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Genetic association study is an essential step to discover genetic factors
that are associated with a complex trait of interest. In this paper we present
a novel generalized quasi-likelihood score (GQLS) test that is suitable for
a study with either a quantitative trait or a binary trait. We use a logistic
regression model to link the phenotypic value of the trait to the distribution
of allelic frequencies. In our model, the allele frequencies are treated as a
response and the trait is treated as a covariate that allows us to leave the
distribution of the trait values unspecified. Simulation studies indicate that
our method is generally more powerful in comparison with the family-based
association test (FBAT) and controls the type I error at the desired levels. We
apply our method to analyze data on Holstein cattle for an estimated breeding
value phenotype, and to analyze data from the Collaborative Study of the
Genetics of Alcoholism for alcohol dependence. The results show a good
portion of significant SNPs and regions consistent with previous reports in the
literature, and also reveal new significant SNPs and regions that are associated
with the complex trait of interest.

1. Introduction. Recent biological technology allows researchers to perform
genome-wide association studies using a dense panel of SNPs at an affordable cost.
Association studies have been widely used to identify genome regions that are as-
sociated with a complex trait of interest. Current methods in genetic association
studies can be roughly categorized into two approaches: (1) studies on samples of
unrelated subjects; (2) studies on samples of related subjects, from nuclear fami-
lies, extended families, or from isolated/founder populations which often include
inbred individuals that are related through multiple lines of descent.

The classical population-based association test in a case–control study design is
the simplest approach where unrelated affected (cases) and unaffected (controls)
individuals are typed. However, for a rare disease, it is difficult to recruit inde-
pendent cases in the general population, and, more importantly, the naive analy-
sis of data from a general population recruitment design may lead to false posi-
tive signals due to confounding effects caused by the population structure. Many
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researchers [Ewans and Spielman (2003); Khoury and Yang (1998); Lander and
Schork (1994)] have reported and discussed aspects of this problem. For example,
the confounding effect of ethnicity is well known as the population stratification
effect in the genetics literature. For an association test with a quantitative trait,
a simple linear regression model is often used. As noted, the association tests of
quantitative traits via population-based approaches are also subject to the same
problem of confounding by the population stratifications.

The family-based association study design using the family based association
test (FBAT) analysis method has become popular, as this strategy is robust to the
population heterogeneity [Horvath, Xu and Laird (2001); Laird, Horvath and Xu
(2000)]. In FBAT analysis, a statistic U is computed on the basis of the linear
combinations of offsprings’ genotype and phenotype expression functions. The
mean and the variance of U under the null hypothesis of no association is calcu-
lated conditional on the parental genotype. Thus, FBAT methods typically require
the typing of family members, such as parents or siblings (for inferring a miss-
ing parental genotype) of each affected subject to make use of such a subject in
the test. This becomes a limitation of the method. For example, for a late onset
disease, it is difficult and sometimes impossible to collect the information of the
family members of an affected subject. On the other hand, FBAT typically re-
quires heterozygous parents to compute the null distribution of the test statistic.
Moreover, when dealing with a large pedigree, FBAT breaks down the pedigree to
small nuclear families, such that the relationship among remotely related individ-
uals are ignored. Similarly, FBAT does not take into account for the relationship
across related families in the analysis. For these reasons, a family-based approach
is generally less powerful in comparison with population-based approaches [Risch
and Teng (1998); Bourgain et al. (2003); Thornton and McPeek (2007)].

Slager and Schaid (2001) have proposed a method that was based on the Ar-
mitage trend test with the inclusion of a variance that accounts for the relation-
ships among individuals from an outbred population. However, this method cannot
handle large, complex, inbred pedigrees. A different approach, a pedigree disequi-
librium test, proposed by Martin, Bass and Kaplan (2001) can be employed to
handle large pedigree association analysis. A founder/isolated population-based
study design has been suggested [Lander and Schork (1994); Wright, Carothers
and Pirastu (1999)] for association mapping. This study design efficiently controls
the confounding effect due to population structure and has been useful for complex
trait mapping. Recently, Bourgain et al. (2003) proposed a case–control association
test where subjects are sampled from a founder population with known genealogy.
They adapted the idea of a population-based association test to test whether the al-
lele frequencies of a specified allele are equal between the case group and control
group, taking into account the correlations among subjects and the inbreeding con-
figuration within subjects. This method can be used to analyze data from a large
inbred pedigree and is also suitable for data from multiple pedigrees with careful
control of ethnic homogeneity [Thornton and McPeek (2007)]. The test is based on
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a quasi-likelihood scoring (QLS) approach and has been shown to be more power-
ful than the traditional transmission/disequilibrium test (TDT) when samples are
from homogeneous populations. However, these approaches are limited to binary
traits.

Following the line of quasi-likelihood approach proposed by Bourgain et al.
(2003) and Thornton and McPeek (2007) to handle the correlation structure among
related subjects, we propose a generalized linear model framework to accommo-
date other types of traits. We use a logistic regression model to link the trait to the
distribution of allelic frequencies. In our model, the observed trait of each individ-
ual is treated as a covariate. The proportion of a specified allele in the genotype
is the response. In conventional models, the phenotypic trait is treated as the re-
sponse and the distribution of the trait values needed to be specified. For example,
the normality assumption is often required for a quantitative trait. In our method,
the trait is treated as an explanatory variable, which allows us to leave the distri-
bution unspecified. On the other hand, treating the allele frequencies of the marker
as the response, we have the exact covariance structure for the responses with the
provision of the pedigree structure or the documented genealogy. Under this inno-
vative modeling, we derive the test statistic (WG) and show that WG asymptotically
follows a χ2

k−1 distribution, where k is the number of alleles of the marker. Our
proposed GQLS test generalizes the existing approaches in three aspects: (1) the
GQLS method can establish associations between marker’s allele frequencies and
all types of traits; (2) it uses a general link function to connect the mean value
of the allele frequency with the traits; (3) our GQLS method can be extended to
solve the problem when a sample is collected from multiple subpopulations. In
this article we focus on the logistic link, but the extension of our test to other link
functions, for example, the probit function, would be straightforward.

This paper is motivated by the challenges of analyzing data on Holstein cattle
in North America. The aim of this study is to identify SNPs or genome regions
that are associated with the estimated breeding values (EBVs) of a proven bull.
The EBV of a bull predicts its genetic merit. For example, the milk yield EBV of
a bull predicts the milk yield of its female descendants. Conducting an association
study in this data set is challenging. First, dams are not typed, and sires are typed
only if they appear as proven bulls in the data set. Thus, FBAT is not applicable
to analyze this data set. Second, most of the bulls, sires and dams, are inbred.
They are descendants from a single complex pedigree and the relationships among
them are known but complicated. The conventional population-based association
test does not account for this complex relationship among subjects. Ignoring the
correlation structure among subjects would lead to an inflated positive result. This
will be shown by simulation studies in the paper. Third, the case–control founder-
population-based approach proposed by Bourgain et al. (2003) is limited to binary
traits where most of the EBVs are quantitative. Thus, the challenge of analyzing
this data set becomes a motivation for the development of our method.
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We perform simulation studies on collections of pedigrees of various sizes and
on single complex pedigrees with different sizes to validate our method. We com-
pare the empirical performance of our method with others. In application, we
also apply our method to the Collaborative Study of the Genetics of Alcoholism
(COGA) data provided by the Genetic Analysis Workshop (GAW) 14 [Edenberg
et al. (2005); Bailey-Wilson et al. (2005)] to demonstrate the application in the
binary trait and multiple small families study design.

The paper is organized as follows. Section 2 presents the proposed generalized
quasi-likelihood association test. Section 3 presents the details of simulation stud-
ies to assess the validity and the power of the proposed test compared with other
methods. In Section 4 applications to real data are provided to illustrate the practi-
cal application of the proposed method. Discussions are provided in Section 5.

2. Methods.

2.1. Association test with a biallelic marker. Suppose that in a genetic study
we have a sample of n subjects that is from a single isolated/founder popula-
tion or a single pedigree. Subjects may be arbitrarily related with a known rela-
tionship. It is assumed that the inbreeding configuration for each subject is also
known. Let X = (X1, . . . ,Xn)

′ with Xi being the phenotypic observation of the
ith subject. The Xi can be binary with Xi = 1 or 0 coding for “affected” or “unaf-
fected,” respectively, or can be continuous for a quantitative trait. Given a biallelic
marker of interest, alleles are labeled by “0” and “1.” Let Y = (Y1, . . . , Yn)

′ with
Yi = 1

2 × (the number of allele 1 in subject i) being the proportion of the allele 1 in
the observed genotype of subject i, and Yi = 0, 1

2 , or 1. Let μ = (μ1, . . . ,μn)
′ =

E(Y|X) that 0 < μi < 1. We propose a logistic regression model to link the ex-
pected allele frequency μ of the marker with the trait X. We let

μi = E(Yi |Xi) = eβ0+β1Xi

1 + eβ0+β1Xi
.(2.1)

To test the association between the marker and the trait, we test

H0 :β1 = 0 against Ha :β1 �= 0.

Our model provides a natural constraint that 0 < μi < 1 for all i = 1, . . . , n. Under
the null hypothesis, we have μi = μ = eβ0

1+eβ0
for all i = 1, . . . , n. The mean vector

of Y no longer depends on Xi and becomes μ = E(Y) = μ1, where 1 is an n-
vector of 1’s. It can be shown that, under H0, the covariance matrix of Y is given
by �0 = 1

2μ(1 − μ)ρ, and

ρ =

⎛
⎜⎜⎜⎝

1 + φ1 2φ12 · · · 2φ1n

2φ12 1 + φ2 · · · 2φ2n
... · · · . . .

...

2φ1n 2φ2n · · · 1 + φn

⎞
⎟⎟⎟⎠ ,(2.2)
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where φi is the inbreeding coefficient of individual i and φij is the kinship coef-
ficient between individual i and individual j . See Appendix A in the supplemen-
tary material for the justification [Feng et al. (2011)]. The covariance matrix �0
will be invertible if μ �= 1 or 0, and ρ is invertible provided that the monozygous
twins (twins that are genetically identical, as they originate from a single fertilized
egg) are merged and represented by one single individual. This can be done using
the multiple outputation procedure [Follmann, Proschan and Leifer (2003)]. The
quasi-likelihood score function is in the form of

S(β) = (Sβ0(β), Sβ1(β))′ = D′�−1(Y − μ),(2.3)

where D is a n × 2 derivative matrix in the form of

D = ∂μ

∂β
=

(
∂μ

∂β0
,

∂μ

∂β1

)
,(2.4)

and � is the covariance matrix of Y. Under the null hypothesis, we have μ = μ1
and the covariance matrix � = �0. The solution to the equation of the quasi-
likelihood score function Sβ0(β0,0) = 0 gives an estimate of μ as

μ̂ = (1′ρ−11)−11′ρ−1Y,(2.5)

and therefore gives the estimate of β0 as β̂0 = log μ̂
1−μ̂

under the null hypothe-
sis. See Appendix B in the supplementary material for the derivation [Feng et al.
(2011)].

When β1 �= 0, the marker is associated with the trait and the expected value of
Yi given the Xi is given by equation (2.1). For a binary trait, the two-sample model
of Bourgain et al. (2003) in the form of

μi =
{

p + r, if i is affected, with 0 < p + r < 1,
p, if i is unaffected, with 0 < p < 1

becomes a special case of our model that p = eβ0

1+eβ0
and r = eβ0+β1

1+eβ0+β1
− eβ0

1+eβ0
.

We propose a generalized quasi-likelihood scoring statistic to test the association
between the marker and the trait. Under the null hypothesis that β1 = 0,

E[Sβ1(β0, β1 = 0)] = E
[

∂μ

∂β1
�−1(Y − μ)

]
= 0.

As described by Cox and Hinkley (1974), the quasi-score statistic is given by

W = Sβ1(β̂0,0)′ var−1
0 (Sβ1(β̂0,0))Sβ1(β̂0,0),(2.6)

where β̂0 is the quasi-likelihood estimate of β0 and var−1
0 (Sβ1(β̂0,0)) is the (2,2)th

entry of the inverse of the information matrix I(β) that is computed under the
null hypothesis that β1 = 0. As demonstrated by Heyde (1997), under the null
hypothesis, W follows a χ2 distribution with 1 degree of freedom asymptotically.
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In our case, we obtain an explicit expression for our generalized quasi-likelihood
scoring statistic in the form of

WG = 2

μ̂(1 − μ̂)
[X′ρ−1(Y − μ̂1)]′

× [X′ρ−1X − (X′ρ−11)(1′ρ−11)−1(1′ρ−1X)]−1(2.7)

× [X′ρ−1(Y − μ̂1)],
where μ̂ is given by equation (2.5). See Appendix B in the supplementary material
for the derivation [Feng et al. (2011)]. Note that, in equation (2.7), we do not need
β̂0 to compute the WG statistic. WG is expressed in a general form for both the
quantitative and binary traits. When the trait is binary, the quasi-likelihood scoring
statistic proposed by Bourgain et al. (2003) becomes a special case of our WG

that they are the same. Under the null hypothesis, WG follows a χ2
1 distribution

asymptotically.
Following the same line as in Bourgain et al. (2003), we generalize the WG

statistic to accommodate F independent families in an outbred population. Among
n subjects, let nf be the number of subjects that are from family f and let Yf =
(Y1f , . . . , Ynf f )′ be the vector of Y ’s for subjects that are from family f , f =
1, . . . ,F . Then, we have n = n1 + · · · + nF . Let �f and ρf be the covariance and
correlation matrix of Y ’s for those subjects that are from the f th family. If all the
individuals in the sample are outbred, the diagonal entries of matrix ρf are equal to
1 for all f = 1, . . . ,F . The overall covariance matrix under the null hypothesis is
a block diagonal matrix that consists of �1, . . . ,�F . We derive that explicit form
for the quasi-likelihood estimate of μ under the null hypothesis as

μ̂ =
(

F∑
f =1

1′
f ρ−1

f 1f

)−1(
F∑

f =1

1′
f ρ−1

f Yf

)
,(2.8)

where 1f is the nf -vector of 1’s. We derive an explicit form that

WG = 2

μ̂(1 − μ̂)
A′B−1A,(2.9)

where

A =
F∑

f =1

[X′
f ρ−1

f (Yf − μ̂1f )],

B =
F∑

f =1

X′
f ρ−1

f Xf −
(

F∑
f =1

X′
f ρ−1

f 1f

)2(
F∑

f =1

1′
f ρ−1

f 1f

)−1

,

and Xf is the nf -vector of the traits of the individuals from the f th family.
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2.2. Association test with a multiallelic marker. Now, suppose the marker un-
der investigation has k different alleles and there are n individuals being sam-
pled from a single pedigree. Let Y = (Y′

1, . . . ,Y′
k−1)

′ be an n(k − 1)-vector with
Yj = (Yj1, . . . , Yjn)

′ being an n-vector that Yji = 1
2 × (the number of allele j in

individual i). Similarly to the biallelic case, we let μ = E(Y|X) = (μ′
1, . . . ,μ

′
k−1)

′
with μj = (μj1, . . . ,μjn)

′ and

μji = eβ0j+β1jXi

1 + ∑k−1
j=1 eβ0j+β1jXi

.

Each random vector 2 × (Y1i , . . . , Yk−1,i)
′ follows a multinomial (2, (μ1i , . . . ,

μk−1,i)
′) distribution with 0 < μji < 1 and

∑k
j=1 μji = 1 for all i = 1, . . . , n.

Under the null hypothesis that the marker is not associated with the trait, all β1j ’s
are 0. Thus, we perform a simultaneous hypothesis test that

H0 :β11 = · · · = β1,k−1 = 0 vs Ha : at least one β1j �= 0, j = 1, . . . , k − 1.

Here, we generalize the notation of vector β as in the biallelic case that β =
(β ′

0,β
′
1)

′ with β0 = (β01, . . . , β0,k−1)
′ and β1 = (β11, . . . , β1,k−1)

′. Under the null
hypothesis that β1 = 0, we have μji = μj for all i and rewrite the mean vector
μ = (μ11′, . . . ,μk−11′)′ where 1 is an n-vector of 1’s. Under the null hypothesis,
the covariance matrix of Y is given by � = F ⊗ ρ (the Kronecker product of ma-
trices F and ρ) where F is a (k − 1) × (k − 1) matrix, which is the same as in
Bourgain et al. (2003). Here, let μ∗ = (μ1, . . . ,μk−1) be the (k − 1)-vector such
that μ = μ∗⊗1 under the null hypothesis. We show that, under the null hypothesis,
the quasi-likelihood estimate of μ∗ is given by

μ̂∗ = (μ̂1, . . . , μ̂k−1)
′ = (1′ρ−11)−1(

Ik−1 ⊗ (1′ρ−1)
)
Y,(2.10)

where Ik−1 is a (k − 1) × (k − 1) identity matrix. Thus, μ̂ = μ̂∗ ⊗ 1. We obtain an
explicit form of the generalized quasi-likelihood scoring statistic as

WG = C · (Y − μ̂)′
(
F̂−1 ⊗ (ρ−1XX′ρ−1)

)
(Y − μ̂),(2.11)

where C = [X′ρ−1X − X′ρ−11(1′ρ−11)−1(1′ρ−1X)]−1 is a constant depending
on the trait vector X and the correlation matrix ρ, and F̂ is computed by using the
μ̂∗. See Appendix C in the supplementary material for derivations of μ̂∗ and WG

in the multiallelic case [Feng et al. (2011)]. Under the null hypothesis, WG follows
an χ2 distribution with k − 1 degrees of freedom asymptotically. Alternatively, we
can express the statistic in the form

WG = C

k−1∑
j=1

k−1∑
l=1

(F̂−1)jl(Yj − μ̂j 1)′ρ−1XX′ρ−1(Yl − μ̂l1).(2.12)

In the biallelic case that k = 2, we have F = 1
2μ(1 − μ) and � = 1

2μ(1 − μ)ρ,
μ̂∗ and WG reduce to those that are derived under the biallelic case. When
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the n individuals in the sample comprise subjects that are from F independent
families, we retain the notation of Xf ,1f and ρf as in the biallelic case. Let
Yf = (Y′

1f , . . . ,Y′
k−1,f )′ and Yjf = (Yj1, . . . , Yjnf

)′. The statistic WG is given
by

WG = C ·
k−1∑
j=1

k−1∑
l=1

(F̂−1)jl

(2.13)

×
{

F∑
f =1

(Yjf − μ̂j 1f )′ρ−1
f Xf

F∑
f =1

(Ylf − μ̂l1f )′ρ−1
f Xf

}
,

where C = {∑F
f =1 X′

f ρ−1
f Xf − (

∑F
f =1 X′

f ρ−1
f 1f )2(

∑F
f =1 1′

f ρ−1
f 1f )−1}−1. Un-

der the null hypothesis, WG follows an χ2
k−1 distribution asymptotically.

2.3. Data collected from multiple subpopulations. In this paper we extend our
GQLS method to a solution that overcomes the problem of population stratifica-
tion. Suppose a sample is collected from S different subpopulations, denoted by
pop1, . . . ,popS . For illustration, let the marker of interest be bi-allelic (e.g., an
SNP). For each subpopulation, pops , we compute a GQLS test statistic, W

(s)
G . We

know that the W
(s)
G follows χ2

1 distribution asymptotically. In statistical theory, the
sum of S independent χ2 random variables follows an χ2 distribution with the de-
grees of freedom being the sum of the S degrees of freedom. Thus, a new overall
statistic, which is the sum over all subpopulations, having the form as

Wall = W
(1)
G + W

(2)
G + · · · + W

(S)
G

follows an χ2
S distribution asymptotically under the null hypothesis.

It is well known that FBAT is robust to the analysis of family data collected
from different populations. We will compare the performance of our overall test
method with FBAT in the population stratification problem via simulation studies.
We will also apply this overall test method to the COGA data set. See Sections 3.3
and 4.2 for details.

3. Simulation study. We conduct simulation studies to validate the χ2 dis-
tribution approximation to the distribution of the WG statistic and to compare the
power achieved by our approach with the power achieved by the FBAT. We con-
sider three different study designs. First, we simulate single large complex pedi-
grees. Second, we simulate multiple small families. Third, for each study design,
we combine samples simulated under settings to mimic a sample collected from
different subpopulations to investigate the robustness of our extended method us-
ing the Wall statistic. Since SNPs are popular for genetic association studies and
SNPs are typically biallelic, we simulate biallelic markers for demonstration. We
use the software KinInbcoef [Bourgain (2003)] to compute the kinship-inbreeding
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coefficient correlation matrix ρ. We will describe the simulation procedures and
summarize the results for each design in the following three subsections.

3.1. Single large pedigree study design. In this study design a family is grown
starting from a single individual. Each single individual is assigned a spouse with
probability 0.8 or remains single with probability 0.2. For each couple, we gener-
ate the number of offspring according to a Poisson distribution with mean 3. Any
pedigree that stops growing before the completion of six generations by natural de-
generation, or stops before reaching to a desired family size, is disregarded. A new
pedigree is grown until we obtain one single pedigree that consists of six genera-
tions and has a desirable number of family members in the last three generations.
In our simulation study, we generate three large single outbred pedigrees that have
sizes of 136, 273, and 557, respectively. Family members of the top three gen-
erations are removed to mimic the practical situations (especially in human data)
in which clinical information and DNA samples are most likely not available for
more than three generations back. The genealogy of the entire pedigree remains
for calculating the correlation matrix ρ. Removing the family members from the
top three generations, the pedigree sizes reduce to 124, 251, and 526, respectively.
For each founder (an individual with parents’ genetic information unknown), the
marker genotype is simulated by random mating. The genotypes of descents are
generated according to the Mendelian law of segregation.

To assess the type I error rate, for each individual, traits are generated genet-
ically according to an SNP with the minor allele frequency (MAF) of the SNP
being set to 0.3. Denote the genotype of the SNP by G that G = 0,1, or 2 for hav-
ing 0, 1, or 2 allele 1 in the genotype. We simulated the quantitative trait, X, from
N(−1 + G,σ 2) with σ = 1.2. The binary trait was simulated from Bernoulli(pG)
with p0 = 0.1,p1 = 0.3,p2 = 0.4. Then, an SNP that is unlinked to the causal
SNP is generated. The minor allele frequency of the SNP is set to 0.3 and 0.1. For
each combination of settings, we generate 1,000 replicates. For each simulated
data set, we compute the WG statistic for the unlinked SNP, and take the rejection
threshold to be the (1 −α)th quantile of the χ2

1 distribution. We run FBAT on each
simulated data set. In FBAT, default options are chosen in most of the cases except
that the “minsize” (the minimum number of informative families) is set to 4. To
illustrate the preservation of the type I error by considering the correlation among
related subjects, we perform the standard Armitage trend test [Armitage (1955)]
that assumes independent subjects in the sample. The Armitage trend test was
implemented using the “independence_test” function in the R package “coin” [R
Development Core Team (2009)]. This function also allows testing on the quanti-
tative trait. We consider α = 0.05 and 0.01. In Table 1 we summarize the empirical
rejection rates at each significance level for each combination of settings. The sim-
ulation results indicate that the χ2

1 distribution approximates the distribution of the
WG statistic well. The inflation of the null empirical rejection rate using the trend
test is obvious (indicated in bolded numbers) in the single large pedigree study.
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TABLE 1
Type I error assessment—single large pedigree study design (6 generations)

Sample size

124 251 526

MAF α1 Trait GQLS FBAT Trend GQLS FBAT Trend GQLS FBAT Trend

0.3 0.05 bt2 0.049 0.051 0.086 0.045 0.049 0.103 0.049 0.051 0.069
qt3 0.048 0.046 0.152 0.057 0.048 0.11 0.053 0.051 0.107

0.01 bt 0.006 0.007 0.019 0.009 0.009 0.033 0.011 0.011 0.015
qt 0.015 0.011 0.069 0.009 0.008 0.03 0.013 0.01 0.034

0.1 0.05 bt 0.052 0.076 0.048 0.047 0.038 0.053 0.048 0.048 0.065
qt 0.045 0.057 0.086 0.054 0.051 0.059 0.054 0.044 0.062

0.01 bt 0.013 0.004 0.009 0.009 0.006 0.007 0.013 0.012 0.018
qt 0.014 0.008 0.016 0.012 0.012 0.017 0.011 0.009 0.008

1Monte Carlo standard deviation = 0.0069 or 0.0031 for α = 0.05 or 0.01, respectively. 2bt: binary

trait. 3qt: quantitative trait.

To compare the power with the FBAT method, we simulate the quantitative trait
and the binary trait conditioning on the genotype of each individual. The minor
allele frequency of the association marker is set to 0.3 and 0.1. Three different
genetic models are considered for both the quantitative and binary trait. The quan-
titative trait X is generated according to an additive model: Xi = a + bGi + εi ,
where

Gi =
⎧⎨
⎩

−1, for the homozygous genotype that Yi = 0,
0, for the heterozygous genotype that Yi = 1/2,
1, for the homozygous genotype that Yi = 1.

The random environmental errors εi , are generated from N(0, σ 2). Without loss
of generality, we set the intercept a = 0. We specify three different association
models: (1) b = 0.5, σ = 1.2; (2) b = 1, σ = 1.5; and (3) b = 1, σ = 1.2. The
coefficient b quantifies the effect of the marker. The different values of σ 2 pose
different levels of difficulty for the detection of genetic association. These three
models are denoted by qt1, qt2, and qt3, respectively, in the tables that summarize
the results of power assessments.

For the binary trait, we generate the affection status of individuals according
to three disease models. In model 1 we consider a recessive epistasis disease con-
trolled by two SNPs that are unlinked to each other. Individuals having two copies
of allele 1 at both SNPs have a penetrance [defined as f = P(affected|genotype)]
of f1 = 0.5. Individuals having two copies of allele 1 at one SNP but not at the
other SNP have a penetrance of f2 = 0.4. Individuals with fewer than two copies
of allele 1 at both SNPs have a penetrance of f3 = 0.1. In model 2 we consider a
dominant epistasis disease controlled by two SNPs that are unlinked to each other.
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Individuals with at least one copy of allele 1 at both SNPs have a penetrance of
f1 = 0.5. All other individuals have a penetrance of f2 = 0.1. In model 3 we con-
sider a single disease locus model with f1 = 0.5 if an individual has two allele
1’s at the SNP, f2 = 0.3 if an individual has one allele 1 at the SNP, and f3 = 0.1
otherwise. These three models are denoted by bt1, bt2, and bt3, respectively, in the
tables that summarize the results of power assessments.

For each combination of settings, we generate 1,000 replicates. For each simu-
lated data set, we compute the WG and obtain the p-value by the χ2

1 approxima-
tion. We run FBAT on each simulated data set. The proportions of p-values ≤ α

are reported in Table 2. Simulation results show that our method outperforms the

TABLE 2
Power comparison—single large family study design (6 generations)

Sample size

124 251 526

MAF Trait α GQLS FBAT GQLS FBAT GQLS FBAT

0.3 bt1 0.05 0.228 0.186 0.368 0.277 0.603 0.466
0.01 0.106 0.06 0.186 0.106 0.386 0.257

bt2 0.05 0.421 0.264 0.663 0.451 0.928 0.764
0.01 0.218 0.089 0.444 0.237 0.791 0.548

bt3 0.05 0.610 0.421 0.91 0.705 0.997 0.96
0.01 0.385 0.181 0.758 0.439 0.868 0.851

0.1 bt1 0.05 0.098 0.063 0.103 0.076 0.135 0.099
0.01 0.03 0.01 0.03 0.016 0.053 0.027

bt2 0.05 0.164 0.116 0.211 0.132 0.294 0.187
0.01 0.063 0.029 0.088 0.036 0.145 0.77

bt3 0.05 0.452 0.33 0.624 0.424 0.911 0.721
0.01 0.263 0.119 0.442 0.167 0.804 0.463

0.3 qt1 0.05 0.468 0.416 0.781 0.734 0.977 0.96
0.01 0.242 0.19 0.572 0.491 0.905 0.869

qt2 0.05 0.831 0.791 0.991 0.970 1 1
0.01 0.656 0.558 0.946 0.897 0.999 0.999

qt3 0.05 0.943 0.909 0.999 0.994 1 1
0.01 0.836 0.758 0.995 0.981 1 1

0.1 qt1 0.05 0.261 0.228 0.401 0.364 0.707 0.650
0.01 0.126 0.074 0.214 0.173 0.483 0.403

qt2 0.05 0.511 0.451 0.730 0.674 0.968 0.944
0.01 0.326 0.23 0.54 0.428 0.916 0.842

qt3 0.05 0.658 0.602 0.868 0.82 0.994 0.979
0.01 0.469 0.349 0.736 0.642 0.978 0.922
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FBAT for a higher detection power in all scenarios. Results are particularly striking
for the binary trait with small sample size.

We extend our simulation studies to a single pedigree that consists of nine gen-
erations. Genotypes and clinical information of family members in the top six
generations are removed. The genealogy of the entire pedigree remains for cal-
culating the correlation matrix ρ. We generate two single large pedigrees having
sizes of 704 and 875, respectively. After removing the family members in the top
six generations, there are 615 and 795 individuals remaining. Similarly, we set the
MAF of 0.3 and 0.1. The results of type I error and power assessments are sum-
marized in Tables 1 and 2 in the supplementary material [Feng et al. (2011)]. The
simulation results are consistent to the results of the studies with six generations.
The empirical type I error rates obtained by our method and the FBAT are close
to each of the nominal significance levels. The trend test generally inflates the em-
pirical rejection rate under the null hypothesis (indicated in bolded numbers). Our
method is generally more powerful than the FBAT.

3.2. Multiple families study design. In this study families are grown follow-
ing the similar procedure as for the single large family study design except that
families will grow for a maximum of three generations. The simulated sample
comprises families and independent individuals. Family sizes range from 1 to 23
with an average size of 6.3. As in the single large pedigree study design, the geno-
type of founders is generated by random mating and the genotype of nonfounders
is generated according to the Mendelian law of segregation. We let the sample size
(number of subjects) be 100, 200, and 500, respectively. To assess the type I error
rate, we generate a quantitative trait and a binary trait for each individual as de-
scribed in the single large family study design. Then, an SNP that is unlinked to
the causal SNP is generated. The minor allele frequency of the SNPs is set to 0.3
and 0.1. For each combination of settings, we generate 1,000 replicates. In Table 3
we summarize the null empirical rejection rates. The results indicate that the χ2

1
distribution approximates the distribution of the WG statistic well. The inflation of
the null empirical rejection rate using the trend test is observed. For power com-
parisons, we simulate the quantitative traits and binary traits according to the six
models that have been described in the previous section. The MAF of the associa-
tion marker is also set to 0.3 and 0.1. The powers achieved by our method and the
FBAT under each combination of settings are summarized in Table 4. Simulation
results show that our method consistently outperforms FBAT for all scenarios.

3.3. Data with subpopulations. In this section we consider the situation that
a sample contains individuals from different populations. Similarly to the previ-
ous section, we consider biallelic markers. For illustration, we consider a sample
collected from two subpopulations only. In fact, for each of the previous study de-
signs, the single large pedigree and the multiple small pedigrees, we combine two
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TABLE 3
Type I error assessment—multiple families study design

Sample size

100 200 500

MAF α Trait GQLS FBAT Trend GQLS FBAT Trend GQLS FBAT Trend

0.3 0.05 bt 0.055 0.037 0.1 0.048 0.053 0.09 0.056 0.051 0.057
qt 0.056 0.058 0.0654 0.052 0.049 0.07 0.055 0.054 0.064

0.01 bt 0.012 0.005 0.025 0.012 0.010 0.018 0.012 0.013 0.012
qt 0.013 0.010 0.009 0.013 0.008 0.020 0.011 0.011 0.015

0.1 0.05 bt 0.054 0.037 0.059 0.050 0.045 0.0068 0.05 0.05 0.065
qt 0.048 0.043 0.082 0.047 0.048 0.088 0.043 0.055 0.070

0.01 bt 0.015 0.006 0.011 0.01 0.009 0.013 0.007 0.006 0.013
qt 0.013 0.007 0.022 0.007 0.006 0.031 0.007 0.006 0.013

simulated data sets with different MAF to make up a sample that consists of indi-
viduals from two different populations. For example, in the single large pedigree
study design, we combined the two simulated samples from two subpopulations
with MAF being set to 0.1 and 0.3, and with different combinations of sample
sizes for each subpopulation. For each combined sample, the Wall is the sum of
the two WG statistics from two subsamples. The p-values are obtained by the χ2

2
distribution. The type I error rate and the power are compared between our method
and FBAT.

In the supplementary material, Table 3, we summarize the results of type I error
rates assessment by combining two single large pedigrees [Feng et al. (2011)].
Similarly, in the supplementary material, Table 4, we summarize the results of
type I error assessment by combining the two simulated samples of multiple small
pedigrees [Feng et al. (2011)]. Overall, the empirical type I error rates obtained by
our method using the Wall test statistics and the empirical type I error rates obtained
by FBAT are close to each of the nominal significance levels. However, FBAT is
slightly less stable. For example, in Table 3, the empirical type I error rate is 0.005
at 0.01 significance level for a quantitative trait when combining the sample size
of 124 from population 1 and sample size of 526 from the population 2. In Table 4,
the empirical error rate is 0.033 at 0.05 significance level for a binary trait when
combining the sample sizes of 100 from both population 1 and population 2. Both
of the 95% confidence intervals constructed based on these two empirical type I
error rates do not cover the true values of α = 0.01 and 0.05.

In the supplementary material, Tables 5 and 6, we summarize the results of
power assessment [Feng et al. (2011)]. The simulation results indicated that the
performance of our method and FBAT are comparable that one shows some ad-
vantages over the other under some suituations, and vice versa.
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TABLE 4
Power comparison—multiple small pedigree study design

Sample size

100 200 500

MAF Trait α GQLS FBAT GQLS FBAT GQLS FBAT

0.3 bt1 0.05 0.22 0.17 0.302 0.171 0.610 0.388
0.01 0.093 0.04 0.135 0.07 0.402 0.215

bt2 0.05 0.354 0.178 0.561 0.317 0.93 0.675
0.01 0.170 0.044 0.339 0.11 0.818 0.42

bt3 0.05 0.639 0.328 0.829 0.514 0.996 0.917
0.01 0.38 0.13 0.643 0.255 0.982 0.78

0.1 bt1 0.05 0.095 0.063 0.095 0.082 0.118 0.073
0.01 0.029 0.008 0.041 0.01 0.032 0.011

bt2 0.05 0.132 0.078 0.183 0.107 0.322 0.16
0.01 0.046 0.011 0.078 0.024 0.148 0.06

bt3 0.05 0.118 0.073 0.322 0.16 0.942 0.634
0.01 0.032 0.011 0.148 0.06 0.843 0.361

0.3 qt1 0.05 0.433 0.309 0.709 0.546 0.98 0.928
0.01 0.217 0.114 0.478 0.302 0.921 0.777

qt2 0.05 0.795 0.624 0.969 0.849 1 1
0.01 0.58 0.369 0.913 0.704 1 1

qt3 0.05 0.934 0.792 0.999 0.976 1 1
0.01 0.817 0.552 0.99 0.691 1 1

0.1 qt1 0.05 0.215 0.153 0.351 0.264 0.746 0.597
0.01 0.079 0.046 0.157 0.091 0.520 0.331

qt2 0.05 0.456 0.279 0.734 0.502 0.986 0.726
0.01 0.228 0.09 0.515 0.251 0.943 0.796

qt3 0.05 0.647 0.391 0.895 0.625 0.99 0.977
0.01 0.419 0.149 0.745 0.4 0.992 0.916

4. Real data analysis.

4.1. Application to Holstein cattle data. The data set contains 821 progeny-
tested proven bulls born between 1965 and 2001. Each bull was genotyped using
the Affymetrix MegAllele GeneChip Bovine mapping 10K SNP array [Affymetrix
Inc. (2005)]. Among 821 bulls, some bulls also appear as the sires of other bulls.
The relationships among bulls and their sires and dams are complicated. All of
the 821 bulls sampled have genetically contributed to the current Canadian cow
population. Most of the animals in the population have a nonzero inbreeding coef-
ficient. A genealogy of the population tracing back 25 generations, with the oldest
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animal born in 1909, was used to compute the kinship-inbreeding coefficient with
the software CFC [Sargolzaei, Iwaisaki and Colleau (2006)]. Out of 9,919 geno-
typed SNPs, only 8,624 SNPs have known location on the 29 Bos Taurus autosome
chromosomes (BTA). SNPs with more than 20% of missing values or MAF of less
than 5% were excluded from the study. A total of 7,103 SNPs were analyzed. The
experimental design is mainly a granddaughter design that the milk productivi-
ties of daughters and granddaughters of a bull are used to estimate the breeding
value of the bull. The phenotypes used in the analysis were trait EBVs released
in November 2008 and provided by the Canadian Dairy Network (CDN, Guelph,
Canada). For illustration, we only present results of the association tests with milk
yield EBV.

In Table 5 we report the top 81 most significant SNPs that have p-value ≤ 0.001
that can be grouped into 36 regions (SNPs at a close inter-distance, less than 1cM,
define a region) on 16 BTAs. Out of 36 significant SNPs or regions, 16 signifi-
cant SNPs or regions have been found in agreement with the quantitative traits loci
or associated SNPs reported in the literature. In BTA14, 22 SNPs concentrated in
0–27cM have strong association with milk yield and their p-values range from
6.45 × 10−10 to 0.001. At the telomere of BTA14, Daicylglycerol acyl transferase
1 (DGAT1) at 0cM has been considered to be a quantitative trait nucleotide with a
major effect on milk yield [Bennewitz et al. (2003); Boichard et al. (2003); Grisart
et al. (2004)]. An SNP at 0.27cM has a strong association signal. Twelve SNPs
in the region of 3.38–8.47cM are consistent with 3 SNPs at 4cM, 5cM, and 6cM
that have been reported significantly associated with milk yield by Daetwyler et al.
(2007) and Bennewitz et al. (2003). An SNP at 11.2cM also confirms the associa-
tion with milk yield reported by Daetwyler et al. (2007). The most significant SNP
is found at 94cM on BTA5 and confirms a QTL at the same location reported by
Viitala et al. (2003). A significant SNP at 98cM also confirms a QTL at the same
location reported by Viitala et al. (2003). Note that, after adjusting for Bonfer-
roni’s correction at 5% significance level (or at 7.13×10−6 individual significance
level), 11 regions remain significant. However, for many complex traits that are
controlled by several genes, each individual gene may only have a small effect.
When thousands of SNPs are tested, using the Bonferroni’s correction may result
in low power of the study. Therefore, when we interpret the Bonferroni result, we
need to be careful that some signals disappearing after the adjustment may be due
to the conservativeness of Bonferroni’s correction.

4.2. Application to COGA data. The Collaborative Study on the Genetics of
Alcoholism (COGA) data set was provided by the Genetic Analysis Workshop
14 (GAW14). The data set included 1,614 individuals from 143 families. Among
1,614 individuals, 1,351 individuals were genotyped for a panel of 11,555 SNPs
from Affymetrix. A set of alcoholism phenotypes and covariates were provided.
We use the ALDX1 as the phenotype. Individuals who are coded as “affected” in
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TABLE 5
Most significant loci (p-value ≤ 0.001) found for milk yield trait

BTA No. of SNPs Location (cM)1 p-value2

1 1 47.905 2.18×10−5

4 1 20.055 0.000105
2 56.65, 59.815 0.000664
1 101.74 0.000126

5 1 1.035 0.00086
1 8.32 2.91 × 10−5

3 29.59–34.46 7.5 × 10−5

6 45.51–50.53 4.65 × 10−6*

1 69.89 8.8 × 10−6

8 73.49–77.77 8.44 × 10−7*

12 90.76–101.066,8,9 3.14 × 10−11*

1 114.903 0.000125
6 1 47.667 0.000355
7 1 75.075 0.001
8 1 41.75 0.000215

1 55 0.000126
11 1 113.46 0.000853
12 1 61.775 5.81 × 10−7*

14 1 0.273,4,5,6 2.06 × 10−6*

12 3.38–8.473,5 3.86 × 10−8*

3 11.24,5 4.94 × 10−6*

4 21.504 6.45 × 10−10*

2 26.69 0.000691
15 1 21 0.000291
16 1 31.66 3.39 × 10−8

1 54 0.000364
1 62 0.000946
1 90.544 3.85 × 10−5

17 1 16 0.000595
1 72 0.00034
1 78.58 0.000868

18 1 15.784 1.75 × 10−6*

23 2 9.36 4.44×10−6*

26 2 44, 45 0.000341
1 533,4 0.00061

27 1 57 0.000962

1Chromosomal region that the SNPs span on. 2Minimum p-value if there is more that one SNP in

the region. 3In agreement with Bennewitz et al. (2003). 4In agreement with Boichard et al. (2003).
5In agreement with Daetwyler et al. (2007). 6In agreement with Grisart et al. (2004). 7In agreement
with Heyen et al. (1999). 8In agreement with Viitala et al. (2003). 9In agreement with Viitala (2008).
*Significant at 5% Bonferroni’s correction (at 7.13×10−6 individual significance level).
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the ALDX1 variable are considered as affected individuals. Unaffected individ-
uals are those coded as “pure” unaffected in the ALDX1. Individuals with other
codings are considered to have unknown phenotypes. In this study, we compare
our method with FBAT under three scenarios. In scenario 1 we consider a large
sample from a single population. We only include individuals who are coded as
“white, non-Hispanic.” There are 119 such families consisting of 1,074 individu-
als. In scenario 2 we consider a small sample from a single population. We only
include individuals who are coded as “white, Hispanic.” There are 11 such fami-
lies consisting of 78 individuals. In scenario 3 we combine the two samples from
the the two populations of “white, Hispanic” and “white, non-Hispanic.” In our
studies, we use the software KinInbcoef to compute the kinship coefficient for cor-
relation matrix ρ. We only analyze SNPs that are on autosomes. In total, there are
10,532 SNPs on autosomes.

The results based on our method are summarized in the supplementary mate-
rial, Table 7 [Feng et al. (2011)]. In total, there are 22 SNPs found to be sig-
nificant (p-values < 0.001) in the “white, Hispanic” sample, 19 SNPs are found
to be significant based on the “white, non-Hispanic” sample, and 24 SNPs are
found to be significant based on the pooled samples of “white.” There are 19
SNPs that are significant in both the pooled sample and the “white, Hispanic”
or in both the pooled sample and the “white, non-Hispanic” sample. On chromo-
some 2, SNP tsc0052826 is significant in both the “white Hispanic” sample and
the pooled sample; it is 0.344cM from a marker that had been reported for a sig-
nificant linkage with alcohol dependence [Hill et al. (2004); Valdes, McWeeney
and Thomson (1999)]. On chromosome 6, SNP tsc1395926 is significant in both
the “white Hispanic” sample and the pooled sample. It is very close to two loci
(less than 1Mb) that had been found to link to the alcoholism [Hill et al. (2004);
Ma et al. (2005)]. On Chromosome 7, SNPs tsc0333356 is significant in both the
“white Hispanic” sample and the pooled sample; it is 1.47cM away from a marker
that had been reported to significantly link to ALDX1 by Zhu et al. (2005) and is
0.811cM from a marker that has shown significant linkage to alcohol dependence
by Hill et al. (2004). The most significant SNP is SNP tsc0059716 on chromo-
some 13 (p-value = 4×10−6), which is about 2.4cM away from an SNP that had
been reported to significantly associate with ALDX1 [Zhu et al. (2005)]. In to-
tal, there are 12 SNPs found to be very close to regions or SNPs that had been
reported to link or associate with alcohol dependence or alcoholism related traits
in the literature. After adjusting for Bonferroni’s correction at 5% significance
level (or at 4.75×10−6 individual significance level), four SNPs (tsc0587314 on
chromosome 3, tsc0506913 on chromosome 5, tsc0630829 on chromosome 7, and
tsc0059716 on chromosome 13) remain significant.

The results based on FBAT are summarized in Table 8 in the supplementary
material [Feng et al. (2011)]. In total, there are 43 SNPs found to be significant
(p-value < 0.001) in the pooled sample, 29 SNPs are significant in the “white,
non-Hispanic” sample, and only one SNP is significant in the “white, Hispanic”
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sample. Among these significant SNPs, SNP tsc0056748 on chromosome 13 is sig-
nificant in more that one sample (the pooled sample and the “white, non-Hispanic”
sample). There are 17 significant SNPs in the pooled sample that had been reported
significantly associated with the ALDX1 by Zhu et al. (2005). Note that the results
in Zhu et al. (2005) are based on the same pooled sample of “white, Hispanic” and
“white, non-Hispanic” same definition of “affected” individual, and are analyzed
by the FBAT as well. The only difference is the definition of “unaffected” indi-
vidual, in that we only use “pure-affected” individuals while Zhu et al. (2005) use
“pure-unaffected” and “never drank.” Therefore, there would be more significant
SNPs confirmed by Zhu et al. (2005). In addition, SNP tsc0046578 on chromo-
some 1 is 1.37cM away from an SNP that had been reported to significantly link
to alcohol dependence by Prescott et al. (2006). SNP tsc0697701 on chromosome
8 is 0.7Mb away from an SNP that significantly links to the alcoholism by Hill
et al. (2004). SNP tsc0896393 on chromosome 12 is 1.5Mb away from an SNP
that significantly links to ALDX1 reported by Ma et al. (2005). After adjusting for
the Bonferroni correction, three SNPs (tsc0515272 on chromosome 3, tsc0029429
on chromosome 9, and tsc 1750530 on chromosome 16) remain significant.

5. Discussion. In this article we adopt the framework of the generalized lin-
ear model and assume that the expected marker allelic frequency is connected to
the linear predictor based on the trait of interest through an arbitrary specified
link function. Although we focus on the logistic link, which is the canonical link
for a binomial random variable, models utilizing other link functions can be built
with minor modifications of the approach herein. The population-based associa-
tion study is still a popular study design for common traits. To prevent spurious
association due to a confounding population structure, association studies should
be performed within a relative homogeneous population. Such a population-based
association study is a special case of our method in which the ρ matrix will be an
identity matrix for independent subjects. For the stratified population, Lander and
Schork (2006) suggested using “internal controls” to balance the ethnicity between
the cases and controls in the sample in order to eliminate the confounding effects.
Our proposed generalized association method uses all available family members
to provide natural “internal controls.” Conneally (2003) pointed out that for any
choice of study design, whether based on families or population-based, a large
sample size is needed to detect an associated gene with only a partial effect on the
trait. The quasi-likelihood scoring method fully utilizes the correlation information
among the sampled individuals. It accommodates various data types for genetic as-
sociation studies including the conventional population-based association studies,
and those using founder/isolated populations with documented genealogy, or mul-
tiple complex pedigrees. Thus, this method essentially increases the sample size
and becomes more powerful. On the other hand, when a data set contains sam-
ples from multiple subpopulations, we propose a solution that combines the WG

statistics from each subpopulation to construct a new test statistic Wall. The Wall
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statistic is founded to follow an χ2 distribution asymptotically with the degrees
of freedom depending on the number of subpopulations and the number of alle-
les of the marker being tested. Simulation results confirm that the χ2 distribution
approximates the distribution of Wall well. Simulation results also show that our
method has comparable power to the FBAT. However, our approach is limited to
known subpopulations. If unknown subpopulations exist, it is possible to extend
our approach to a mixture population with more population parameters to be esti-
mated.

It is known that pedigree errors can easily arise in the study of large pedigrees
and even in the study of small pedigrees. Our GQLS method cannot handle this
error directly. However, many methods and software are available to detect such
errors under different study designs [PREST by McPeek and Sun (2000); REL-
ATIVE by Göring and Ott (1997); RELPAIR by Epstein, Duren and Boehnke
(2000)]. When the pedigree errors are found, involved individuals could be ei-
ther removed from the study accordingly, or, the relationship, that is, the kinship
and inbreeding coefficients, among involved individuals can be inferred through
the genome scan (if genome data are available) as a substitute in the ρ matrix.
However, the approximation of the χ2 distribution to the resulting WG statistic
needs to be further investigated.
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reading of the original version of this paper. The R code for computing the GQLS
test statistic is available at http://www.uoguelph.ca/~zfeng/software/.

SUPPLEMENTARY MATERIAL

Mathematical justifications and additional results (DOI: 10.1214/11-
AOAS465SUPP; .pdf). The supplementary materials of the paper are organized
as follows. Appendix A provides the theoretical justification of the variance–
covariance matrix �0. Appendix B derives the explicit form of the WG statistic
for a biallelic marker in a single pedigree study design. Appendix C derives the
expression of the WG statistic for a multi-allelic marker in a single pedigree study
design. In Appendix D additional results of simulation studies and the results of
COGA data analysis are summarized in tables.
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