are neighbors within M (M ∈ {A,B}),

for example, if ‖xM
i − xM

j ‖ < δ. Note that the dimensions of λA ∈ {0,1}kA and



ALIGNMENT OF UNLABELED MARKED POINT SETS 2611

λB ∈ {0,1}kB are fixed. The penalty parameter ζ inherently comprises prior as-
sumptions about the extent of the matching parts of A and B , with higher ζ indi-
cating more prior matching points. Also, if the interaction parameter ζI is strictly
greater than 1, this indicates clustering so that nearby points within a point set
are expected to be included (or excluded) together in the matching. Thus, a large
positive ζI would be used when we wish to encourage contiguous regions to be
included in the matching, although we shall use ζI = 1 in our applications.

With the further assumptions that the precision parameter is Gamma distributed
a priori, that is, τ ∼ �(α,β), and that all unknown parameters are independent a
priori, the joint posterior conditioned on the given data is

π(θ ,γ ,λA,λB, τ |zA, zB,α,β, ζ, ζI )

∝ τα exp
{−τ

(
DAB(�,γ ,λA,λB) + β

)} · π(λA,λB|ζ, ζI ) · fU(θ).

Note that this can be regarded as a mixture model over {0,1}kA × {0,1}kB .
We use MCMC to sample from the posterior distribution. The resulting point es-

timates for the rigid body parameters and the mask vectors can then be substituted
into DAB(�,γ ,λA,λB) to yield a point estimate of the dissimilarity measure

D̂AB = DAB(�̂, γ̂ , λ̂A, λ̂B).(11)

In the MCMC scheme, τ is updated with a Gibbs step. Updated versions of the
other parameters are obtained in four blocks, each using a Metropolis–Hastings
step. For the rigid body parameters, we use independent normal proposals, and a
proposal distribution for the masks vectors λA and λB can be obtained by choosing
an entry at random and then switching its value from zero to one or vice versa.

The algorithm we use ensures that the defined Markov chain is irreducible,
aperiodic and positive recurrent, and, hence, after a large number of iterations
the simulated value is approximately generated from the posterior distribution.
Due to the symmetry of the proposal distributions, convergence to and sam-
pling from the limiting distribution in practice thereby results in an approximate
stochastic minimization of the dissimilarity term, and this behavior can be em-
phasized by choosing a prior distribution with a large mean for τ . In fact, if
one is mainly interested in obtaining point estimates of the model parameters
which provide a good superposition, simulated annealing [Kirkpatrick, Gelatt and
Vecchi (1983)] can be employed so that the MCMC algorithm simulates from
π(θ ,γ ,λA,λB, τ |A,B,α,β, ζ, ζI )

1/T , where T > 0 is slowly reduced determin-
istically.

As with any MCMC scheme for a complicated high-dimensional problem, there
is a possibility that the chain will become stuck in a local region of maximum
posterior probability, and our application is no exception. Hence, judicious use of
proposal distributions is required to escape such regions, for example, the use of
occasional large proposal variances.
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Note that the partial Kriged Carbo index and the Bayesian model are symmetric
in terms of which point set is denoted as A and which point set is denoted as B .
However, for a practical implementation one of the points sets is chosen as B and
transformed to be as close as possible to the other point set A. As our method is
simulation based, slightly different estimates will be obtained in matching A to B

and then B to A. Hence, in our application we carry out both matches and then
take an appropriately symmetrized average of the estimated distance measures, for
example, their geometric mean.

3.3. Multiple alignment. In the multiple alignment problem, the objective is to
simultaneously superimpose a set of n marked point sets M1, . . . ,Mn. Previous ap-
proaches to this problem include Dryden, Hirst and Melville (2007) and Ruffieux
and Green (2009). Here, we adapt the generalized Procrustes analysis (GPA) al-
gorithm for discrete landmark data [e.g., Dryden and Mardia (1998), page 90] to
our field-based approach. In the classical GPA context it is of interest to find an
alignment of the given objects which minimizes the sum of their pairwise squared
distances. A similar goodness-of-fit criterion for the multiple superposition of n

predicted masked fields can be formulated in terms of their overall similarity as

C(θ ,γ ,λ)

=
n−1∑
i=1

n∑
j=i+1

{ ∑
l : λi

l=1

∑
l′ : λ

j

l′=1

w̃i
l (λi )w̃

j

l′(λj )σ
(
(�ixi

l + γ i )(12)

− (�j xj

l′ + γ j )
)}

,

where λT = (λT
1 , . . . ,λT

n ) ∈ {0,1}∑
i ki , θT = (θT

1 , . . . , θT
n ) ∈ R

m(m−1)n/2 and
γ T = (γ T

1 , . . . ,γ T
n ) ∈ R

mn denote the stacked vectors of the involved mask, rota-
tion and translation parameters, respectively, and �i = �i (θ i ), i = 1, . . . , n. More-
over, λi

l denotes the lth entry of the mask vector λi , xi
l is the Cartesian coordinate

vector of the lth landmark in the ith point set, and w̃i
l (λi ) denotes the correspond-

ing normalized kriging weight. For the multiple alignment of M1, . . . ,Mn we want
to maximize (12) with respect to the m(m − 1)n/2 + mn + ∑

i ki parameters.
Define a “normalized mean field” of all but the ith point set as

Z̃(i)

(
x;λ(i), θ (i),γ (i)

) = 1

n − 1

∑
j =i

∑
l : λ

j
l =1

w̃
j
l (λj )σ

(
(�j xj

l + γ j ) − x
)
,

where θT
(i) = (θT

1 , . . . , θT
i−1, θ

T
i+1, . . . , θ

T
n ), γ T

(i) = (γ T
1 , . . . ,γ T

i−1,γ
T
i+1, . . . ,γ

T
n )

and λT
(i) = (λT

1 , . . . ,λT
i−1,λ

T
i+1, . . . ,λ

T
n ) and let C(i)(θ i ,γ i ,λi; θ (i),γ (i),λ(i)) de-

note the inner product of Z̃(i)(x;λ(i), θ (i),γ (i)) and Z̃i(x;λi , θ i ,γ i ). It can be seen
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that (12) has the property

C(θ ,γ ,λ) ∝ 1

n

n∑
i=1

C(i)

(
θ i ,γ i ,λi; θ (i),γ (i),λ(i)

)
.

Due to this decomposition, the optimization can be carried out stepwise by max-
imizing C(i)(θ i ,γ i ,λi; θ (i),γ (i),λ(i)) in turn. The vectors θ (i), γ (i) and λ(i) are
thereby kept fixed at each step.

An optimization of the overall Kernel Carbo index C(θ,γ ,λ) is numerically dif-
ficult. However, we can replace it by posterior inference within the MCMC scheme
developed for the pairwise alignment. As before, the choice of the prior distribu-
tion for the precision parameter τ determines how much the algorithm pushes the
estimates of the other model parameters toward the posterior mode. An iterative
stochastic optimization of the normalized fields Z̃i(x) can therefore be formulated
by employing a “large precision version” of the MCMC algorithm for the pairwise
alignment and then using the obtained MAP estimates to determine a new mean
field. This procedure will in practice decrease C(θ,γ ,λ) at every step and can be
repeated until a convergence criterion is met.

Our field GPA algorithm is displayed as Algorithm 1. As the objective of the
multiple alignment of the given marked point sets is to find the features common to
all or most of the objects, the algorithm superimposes each point set on the smallest
(in terms of the number of points) one in the data set as a first step. Contrary to

Algorithm 1 Stochastic field GPA for unlabeled marked point sets

1: choose the smallest point set as reference and superimpose the n − 1 remaining con-
figurations onto it

2: define d ← d0, where d0 > tol and tol is a positive tolerance threshold

3: calculate the multiple Carbo index C(θ ,γ ,λ)

4: while d > tol do

5: for i in (1 :n) do

6: using the current parameter values for rotation, translation and mask vectors,
calculate a normalized mean field Z̃(i)(x) omitting the ith configuration

7: based on the dissimilarity D(i)(θ i ,γ i ,λi ), superimpose the ith predicted field
onto Z̃(i)(x); Z̃(i)(x) thereby takes the role of the reference field and λ(i), θ (i)

and γ (i) are treated as fixed

8: record the MAP estimates for position and mask of the ith configuration

9: end for

10: calculate the updated Carbo index C∗(θ ,γ ,λ)

11: d ← C∗(θ ,γ ,λ) − C(θ ,γ ,λ)

12: C(θ ,γ ,λ) ← C∗(θ ,γ ,λ)

13: end while
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the pairwise alignment which started at a random place in the parameter space, this
initialization will be close to the global optimum which justifies the use of the large
prior mean for the precision values. All the methods described in this paper have
been implemented in R [R Development Core Team (2011)], and the code can be
found in the supplementary materials [Czogiel, Dryden and Brignell (2011a)].

Note that the multiple alignment method assumes a common underlying refer-
ence field for all point sets. However, in our steroid application the molecules may
exhibit different binding mechanisms even with the same receptor. In this case,
several reference fields could underlie the matching parts of the molecules. As we
discuss below, we therefore consider distinct sub-groups of molecules (e.g., based
on chemical properties or from cluster analysis) and then look for common refer-
ence fields in various subgroups. In other applications, a similar subgroups based
approach may also be suitable.

4. Simulation studies.

4.1. Simulation of marked point sets in two dimensions. We first carry out
a two-dimensional simulation study to illustrate the methodology and examine
the performance of the algorithms for different choices of parameters. We simu-
late marked point sets A = {zA(xA

1 ), . . . , zA(xA
kA

)} and B = {zB(xB
1 ), . . . , zB(xB

kB
)}

which share a common underlying reference field. As a reference field, we use a
realization of a zero-mean Gaussian random field with an isotropic Matérn covari-
ance function defined on a grid of 961 regularly spaced points yi within the unit
square, that is, we simulate from Z̃ = (Z̃(y1), . . . , Z̃(y961))

T ∼ N(0,�), where
�ij = σ(‖yi − yj‖) is given in (5). For our simulations we use ρ = 0.2 and ν = 1.
Figure 1(middle) shows a realization z̃ of Z̃.

Let A = {Atrue,Acont} and B = {B true,Bcont}, where “true” denotes the part
of each point set which stems from the underlying reference field z̃ and “cont”

FIG. 1. Example of an underlying reference field and two sampling schemes: the underlying ref-
erence field (middle) is a realization of a zero-mean isotropic Gaussian random field with a Matérn
covariance function (ν = 1 and ρ = 0.2). The other plots show two sampling schemes for Btrue (big
circles) and Atrue (small circles): nB = nA = 80 and κ = 1 on the left-hand side and nB = nA = 40
and κ = 4 on the right-hand side. The dots correspond to the 961 possible point locations.
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denotes the contaminated part. The term “contaminated” refers to the points which
do not follow the field model well and so will not be helpful in the alignment.
Hence, the contaminated points should be masked in the matching algorithm.

We obtain B true by randomly choosing ktrue
B entries i1, . . . , iktrue

B
from z̃ and

adding independent Gaussian noise with standard deviation σε to the correspond-
ing marks. For Bcont, kcont

B = kB − ktrue
B locations on the grid are chosen at ran-

dom and the corresponding marks are random values from a uniform distribution
on [−c, c]. To obtain Atrue, we introduce a nearness parameter κ ∈ N and de-
fine a set of grid points Uκ as the union of neighborhoods around the points xB

i

(i = 1, . . . , ktrue
B ), where each neighborhood contains the vertically, horizontally

and diagonally adjacent grid points in a (2κ + 1) × (2κ + 1)-box around the cor-
responding xB

i . The parameter κ therefore measures the nearness between points
in terms of grid point locations rather than Euclidean distance which is further
demonstrated in Figure 1. The point locations xA

j (i = 1, . . . , ktrue
A ) which belong

to the matching part of A are then chosen at random from Uκ and Atrue is obtained
by adding independent Gaussian noise with standard deviation σε to the corre-
sponding marks z̃(xA

j ) (i = 1, . . . , ktrue
A ). Finally, the kcont

A = kA − ktrue
A points in

Acont are obtained in the same way as the contamination points in B .
Note that this simulation scheme does not create pairwise correspondences be-

tween points in Atrue and B true. Although we have used a nearness criterion in our
simulation method, we have not estimated point correspondences in the course of
the MCMC algorithm.

For our simulation study we consider three realizations of Z̃, and for each
of these realizations we define 12 different pairs of marked point sets by
varying the parameters ktrue = ktrue

A = ktrue
B ∈ {40,80}, kcont = kcont

A = kcont
B ∈

{0.05ktrue,0.1ktrue,0.15ktrue} and κ ∈ {1,4}. Moreover, we choose c = 7 and
σε = √

0.02. Generated as above, the 36 pairs A and B are recorded in the op-
timal relative position, and the optimal mask vectors are λT

A = (1T
ktrue

A
,0T

kcont
A

) and

λT
B = (1T

ktrue
B

,0T
kcont

B
).

4.2. Hyperparameter settings. For each pairwise superposition 50,000
MCMC iterations are carried out, and each iteration contains five blocks updat-
ing the rotation parameter (proposal standard deviation: 0.75◦), the translation
vector (proposal standard deviation: 0.01), the precision parameter and the two
mask vectors, respectively. The Kernel Carbo similarity calculations are based on
the exponential kernel, that is, (5) with ν = 0.5 (whereas ν = 1 was used for simu-
lating the data). Initially we use ρ = 0.6, but, within the first 1,000 iterations, this
value is dynamically reduced to ρ = 0.2. This initial phase allows the algorithm to
home in on a good alignment even if the two points sets are far away from their op-
timal relative position. Moreover, we use β = 0.05 and α = 200, and these values
ensure a desirable interaction between the obtained dissimilarity values and the
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proposed precision values at each iteration. We include ζ as a variable parameter
in our simulation study and consider ζ ∈ {10,50,90}, and we fix ζI = 1.

To overcome the difficulty of getting trapped in local modes, we propose a big
change of the rigid body parameters by using increased values for the standard
deviations of the random walk proposals every 125 iterations. Moreover, we restart
the algorithm if the Carbo distance exceeds 0.3 after 7,500 iterations.

4.3. Results. For each of the 108 (36 pairs of point sets × 3 values of ζ ) con-
sidered MCMC runs, the starting position of the movable point set B is obtained
by rotating and translating it from its original (simulated) position using �(θ0)

and γ 0 where θ0 and γ0i (i = 1,2) are uniformly distributed on [−20◦,20◦]3

and [−0.1,0.1], respectively. Moreover, both mask vectors are initiated using
λM

i ∼ Bernoulli(0.5) (i = 1, . . . , kM, M ∈ {A,B}). The performance of each run
is then assessed in terms of the root mean square deviation (RMSD) between the
original position of B and its MAP position.

Figures 2–4 show the typical output of a successful run. Figures 2 and 3 indicate
that the algorithm converges quickly, and from Figure 2 it can be seen that there
is an interplay between the precision parameter τ and the Kernel Carbo distance:
until a good alignment is obtained, small distances lead to larger precision values
which in turn yield small distances. Figure 3 shows the trace plots for the number

FIG. 2. Top row: trace plot of the rigid-body parameters (in terms of the initial relative position
of the two points sets under consideration). Bottom row: trace plots of the precision parameter, the
log-posterior (up to a constant) and the Kriged Carbo distance. In all plots, every 100th simulated
value is displayed.
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FIG. 3. Top row: trace plots of the number of points involved in the kriging procedure. Bottom row:
two possible point estimates for the mask vectors of A (left) and B (right). The big circles show the
mean values of the (0,1)-entries for the masks vectors (which can be interpreted as the estimated
probability for the corresponding landmark to belong to the common reference field), and the small
circles display the observed mask vectors at the MAP iteration. The total number of points in A and
B is 92, and the last 12 points in each set are contamination points.

of points which are involved in the field calculation and are hence considered to
belong to Atrue and B true, respectively, and a (post burn-in) summary of the two
mask vectors is displayed in the bottom row of Figure 3. In this particular exam-
ple, the optimal mask vectors are λT

M = (1T
80,0T

12) (M = A,B), and the algorithm
is able to reconstruct the mask vector very well. Figure 4 shows that the MAP
position of the movable point set is very similar to the original one.

FIG. 4. Successful alignment: the circles on the left-hand side show the initial position of point set
B , and the circles on the right-hand side show the position of B at the MAP iteration. The optimal
position is displayed by the crosses on both sides. The algorithm is able to reduce the RMSD to the
optimal position from 0.479 (left) to 0.032 (right).
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TABLE 1
The percentages of MCMC runs which are regarded as a success (i.e., RMSD < 0.1) for different

parameter settings. The column “all” shows the percentage of successes out of all
108 simulations for the corresponding setting

ktrue = 80 ktrue = 40
All ζ = 10 ζ = 50 ζ = 90 kcont = 4 kcont = 6 κ = 1 κ = 4

Setting 1 76 61 81 86 89 44 85 67
Setting 2 48 33 47 61 83 17 52 44

We consider an alignment to be successful if RMSD ≤ 0.1. Table 1 shows the
percentages of success for various parameter settings in the row “setting 1,” with an
overall success rate of 76% out of the 108 MCMC runs. As expected, the largest
number of true points in combination with the fewest number of contamination
points gives the highest success rate (89%), whereas the smallest number of true
points in combination with the highest number of contamination points gives the
lowest success rate (44%). In combination with these extreme cases, the impact of
the nearness parameter is most striking with 22% success for (ktrue = 40, kcont = 6,
κ = 4) and 100% for (ktrue = 80, kcont = 4, κ = 1). Overall, the impact of κ can be
summarized as 85% success for κ = 1 and 67% success for κ = 4. Interestingly,
the success rate increases with ζ .

The above results indicate that a satisfactory alignment can be obtained if the
number of noncontamination points is large enough to represent the main features
of the underlying reference field and large relative to the number of contamination
points. Moreover, especially when the number of points is small and the sampling
of the reference field is sparse, it is important that the noncontamination points in
A and B represent the same features of the reference field (which is not always
the case if ktrue = 40 and κ = 4). These trends can be emphasized by rerunning
the experiments using θ ∼ U[−60◦,60◦] and γi ∼ U[−0.3,0.3] (i = 1,2) to obtain the
starting position of B . For this more challenging setting (“setting 2”) the results are
also provided in Table 1 with similar effects but lower success rates (48% overall).

In both settings, the performance of our alignment procedure can be improved
if there are some points in A and B which can be identified as noncontamination
points ab initio. For our examples, identifying some relevant points (on average
12 per point set) improves the overall success rate to 93% in the first setting and
to 79% in the more challenging second setting. In many applications it may be
possible to identify some relevant points so that the possibility of incorporating
this knowledge is a valuable tool for improving the alignment.

Finally, we rerun the above experiments with different values for the range pa-
rameter ρ. For example, with ρ = 0.3, overall success rates of 77% in the first
and 48% in the second setting are achieved, and for ρ = 0.1, the corresponding
success rates are 77% and 52%. These results demonstrate that choosing the exact
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covariance function for the spatial interpolation is not crucial for the performance
of the algorithm, although performance does deteriorate for much larger ρ. For ex-
ample, a leave-one-out type method for identifying the contamination points com-
bined with a pooled version of an experimental semivariogram [e.g., Wackernagel
(2003), page 47] can be applied to estimate an approximate covariance function
which has yielded satisfactory results in some further experiments.

4.4. Three-dimensional example. We now consider a small three-dimensional
simulation study which mimics the molecule alignment problem of Section 5. As
a starting point we take the positions of the first 25 atoms of the first molecule in
the steroid data set and generate the atom positions of a second “molecule” using a
small perturbation (independent zero mean normal with standard deviation 0.01).
Then a zero mean isotropic Gaussian random field with Matérn covariance func-
tion (ν = 0.5, ρ = 5) is simulated at the combined set of the 50 points. To introduce
contamination points, the last five points in each configuration have their coordi-
nates and marks perturbed by independent N(0,32) errors. Finally, both molecules
are centered and the molecules are uniformly rotated.

For various choices of the hyperparameters β and ζ we run 100 Monte Carlo
simulations of the Bayesian alignment procedure. Each time the two marked point
sets and their starting relative position are generated as above. The parameters ν =
0.5 and α = 31 are kept fixed and the range parameter is dynamically reduced from
ρ = 20 to ρ = 5 during the matching procedure. Each simulation is restarted if the
Kernel Carbo distance is greater than 0.1 after 1,000 iterations (up to a maximum
of 30 restarts). When the algorithm reaches 2,000 iterations the final position and
the MAP position of the movable molecule B are recorded.

In this situation the success of the algorithm can be measured in terms of the first
20 atoms of B by taking the corresponding RMSD between its MAP and its true
position. The results of the simulation study are given in Table 2. As expected, the
number of unmasked points in B increases with ζ . Interestingly, this consistently
also leads to improved RMSD values—even in situations where a large value of
ζ forces the algorithm to include more than the desired 20 points. In terms of the
obtained Carbo distance, the impact of β exceeds that of ζ . This is also expected,
as the mean of the full conditional distribution of the precision parameter τ (cf.
Section 3.2) decreases with β which in turn means that the algorithm is more
prone to accept updates with larger Carbo distances.

Overall, this simulation study highlights that the Bayesian method works well
in this controlled situation.

5. Application to steroid molecules. The concept of molecular similarity is
of great importance because similar molecules can be expected to exhibit a similar
biochemical activity and hence drug potency. The data for the 31 steroids con-
sidered by Dryden, Hirst and Melville (2007) are given in the form of a set of
unlabeled, marked points where the coordinates of the points correspond to the
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TABLE 2
Summary statistics from the posterior distribution in the simulation study. Columns 2–6 show the

mean (and standard deviation) over 100 Monte Carlo simulations of the final number of unmasked
points in molecule A (

∑
λA
i ); the final number of unmasked points in molecule B (

∑
λB
j ); the root

mean square error (RMSD); the number of new starts needed for the algorithm to be successful;
and the Kriged Carbo distance at the final iteration. The last column shows the number of times out

of 100 simulations that the algorithm failed, that is, the Kernel Carbo distance was greater
than 0.1 after 1,000 iterations for each of the maximum number of 30 restarts

(β, ζ )
∑

λA
i

∑
λB
j RMSD Starts Carbo Failures

(0.0004,10) 18.41 17.42 0.1523 0.88 0.0204 4
(2.39) (2.13) (0.5207) (2.48) (0.0226)

(0.0004,50) 21.16 20.00 0.0959 1.56 0.0178 1
(1.45) (0.97) (0.6521) (3.96) (0.0195)

(0.0004,70) 21.66 20.43 0.0626 1.12 0.0263 0
(1.53) (0.97) (1.1200) (2.80) (0.0208)

(0.004,10) 18.6 17.83 0.2193 0.67 0.0268 0
(2.51) (1.90) (0.5492) (1.21) (0.026)

(0.004,50) 21.52 20.27 0.1018 1.55 0.0284 1
(1.46 (1.08) (0.4352) (3.80) (0.0560)

(0.004,70) 21.58 20.32 0.0605 1.19 0.0280 0
(1.42) (1.17) (0.0734) (3.34) (0.0244)

(0.04,10) 20.90 19.47 0.1306 0.95 0.0342 0
(1.75) (1.60) (0.5884) (1.57) (0.0187)

(0.04,50) 23.03 20.94 0.0739 1.59 0.0485 1
(1.35) (1.19) (0.2748) (3.75) (0.0544)

(0.04,70) 23.15 20.92 0.0513 2.26 0.0472 0
(1.37) (1.04) (0.0629) (4.41) (0.0258)

atom coordinates of each molecule, and the marks are the partial charge values
and the van der Waals radii. The data set can be found in the supplementary mate-
rials [Czogiel, Dryden and Brignell (2011b)]. The Kernel Carbo index developed
in this paper can therefore directly be utilized to assess the similarity between the
steroids. Also, in particular, the assumption of a common underlying reference
field seems suitable for this application because all molecules bind to the same
receptor protein. The underlying reference field can therefore be interpreted as a
negative imprint of the binding pocket of the receptor. The MCMC scheme de-
scribed in Section 3 then determines the parts of each molecule which correspond
to the reference field and aligns the molecules based on the similar parts only so
that the resulting relative position should reproduce the relative binding positions
of the steroids.

In order to investigate the possibility of multiple binding modes (and hence
reference fields), we shall also consider an analysis of subgroups of the data. In
particular, we consider the three activity classes.
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5.1. Pairwise alignment. In our application we use the Gaussian kernel (6)
for the spatial interpolation of both the partial charge values and the van der Waals
radii. The range parameter ρ for the electrostatic field is thereby estimated by
visual inspection of a pooled empirical semivariogram function (ρQ = 6.35), and
the practical range of the steric (shape) field is taken to be the largest van der Waals
radius in the data set (ρS = 1.7/

√
3 = 0.9815).

In our simulation studies we dynamically reduced the range parameter to help
the algorithm home in on a good solution. Here, we apply a different concept us-
ing a weighted average of the two univariate partial Carbo indices and choosing the
weights dynamically as wQ = NI −i

NI
and wS = i

NI
, i = 1, . . . ,NI , during an initial

phase of NI = 1,500 iterations. This directly mimics real-life molecular recogni-
tion where the long-range electrostatic attraction governs the initial approach of
the molecules, whereas the short-range repulsive steric forces gradually take over
and become the chief manipulator for the binding affinity [e.g., Richards (1993)].

We use α = 31 and β = 0.04, and the value for the penalty parameter is chosen
as ζ = 3. As standard deviations of the proposal distributions we use η1 = 3.25◦
for the rotation parameters and η2 = 0.25 Å for the translation parameters, and
these values ensure acceptance rates between 20% and 40%. The standard de-
viation for the rotation parameters is thereby in line with previously described
proposal distributions for rotation parameters in the molecular context [e.g., Green
and Mardia (2006)]. We define the initial relative position of two molecules by first
aligning both molecules along their principal axes. We then translate and rotate the
movable molecule using γ 0 and �(θ0), where γ0i (i = 1,2,3) and θ0i (i = 1,2,3)

are uniformly distributed on [−5 Å,5 Å] and [−90◦,90◦], respectively.
As our MCMC algorithm is asymmetric in the sense that the relative position

of the molecules is changed by moving only one molecule whereas the position
of the other one is fixed, we consider all 31 · 30 = 930 pairwise superpositions. In
the majority of cases, the algorithm converges quickly and the trace plots show a
similar behavior as the ones in Figures 2 and 3. However, like in the simulation
studies, the algorithm can sometimes get trapped in a local mode (which mostly
corresponds to an alignment along the wrong principal axes in this application)
so that a restart is necessary. Figure 5 shows an example result where the steroid
aldosterone has successfully been superimposed onto androstanediol.

The specific choice of Gaussian kernel is not crucial to the success of the algo-
rithm for the steroids data. Similar alignments of the steroids have been obtained
using the Matérn kernel with ν = 0.5, ν = 1, ν = 2 for many examples, but it is
important that the range parameter is well chosen. We found that with ρS ≈ 1 the
method worked well for any choice of covariance kernel we used, but if ρS is too
large (e.g., ρS ≈ 3), then the alignment is cruder and the algorithm is more prone
to failure for any choice of covariance function.

5.2. Prior sensitivity. To investigate the sensitivity of the analysis to the prior
distributions, we again consider the alignment of the two molecules aldosterone
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FIG. 5. Two orthographic projections (x–y and x–z Cartesian planes) of the atoms in the starting
position (top row) and the MAP position for the alignment (bottom row) of steroid molecules aldos-
terone and androstanediol. The carbon rings are indicated by lines for each molecule. The unit of all
axes is Ångström (Å).

and androstanediol. Table 3 shows how different values of the penalty parameter ζ

affect the empirical (post burn-in) 95% credibility intervals for the number of in-
cluded atoms for both molecules based on 10,000 iterations. As expected, the total
number of included atoms increases with ζ . As the two molecules in the example
run are structurally very similar, they can be aligned more closely if more atoms

TABLE 3
The impact of the penalty parameter (first four rows) and α (last four rows) on the marginal

posterior distribution of the parameters of interest. The credibility intervals are based
on every 20th value of the parameters recorded after the burn-in period

ζ 95% CI for τ 95% CI for
∑

j λA
j 95% CI for

∑
j λB

j

2 (226.62,543.78) (34,46) (34,45)

3 (230.93,543.30) (37,49) (38,48)

4 (250.69,562.65) (40,51) (40,49)

5 (244.67,548.41) (41,51) (42,51)

α 95% CI for τ 95% CI for
∑

j λA
j 95% CI for

∑
j λB

j

21 (102.53,315.95) (36,48) (37,48)

31 (221.14,515.13) (38,49) (38,49)

41 (344.68,770.30) (38,48) (39,49)

51 (432.36,1010.77) (35,48) (37,50)
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are included so that the credibility interval for the precision parameter is shifted
toward higher values as ζ increases. After a certain threshold, however, even larger
values for the penalty parameter force the algorithm to include more atoms in the
similarity calculations than desired and the precision decreases. Moreover, Table 3
shows that—in terms of the number of included atoms—the algorithm is robust
against changes of α. Also, as the posterior mean and variance of the precision
parameter directly depend on α, the credibility intervals for τ become wider and
get shifted toward higher values as α increases.

5.3. Chemical relevance. The pairwise distances which result from the 930
superpositions can be regarded as chemically meaningful if they reflect the mem-
bership of the steroid molecules to the three activity classes, that is, if steroids
within an activity class can be aligned more closely than those from different ac-
tivity classes. In terms of our assumption about a common underlying reference
field, such a result would indicate that there are actually three different reference
fields which exhibit different small scale variations and hence different abilities to
fit in to the protein binding pocket.

We assess the chemical relevance of our results by performing two cluster anal-
yses using Ward’s (1963) method. To account for the asymmetry in our alignment
method, the applied pairwise dissimilarity measures for two molecules A and B

are thereby based on both the MCMC run which superimposes A on B and the
MCMC run which superimposes B on A. In particular, we use Dmean(A,B) =√

D̂mean
A→BD̂mean

B→A and DMAP(A,B) =
√

D̂MAP
A→BD̂MAP

B→A, where the arrow denotes the
direction of the superposition, and “mean” and “MAP” indicate which type of (post
burn-in) point estimate for the parameters is inserted into the Carbo dissimilarity
measure (11).

Figure 6 shows the dendrograms resulting from the cluster analyses. It is notable
that both distance measures lead to a very good separation of high and low activ-
ity steroids. In particular, the cluster analysis based on DMAP(·) is at the highest

FIG. 6. Cluster analysis using Ward’s method: the left-hand side dendrogram is based on Dmean(·),
and the dendrogram on the right-hand side is calculated using DMAP(·). The labels correspond to
the activity classes of the steroids (1 = high, 2 = intermediate, 3 = low).
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level able to separate these two activity classes completely. Overall, our distance
can separate the activity classes as well as the distance which Dryden, Hirst and
Melville (2007) found to have the highest separation power, and it clearly outper-
forms the other distances defined in their paper.

The dendrograms indicate that it is plausible to assume that there are at least
two different reference fields underlying the steric properties of the steroids. It is
therefore of interest to determine these fields and examine where differences occur,
as they could give rise to the different binding activities. In the following we will
do so in a two-step procedure where our field GPA approach is first applied to
all 31 steroids to obtain the overall optimal relative position of the molecules and
then to the subgroups as defined by the activity classes which will provide the
appropriate masks.

5.4. Overall multiple alignment. When carrying out the overall optimal align-
ment of all 31 steroid molecules, the pairwise superpositions in step 1 of Algo-
rithm 1 are performed as described before but with ζ = 2 to incorporate the knowl-
edge that the reference molecule in all superpositions has a small number of atoms.
The superpositions on the mean fields (step 7) are obtained using only the dissim-
ilarities of the steric fields. As the initial molecular fields obtained in step 1 are
good approximations of the fields which minimize the multiple Kernel Carbo in-
dex, we use α = 600 and β = 0.0001 to ensure that the full conditional distribution
of the precision parameter has a large mean value at each iteration, and we reduce
the standard deviations of the proposal distributions for the rigid body parameters
to η1 = 0.75 Å and η2 = 0.03◦. Moreover, we set the number of iterations for each
MCMC run in step 7 to 500, and the tolerance value to tol = 0.0001. The algorithm
is therefore used as a stochastic optimizer.

The algorithm converges after the fourth field GPA iteration. Figure 7 shows
orthographic views of the resulting overlays, that is, projections of the three-
dimensional data into the x–y and x–z Cartesian planes. The superposition after
step 1 of the field GPA algorithm is displayed in the top row, and the bottom row
shows the final overlay. For clarity, the random starting positions of the steroids
are not displayed in this picture.

5.5. Alignment within activity class subgroups. We now carry out the field
GPA algorithm in subgroups of the data to allow for the possibility of different
underlying multiple fields. Specifically, we consider the three activity classes of
high, medium and low binding affinity to the receptor. The estimated mask vectors
from each underlying field are then used together with the relative position of all
molecules obtained in the overall field GPA to calculate mean fields for each group.

Figure 8 displays different cross sections of the mean field for each activity
class. Light points thereby correspond to locations where the displayed steric field
takes a large value, whereas dark points show field values close to zero.
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FIG. 7. Top row: orthographic projections of the relative position of the 31 steroid molecules that
results from step 1 of Algorithm 1. Bottom row: orthographic projections of the final relative position.
The random starting positions of the molecules are not displayed.

As expected, the observed differences are most pronounced between the mean
fields of the high and the low activity group. To assess the differences for each pair
(Ca,Cb) of activity classes (a, b = 1,2,3;a = b) numerically, we consider a (two
sample) t-field of the form

tab(x) = Z̄a(x) − Z̄b(x)

s∗
pool(x)

√
1/na + 1/nb

, x ∈ R
3,(13)

where na and nb denote the number of molecules in activity class Ca and Cb, re-
spectively, Z̄a(x) and Z̄b(x) denote the corresponding mean fields, and s∗2

pool(x) =
s2

pool(x) + d is the pooled variance (with d = 0.001 a small offset to avoid spuri-
ously large values in regions far away from the center). For each pairwise compar-
ison we define a three-dimensional grid G and calculate a t-value of the form (13)
at a large number of points (142,598 here). Here we use (13) as an exploratory tool
to see where the most pronounced differences occur. Figure 9 shows the regions in
which the (absolute) t-field for each comparison exceeds a threshold of 8. A for-
mal test which takes into account the multiple comparison problem and the spatial
smoothness of the t-field could be applied using a threshold based on the excursion
sets of Gaussian fields [e.g., Worsley (1994), Taylor and Worsley (2008)], which
has been extensively used in fMRI studies.

From both Figures 8 and 9 it can be seen that the main feature which distin-
guishes the high activity class from the other two classes is that the very active
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FIG. 8. Cross sections of the mean steric fields of the three activity groups (left column: high ac-
tivity, middle column: medium activity, right column: low activity). The different rows display cross
sections at z = −1.5 (top row), z = 0 (medium row) and z = 1.5 (bottom row). Light points cor-
respond to locations with large value of the displayed field, whereas dark values show points with
values close to zero.

molecules commonly extend to the left of the ring structure much more than the
other molecules, where by ring structure we mean the carbon rings as shown in
Figure 5. From the original data we can get the additional information that the
associated atoms are oxygen and carbon atoms. Another interesting difference is
located at the top right-hand side of the molecules where the low activity class dif-
fers from the other two classes in the location of oxygen atoms. These findings are
in line with Figure 9 in Dryden, Hirst and Melville (2007) and support the conjec-

FIG. 9. Thresholded t-fields resulting from pairwise comparisons of the steric mean fields of the
three activity classes. Left-hand side: low vs. medium activity class, middle: low vs. high activity
class, right-hand side: medium vs. high activity class. The shaded areas display regions where the
t-field takes absolute values of larger than eight.
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ture that the steric properties of the steroid molecules have a discriminating effect
with respect to the binding affinity toward the CBG receptor.

6. Discussion. Our methodology for aligning and comparing unlabeled
marked point sets is based on spatial interpolation of the given marks and hence
on a continuous representation of shape. The major advantages of our approach
are that point correspondences do not need to be estimated and that the incorpo-
rated mask vectors automatically determine the similar regions of the considered
point sets while ignoring the rest, which helps to reduce the level of noise in the
alignment procedure.

Our approach is related to a number of previously proposed methods. For ex-
ample, it provides a probabilistic framework and generalization of the SEAL algo-
rithm [Kearsley and Smith (1990)] which is well established in the field of rational
drug design and essentially uses the L2-Carbo index together with a Gaussian
covariance function. Our multiple alignment approach is related to the Bayesian
model proposed by Dryden, Hirst and Melville (2007) which uses a similar con-
cept but formulated only in terms of the point locations. Contrary to that, a hidden
point configuration in the fully model-based Bayesian approach by Ruffieux and
Green (2009) is integrated out and the multiple alignment of n point sets involves
all 2n − n − 1 possible types of matches. The fact that our field-based approach
naturally incorporates the additional information given by the marks is an addi-
tional difference to the previous approaches which is of particular advantage in
the multiple alignment setting, as the resulting mean fields allow straightforward
post-processing.

In this paper we obtain the similarity index at the maximum a posteriori (MAP)
estimates of the rigid-body transformations and mask parameters because this
gives an approximation to the Kernel Carbo index (4). We could alternatively con-
sider a full posterior analysis and work with the posterior distribution. A simi-
lar issue occurs in Bayesian shape analysis of unlabeled landmark configurations
[Green and Mardia (2006), Dryden, Hirst and Melville (2007), Schmidler (2007)]
where either a marginal approach (integrating out nuisance parameters) or a con-
ditional approach (conditioning at the MAP) could be used. We compared the two
approaches for unlabeled landmarks in other work [Kenobi and Dryden (2010)]
and the overall performance was similar in the situations considered. This can
be explained by the similarity of the marginal and conditional posteriors when
a Laplace approximation is accurate (e.g., highly concentrated posterior distribu-
tions for the nuisance parameters).

Finally, as molecules are fuzzy bodies of electronic clouds rather than discrete
sets of atoms, our approach is particularly suited for the described application.
However, as it does not require any predefined point-by-point correspondence, it
could be an approach to resolve the alignment problem for a fairly broad range
of applications. Examples include matching organs in medical images, matching
objects in images of real-world scenes (e.g., faces) in photographs or clouds in
satellite images.
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SUPPLEMENTARY MATERIAL

Supplement A: R programs for Bayesian molecule alignment (DOI: 10.
1214/11-AOAS486SUPPA; .zip). The zip file contains R programs for molecular
alignment using random fields. The main R program is fields8.r which carries out
a Bayesian MCMC procedure. The programs were written by Irina Czogiel, with
some later edits by Ian Dryden. There are two options in the program—simulation
study (as in Section 4.4) of the paper, or comparison of two molecules using steric
information (as in Section 5).

Supplement B: Steroids data (DOI: 10.1214/11-AOAS486SUPPB; .zip). The
zip file contains the data set of steroids first analyzed by Dryden, Hirst and Melville
(2007). The data set of (x, y, z) atom co-ordinates and partial charges was con-
structed by Jonathan Hirst and James Melville (School of Chemistry, University
of Nottingham).
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