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Longitudinal imaging studies are essential to understanding the neural
development of neuropsychiatric disorders, substance use disorders, and the
normal brain. The main objective of this paper is to develop a two-stage ad-
justed exponentially tilted empirical likelihood (TETEL) for the spatial anal-
ysis of neuroimaging data from longitudinal studies. The TETEL method as
a frequentist approach allows us to efficiently analyze longitudinal data with-
out modeling temporal correlation and to classify different time-dependent
covariate types. To account for spatial dependence, the TETEL method de-
veloped here specifically combines all the data in the closest neighborhood
of each voxel (or pixel) on a 3-dimensional (3D) volume (or 2D surface)
with appropriate weights to calculate adaptive parameter estimates and adap-
tive test statistics. Simulation studies are used to examine the finite sample
performance of the adjusted exponential tilted likelihood ratio statistic and
TETEL. We demonstrate the application of our statistical methods to the de-
tection of the difference in the morphological changes of the hippocampus
across time between schizophrenia patients and healthy subjects in a longitu-
dinal schizophrenia study.

1. Introduction. Neuroimaging data, including both anatomical and func-
tional magnetic resonance imaging (MRI), have been/are being widely collected
to understand the neural development of neuropsychiatric disorders, substance
use disorders, and the normal brain in various longitudinal studies [Almli et al.
(2007)]. For instance, various morphometrical measures of the morphology of the
cortical and subcortical structures (e.g., hippocampus) are extracted from anatom-
ical MRIs for understanding neuroanatomical differences in brain structure across
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different populations and across time. Studies of brain morphology have been
conducted widely to characterize differences in brain structure across groups of
healthy individuals and persons with various diseases, and across time [Thompson
and Toga (2002), Thompson, Cannon and Toga (2002), Styner et al. (2005), Zhu et
al. (2008a)]. Moreover, functional MRI (fMRI) is a valuable tool for understand-
ing functional integration of different brain regions in response to specific stimuli
and behavioral tasks and detecting the association between brain function and co-
variates of interest, such as diagnosis, behavioral task, severity of disease, age, or
IQ [Friston (2007), Rogers et al. (2007), Huettel, Song and McCarthy (2004)].

Much effort has been devoted to developing frequentist and Bayesian meth-
ods for analyzing neuroimaging data using numerical simulations and theoreti-
cal reasoning. Frequentist statistical methods for analyzing neuroimaging data are
often sequentially executed in two steps. The first step involves fitting a general
linear model or a linear mixed model to neuroimaging data from all subjects at
each voxel [Beckmann, Jenkinson and Smith (2003), Friston et al. (2005), Rowe
(2005), Woolrich et al. (2004), Zhu et al. (2008a)]. The second step is to calculate
adjusted p-values that account for testing the hypotheses across multiple brain
regions or across many voxels of the imaging volume using various statistical
methods (e.g., random field theory, false discovery rate, or permutation method)
[Cao and Worsley (2001), Friston et al. (1996), Hayasaka et al. (2004), Logan
and Rowe (2004), Worsley et al. (2004)]. Most of these frequentist methods have
been implemented in existing neuroimaging software platforms, including statisti-
cal parametric mapping (SPM) (www.fil.ion.ucl.ac.uk/spm/) and FMRIB Software
Library (FSL) (www.fmrib.ox.ac.uk/fsl/), among many others. In the recent liter-
ature, a number of papers have been published on the development of Bayesian
spatial–temporal models for functional imaging data [Penny, Flandin and Trujillo-
Barreto (2007), Bowman et al. (2008), Woolrich et al. (2004), Luo and Puthussery-
pady (2005)]. Most Bayesian approaches, however, are less practical due to the
extensively computational burden of running a Markov chain Monte Carlo method
in a large number of voxels [Bowman et al. (2008)], and, thus, they are limited
to small or moderate anatomic regions and a small number of regions of interest
(ROI). Moreover, as pointed out in Snook, Plewes and Beaulieu (2007), the ma-
jor drawbacks of ROI analysis include the instability of statistical results obtained
from ROI analysis and the partial volume effect in relative large ROIs.

Existing statistical methods in the neuroimaging literature have two major lim-
itations for analyzing longitudinal neuroimaging data, as explained below. The
respective strategies to resolve these two limitations are detailed in Section 2. The
first limitation is that the parametric models, such as linear mixed models, require
the correct specification of the temporal correlation structure and cannot prop-
erly distinguish between different types of time-dependent covariates (types I, II
and III) [Diggle et al. (2002), Lai and Small (2007), Pepe and Anderson (1994)].
A distinctive feature of longitudinal neuroimaging data is that it is able to char-
acterize individual change in neuroimaging measurements (e.g., volumetric and
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morphometric) over time, and the time-dependent covariates of interest may influ-
ence change. Imaging measurements of the same individual usually exhibit pos-
itive correlation and the strength of the correlation decreases with the time sepa-
ration [Liang and Zeger (1986)]. Moreover, longitudinal data may provide crucial
information for a causal role of a time-dependent covariate (e.g., exposure) in the
disease process [Diggle et al. (2002), Lai and Small (2007), Pepe and Anderson
(1994)]. Improperly handling time-dependent covariates and ignoring (or incor-
rectly modeling) temporal correlation structure in imaging measures likely would
influence subsequent statistical inference, such as increasing the false positive and
negative errors, and result in misleading scientific inferences [Diggle et al. (2002),
Lai and Small (2007)].

The second limitation is that most smoothing methods apply the same amount of
smoothing throughout the whole image, which can be problematic near the edges
of the significant regions. Although it is common to apply a smoothing step be-
fore applying a voxel-wise approach for the analysis of neuroimaging data [Poline
and Mazoyer (1994), Shafie et al. (2003), Lindquist and Wager (2008)], the voxel-
wise method suffers from the same amount of smoothing throughout the whole
image and the arbitrary choice of smoothing extent [Hecke et al. (2009), Jones
et al. (2005)]. Jones et al. (2005) have shown that the final results of voxel-based
analysis can strongly depend on the amount of smoothing in the smoothed diffu-
sion imaging data. Recently, Yue, Loh and Lindquist (2010) introduced a spatially
smoothing method using nonstationary spatial Gaussian Markov random fields to
spatially and adaptively smooth images. Their approach, however, can be compu-
tationally extensive for 3D imaging data.

In this paper we will develop strategies to resolve these two limitations. To re-
solve the first limitation, we develop an adjusted exponentially tilted empirical
likelihood method, called AETEL, for the analysis of longitudinal neuroimaging
data with time-dependent covariates. AETEL is a nonparametric method that is
built on a set of estimating equations and the number of estimating equations can
be larger than the number of parameters. Thus, it avoids parametric assumptions
and this feature is very appealing for the analysis of real neuroimaging data, such
as brain morphological measures, because the distribution of the univariate (or
multivariate) neuroimaging measurements often deviates from the Gaussian dis-
tribution [Ashburner and Friston (2000), Salmond et al. (2002), Luo and Nichols
(2003)]. Using more estimating equations than the number of parameters allows us
to appropriately handle time-dependent covariates of different types and to make
an efficient use of the estimating equations without the need of modeling the tem-
poral correlation in longitudinal data [Lai and Small (2007), Qu, Lindsay and Li
(2000)]. AETEL also provides a natural test statistic to test whether a specific co-
variate is of a certain type (types I, II and III).

To resolve the second limitation, we develop a two-stage AETEL, abbreviated
as TETEL, for the analysis of longitudinal neuroimaging data. TETEL integrates
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a smoothing method into our AETEL for carrying out statistical inference on neu-
roimaging data. The TETEL method, as an adaptive procedure, fits AETEL at each
voxel in stage 1. Then, TETEL uses the information learned from stage 1 to discard
the data from the neighboring voxels with dissimilar signal pattern and to incorpo-
rate the data from the neighboring voxels with similar signal pattern to adaptively
calculate parameter estimates and test statistics. TETEL avoids using the same
amount of smoothing throughout the whole image in most smoothing methods. In
addition, theoretically, we can establish consistency and asymptotic normality of
the estimators and test statistics obtained from TETEL.

Section 2 of this paper introduces the shape data of the hippocampus structure
from a longitudinal schizophrenia study and presents the new statistical methods
just described. In Section 3 we conduct simulation studies to examine the finite
sample performance of the TETEL method. Section 4 illustrates an application of
the proposed methods to the longitudinal schizophrenia study of the hippocampus.
We present concluding remarks in Section 5.

2. Data and methods.

2.1. Longitudinal schizophrenia study of hippocampus shape. This is a longi-
tudinal, randomized, controlled, multisite, double-blind study conducted at 14 aca-
demic medical centers in North America and western Europe, with partial funding
from Lilly Research Laboratories [Lieberman et al. (2005), Styner et al. (2004)]. In
this study 238 first-episode schizophrenia patients were enrolled meeting the fol-
lowing criteria: age 16 to 40 years; onset of psychiatric symptoms before age 35;
diagnosis of schizophrenia, schizophreniform, or schizoaffective disorder accord-
ing to the fourth edition of diagnostic and statistical manual of mental disorders
(DSM-IV) criteria; and various treatment and substance dependence conditions.
After random allocation at baseline, 123 patients were selected to receive a con-
ventional antipsychotic, haloperidol (2–20 mg/d), and 115 were selected to receive
an atypical antipsychotic, olanzapine (5–20 mg/d). Patients were treated and fol-
lowed up to 47 months. Also, 56 healthy control subjects matched to the patient’s
demographic characteristics were enrolled. Neurocognitive and MRI assessments
were performed at months 0 (baseline), 3, 6, 13, 24, 36, and 47 approximately,
with different subjects having different visiting times, and some subjects dropped
out during the course of the study.

The hippocampus, a gray matter structure in the limbic system, is involved in
processes of motivation and emotions and has a central role in the formation of
memory. The hippocampus is a paired structure with mirror-image halves in the
left and right brain hemispheres and located inside the medial temporal lobe (Fig-
ure 1). Many MRI studies have reported the reduction of hippocampal volume
demonstrated in schizophrenia subjects and at onset of the first episode of psy-
chotic symptoms before effects associated with treatment and disease chronicity
[Lieberman et al. (2005)].
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FIG. 1. Location of hippocampus in the context of the surrounding structures in the coronal (a) and
sagittal (b) views. Subregions of the hippocampus in (c) showing the head of the hippocampus (HH),
the digitationes hippocampi (DH), the hippocampal body (HB), the hippocampal tail (HT), the termi-
nal segment of the HT (TS), the dentate gyrus (DG), and the fields of the cornu ammonis (CA1–CA4).
Adapted with permission from Springer Verlag, Heidelberg, Germany [Duvernoy (2005)].

The aim of this study is to use the boundary and medial shape of the hippocam-
pus to examine whether hippocampal abnormalities are present in schizophre-
nia patients. Statistical shape modeling and analysis have emerged as important
tools for understanding cortical and subcortical structures from medical images
[Dryden and Mardia (1998)]. We consider two approaches for shape representa-
tion including a spherical harmonic description sampled into a triangulated sur-
faces (SPHARM-PDM) and a medial shape description [Pizer et al. (2003), Styner
and Gerig (2003)]. The SPHARM-PDM can only represent objects of spherical
topology, whereas the medial representation provides information on a rich set of
features, including local thickness. These shape features are not accessible by con-
ventional volume-based morphometry and offer us a great opportunity to address
the weaknesses of conventional volumetric methods.

We consider two sets of responses of interest. The first set of responses was
based on the SPHARM-PDM representation of hippocampal surfaces. We use
the SPHARM-PDM [Styner et al. (2004)] shape representation to establish sur-
face correspondence and align the surface location vectors across all subjects. The
sampled SPHARM-PDM is a smooth, accurate, fine-scale shape representation
(Figure 3). The hippocampal surfaces of different subjects are thus represented
by the same number of location vectors (with each location vector consisting of
the spatial x, y, and z coordinates of the corresponding vertex on the SPHARM-
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PDM surface) and are used as the second set of responses. Covariates of interest
are race (Caucasian, African American, and others), age (in years), gender, group
(the schizophrenia group and the healthy control group) and time (visiting times
in months).

The second set of responses was the hippocampus m-rep thickness at the 24
medial atoms of the left and the right brain (Figure 4). The m-rep is a linked set of
medial primitives named medial atoms, which are formed from two equal length
vectors and are composed of a position, a radius, a frame implying the tangent
plane to the medial manifold, and an object angle [Styner et al. (2004)]. The m-rep
thickness is the radius of each medial atom. Covariates of interest were WBV, race
(Caucasian, African American, and others), age (in years), gender, diagnostic sta-
tus (patient or control), and visiting times (in weeks). This WBV measure includes
gray and white matter, ventricular cerebrospinal fluid, cisterns, fissures, and corti-
cal sulci. The WBV is commonly used as a covariate in statistical analyses to con-
trol for scaling effects [Arndt et al. (1991)]. Particularly, WBV is a time-dependent
covariate and may vary with the hippocampus thickness measurement.

2.2. Estimating equations for longitudinal data. We consider a longitudinal
study of imaging data with n subjects, where a q × 1 covariate xi,j (e.g., age, gen-
der, height, and brain volume) is obtained for the ith subject at the j th time point tij
for i = 1, . . . , n and j = 1, . . . ,mi . Thus, there are at least

∑n
i=1 mi = N images in

the study. Based on each image, we observe or compute neuroimaging measures,
denoted by Yi = {yij (d) :d ∈ D, j = 1, . . . ,mi}, across all mi time points from
the ith subject, where d represents a voxel (or atom, or point) on D, a specific
brain region. The imaging measure yij (d) at each voxel d can be either univariate
or multivariate. For example, the m-rep thickness is a univariate measure, whereas
the location vector of SPHARM-PDM is a three-dimensional MRI measure at each
point [Styner and Gerig (2003), Chung, Dalton and Davidson (2007)]. For nota-
tional simplicity, we assume that the yij (d) are univariate measures.

We temporarily drop voxel d from our notation. At a specific voxel d in the
brain region, zi = {(yij ,xij ) : j = 1, . . . ,mi} is independent and satisfies a moment
condition

E{g(zi , θ)} = 0 for i = 1, . . . , n,(2.1)

where θ is a p × 1 vector, g(·, ·) is an r × 1 vector of known functions with r ≥ p,
and E denotes the expectation with respect to the true distribution of all the zi ’s.
Equation (2.1) is often referred to as a set of unbiased estimating equations or
moments model [Qin and Lawless (1994), Hansen (1982)]. The moments model
(2.1) is more general than most parametric models including linear mixed model
used for the analysis of neuroimaging data [Worsley et al. (2004), Qin and Lawless
(1994), Hansen (1982), Schennach (2007), Owen (2001)].

For longitudinal data, although the measurements from different subjects are
independent, those within the same subject may be highly correlated. The gener-
alized estimating equations (GEE) assume a working covariance matrix for yi =
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(yi1, . . . ,yimi
)T given by Vi. Let E(yi ) = μi(β) = (μi1(β), . . . ,μimi

(β))T and
Di(β) = ∂μi(β)/∂β . Under the assumption that E{Di(β)T V −1

i [yi −μi(β)]} = 0,
Liang and Zeger (1986) proposed to use an estimator, denoted by β̂gee, which
solves a set of GEEs as follows:

G(β) =
n∑

i=1

Di(β)T V −1
i [yi − μi(β)] = 0.(2.2)

For longitudinal data with time-dependent covariates, whether E[g(zi , θ)] =
E{Di(β)T V −1

i [yi − μi(β)]} equals zero or not depends on the type of time-
dependent covariates and the structure of Vi [Lai and Small (2007)]. The time-
dependent covariate xij is of type I if

E{∂βμis(β)[yij − μij (β)]} = 0 for all s, j = 1, . . . ,mi,(2.3)

where ∂β = ∂/∂β . A sufficient condition for type I covariates is E[yij |xij ] =
E[yij |xi1, . . . ,ximi

]. For type I covariates, we can set g(zi , θ) = Di(β)T V −1
i [yi −

μi(β)] and show that E[g(zi , θ)] = 0. If Vi is the covariance matrix of yi , then the
estimator β̂gee is an efficient estimator. However, β̂gee is inefficient under a mis-
specified Vi . To increase the efficiency, we may choose several candidate working
covariance matrices M

(1)
i , . . . ,M

(s0)
i and assume V −1

i = ∑s0
k=1 αkM

(k)
i for some

unknown constants αk [Qu, Lindsay and Li (2000)]. Then, following Qu, Lindsay
and Li (2000), we consider a set of estimating equations given by

g(zi , θ) =
⎛
⎜⎝

Di(β)T M
(1)
i [yi − μi(β)]

...

Di(β)T M
(s0)
i [yi − μi(β)]

⎞
⎟⎠ for i = 1, . . . , n.(2.4)

In this case, the number of functions in g(zi , θ) is s0q > q , when s0 > 1.
The time-dependent covariate xij is of type II if

E{∂βμis(β)[yij − μij (β)]} = 0 for all s ≥ j, j = 1, . . . ,mi.(2.5)

A sufficient condition for type II covariates is

p(xi,t+1, . . . ,ximi
|yit ,xit ) = p(xi,t+1, . . . ,ximi

|xit ).(2.6)

For type II covariates, we can set g(zi , θ) = Di(β)T [yi − μi(β)], in which an in-
dependent working covariance matrix is used. However, the estimator β̂gee based
on the independent working correlation matrix is inefficient, since we do not use
the information contained in E{∂βμis(β)[yij − μij (β)]} = 0 for all s > j . To in-
crease the efficiency of the estimate, we choose a set of lower triangular mi × mi

matrices L
(1)
i , . . . ,L

(s0)
i , and then we consider estimating equations given by

g(zi , θ) =
⎛
⎜⎝

Di(β)T L
(1)
i [yi − μi(β)]

...

Di(β)T L
(s0)
i [yi − μi(β)]

⎞
⎟⎠ for i = 1, . . . , n.(2.7)
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In this case, the number of functions in g(zi , θ) is s0q > q , when s0 > 1. Supposing
that m1 = · · · = mn, we can set s0 = m1(m1 + 1)/2 and L

(b)
i = eseT

j for s ≥ j and
b = 1, . . . , s0, where es is a q ×1 vector with the sth component 1 and 0 otherwise.
Thus, similar to Lai and Small (2007), we are able to pick ∂βμis(β)[yij − μij (β)]
for all s ≥ j .

The time-dependent covariate xij is of type III if

E{∂βμis(β)[yij − μij (β)]} �= 0 for some s > j.(2.8)

For type III covariates, we need to choose Vi as a diagonal matrix. For instance,
if Vi = Ii , where Ii is an mi × mi identity matrix, then g(zi , θ) = Di(β)T [yi −
μi(β)]. Furthermore, if we assume the specific form for the variances of all yij ,
then we may set Vi = diag(Cov(yi )).

An overall strategy to analyze models with time-dependent covariates is first to
assume that the time-dependent covariates are of type III. Then we test whether the
time-dependent covariates are of type II, and if the test is not rejected, we can go
on to test if they are of type I. Once the type of all the time-dependent covariates
is decided, we use the corresponding estimating equations. See Section 4 for more
details.

2.3. Adjusted exponentially tilted empirical likelihood. We consider a non-
parametric method, called an exponentially tilted empirical likelihood, to carry out
statistical inference about θ based on a set of estimating equations {g(zi , θ) : i =
1, . . . , n} [Schennach (2007)]. The exponentially tilted empirical likelihood
(ETEL) method is a combination of the exponentially tilted (ET) method and
the empirical likelihood (EL) method. Both EL [Owen (2001), Qin and Lawless
(1994)] and ET [Imbens, Spady and Johnson (1998)] methods combine the relia-
bility of nonparametric methods with the effectiveness of the likelihood approach.
The EL estimator exhibits desirable higher-order asymptotic properties, whereas
the EL estimator may fail to be

√
n-convergent in the presence of model misspci-

fication. In contrast, the ETEL estimator maintains
√

n-convergence under model
misspecification [Schennach (2007)].

However, most empirical likelihood type methods including ETEL suffer from
two pitfalls: relatively low precision of the chi-square approximation and nonex-
istence of solutions to the estimating equations [Chen, Variyath and Abraham
(2008), Liu and Chen (2010)]. Chen, Variyath and Abraham (2008) introduce a
novel adjustment to these empirical likelihood methods and develop an iterative
algorithm that converges very fast. Simulation studies have shown that the adjusted
empirical likelihood methods perform as well as the linear regression model with
Gaussian noise when data are symmetrically distributed, while the adjusted empir-
ical likelihood methods are superior when data have skewed distribution [Zhu et
al. (2009), Chen, Variyath and Abraham (2008), Liu and Chen (2010)].
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Following Chen, Variyath and Abraham (2008), we consider an adjustment of
ETEL, abbreviated as AETEL, by introducing an adjustment

gn+1(θ) = −an

n

n∑
i=1

g(zi , θ),(2.9)

where an = max(1, log(n)/2). Then, AETEL is defined as

�Aetel(θ) = −(n + 1)−1
n+1∑
i=1

log
(
(n + 1)p̂i(θ)

)
,(2.10)

where p̂i(θ) is the solution to

min
p1,...,pn+1

(n + 1)−1
n+1∑
i=1

[(n + 1)pi] log[(n + 1)pi]

subject to

n+1∑
i=1

pi = 1,pi ≥ 0 and
n∑

i=1

pig(zi , θ) + pn+1gn+1(θ) = 0.

The maximum AETEL estimator, denoted by θ̂Aetel, minimizes a criterion given
by

θ̂Aetel = argmin
θ

�Aetel(θ).(2.11)

According to a duality theorem in convex analysis [Newey and Smith (2004)],

p̂n+1(θ) = exp(t̂(θ)T gn+1(θ))

Tg(θ)
and p̂i(θ) = exp(t̂(θ)T g(zi , θ))

Tg(θ)

for i = 1, . . . , n, in which

Tg(θ) =
n∑

j=1

exp(t̂(θ)T g(zj , θ)) + exp(t̂(θ)T gn+1(θ)),

t̂(θ) = argmax
t

{
−

n∑
i=1

exp(−tT g(zi , θ)) − exp(−tT gn+1(θ))

}
.

We use the numerical algorithm proposed by Chen, Variyath and Abraham (2008)
to compute θ̂Aetel, which combines the modified Newton–Raphson algorithm and
the simplex method. Compared with that of computing ETEL, this numerical algo-
rithm of Chen, Variyath and Abraham (2008) converges very fast and the solution
to AETEL is guaranteed.

We consider testing the linear hypotheses:

H0 :Rθ = b0 vs. H1 :Rθ �= b0,(2.12)
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where R is a c0 × p matrix of full row rank and b0 is a c0 × 1 specified vector.
Most scientific questions in neuroimaging studies can be formulated into linear
hypotheses, such as a comparison of brain regions across diagnostic groups and a
detection of changes in brain regions across time. The AETEL ratio statistic for
testing Rθ = b0 can be constructed as follows:

LRAetel = −2(n + 1)
{

sup
θ : Rθ=b0

�Aetel(θ) − sup
θ

�Aetel(θ)
}
.(2.13)

Thus, to compute LRAetel, we also need to compute the maximum AETEL estima-
tor, denoted by θ̂Aetel,0, subject to an additional constraint Rθ = b0.

Under some conditions on g(zi , θ), we have the following theorem, whose de-
tailed proof can be found in a supplementary document [Shi et al. (2011)].

THEOREM 2.1. If assumptions (A1)–(A4) in the supplementary document are
true, then we have the following:

(a)
√

n(θ̂Aetel −θ0) converges to ν0 = N(0,�) in distribution, where θ0 denotes
the true value of θ and � = (DV −1DT )−1, in which

D = lim
n→∞n−1

n∑
i=1

∂θg(zi , θ) and V = lim
n→∞n−1

n∑
i=1

g(zi , θ)⊗2;

(b) under the null hypothesis H0, LRAetel converges to a χ2(c0) distribution;
(c) if E[g(zi , θ)] = 0 for all i and r > p, then LRGF = −2(n+1) supθ �Aetel(θ)

is asymptotically χ2(r − p).

We have established consistency and asymptotic normality of θ̂Aetel and the
asymptotic χ2 distribution of LRAetel. Theorem 2.1 also shows that AETEL has the
same first-order asymptotic properties as ETEL [Schennach (2007)]. High-order
precision of AETEL can be explored by following the arguments in Liu and Chen
(2010). It will be shown that the chi-square approximation of the AETEL like-
lihood ratio statistics is found precise, compared with the existing ETEL [Owen
(2001), Liu and Chen (2010), Chen, Variyath and Abraham (2008)]. Providing
a reliable p-value at each voxel is crucial for controlling the family-wise error
rate and false discovery rate (FDR) across the entire brain region [Benjamini and
Hochberg (1995), Worsley et al. (2004)].

2.4. Two-stage adaptive estimation procedure. We propose a two-stage adap-
tive estimation procedure for computing parameter estimates and likelihood ratio
statistics for the spatial and adaptive analysis of neuroimaging data in 3D volumes
(or 2D surfaces). To distinguish data and parameter in different voxels, we intro-
duce voxel d into our notation. For instance, zi (d) and θ(d), respectively, denote
the ith observation and the parameter at voxel d .
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Stage 1 is to calculate the AETEL estimator of the parameter θ(d), denoted by
θ̂Aetel(d), based on a set of estimating equations {g(zi (d), θ(d)) : i = 1, . . . , n} at
each voxel d ∈ D.

One chooses a set of estimating equations {g(zi (d), θ(d)) : i = 1, . . . , n} ac-
cording to a specific type of time-dependent covariate and then substitutes them
into (2.10) to build �Aetel(θ(d);d). Subsequently, we solve θ̂Aetel(d) according to
(2.11) by minimizing �Aetel(θ(d);d), and then we obtain a set of parameter esti-
mates {θ̂Aetel(d) :d ∈ D}.

Stage 2 is to calculate the TETEL estimator of θ(d), denoted by θ̂Tetel(d), by
utilizing the information contained in {θ̂Aetel(d) :d ∈ D}. Then, we calculate a
TETEL ratio statistic, denoted by LRTetel(d), for testing H0(d) :Rθ(d) = b0.

Specifically, one combines all data in the voxel d and the set of the closest neigh-
boring voxels of d , denoted by N(d), to form a new set of estimating equations
{g̃(zi (d), θ(d);d) : i = 1, . . . , n} as follows:

g̃(zi (d), θ(d);d) = ∑
d ′∈N(d)∪{d}

ω(d ′;d)g(zi (d
′), θ(d)),(2.14)

where ω(d ′;d) is a weight describing the similarity between voxel d and any d ′ ∈
N(d). The weights ω(d ′;d) at each d depend on the parameters {θ̂Aetel(d

′) :d ′ ∈
N(d) ∪ {d}} calculated in Stage 1. From now on, we assume that ω(d ′;d) takes
the form

ω(d ′;d) = exp(−LRAetel(d
′;d)/Cn),(2.15)

where Cn = χ2
1−α(p) log(n)/5 and χ2

1−α(p) is the upper α-percentile of the χ2(p)

distribution. In addition,

LRAetel(d
′;d) = −2(n + 1)

{
�Aetel(θ̂Aetel(d

′);d) − sup
θ

�Aetel(θ;d)
}
,(2.16)

in which �Aetel(θ;d) is defined in (2.10) based on the estimating equations
{g(zi (d), θ(d)) : i = 1, . . . , n}. Statistically, LRAetel(d

′;d) denotes the AETEL ra-
tio statistic for testing the hypothesis H0 : θ(d) = θ̂Aetel(d

′). Note that LRAetel(d
′;

d) ≥ 0 and LRAetel(d;d) = 0, which yields ω(d;d) = 1. If θ̂Aetel(d
′) is close to

θ̂Aetel(d), then LRAetel(d
′;d) is close to zero and ω(d ′;d) will be close to 1. How-

ever, if the difference between θ̂Aetel(d
′) and θ̂Aetel(d) is large, then LRAetel(d

′;d)

is large and ω(d ′;d) will be small. Thus, ω(d ′;d) defined in (2.15) truly charac-
terizes the similarity between voxels d and d ′.

One substitutes g̃(zi (d), θ(d);d) in (2.14) into (2.10) to build a new func-
tion, denoted by �Tetel(θ(d);d), and then solves θ̂Tetel(d) according to (2.11)
by minimizing �Tetel(θ(d);d). Finally, to test H0(d) :Rθ(d) = b0, one uses
g̃(zi (d), θ(d);d) in (2.14) to calculate the TETEL ratio statistic LRTetel(d) ac-
cording to (2.13). Note that the key difference between LRTetel(d) and LRAetel(d)

lies in their different sets of estimating equations.
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Although the two-stage procedure only combines the data in the voxels of N(d)

with the data in voxel d , they may preserve the long-range correlation structure
in the imaging data, because the neighborhoods of all voxels are consecutively
connected. Thus, the two-stage procedure captures a substantial amount of spa-
tial information in the imaging data. For the sake of space, we only present the
asymptotic properties of θ̂Tetel(d) and LRTetel(d) below.

THEOREM 2.2. If assumptions (A1)–(A3) and (A5)–(A7) in the supplemen-
tary document are true, then we have the following:

(a)
√

n(θ̂Tetel(d) − θ0(d)) converges to ν(d) = N(0,�(d)) in distribution,
where θ0(d) is the true value of θ(d) in the voxel d and �(d) = [D(d)V (d)−1 ×
D(d)T ]−1, in which

D(d) = lim
n→∞n−1

n∑
i=1

∂θ g̃(zi (d), θ0(d);d)

and

V (d) = lim
n→∞n−1

n∑
i=1

g̃(zi (d), θ0(d);d)⊗2;

(b) under the null hypothesis H0(d), LRTetel(d) converges in distribution to a
χ2(c0) distribution.

Theorem 2.2 establishes the asymptotic consistency and normality of θ̂Tetel(d)

and the asymptotic χ2 distribution of LRTetel(d). Theorem 2.2 also shows that the
asymptotic variance of θ̂Tetel(d) depends on all the data in N(d) ∪ {d} for all sub-
jects. Since the weights ω(d ′;d) automatically put large weights on the neighbor-
ing voxels with similar pattern and small weights on the neighboring voxels with
dissimilar pattern, it follows that the TETEL procedure produces more accurate
parameter estimates and more powerful test statistics.

TETEL has three features. TETEL not only downweights the data from the
neighboring voxels with dissimilar signal pattern, but also incorporates the data
from the neighboring voxels with similar signal pattern to adaptively calculate
parameter estimates and test statistics. TETEL avoids using the same amount of
smoothness throughout the whole image in most smoothing methods. Our theoret-
ical results ensure the asymptotic consistency and normality of θ̂Tetel(d) and the
asymptotic χ2 distribution of LRTetel(d). Then, we can approximate the p-value of
LRTetel(d) at each voxel d . Finally, we correct for multiple comparisons by using
either the family-wise error rate or false discovery rate (FDR) across the entire
brain region [Benjamini and Hochberg (1995), Worsley et al. (2004)]. Since the
smoothing stage in TETEL usually introduces the positive dependency among all
LRTetel(d), it allows us to apply FDR in Benjamini and Yekutieli (2001) to control
the false discovery rate.
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3. Simulation studies. Three sets of simulation studies were conducted to
examine the finite sample performance of our AETEL and TETEL methods.

3.1. Study I: Longitudinal data. We considered the following model:

yij = β0 + β1tij + β2xi + β3tij xi + bi + εij(3.1)

for i = 1, . . . , n, where tij denotes time taking values in (1,2,3,4,5), xi was in-
dependently generated from a N(0,1), and bi was independently generated from
a N(0,1). Errors εij were independently generated from N(0,1) and χ2(3) − 3,
respectively, where χ2(3) represents a chi-squared random variable with three de-
grees of freedom. The χ2(3) − 3 distribution is very skewed and differs substan-
tially from any symmetric distribution, such as a Gaussian distribution. The true
value of (β0, β1, β2)

T was set at (1,1,1)T and β3 was varied as 0, 0.05, 0.10, 0.15,
and 0.20. We tested the hypothesis H0 :β3 = 0 vs. H1 :β3 �= 0 using LRAetel. To as-
sess both Type I and II error rates of LRAetel, we used generalized estimating equa-
tions assuming an exchangeable working correlation matrix to construct LRAetel
and then compared it with the ETEL likelihood ratio statistic, denoted by LREtel,
and the Wald statistic, denoted by Wn, obtained from the “true” linear mixed model
(3.1) representing an ideal scenario. We considered n = 40, 60, and 80. The 1,000
replications were used to calculate the estimates of rejection rates with significance
level α = 5%.

The type I error rates of LRAetel and Wn are reasonably accurate for all sample
sizes (n = 40,60, or 80) considered and for all different distributions of error terms
at the 5% significant level (Table 1). In contrast, the type I error rates of LREtel are
slightly inflated for n = 40. The type II error rates for LRAetel and Wn are similar
under both error distributions and for all sample sizes (Table 1). However, the
power of the three test statistics to reject the null hypothesis increases modestly
when the distribution of the error terms follows the skewed distribution χ2(3) − 3
(Table 1). This decline in the type II error rate was caused by the fact that the
variance of χ2(3) − 3 is larger than that of N(0,1). Compared with LRAetel and
Wn, LREtel has slightly larger power, which may be due to its inflated type I error
rates. Consistent with our expectation, the statistical power for rejecting the null
hypothesis increases with the sample size n.

3.2. Study II: Testing the type of time-dependent covariates. We used the sim-
ulation study for a type II time-dependent covariate in Section 4.1 of Lai and Small
(2007) to examine the finite sample performance of our AETEL method. The data
were simulated under the mechanism

yit = β0 + β1xit + β2xi,t−1 + bi + eit and xit = β3xi,t−1 + εit ,

where bi, eit , and εit are mutually independent and normally distributed with mean
0 and variances 4, 1, and 1, respectively; the xit -process is stationary, that is,
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TABLE 1
Simulation study for comparing LRAetel, LREtel, and Wn for testing H0 :β3 = 0 against H1 :β3 �= 0

χ2(3) − 3 N(0,1)

n = 40 n = 60 n = 80 n = 40 n = 60 n = 80

β3 = 0.0 LREtel 0.078 0.066 0.059 0.082 0.070 0.058
LRAetel 0.066 0.054 0.055 0.068 0.064 0.058

Wn 0.062 0.064 0.068 0.078 0.064 0.054

β3 = 0.05 LREtel 0.112 0.118 0.118 0.186 0.280 0.300
LRAetel 0.088 0.104 0.102 0.156 0.254 0.278

Wn 0.094 0.102 0.100 0.164 0.244 0.264

β3 = 0.10 LREtel 0.198 0.182 0.286 0.548 0.866 0.804
LRAetel 0.176 0.160 0.268 0.506 0.848 0.792

Wn 0.168 0.164 0.270 0.474 0.786 0.728

β3 = 0.15 LREtel 0.280 0.340 0.394 0.986 0.930 0.978
LRAetel 0.250 0.316 0.374 0.986 0.920 0.974

Wn 0.268 0.324 0.356 0.978 0.892 0.970

β3 = 0.20 LREtel 0.560 0.520 0.720 0.996 1 1
LRAetel 0.532 0.488 0.702 0.990 1 1

Wn 0.512 0.482 0.682 0.982 0.998 1

Estimates of rejection rates were reported for N(0,1) and χ2(3) − 3 distributed data at 3 different
sample sizes (n = 40,60,80) at significance level α = 5%. For each case, 1,000 simulated data sets
were used.

xi0 ∼ N(0, σ 2
ε /(1 − β2

3 )). We refer the reader to Lai and Small (2007) for more
details. Note that xit is a type II covariate. We used our AETEL method with the
following estimating equations: (a) the type II estimating equations according to
(2.5), labeled type II; (b) the type III estimating equations according to (2.8), la-
beled type III; (c) GEE using the independent working correlation, labeled GEE
independence; (d) GEE using the exchangeable working correlation, labeled GEE
exchangeable; (e) GEE using the autoregressive AR-1 working correlation, labeled
GEE AR-1. We compared the bias, root-mean-square error, and the efficiency of
each case for the parameter β1 to the GEE independence case (the efficiency is
the ratio of the mean-square error of the GEE independence case to that of the
case).

As we can see from Table 2, GEE independence and GEE AR-1 are biased, be-
cause they use some invalid estimating equations. The other three are all unbiased,
with type II being more efficient than the other two. Combining all available valid
estimating equations does improve efficiency. With the same type II estimating
equations, our method has slightly less RMSE (0.0401 vs. 0.0407) than Lai and
Small (2007)’s method.
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TABLE 2
Results of AETEL with various estimating equations for a type II time-dependent covariate

Estimating equations Bias RMSE Efficiency

Type II 0.00 0.040 1.82
Type III 0.00 0.053 1.04
GEE independence 0.00 0.054 1.00
GEE exchangeable −0.12 0.104 –
GEE AR-1 −0.79 0.661 –

3.3. Study III: Spatial data. We simulated data at all m = 900 pixels on a
30 × 30 phantom image (Figure 2). At a given voxel d ,

yij (d) = β0(d) + β1(d)tij + β2(d)xi + β3(d)tij xi + bi(d) + εij (d)(3.2)

for i = 1, . . . , n and j = 1, . . . ,mi , where tij is the time taking values in
(1,2,3,4,5), xi was independently generated from a N(0,1), and bi(d) was inde-
pendently generated from a N(0,1). Errors εij (d) were independently generated
from N(0,1) and χ2(3)−3, respectively. We tested the hypotheses H0 :β3(d) = 0
and H1 :β3(d) �= 0 across all pixels. To assess the Type I and II error rates at the
pixel level, we set β0(d) = β1(d) = β2(d) = 0 across all pixels d and varied β3(d)

as 0.0, 0.05, 0.10, 0.15, and 0.20. Specifically, we created two regions of interest
(ROI) by setting β3(d) as 0.05, 0.10, 0.15, and 0.20, and setting β3(d) = 0 outside
of the two ROIs in order to assess the finite sample performance of our method at
different signal-to-noise ratios (SNRs). We considered n = 40 and 80.

We used generalized estimation equations with an exchangeable working cor-
relation matrix to calculate θ̂ (d) and LRAetel(d) in Stage 1. In Stage 2 we used the
four first-order neighbors of pixel d to form N(d) and then calculated LRTetel(d).
As a comparison with the conventional analysis on image data, we first smoothed

FIG. 2. Two red regions of interest (ROIs) on a 30 × 30 image. The ROIs are indicated by the red
area.
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TABLE 3
Comparison of the two stages of TETEL for unsmoothed spatial data and the Wald test statistic for

smoothed spatial data: true average rejection rates for voxels inside the ROI and false average
rejection rates for voxels outside of the ROI were reported for N(0,1) and χ2(3) − 3 distributed

data, and 2 different sample sizes (n = 40 and 80) at α = 5%. For each case,
100 simulated data sets were used

LRTetal Wald

n = 40 n = 80 n = 40 n = 80

β3 Stage True False True False True False True False

N(0,1)

0.05 Stage 1 0.223 0.088 0.329 0.068 0.711 0.101 0.891 0.105
Stage 2 0.302 0.089 0.426 0.069

0.10 Stage 1 0.571 0.087 0.820 0.069 0.964 0.15 0.991 0.158
Stage 2 0.690 0.088 0.910 0.070

0.15 Stage 1 0.863 0.089 0.984 0.069 0.996 0.184 0.998 0.177
Stage 2 0.954 0.090 0.998 0.069

0.20 Stage 1 0.987 0.089 0.999 0.069 0.999 0.193 0.999 0.192
Stage 2 0.992 0.090 1.000 0.069

χ2(3) − 3
0.05 Stage 1 0.117 0.085 0.122 0.070 0.313 0.089 0.331 0.073

Stage 2 0.212 0.090 0.232 0.070
0.10 Stage 1 0.193 0.087 0.259 0.069 0.567 0.099 0.858 0.099

Stage 2 0.278 0.089 0.411 0.070
0.15 Stage 1 0.313 0.090 0.447 0.068 0.847 0.113 0.948 0.123

Stage 2 0.486 0.091 0.649 0.070
0.20 Stage 1 0.463 0.090 0.660 0.069 0.947 0.130 0.979 0.145

Stage 2 0.653 0.090 0.859 0.069

image data by using the heat kernel smoothing method with 16 iterations, which
gave an effective smoothness of about 4 pixels [Chung, Dalton and Davidson
(2007)], and then calculated the Wald statistic based on GEE with an exchange-
able working correlation matrix at each pixel. The 100 replications were used to
approximate rejection rate with significance level α = 5%.

As shown in Table 3, the Type I rejection rates outside of ROIs for both LRAetel
and LRTetel are relatively accurate for all cases, while the statistical power for re-
jecting the null hypothesis in ROIs significantly increases with the absolute value
of β3(d). Compared with LRAetel, LRTetel has higher statistical power for rejecting
the null hypothesis in ROIs with β3(d) �= 0. In contrast, compared with LRAetel
and LRTetel based on the unsmoothed imaging data, although the Wald statistic for
the smoothed imaging data has higher statistical power for rejecting the null hy-
pothesis in ROIs, its Type I error rate is inflated and increases with the absolute
value of β3(d). The decline in the type I and II error rates is caused by the fact
that the variance of χ2(3)− 3 is larger than that of N(0,1). We also tried different
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degrees of smoothness and ROIs with different sizes and found that the degree of
smoothness and ROI size can have profound effect on the Type I and II error rates
of the Wald statistic (not presented here).

4. Hippocampus shape.

4.1. Hippocampus SPHARM-PDM representation. Let yij (d) be the 3×1 co-
ordinate vector at voxel d on the left and right hippocampus SPHARM-PDMs
and xij = (1,genderi , agei ,SC1i ,SC2i , race1i , race2i , timeij )

T , where SC1 and
SC2 were, respectively, dummy variables for haloperidol-treated SC patient and
olanzapine-treated SC patient versus healthy controls, and race1 and race2 were,
respectively, dummy variables for Caucasian and African American versus other
race. Let yi (d) = (yi1(d)T , . . . ,yimi

(d)T )T and A⊗B denote the Kronecker prod-
uct of matrices A and B . We assume that the mean and covariance matrix of yi (d)

are, respectively, given by

E(yi (d)) =
⎛
⎝ xT

i1 ⊗ I3
· · ·

xT
imi

⊗ I3

⎞
⎠β(d) and Cov(yij (d)) = Vi(d) = Ri(α(d))⊗�(d),

where β(d) is a 24 × 1 vector, Ri(α(d)) = (α(d)|j−k|) is the standard autoregres-
sive AR-1 correlation matrix and �(d) is a 3 × 3 covariance matrix of yij (d). We
estimated α(d) and �(d) by using Pearson residuals, which were calculated by
solving GEEs with an independent working correlation matrix. For now on, Vi(d)

[or α(d) and �(d)] are assumed to be known. For the data analysis, we used the
moment model based on GEE in (2.2) since there is no time-dependent covariate
except time itself. The g(zi (d), θ(d);d) which is used in TETEL is given by

g(zi (d), θ(d);d) =
n∑

i=1

⎛
⎝ xT

i1 ⊗ I3
· · ·

xT
imi

⊗ I3

⎞
⎠

T

Vi(d)−1

⎡
⎣yi (d) −

⎛
⎝ xT

i1 ⊗ I3
· · ·

xT
imi

⊗ I3

⎞
⎠β(d)

⎤
⎦ .

Existing statistical methods of image data in SPM require that the error distribu-
tion is Gaussian and the variance is constant. The Shapiro–Wilk test rejects the
normality assumption at many voxels of both the left and right hippocampus struc-
tures, and, thus, our nonparametric TETEL method is preferred for the analysis of
this data set.

Since our goal is to detect the difference in the SPHARM-PDM surface shape
between the schizophrenia and control groups, we used LRAetel and LRTetel to carry
out the test. Moreover, in Stage 2, we used the closest neighbors of each voxel
d to form N(d). The color-coded p-values of the LRAetel and LRTetel and their
corrected p-values using FDR across the voxels of both the left and right reference
hippocampi are shown in Figure 3 [Benjamini and Yekutieli (2001)], in which the
top row is for the first stage (LRAetel) and the bottom row is for the second stage
(LRTetel).
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FIG. 3. Results from the longitudinal schizophrenia study. The first and third rows are for the first
stage (LRAetel): the color-coded raw p-value maps of group effect for the left hippocampus (a, b) and
the right hippocampus (c, d), and the corresponding color-coded corrected p-value maps of group
effect for the left hippocampus (i, j) and the right hippocampus (k, l). The second and fourth rows are
for the second stage (LRTetel): the color-coded p-value maps of group effect for the left hippocampus
(e, f) and the right hippocampus (g, h), and the corresponding color-coded corrected p-value maps
of group effect for the left hippocampus (m, n) and the right hippocampus (o, p).

The analyses show strong shape differences in the superior, anterior parts of
the left hippocampus, at the intersection of cornu ammonis 1 and cornu ammo-
nis 2, previously not shown. Posterior shape changes at the hippocampal tail shown
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in chronic schizophrenics [Styner et al. (2004)] are detected here already in first
episode patients. Furthermore, the results also confirm those reported in Narr et
al. (2004) by indicating a strong medial shape difference in the central, left hip-
pocampal body in first episode patients. Comparing the first and second rows, it
is clear that TETEL shows advantages in detecting more significant and smoother
activation areas.

4.2. Hippocampus m-rep thickness. First, we considered the baseline analy-
sis. We used the moment model based on the estimating equations xi1(yi1 −xT

i1β),
where yi1 is the m-rep thickness measured at baseline for the ith subject at
each medial atom of the left and right hippocampi; xi1 is an 8 × 1 vector
given by xi1 = (1,genderi , agei ,SC1i ,SC2i , race1i , race2i ,WBVi1)

T and β =
(β0, β1, . . . , β7)

T . Existing statistical methods of image data in SPM require that
the error distribution is Gaussian and the variance is constant. The Shapiro–Wilk
normality test was applied to check this parametric assumption of the general lin-
ear model at each atom for the left hippocampus and right hippocampus using the
residuals. Figure 4(c) and (e) show that the Shapiro–Wilk test rejects the normal-
ity assumption at many atoms of both the left and right hippocampus structures,
therefore, our nonparametric AETEL method is preferred for the analysis of this
data set.

Here our goal is to detect differences in thickness of the hippocampus across the
three groups. Hence, we set the null hypotheses H0 :β3 = β4 = 0 at all 24 atoms
for both the left and right hippocampi. Accordingly, we have

R =
(

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

)

and b0 = (0,0)T . We used LRAetel to carry out the test. The color-coded p-values
of the LRAetel across the atoms of both the left and right reference hippocampi
are shown in Figure 5(a) and (b). The false discovery rate approach was used to
correct for multiple comparisons, and the resulting adjusted p-values were shown
in Figure 5(c) and (d). Before correcting for multiple comparisons, there was a
significant group difference in m-rep thickness at the upper central atoms in the
left hippocampus and some area in the right hippocampus. However, there is no
significant group effect at any atom after correcting for multiple comparisons.

Second, we did a longitudinal data analysis. The advantage of a longitudinal
study over a baseline study is that it allows us to determine (i) whether the change
patterns of the response are similar or not across the three groups; (ii) whether, on
average over time, there is a difference in the response across the three groups. We
considered the moment model with xij = (1,genderi , agei ,SC1i ,SC2i , race1i ,

race2i ,WBV ij , timeij , SC1i ∗ timeij ,SC2i ∗ timeij )
T .

Since the WBV is a time-dependent covariate, we need to verify its appropriate
type. Moreover, from a neuroscience point of view, the m-rep thickness at each
atom serves as a local volumetric measure and covaries with WBV. We started with
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FIG. 4. An m-rep model of a hippocampus: (a) an m-rep model of the hippocampus; (b) the bound-
ary surface of the m-rep model of hippocampus; (d) m-rep radius (or thickness) measures at the five
atoms from two m-rep objects; (c) shows the − log10(p)-values for the Shapiro–Wilk test for the resid-
uals at each atom on the left hippocampus; (e) shows the − log10(p)-values for the Shapiro–Wilk test
for the residuals at each atom on the right hippocampus. The red horizontal line is the 0.05 cutoff
line.

type III and used GEE in (2.2) with Vi = Ii . Then we used the type II equations
specified in (2.5) and tested whether WBV is type II against type III. The LRGF
did not reject for almost all 24 atoms, suggesting WBV is a type II covariate for
most atoms. Furthermore, we used the type I equations specified in (2.3) and tested
whether WBV is type I against type II. The LRGF rejected that WBV was of type
I for most atoms (Figure 5). This indicates the invalidity of some type I equations.
We used goodness-of-fit statistics in Zhu et al. (2008b) to test whether some of the
extra equations added for type I, such as

E{∂βl
μis(β)[yij − μij (β)]} = 0 for all s < j, j = 1, . . . ,mi,

were not valid. For instance, for the 3rd atom on the left hippocampus, the p-
value of the goodness-of-fit test for the newly added equation E{∂βl

μi2(β)[yi3 −
μi3(β)]} = 0 is smaller than 0.001 [Figure 5(e)]; for the 14th atom on the right
hippocampus, the p-value of the goodness-of-fit test for the newly added equation
E{∂βl

μi2(β)[yi3 −μi3(β)]} = 0 is smaller than 0.001 [Figure 5(f)]. Therefore, we
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FIG. 5. An m-rep model of a hippocampus: Maps of − log10(p)-values for testing WBV as a
type I time-dependent covariate (black) and a type II time-dependent covariate (red): (a) uncor-
rected − log10(p)-values for left hippocampus; (b) uncorrected − log10(p)-values for right hip-
pocampus; (c) corrected − log10(p)-values for left hippocampus; (d) corrected − log10(p)-values
for right hippocampus; (e) the goodness-of-fit test for the equation E{∂βμi2(β)[yi3 − μi3(β)]} = 0
for the 3rd atom on the left hippocampus; (f) the goodness-of-fit test for the equation
E{∂βμi2(β)[yi3 − μi3(β)]} = 0 for the 14th atom on the right hippocampus.

treated WBV as a type II time-dependent covariate and used the corresponding
estimating equations for the longitudinal data analysis.

To determine whether the changing patterns of the thickness of the hippocampus
over time are similar or not across the three groups, we tested the null hypotheses
H0 :β9 = β10 = 0 (β9 and β10 are the coefficients of the interaction terms of group
and time) at all 24 atoms for each of the left hippocampus and the right hippocam-
pus, and it turned out that the interaction terms were not significant for most atoms.
Next we deleted the interaction terms and tried to look at whether there are differ-
ences in the responses across the three groups on average over time with respect to
the null hypotheses H0 :β3 = β4 = 0 at all 24 atoms for each of the left hippocam-
pus and the right hippocampus. Again we only found that there was a significant
difference through time in m-rep thickness at the upper central atoms in the left
hippocampus across schizophrenia patients and healthy controls groups after cor-
recting for multiple comparisons, but the differences were not significant at other
atoms, nor at any atoms on the right hippocampus. The color-coded p-values of
the LRAetel across the atoms of both the left and right reference hippocampi are
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FIG. 6. Results from the longitudinal schizophrenia study. The top row is for the baseline analysis:
the color-coded uncorrected p-value maps of group effect for (a) the left hippocampus and (b) the
right hippocampus; the color-coded corrected p-value maps of group effect for (c) the left hippocam-
pus and (d) the right hippocampus after correcting for multiple comparisons. The bottom row is for
the longitudinal analysis: the color-coded uncorrected p-value maps of group effect for (e) the left
hippocampus and (f) the right hippocampus; the color-coded corrected p-value maps of group effect
for (g) the left hippocampus and (h) the right hippocampus after correcting for multiple comparisons.

shown in Figure 5(e) and (f), and the corrected p-values are shown in Figure 6(g)
and (h). Before correcting for multiple comparisons, there was a significant group
difference in m-rep thickness at the upper central atoms in the left hippocampus,
and the significance level is larger than that of the baseline analysis. Since the
positive correlation is commonly observed in imaging data, we applied the false
discovery rate (FDR) procedure in Benjamini and Yekutieli (2001) to correct for
multiple comparisons. There is still a significant group effect at the upper central
atoms in the left hippocampus.

We compared the results by making the assumption that WBV was a type II
time-dependent and also a type III time-dependent covariate. Treating WBV as a
type II time-dependent covariate lowered the p-values, making some nonsignifi-
cant p-values for the group effect significant. On the other hand, we found that all
the standard deviations associated with the parameter estimates treating WBV as
a type II time-dependent covariate were uniformly less than those treating WBV
as a type III, which confirms that treating WBV as a type II gains efficiency by
making use of more correct estimating equations. Table 4 compares the standard
deviations of the parameter estimates between treating WBV as a type II time-



1154 X. SHI ET AL.

TABLE 4
Standard deviation comparison of the parameter estimates between treating WBV as a type II

time-dependent covariate and a type III time-dependent covariate at atom 11 of the left
hippocampus

Intercept Gender Age SC1 SC2 Race1 Race2 WBV Time

Type III 0.367 0.078 0.007 0.062 0.058 0.097 0.102 0.237 0.022
Type II 0.344 0.075 0.005 0.058 0.054 0.094 0.100 0.221 0.018

dependent covariate and a type III time-dependent covariate at atom 11 of the left
hippocampus.

The longitudinal analysis increased the significance level at those significant
atoms for the group effect, compared to the baseline analysis. We were also able
to observe the change difference across groups through time, although it is not
much. Both the baseline analysis and longitudinal analysis suggest that there is
an asymmetric aspect in that the left hippocampus shows larger regions of signif-
icance than the right one, and the significant positions of the group differences
are around the lateral dentate gyrus and medial CA4 body regions for the left hip-
pocampus.

5. Discussion. We have developed TETEL for spatial analysis of neuroimag-
ing data from longitudinal studies. We have shown that AETEL allows us to effi-
ciently analyze longitudinal data with different time-dependent covariate types. We
have specifically combined all the data in the closest neighborhood of each voxel
(or pixel) on a 3D volume (or 2D surface) with appropriate weights to calculate
adaptive parameter estimates and adaptive test statistics. We have used simulation
studies to examine the finite sample performance of AETEL and TETEL. In our
longitudinal schizophrenia study, we have used the boundary and medial shape
of the hippocampus to detect differences in morphological changes of the hip-
pocampus across time between schizophrenic patients and healthy subjects. For
the m-rep thickness, we have found that WBV is an important time-dependent
covariate. Potential applications of our methodology include understanding nor-
mal and abnormal brain development, and identifying the neural bases of the
pathophysiology and etiology of neurodegenerative and neuropsychiatric disor-
ders.

Many issues still merit further research. One major issue is to develop a test
procedure based perhaps on random field theory or resampling methods to correct
for multiple comparisons in order to control the family-wise error rate under the
moment model (2.1). Another major issue is to extend the test procedure to conduct
cluster size inference and examine its performance in controlling the Type I error
rate. The test procedure may lead to a simple cluster size test (cluster size test
assesses significance for all sizes of the connected regions greater than a given
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primary threshold). Models with nonparametric components using TETEL also
may prove to be useful directions to consider.

SUPPLEMENTARY MATERIAL

Proofs of Theorems 2.1 and 2.2 (DOI: 10.1214/11-AOAS480SUPP; .pdf). We
present assumptions and proofs of Theorems 2.1 and 2.2.
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