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Abstract. We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift c. At
the point x > 0, we add an absorbing barrier, i.e. individuals touching the barrier are instantly killed without producing offspring.
It is known that there is a critical drift c0, such that this process becomes extinct almost surely if and only if c ≥ c0. In this case, if
Zx denotes the number of individuals absorbed at the barrier, we give an asymptotic for P(Zx = n) as n goes to infinity. If c = c0
and the reproduction is deterministic, this improves upon results of L. Addario-Berry and N. Broutin [1] and E. Aïdékon [2] on a
conjecture by David Aldous about the total progeny of a branching random walk. The main technique used in the proofs is analysis
of the generating function of Zx near its singular point 1, based on classical results on some complex differential equations.

Résumé. Nous étudions le mouvement brownien branchant sur-critique sur la droite réelle, issu de l’origine et avec une dérive
constante c. Au point x > 0, nous ajoutons une barrière absorbante, c’est-à-dire les individus qui touchent la barrière sont tués
instantanément et sans se reproduire. Il est connu qu’il existe une dérive critique c0 tel que ce processus s’éteint presque surement
si et seulement si c ≥ c0. Dans ce cas, si on note par Zx le nombre d’individus absorbés en la barrière, nous donnons un équivalent
de P(Zx = n) quand n tend vers l’infini. Si c = c0 et la reproduction est déterministe, ceci améliore des résultats de L. Addario-
Berry et N. Broutin [1] et E. Aïdékon [2] sur une conjecture de David Aldous concernant la progéniture totale d’une marche
aléatoire branchante. La technique principale utilisée dans les preuves est l’analyse de la fonction génératrice de Zx au voisinage
de son point singulier 1, basée sur des résultats classiques concernant certaines équations differéntielles dans le champ complexe.
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1. Introduction

We define branching Brownian motion as follows. Starting with an initial individual sitting at the origin of the real line,
this individual moves according to a 1-dimensional Brownian motion with drift c until an independent exponentially
distributed time with rate 1. At that moment it dies and produces L (identical) offspring, L being a random variable
taking values in the non-negative integers with P(L = 1) = 0. Starting from the position at which its parent has died,
each child repeats this process, all independently of one another and of their parent. For a rigorous definition, see for
example [10].

We assume that m = E[L] − 1 ∈ (0,∞), which means that the process is supercritical. At position x > 0, we
add an absorbing barrier, i.e. individuals hitting the barrier are instantly killed without producing offspring. Kesten
proved [19] that this process becomes extinct almost surely if and only if the drift c ≥ c0 = √

2m (he actually needed
E[L2] < ∞ for the “only if” part, but we are going to prove that the statement holds in general). A conjecture of David
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Aldous [3], originally stated for the branching random walk, says that the number Nx of individuals that have lived
during the lifetime of the process satisfies E[Nx] < ∞ and E[Nx log+ Nx] = ∞ in the critical speed area (c = c0),
and P(Nx > n) ∼ Kn−γ in the subcritical speed area (c > c0), with some K > 0, γ > 1. For the branching random
walk, the conjecture of the critical case was proven by Addario-Berry and Broutin [1] for general reproduction laws
satisfying a mild integrability assumption. Aïdékon [2] refined the results for constant L by showing that there are
positive constants ρ,C1,C2, such that for every x > 0, we have

C1xeρx

n(logn)2
≤ P(Nx > n) ≤ C2xeρx

n(logn)2
for large n.

Assuming L constant has the advantage that Nx is directly related to the number Zx of individuals absorbed at the
barrier by Nx − 1 = (Zx − 1)(L/(L − 1)), hence it is possible to study Nx through Zx .

In this sense, Neveu [23] had already proven the critical case conjecture for branching Brownian motion since he
showed that the process Z = (Zx)x≥0 is actually a continuous-time Galton–Watson process of finite expectation, but
with E[Zx log+ Zx] = ∞ for every x > 0, if c = c0.

Let N = {1,2,3, . . .} and N0 = {0} ∪ N. Define the infinitesimal transition rates (see [4], p. 104, Eq. (6), or [14],
p. 95)

qn = lim
x↓0

1

x
P (Zx = n), n ∈ N0 \ {1}.

We propose a refinement of Neveu’s result:

Theorem 1.1. Assume c = c0. Assume that E[L(logL)2+ε] < ∞ for some ε > 0. Then we have as n → ∞,

∞∑
k=n

qk ∼ c0

n(logn)2
and P(Zx > n) ∼ c0xec0x

n(logn)2
for each x > 0.

The heavy tail of Zx suggests that its generating function is amenable to singularity analysis in the sense of [12].
This is in fact the case in both the critical and subcritical cases if we impose a stronger condition upon the offspring
distribution and leads to the next theorem.

Define f (s) = E[sL] the generating function of the offspring distribution. Denote by δ the span of L − 1, i.e. the
greatest positive integer, such that L− 1 is concentrated on δZ. Let λc ≤ λc be the two roots of the quadratic equation

λ2 − 2cλ + c2
0 = 0 and denote by d = λc

λc
the ratio of the two roots. Note that c = c0 if and only if λc = λc if and only

if d = 1.

Theorem 1.2. Assume that the law of L admits exponential moments, i.e. that the radius of convergence of the power
series E[sL] is greater than 1.

− In the critical speed area (c = c0), as n → ∞,

qδn+1 ∼ c0

δn2(logn)2
and P(Zx = δn + 1) ∼ c0xec0x

δn2(logn)2
for each x > 0.

− In the subcritical speed area (c > c0) there exists a constant K = K(c,f ) > 0, such that, as n → ∞,

qδn+1 ∼ K

nd+1
and P(Zx = δn + 1) ∼ eλcx − eλcx

λc − λc

K

nd+1
for each x > 0.

Furthermore, qδn+k = P(Zx = δn + k) = 0 for all n ∈ Z and k ∈ {2, . . . , δ}.

Remark 1.3. The idea of using singularity analysis for the study of Zx comes from Robin Pemantle’s (unfinished)
manuscript [24] about branching random walks with Bernoulli reproduction.
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Remark 1.4. Since the coefficients of the power series E[sL] are real and non-negative, Pringsheim’s theorem (see
e.g. [13], Theorem IV.6, p. 240) entails that the assumption in Theorem 1.2 is verified if and only if f (s) is analytic
at 1.

Remark 1.5. Let β > 0 and σ > 0. We consider a more general branching Brownian motion with branching rate given
by β and the drift and variance of the Brownian motion given by c and σ 2, respectively. Call this process the (β, c, σ )-
BBM (the reproduction is still governed by the law of L, which is fixed). In this terminology, the process described at
the beginning of this section is the (1, c,1)-BBM. The (β, c, σ )-BBM can be obtained from (1, c/(σ

√
β),1)-BBM by

rescaling time by a factor β and space by a factor σ/
√

β . Therefore, if we add an absorbing barrier at the point x > 0,
the (β, c, σ )-BBM gets extinct a.s. if and only if c ≥ c0 = σ

√
2βm. Moreover, if we denote by Z

(β,c,σ )
x the number of

particles absorbed at x, we obtain that(
Z(β,c,σ )

x

)
x≥0 and

(
Z

(1,c/(σ
√

β),1)

x
√

β/σ

)
x≥0 are equal in law.

In particular, if we denote the infinitesimal transition rates of (Z
(β,c,σ )
x )x≥0 by q

(β,c,σ )
n , for n ∈ N0 \ {1}, then we have

q(β,c,σ )
n = lim

x↓0

1

x
P

(
Z(β,c,σ )

x = n
) =

√
β

σ
lim
x↓0

σ

x
√

β
P

(
Z

(1,c/(σ
√

β),1)

x
√

β/σ
= n

) =
√

β

σ
q

(1,c/(σ
√

β),1)
n .

One therefore easily checks that the statements of Theorems 1.1 and 1.2 are still valid for arbitrary β > 0 and σ > 0,

provided that one replaces the constants c0, λc, λc,K by c0/σ
2, λc/σ

2, λc/σ
2,

√
β

σ
K(c/(σ

√
β),f ), respectively.

Remark 1.6. After submission of this article, Yang and Ren published an article [25] which permits to weaken the
hypothesis in Theorem 1.1: It is enough to assume that E[L(logL)2] < ∞. In our proof, one needs to replace the
reference [20] by [25] and use Theorem B of [7] instead of our Lemma 4.1, in order to obtain (4.6).

The content of the paper is organised as follows: In Section 2 we derive some preliminary results by probabilis-
tic means. In Section 3, we recall a known relation between Zx and the so-called Fisher–Kolmogorov–Petrovskii–
Piskounov (FKPP) equation. Section 4 is devoted to the proof of Theorem 1.1, which draws on a Tauberian theorem
and known asymptotics of travelling wave solutions to the FKPP equation. In Section 5 we review results about
complex differential equations, singularity analysis of generating functions and continuous-time Galton–Watson pro-
cesses. Those are needed for the proof of Theorem 1.2, which is done in Section 6.

2. First results by probabilistic methods

The goal of this section is to prove

Proposition 2.1. Assume c > c0 and E[L2] < ∞. There exists a constant C = C(x, c,L) > 0, such that

P(Zx > n) ≥ C

nd
for large n.

This result is needed to assure that the constant K in Theorem 1.2 is non-zero. It is independent from Sections 3
and 4 and in particular from Theorem 1.1. Its proof is entirely probabilistic and follows closely [2].

2.1. Notation and preliminary remarks

Our notation borrows from [20]. An individual is an element in the space of Ulam–Harris labels

U =
⋃

n∈N0

N
n,
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which is endowed with the ordering relations � and ≺ defined by

u � v ⇐⇒ ∃w ∈ U : v = uw and u ≺ v ⇐⇒ u � v and u �= v.

The space of Galton–Watson trees is the space of subsets t ⊂ U , such that ∅ ∈ t, v ∈ t if v ≺ u and u ∈ t and for every
u there is a number Lu ∈ N0, such that for all j ∈ N, uj ∈ t if and only if j ≤ Lu. Thus, Lu is the number of children
of the individual u.

Branching Brownian motion is defined on the filtered probability space (T , F , (Ft ),P ). Here, T is the space
of Galton–Watson trees with each individual u ∈ t having a mark (ζu,Xu) ∈ R

+ × D(R+,R ∪ {Δ}), where Δ is a
cemetery symbol and D(R+,R∪{Δ}) denotes the Skorokhod space of cadlag functions from R

+ to R∪{Δ}. Here, ζu

denotes the life length and Xu(t) the position of u at time t , or of its ancestor that was alive at time t . More precisely,
for v ∈ t, let dv = ∑

w�v ζw denote the time of death and bv = dv − ζv the time of birth of v. Then Xu(t) = Δ for
t ≥ du and if v � u is such that t ∈ [bv, dv), then Xu(t) = Xv(t).

The sigma-field Ft contains all the information up to time t , and F = σ(
⋃

t≥0 Ft ).
Let y, c ∈ R and L be some random variable taking values in N0 \ {1}. P = P y,c,L is the unique probability

measure, such that, starting with a single individual at the point y,

− Each individual moves according to a Brownian motion with drift c until an independent time ζu following an
exponential distribution with parameter 1.

− At the time ζu the individual dies and leaves Lu offspring at the position where it has died, with Lu being an
independent copy of L.

− Each child of u repeats this process, all independently of one another and of the past of the process.

Note that often c and L are regarded as fixed and y as variable. In this case, the notation P y is used. In the same way,
expectation with respect to P is denoted by E or Ey .

A common technique in branching processes since [21] is to enhance the space T by selecting an infinite genealog-
ical line of descent from the ancestor ∅, called the spine. More precisely, if T ∈ T and t its underlying Galton–Watson
tree, then ξ = (ξ0, ξ1, ξ2, . . .) ∈ UN0 is a spine of T if ξ0 = ∅ and for every n ∈ N0, ξn+1 is a child of ξn in t. This
gives the space

T̃ = {
(T , ξ) ∈ T × UN0 : ξ is a spine of T

}
of marked trees with spine and the sigma-fields F̃ and F̃t . Note that if (T , ξ) ∈ T̃ , then T is necessarily infinite.

Assume from now on that m = E[L] − 1 ∈ (0,∞). Let Nt be the set of individuals alive at time t . Note that every
F̃t -measurable function f : T̃ → R admits a representation

f (T , ξ) =
∑
u∈Nt

fu(T )1u∈ξ ,

where fu is an Ft -measurable function for every u ∈ U . We can therefore define a measure P̃ on (T̃ , F̃ , (F̃t )) by∫
T̃

f dP̃ = e−mt

∫
T

∑
u∈Nt

fu(T )P (dT ). (2.1)

It is known [20] that this definition is sound and that P̃ is actually a probability measure with the following properties:

− Under P̃ , the individuals on the spine move according to Brownian motion with drift c and die at an accelerated
rate m + 1, independent of the motion.

− When an individual on the spine dies, it leaves a random number of offspring at the point where it has died, this
number following the size-biased distribution of L. In other words, let L̃ be a random variable with E[f (L̃)] =
E[f (L)L/(m + 1)] for every positive measurable function f . Then the number of offspring is an independent
copy of L̃.

− Amongst those offspring, the next individual on the spine is chosen uniformly. This individual repeats the behaviour
of its parent.
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− The other offspring initiate branching Brownian motions according to the law P .

Seen as an equation rather than a definition, (2.1) also goes by the name of “many-to-one lemma.”

2.2. Branching Brownian motion with two barriers

We recall the notation P y from the previous subsection for the law of branching Brownian motion started at y ∈ R

and Ey the expectation with respect to P y . Recall the definition of P̃ and define P̃ y and Ẽy analogously.
Let a, b ∈ R such that y ∈ (a, b). Let τ = τa,b be the (random) set of those individuals whose paths enter (−∞, a]∪

[b,∞) and all of whose ancestors’ paths have stayed inside (a, b). For u ∈ τ we denote by τ(u) the first exit time
from (a, b) by u’s path, i.e.

τ(u) = inf
{
t ≥ 0: Xu(t) /∈ (a, b)

} = min
{
t ≥ 0: Xu(t) ∈ {a, b}},

and set τ(u) = ∞ for u /∈ τ . The random set τ is an (optional) stopping line in the sense of [10].
For u ∈ τ , define Xu(τ) = Xu(τ(u)). Denote by Za,b the number of individuals leaving the interval (a, b) at the

point a, i.e.

Za,b =
∑
u∈τ

1Xu(τ)=a.

Lemma 2.2. Assume |c| > c0 and define ρ =
√

c2 − c2
0. Then

Ey[Za,b] = ec(a−y) sinh((b − y)ρ)

sinh((b − a)ρ)
.

If, furthermore, V = E[L(L − 1)] < ∞, then

Ey
[
Z2

a,b

] = 2V ec(a−y)

ρ sinh3((b − a)ρ)

[
sinh

(
(b − y)ρ

)∫ y

a

ec(a−r) sinh2((b − r)ρ
)

sinh
(
(r − a)ρ

)
dr

+ sinh
(
(y − a)ρ

)∫ b

y

ec(a−r) sinh3((b − r)ρ
)

dr

]
+ Ey[Za,b].

Proof. On the space T̃ of marked trees with spine, define the random variable I by I = i if ξi ∈ τ and I = ∞
otherwise. For an event A and a random variable Y write E[Y,A] instead of E[Y1A]. Then

Ey[Za,b] = Ey

[∑
u∈τ

1Xu(τ)=a

]
= Ẽy

[
emτ(ξI ), I < ∞,XξI

(τ ) = a
]

by the many-to-one lemma extended to optional stopping lines (see [6], Lemma 14.1 for a discrete version). But since
the spine follows Brownian motion with drift c, we have I < ∞, P̃ -a.s. and the above quantity is therefore equal to

Wy,c
[
emT ,BT = a

]
,

where Wy,c is the law of standard Brownian motion with drift c started at y, (Bt )t≥0 the canonical process and
T = Ta,b the first exit time from (a, b) of Bt . By Girsanov’s theorem, and recalling that m = c2

0/2, this is equal to

Wy
[
ec(BT −y)−(1/2)(c2−c2

0)T ,BT = a
]
,

where Wy = Wy,0. Evaluating this expression ([8], p. 212, Formula 1.3.0.5) gives the first equality.
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For u ∈ U , let Θu be the operator that maps a tree in T to its sub-tree rooted in u. Denote further by Cu the set of
u’s children, i.e. Cu = {uk: 1 ≤ k ≤ Lu}. Then note that for each u ∈ τ we have

Za,b = 1 +
∑
v≺u

∑
w∈Cv

w�u

Za,b ◦ Θw,

hence

Ey
[
Z2

a,b

] = Ey

[∑
u∈τ

1Xu(τ)=aZa,b

]
= Ey[Za,b] + P̃ y

[
emτ(ξI )

∑
v≺ξI

∑
w∈Lv

w�ξI

Za,b ◦ Θw,XξI
(τ ) = a

]
. (2.2)

Define the σ -algebras

G = σ
(
XξI

(t); t ≥ 0
)
,

H = G ∨ σ(ζv;v ≺ ξI ),

I = H ∨ σ
(
ξ, I, (Lv;v ≺ ξI )

)
,

such that G contains the information about the path of the spine up to the individual that quits (a, b) first, H adds to
G the information about the fission times on the spine and I adds to H the information about the individuals of the
spine and the number of their children. Now, conditioning on I and using the strong branching property, the second
term in the last line of (2.2) is equal to

P̃ y

[
emτ(ξI )

∑
v≺ξI

(Lv − 1)EXv(dv−)[Za,b],XξI
(τ ) = a

]

(recall that dv is the time of death of v). Conditioning on H and noting the fact that Lv follows the size-biased law of
L for an individual v on the spine, yields

P̃ y

[
emτ(ξI )

∑
v≺ξI

V

m + 1
EXξI

(dv)[Za,b],XξI
(τ ) = a

]
.

Finally, since under P̃ the fission times on the spine form a Poisson process of intensity m+ 1, conditioning on G and
applying Girsanov’s theorem yields

Wy

[
ec(BT −y)−(1/2)ρ2T

∫ T

0
V EBt [Za,b]dt,BT = a

]
= V ec(a−y)

∫ b

a

Er [Za,b]Wy
[
e−(1/2)ρ2T Lr

T ,BT = a
]

dr,

where Lr
T is the local time of (Bt ) at the time T and the point r . The last expression can be evaluated explicitly ([8],

p. 215, Formula 1.3.3.8) and gives the desired equality. �

Corollary 2.3. Under the assumptions of Lemma 2.2, for each b > 0 there are positive constants C
(1)
b , C

(2)
b , such that

as a → −∞,

(a) E0[Za,b] ∼ C
(1)
b e(c+ρ)a ,

(b) if c > c0, E0[Z2
a,b] ∼ C

(2)
b e(c+ρ)a and

(c) if c < −c0, E0[Z2
a,b] ∼ C

(2)
b e2(c+ρ)a .
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The following result is well known and is only included for completeness. We emphasize that the only moment
assumption here is m = E[L] − 1 ∈ (0,∞). Recall that Zx denotes the number of particles absorbed at x of a BBM

started at the origin. For |c| ≥ c0, define λc to be the smaller root of λ2 − 2c + c2
0, thus λc = c −

√
c2 − c2

0.

Lemma 2.4. Let x > 0.

− If |c| ≥ c0, then E[Zx] = eλcx .
− If |c| < c0, then E[Zx] = +∞.

Proof. We proceed similarly to the first part of Lemma 2.2. Define the (optional) stopping line τ of the individuals
whose paths enter [x,∞) and all of whose ancestors’ paths have stayed inside (−∞, x). Define I as in the proof of
Lemma 2.2. By the stopping line version of the many-to-one lemma we have

E[Zx] = E

[∑
u∈τ

1

]
= Ẽ

[
emτ(ξI ), I < ∞]

.

By Girsanov’s theorem, this equals

W
[
ecx−(1/2)(c2−c2

0)Tx , Tx < ∞]
,

where W is the law of standard Brownian motion started at 0 and Tx is the first hitting time of x. The result now
follows from [8], p. 198, Formula 1.2.0.1. �

2.3. Proof of Proposition 2.1

By hypothesis, c > c0, E[L2] < ∞ and the BBM starts at the origin. Let x > 0 and let τ = τx be the stopping line of
those individuals hitting the point x for the first time. Then Zx = |τx |.

Let a < 0 and n ∈ N. By the strong branching property,

P 0(Zx > n) ≥ P 0(Zx > n|Za,x ≥ 1)P 0(Za,x ≥ 1) ≥ P a(Zx > n)P 0(Za,x ≥ 1).

If P 0− denotes the law of branching Brownian motion started at the point 0 with drift −c, then

P a(Zx > n) = P 0−(Za−x > n) ≥ P 0−(Za−x,1 > n).

In order to bound this quantity, we choose a = an in such a way that n = 1
2E0−[Zan−x,1]. By Corollary 2.3(a), (c)

(applied with drift −c) and the Paley–Zygmund inequality, there is then a constant C1 > 0, such that

P 0−(Zan−x,1 > n) ≥ 1

4

E0−[Zan−x,1]2

E0−[Z2
an−x,1]

≥ C1 for large n.

Furthermore, by Corollary 2.3(a) (applied with drift −c), we have

1

2
C

(1)
1 e−λc(an−x) ∼ n, as n → ∞,

and therefore an = −(1/λc) logn + O(1). Again by the Paley–Zygmund inequality and Corollary 2.3(a), (b) (applied
with drift c), there exists C2 > 0, such that for large n,

P 0(Zan,x ≥ 1) = P 0(Zan,x > 0) ≥ E0[Zan,x]2

E0[Z2
an,x]

≥ (C
(1)
x )2

2C
(2)
x

eλcan ≥ C2

nd
.

This proves the proposition with C = C1C2.
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3. The FKPP equation

As was already observed by Neveu [23], the translational invariance of Brownian motion and the strong branching
property immediately imply that Z = (Zx)x≥0 is a homogeneous continuous-time Galton–Watson process (for an
overview to these processes, see [4], Chapter III, or [14], Chapter V). There is therefore an infinitesimal generating
function

a(s) = α

( ∞∑
n=0

pns
n − s

)
, α > 0,p1 = 0, (3.1)

associated to it. It is a strictly convex function on [0,1], with a(0) ≥ 0 and a(1) ≤ 0. Its probabilistic interpretation is

α = lim
x→0

1

x
P (Zx �= 1) and pn = lim

x→0
P(Zx = n|Zx �= 1),

hence qn = αpn for n ∈ N0 \ {1}. Note that with no further conditions on c and L, the sum
∑

n≥0 pn need not
necessarily be 1, i.e. the rate αp∞, where p∞ = 1 −∑

n≥0 pn, with which the process jumps to +∞, may be positive.
We further define Fx(s) = E[sZx ], which is linked to a(s) by Kolmogorov’s forward and backward equations ([4],

p. 106, or [14], p. 102):

∂

∂x
Fx(s) = a(s)

∂

∂s
Fx(s) (forward equation), (3.2)

∂

∂x
Fx(s) = a

[
Fx(s)

]
(backward equation). (3.3)

The forward equation implies that if a(1) = 0 and φ(x) = E[Zx] = ∂
∂s

Fx(1−), then φ′(x) = a′(1)φ(x), whence

E[Zx] = ea′(1)x . On the other hand, if a(1) < 0, then the process jumps to ∞ with positive rate, hence E[Zx] = ∞
for all x > 0.

The next lemma is an extension of a result which is stated, but not proven, in [23], Eq. (1.1). According to Neveu,
it is due to A. Joffe. To the knowledge of the author, no proof of this result exists in the current literature, which is
why we prove it here.

Lemma 3.1. Let (Yt )t≥0 be a homogeneous Galton–Watson process started at 1, which may explode and may jump
to +∞ with positive rate. Let u(s) be its infinitesimal generating function and Ft(s) = E[sYt ]. Let q be the smallest
zero of u(s) in [0,1].
1. If q < 1, then there exists t− ∈ R ∪ {−∞} and a strictly decreasing smooth function ψ− : (t−,+∞) → (q,1) with

limt→t− ψ−(t) = 1 and limt→∞ ψ−(t) = q , such that on (q,1) we have u = ψ ′− ◦ ψ−1− , Ft(s) = ψ−(ψ−1− (s) + t).
2. If q > 0, then there exists t+ ∈ R ∪ {−∞} and a strictly increasing smooth function ψ+ : (t+,+∞) → (0, q) with

limt→t+ ψ+(t) = 0 and limt→∞ ψ+(t) = q , such that on (0, q) we have u = ψ ′+ ◦ ψ−1+ , Ft(s) = ψ+(ψ−1+ (s) + t).

The functions ψ− and ψ+ are unique up to translation.
Moreover, the following statements are equivalent:

− For all t > 0, Yt < ∞ a.s.
− q = 1 or t− = −∞.

Proof. We first note that u(s) > 0 on (0, q) and u(s) < 0 on (q,1), since u(s) is strictly convex, u(0) ≥ 0 and
u(1) ≤ 0. Since F0(s) = s, Kolmogorov’s forward equation (3.2) implies that Ft (s) is strictly increasing in t for
s ∈ (0, q) and strictly decreasing in t for s ∈ (q,1). The backward equation (3.3) implies that Ft (s) converges to q

as t → ∞ for every s ∈ [0,1). Repeated application of (3.3) yields that Ft (s) is a smooth function of t for every
s ∈ [0,1].



436 P. Maillard

Now assume that q < 1. For n ∈ N set sn = 1−2−n(1−q), such that q < s1 < 1, sn < sn+1 and sn → 1 as n → ∞.
Set t1 = 0 and define tn recursively by

tn+1 = tn − t ′, where t ′ > 0 is such that Ft ′(sn+1) = sn.

Then (tn)n∈N is a decreasing sequence and thus has a limit t− ∈ R ∪ {−∞}. We now define for t ∈ (t−,+∞),

ψ−(t) = Ft−tn (sn), if t ≥ tn.

The function ψ− is well defined, since for every n ∈ N and t ≥ tn,

Ft−tn (sn) = Ft−tn

(
Ftn−tn+1(sn+1)

) = Ft−tn+1(sn+1),

by the branching property. The same argument shows us that if s ∈ (q,1), sn > s and t ′ > 0 such that Ft ′(sn) = s, then
Ft(s) = Ft+t ′(sn) = ψ−(t + t ′ + tn) for all t ≥ 0. In particular, ψ−(t ′ + tn) = s, hence Ft (s) = ψ−(ψ−1− (s) + t). The
backward equation (3.3) now gives

u(s) = ∂

∂t
Ft (s)

∣∣∣∣
t=0

= ψ ′−
(
ψ−1− (s)

)
.

The second part concerning ψ+ is proven completely analogously. Uniqueness up to translation of ψ− and ψ+ is
obvious from the requirement ψ(ψ−1(s) + t) = Ft(s), where ψ is either ψ− or ψ+.

For the last statement, note that P(Yt < ∞) = 1 for all t > 0 if and only if Ft(1−) = 1 for all t > 0. But this is the
case exactly if q = 1 or t− = −∞. �

The following proposition shows that the functions ψ− and ψ+ corresponding to (Zx)x≥0 are so-called travelling
wave solutions of a reaction-diffusion equation called the Fisher–Kolmogorov–Petrovskii–Piskounov (FKPP) equa-
tion. This should not be regarded as a new result, since Neveu ([23], Proposition 3) proved it already for the case
c ≥ c0 and L = 2 a.s. (dyadic branching). However, his proof relied on a path decomposition result for Brownian
motion, whereas we show that it follows from simple renewal argument valid for branching diffusions in general.

Recall that f (s) = E[sL] denotes the generating function of L. Let q ′ be the unique fixed point of f in [0,1)

(which exists, since f ′(1) = m + 1 > 1), and let q be the smallest zero of a(s) in [0,1].

Proposition 3.2. Assume c ∈ R. The functions ψ− and ψ+ from Lemma 3.1 corresponding to (Zx)x≥0 are solutions
to the following differential equation on (t−,+∞) and (t+,+∞), respectively.

1

2
ψ ′′ − cψ ′ = ψ − f ◦ ψ. (3.4)

Moreover, we have the following three cases:

1. If c ≥ c0, then q = q ′, t− = −∞, a(1) = 0, a′(1) = λc, E[Zx] = eλcx for all x > 0.
2. If |c| < c0, then q = q ′, t− ∈ R, a(1) < 0, a′(1) = 2c, P(Zx = ∞) > 0 for all x > 0.
3. If c ≤ −c0, then q = 1, a(1) = 0, a′(1) = λc, E[Zx] = eλcx for all x > 0.

Proof. Let s ∈ (0,1) and define the function ψs(x) = Fx(s) = E[sZx ] for x ≥ 0. By symmetry, Zx has the same law
as the number of individuals N absorbed at the origin in a branching Brownian motion started at x and with drift
−c. By a standard renewal argument (Lemma A.1), the function ψs is therefore a solution of (3.4) on (0,∞) with
ψs(0+) = s. This proves the first statement, in view of the representation of Fx in terms of ψ− and ψ+ given by
Lemma 3.1.

Let s ∈ (0,1) \ {q} and let ψ(s) = ψ−(s) if s > q and ψ(s) = ψ+(s) otherwise. By (3.4),

a′(s) = ψ ′′ ◦ ψ−1(s)

ψ ′ ◦ ψ−1(s)
= 2c + 2

ψ ◦ ψ−1(s) − f ◦ ψ ◦ ψ−1(s)

ψ ′ ◦ ψ−1(s)
= 2c + 2

s − f (s)

a(s)
,
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whence, by convexity,

a′(s)a(s) = 2ca(s) + 2
(
s − f (s)

)
, s ∈ [0,1]. (3.5)

Assume |c| ≥ c0. By Lemma 2.4, E[Zx] = eλcx , hence a(1) = 0 and a′(1) = λc, in particular, a′(1) > 0 for c ≥ c0

and a′(1) < 0 for c ≤ −c0. By convexity, q < 1 for c ≥ c0 and q = 1 for c ≤ −c0. The last statement of Lemma 3.1
now implies that t− = −∞ if c ≥ c0.

Now assume |c| < c0. By Lemma 2.4, E[Zx] = +∞ for all x > 0, hence either a(1) < 0 or a(1) = 0 and a′(1) =
+∞, in particular, q < 1 by convexity. However, if a(1) = 0, then by (3.5), a′(1) = 2c−2m/a′(1), whence the second
case cannot occur. Thus, a(1) < 0 and a′(1) = 2c by (3.5).

It remains to show that q = q ′ if q < 1. Assume q �= q ′. Then a(q ′) �= 0 by the (strict) convexity of a and a′(q ′) =
2c by (3.5). In particular, a′(q ′) ≥ a′(1), which is a contradiction to a being strictly convex. �

4. Proof of Theorem 1.1

We start with the following Abelian-type lemma:

Lemma 4.1. Let X be a random variable concentrated on N0 and let ϕ(s) = E[sX] be its generating function. Assume
that E[X(log+ X)γ ] < ∞ for some γ > 0. Then, as s → 0,

ϕ′(1) − ϕ′(1 − s) = O

((
log

1

s

)−γ )
and ϕ′(1)s + ϕ(1 − s) − 1 = O

(
s

(
log

1

s

)−γ )
.

Proof. Let s0 > 0 be such that the function s �→ s(log 1
s
)γ is increasing on [0, s0]. Let s ∈ (0, s0). Then, with pk =

P(X = k),

(
ϕ′(1) − ϕ′(1 − s)

)(
log

1

s

)γ

=
∞∑

k=1

kpk

(
1 − (1 − s)k−1)(log

1

s

)γ

.

If k ≥ s−1, then (1 − (1 − s)k−1)(log 1
s
)γ ≤ (logk)γ . If �s−1

0 � ≤ k < s−1, then s(log 1
s
)γ < 1

k
(logk)γ and thus

(1 − (1 − s)k−1)(log 1
s
)γ < ks(log 1

s
)γ ≤ (logk)γ . Hence,

∞∑
k=�s−1

0 �
kpk

(
1 − (1 − s)k−1)(log

1

s

)γ

≤
∞∑

k=�s−1
0 �

pkk(logk)γ ≤ E
[
X

(
log+ X

)γ ]
.

Furthermore, we have for s ∈ (0,1),

�s−1
0 �∑

k=1

kpk

(
1 − (1 − s)k−1)(log

1

s

)γ

≤
(

s

(
log

1

s

)γ ) �s−1
0 �∑

k=1

k2pk ≤ C

for some C > 0. Collecting these results, we have, for every s ∈ (0,1),

(
ϕ′(1) − ϕ′(1 − s)

)(
log

1

s

)γ

≤ C + E
[
X

(
log+ X

)γ ]
< ∞,

by hypothesis. This yields the first equality. Setting g(s) = ϕ′(1)s + ϕ(1 − s) − 1, we note that g(0) = 0 and

g′(s) = ϕ′(1) − ϕ′(1 − s) = O

((
log

1

s

)−γ )
,
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by the first equality. Since (log 1
s
)−γ is slowly varying,

g(s) =
∫ s

0
g′(r)dr = O

(
s

(
log

1

s

)−γ )
,

by standard theorems on the integration of slowly varying functions (see e.g. [11], Section VIII.9, Theorem 1). �

Proof of Theorem 1.1. We have c = c0 by hypothesis. Let ψ− be the travelling wave from Proposition 3.2, which is
defined on R, since t− = −∞. Let φ(x) = 1 − ψ−(−x), such that φ(−∞) = 1 − q , φ(+∞) = 0 and

1

2
φ′′(x) + c0φ

′(x) = f
(
1 − φ(x)

) − (
1 − φ(x)

)
, (4.1)

by (3.4). Furthermore, a(1 − s) = φ′(φ−1(s)) and Fx(1 − s) = 1 − φ(φ−1(s) − x).
Under the hypothesis E[L(logL)2+ε] < ∞, it is known [20] that there exists K ∈ (0,∞), such that φ(x) ∼

Kxe−c0x as x → ∞. Since a(1) = 0 and a′(1) = c0 by Proposition 3.2, this entails that φ′(x) = a(1 − φ(x)) ∼
−c0Kxe−c0x , as x → ∞.

Set ϕ1 = φ′ and ϕ2 = φ. By (4.1),

d

dx

(
ϕ1(x)

ϕ2(x)

)
=

(
φ′′(x)

φ′(x)

)
=

(−2c0φ
′(x) + 2[f (1 − φ(x)) − (1 − φ(x))]

φ′(x)

)
.

Setting g(s) = c2
0s + 2[f (1 − s) − (1 − s)] = 2[f ′(1)s + f (1 − s) − 1], this gives

d

dx

(
ϕ1(x)

ϕ2(x)

)
= M

(
ϕ1(x)

ϕ2(x)

)
+

(
g(ϕ2(x))

0

)
with M =

(−2c0 −c2
0

1 0

)
. (4.2)

The Jordan decomposition of M is given by

J = A−1MA =
(−c0 1

0 −c0

)
, A =

(−c0 1 − c0
1 1

)
. (4.3)

Setting
(
ϕ1
ϕ2

)
= A

(
ξ1
ξ2

)
, we get with ξ = (

ξ1
ξ2

)
:

ξ ′(x) = Jξ(x) +
(−g(φ(x))

g(φ(x))

)
,

which, in integrated form, becomes

ξ(x) = exJ ξ(0) + exJ

∫ x

0
e−yJ

(−g(φ(y))

g(φ(y))

)
dy. (4.4)

Note that

exJ =
(

e−c0x xe−c0x

0 e−c0x

)
. (4.5)

With the above asymptotic of φ, we have g(φ(x)) = O(e−c0x/x1+ε), as x → ∞, by Lemma 4.1 and the hypothesis
on L. Eqs (4.4) and (4.5) now imply that

ξ2(x) ∼ e−c0x

(
ξ2(0) +

∫ ∞

0
ec0yg(φ(y))dy

)
,

and

(ξ1 + ξ2)(x) ∼ xe−c0x

(
ξ2(0) +

∫ ∞

0
ec0yg(φ(y))dy

)
,
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and since φ = ξ1 + ξ2 and ξ2 = φ′ + c0φ, this gives(
φ′ + c0φ

)
(x) ∼ φ(x)/x ∼ Ke−c0x. (4.6)

With this information, one can now show by elementary calculus (see Section A.2), that

a′′(1 − s) ∼ c0

s(log 1/s)2
and (4.7)

F ′′
x (1 − s) ∼ c0xe−c0x

s(log 1/s)2
, as s → 0. (4.8)

By standard Tauberian theorems ([11], Section XIII.5, Theorem 5), (4.7) implies that

U(n) =
n∑

k=1

k2qk ∼ c0
n

(logn)2
, as n → ∞.

By integration by parts, this entails that

∞∑
k=n

qk =
∫ ∞

n−
x−2U(dx) ∼ c0

(
2
∫ ∞

n

1

x2(logx)2
dx − 1

n(logn)2

)
.

But the last integral is equivalent to 1/(n(logn)2) ([11], Section VIII.9, Theorem 1), which proves the first part of the
theorem. The second part is proven analogously, using (4.8) instead. �

5. Preliminaries for the proof of Theorem 1.2

In light of Proposition 2.1, one may suggest that under suitable conditions on L one may extend the proof of The-
orem 1.1 to the subcritical case c > c0 and prove that as n → ∞, P(Zx > n) ∼ C′n−d for some constant C′. In
order to apply Tauberian theorems, one would then have to establish asymptotics for the (�d� + 1)th derivatives of
a(s) and Fx(s) as s → 1. In trying to do this, one quickly sees that the known asymptotics for the travelling wave
(1 − ψ(x) ∼ const × e−λcx as x → −∞, see [20]) are not precise enough for this method to work. However, instead
of relying on Tauberian theorems, one can analyse the behaviour of the holomorphic function a(s) near its singular
point 1. This method is widely used in combinatorics at least since the seminal paper by Flajolet and Odlyzko [12]
and is the basis for our proof of Theorem 1.2. Not only does it work in both the critical and subcritical cases, it even
yields asymptotics for the density instead of the tail only.

In the rest of this section, we will define our notation for the complex analytic part of the proof and review some
necessary general complex analytic results.

5.1. Notation

In the course of the paper, we will work in the spaces C and C
2, endowed with the Euclidean topology. An open

connected set is called a region, a simply connected region containing a point z0 is also called a neighbourhood
of z0. The closure of a set D is denoted by D, its border by ∂D. The disk of radius r around z0 is denoted by
D(z0, r) = {z ∈ C: |z − z0| < r}, its closure and border by D(z0, r) and ∂D(z0, r), respectively. We further use the
abbreviation D = D(0,1) for the unit disk. For 0 ≤ ϕ ≤ π, r > 0 and x ∈ R, we define

G(ϕ, r) = {
z ∈ D(1, r) \ {1}: ∣∣arg(1 − z)

∣∣ < π − ϕ
}
, S+(ϕ, x) = [x,∞) × (−ϕ,ϕ),

Δ(ϕ, r) = {
z ∈ D(0,1 + r) \ {1}: ∣∣arg(1 − z)

∣∣ < π − ϕ
}
, S−(ϕ, x) = (−∞, x] × (−ϕ,ϕ),

H(ϕ, r) = {
z ∈ D(0, r) \ {0}: | arg z| < ϕ

}
.

Note that H(ϕ, r) = 1 − G(π − ϕ, r). Here and during the rest of the paper, arg(z) and log(z) are the principal values
of argument and logarithm, respectively.
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Let G be a region in C, z0 ∈ G and f and g analytic functions in G with g(z) �= 0 for all z ∈ G. We write

f (z) = o
(
g(z)

) ⇐⇒ ∀ε > 0 ∃δ > 0 ∀z ∈ G ∩ D(z0, δ):
∣∣f (z)

∣∣ ≤ ε
∣∣g(z)

∣∣,
f (z) = O

(
g(z)

) ⇐⇒ ∃C ≥ 0 ∃δ > 0 ∀z ∈ G ∩ D(z0, δ):
∣∣f (z)

∣∣ ≤ C
∣∣g(z)

∣∣,
f (z) = Õ

(
g(z)

) ⇐⇒ ∃K ∈ C: f (z) = Kg(z) + o
(
g(z)

)
,

f (z) ∼ g(z) ⇐⇒ f (z) = g(z) + o
(
g(z)

)
,

specifying that the relations hold as z → z0.

5.2. Complex differential equations

In this section, we review some basics about complex differential equations. We start with the fundamental existence
and uniqueness theorem ([5], p. 1, [15], Theorem 2.2.1, p. 45, or [18], Section 12.1, p. 281).

Fact 5.1. Let G be a region in C
2 and (w0, z0) a point in G. Let f :G → C be analytic in G, i.e. f is continuous and

both partial derivatives exist and are continuous. Then there exists a neighbourhood U of z0 and a unique analytic
function w :U → C, such that

1. w(z0) = w0,
2. (w(z), z) ∈ G for all z ∈ U and
3. w′(z) = f (w(z), z) for all z ∈ U .

In other words, the differential equation w′ = f (w, z) with initial condition w(z0) = w0 has exactly one solution w(z)

which is analytic at z0.

The following standard result is a special case of a theorem by Painlevé ([5], p. 11, [15], Theorem 3.2.1, p. 82, or
[18], Section 12.3, p. 286f).

Fact 5.2. Let H be a region in C and w(z) analytic in H . Let G be a region in C
2, such that (w(z), z) ∈ G for each

z ∈ H and suppose that there exists an analytic function f :G → C, such that w′(z) = f (w(z), z) for each z ∈ H . Let
z0 ∈ ∂H . Suppose that w(z) is continuous at z0 and that (w(z0), z0) ∈ G. Then z0 is a regular point of w(z), i.e. w(z)

admits an analytic extension at z0.

Let [z1, . . . , zk]n denote a power series of the variables z1, . . . , zk , converging in a neighbourhood of (0, . . . ,0) and
which contains only terms of order n or higher. The complex differential equation

zw′ = λw + pz + [w,z]2, λ,p ∈ C, (5.1)

was introduced in 1856 by Briot and Bouquet [9] as an example of a complex differential equation admitting analytic
solutions at a singular point of the equation. More precisely, they obtained ([15], Theorem 11.1.1, p. 402):

Fact 5.3. If λ is not a positive integer, then there exists a unique function w(z) which is analytic in a neighbourhood
of z = 0 and which satisfies (5.1). Furthermore, w(0) = 0.

The singular solutions to this equation were later investigated by Poincaré, Picard and others (for a full bibliography,
see [17]). We are going to need the following result (see [17], Paragraph III.9.2◦, or [15], Theorem 11.1.3, p. 405, but
note that the latter reference is without proof and the statement is slightly incomplete).

Fact 5.4. Assume λ > 0. There exists a function ψ(z,u) = ∑
jk≥0 pjkz

juk , converging in a neighbourhood of (0,0)

and such that p00 = 0 and p01 = 1, such that the general solution of (5.1) which vanishes at the origin is w = ψ(z,u),
with

− u = Czλ, if λ /∈ N,
− u = zλ(C + K log z), if λ ∈ N.

Here, C ∈ C is an arbitrary constant and K ∈ C is a fixed constant depending only on the right-hand side of (5.1).
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Remark 5.5. The above statement is slightly imprecise, in that the term solution is not defined, i.e. what a priori
knowledge of w(z) (regarding its domain of analyticity, smoothness, behaviour at z = 0, . . . ) is required in order to
guarantee that it admits the representation stated in Fact 5.4? Inspecting the proof (as in [17], for example) shows
that it is actually enough to know that w(z) satisfies (5.1) on an interval (0, ε) of the real line and that w(0+) = 0.
We briefly explain why:

In order to prove Fact 5.4, one shows that there exists a function ψ of the form stated above, such that when
changing variables by w = ψ(z,u), the function u(z) formally satisfies one of the equations

zu′ = λu or zu′ = λu + Kzλ,

according to whether λ /∈ N or λ ∈ N.
Now suppose that w(z) satisfies the above conditions. By the implicit function theorem ([16], Theorem 2.1.2), we

can invert ψ to obtain a function ϕ(w, z) = w +qz+[w,z]2, q ∈ C, such that ψ(z,ϕ(w, z)) = w in a neighbourhood
of (0,0). We may thus define u(z) = ϕ(w(z), z) for all z ∈ (0, ε1) for some ε1 > 0. Moreover, u(z) now truly satisfies
the above equations on (0, ε1) and u(0+) = 0. Standard theory of ordinary differential equations on the real line now
yields that u is necessarily of the form stated in Fact 5.4.

We further remark that since u(z) is analytic in the slit plane C \ (−∞,0] and goes to 0 as z → 0 in C \ (−∞,0],
there exists an r > 0, such that (z, u(z)) is in the domain of convergence of ψ(z,u) for every z ∈ H(π, r). Hence,
every solution w(z) can be analytically extended to H(π, r).

5.3. Singularity analysis

We now summarise results about the singularity analysis of generating functions. The basic references are [12] and
[13], Chapter VI. The results are of two types: those that establish an asymptotic for the coefficients of functions that
are explicitly known, and those that estimate the coefficients of functions which are dominated by another function.
We start with the results of the first type:

Fact 5.6. Let d ∈ (1,∞) \ N, k ∈ N, γ ∈ Z \ {0}, δ ∈ Z and the functions f1, f2 defined by

f1(z) = (1 − z)d and f2(z) = (1 − z)k
(

log
1

1 − z

)γ (
log log

1

1 − z

)δ

for z ∈ C\ [1,+∞). Let (p
(i)
n ) be the coefficients of the Taylor expansion of fi around the origin, i = 1,2. Then (p

(i)
n )

satisfy the following asymptotics as n → ∞:

p(1)
n ∼ K1

nd+1
and p(2)

n ∼ K2(logn)γ−1(log logn)δ

nk+1

for some non-zero constants K1 = K1(d),K2 = K2(k, γ, δ). We have K2(1,−1,0) = 1.

Proof. For f1, this is Proposition 1 from [12]. For f2 this is Remark 3 at the end of Chapter 3 in the same paper. Note
that the additional factors 1

z
do not change the nature of the singularities, since 1

z
is analytic at 1 (see the footnote on

p. 385 in [13]). The last statement follows from Remark 3 as well. �

The results of the second type are contained in the next theorem. It is identical to Corollary 4 in [12]. Note that a
potential difficulty here is that it requires analytical extension outside the unit disk.

Fact 5.7. Let 0 < ϕ < π/2, r > 0 and f (z) be analytic in Δ(ϕ, r). Assume that as z → 1 in Δ(ϕ, r),

f (z) = o

(
(1 − z)αL

(
1

1 − z

))
, where L(u) = (logu)γ (log logu)δ, α, γ, δ ∈ R.
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Then the coefficients (pn) of the Taylor expansion of f around 0 satisfy

pn = o

(
L(n)

nα+1

)
, as n → ∞.

5.4. An equation for continuous-time Galton–Watson processes

In this section, let (Yt )t≥0 be a homogeneous continuous-time Galton–Watson process starting at 1. Let a(s) be its
infinitesimal generating function and Ft(s) = E[sYt ]. Assume a(1) = 0 and a′(1) = λ ∈ (0,∞), such that a(s) = 0
has a unique root q in [0,1).

The following proposition establishes a relation between the infinitesimal generating function of a Galton–Watson
process and its generating function at time t . For real s, the formulae stated in the proposition are well known, but we
will need to use them for complex s, which is why we have to include some (complicated) hypotheses to be sure that
the functions and integrals appearing in the formulae are well defined.

Proposition 5.8. Suppose that a and Ft have analytic extensions to some regions Da and DF . Let Za = {s ∈
Da : a(s) = 0}. Let there be simply connected regions G ⊂ Da \ Za and D ⊂ G ∩ DF with Ft (D) ⊂ G and
D ∩ (0,1) �= ∅. Then the following equations hold for all s ∈ D:∫ Ft (s)

s

1

a(r)
dr = t (5.2)

and

1 − Ft(s) = eλt (1 − s) exp

(
−

∫ Ft (s)

s

f ∗(r)dr

)
, (5.3)

where f ∗(s) is defined for all s ∈ Da \ Za as

f ∗(s) = λ

a(s)
+ 1

1 − s
, (5.4)

and the integrals may be evaluated along any path from s to Ft (s) in G.

Proof. For s ∈ (0,1) \ {q}, equation (5.2) follows readily from Kolmogorov’s backward equation (3.3), when the
integral is interpreted as the usual Riemann integral ([4], p. 106). Now note that by definition of G, both 1

a(s)
and f ∗

are analytic in the simply connected region G and therefore possess antiderivatives g and h in G. Thus, the functions

s �→
∫ Ft (s)

s

1

a(r)
dr = g

(
Ft(s)

) − g(s) and s �→
∫ Ft (s)

s

f ∗(r)dr = h
(
Ft(s)

) − h(s)

are analytic in D. By the analytic continuation principle, (5.2) then holds for every s ∈ D, since D ∩ (0,1) �= ∅ by
hypothesis. This proves the first equation. For the second equation, note that − log(1 − s) is an antiderivative of 1

1−s
in G, whence the right-hand side of (5.3) equals

eλt (1 − s) exp

(
log

(
1 − Ft (s)

) − log(1 − s) − λ

∫ Ft (s)

s

1

a(r)
dr

)
= 1 − Ft (s)

for all s ∈ D, by (5.2). This gives (5.3). �

Corollary 5.9. If 1 is a regular point of a(s), then it is a regular point for Ft (s) for every t ≥ 0.

Proof. Define G = {s ∈ D: Re s > q}. Then G ∩ Za = ∅, since q is the only zero of a in D (every probability
generating function g with g′(1) > 1 has exactly one fixed point q in D; this can easily be seen by applying Schwarz’s
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lemma to τ−1 ◦ g ◦ τ , where τ is the Möbius transformation of the unit disk that maps 0 to q). Let s1 ∈ (q,1) be such
that Ft(s) ∈ G for every s ∈ H = {s ∈ D: Re s > s1}. We can then apply Proposition 5.8 to conclude that (5.3) holds
for every s ∈ H .

Since a(s) is analytic in a neighbourhood U of 1 by hypothesis, it is easy to show that f ∗ is analytic in U as well.
Thus, f ∗ has an antiderivative F ∗ in H ∪ U . We define the function g(s) = (1 − s) exp(F ∗(s)) on H ∪ U . Since
g′(1) = − exp(F ∗(1)) �= 0, there exists an inverse g−1 of g in a neighbourhood U1 of g(1) = 0. Let U2 ⊂ U be a
neighbourhood of 1, such that eλtg(s) ∈ U1 for every s ∈ U2. Define the analytic function F̃t (s) = g−1(eλtg(s)) for
s ∈ U2. Then by (5.3), we have Ft(s) = F̃t (s) for every s ∈ H ∩ U2, hence F̃t is an analytic extension of Ft at 1. �

Corollary 5.10. Suppose that a(s) has an analytic extension to G(ϕ0, r0) for some 0 < ϕ0 < π and r0 > 0. Suppose
further that there exist c ∈ R, γ > 1, such that a(1 − s) = −λs + λcs/ log s + O(s/| log s|γ ) as s → 0. Then for
every ϕ0 < ϕ < π there exists r > 0, such that Ft (s) can be analytically extended to G(ϕ, r), mapping G(ϕ, r) into
G(ϕ0, r0).

Proof. Recall that λ > 0. By hypothesis, we can then assume that a(s) �= 0 in G(ϕ0, r0) by choosing r0 small enough.
Then λ/a has an antiderivative A on G(ϕ0, r0). Define B(s) = A(1 − s) for s ∈ H(π − ϕ0, r0), such that

B ′(s) = 1

s(1 − c/ log s + O(| log s|−γ ))
= 1

s
+ c

s log s
+ O

(
1

s| log s|−min(γ,2)

)
.

We can therefore apply Lemma A.7 to B and deduce that there exist ϕ1 ∈ (ϕ0, ϕ) and r1, r ∈ (0, r0), such that A is
injective on G(ϕ1, r1) and such that A(s) + λt ∈ A(G(ϕ1, r1)) for every s ∈ G(ϕ, r). Hence, F̃t (s) = A−1(A(s) + λt)

is defined and analytic on G(ϕ, r). By (5.2), F̃t (s) = Ft(s) on G(ϕ, r) ∩ D, hence F̃t is an analytic extension of Ft ,
mapping G(ϕ, r) into G(ϕ1, r1) ⊂ G(ϕ0, r0) by definition. �

6. Proof of Theorem 1.2

We turn back to branching Brownian motion and to our Galton–Watson process Z = (Zx)x≥0 of the number of
individuals absorbed at the point x. Throughout this section, we place ourselves under the hypotheses of Theorem 1.2,
i.e. we assume that c ≥ c0 = √

2m and that the radius of convergence of f (s) = E[sL] is greater than 1. The equation

λ2 − 2cλ+ c2
0 = 0 then has the solutions λc = c −

√
c2 − c2

0 and λc = c +
√

c2 − c2
0, hence λc = λc = c0 if c = c0 and

λc < c0 < λc otherwise. The ratio d = λc/λc is therefore greater than or equal to one, according to whether c > c0 or
c = c0, respectively. Recall further that δ ∈ N denotes the span of L − 1.

Let a(s) = α(
∑

k≥0 pks
k − s) be the infinitesimal generating function of Z and let Fx(s) = E[sZx ]. We recall the

equation (3.5) from Section 3: For s ∈ [0,1],
a′(s)a(s) = 2ca(s) + 2

(
s − f (s)

)
. (6.1)

By the analytic continuation principle, this equation is satisfied on the domain of analyticity of a(s), in particular,
on D.

We now give a quick overview of the proof. Starting point is the equation (6.1). We are going to see that this
equation is closely related to the Briot–Bouquet equation (5.1) with λ = d . The representation of the solution to
this equation given by Fact 5.4 will therefore enable us to derive asymptotics for a(s) near its singular point s = 1
(Theorem 6.4). Via the results in Section 5.4, we will be able to transfer these to the functions Fx(s) (Corollary 6.6).
Finally, the theorems of Flajolet and Odlyzko in Section 5.3 yield the asymptotics for qn and P(Zx = n).

More specifically, we will see that the main singular term in the expansion of a(1 − s) or Fx(1 − s) near s = 0 is
sd , if d /∈ N and sd log s, if d ∈ N. At first sight, this dichotomy might seem strange, but it becomes evident if one
remembers that we expect the coefficients of Fx(s) (i.e. the probabilities P(Zx = n), assume δ = 1) to behave like
1/nd+1, if d > 1 (see Proposition 2.1). In light of Fact 5.6, a logarithmic factor must therefore appear if d is a natural
number, otherwise Fx(s) would be analytic at 1, in which case its coefficients would decrease at least exponentially.

We start by determining the singular points of a(s) and Fx(s) on the boundary of the unit disk, which is the content
of the next three lemmas.
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Lemma 6.1. Let X be a random variable with law (pk)k∈N0 and let x > 0. Then the spans of X − 1 and of Zx − 1
are equal to δ.

Proof. This follows from the fact that the BBM starts with one individual and the number of individuals increases by
l − 1 when an individual gives birth to l children. �

Lemma 6.2.
If δ = 1, then a(s) and (Fx(s))x>0 are analytic at every s0 ∈ ∂D \ {1}. If δ ≥ 2, then there exist a function h(s) and

a family of functions (hx(s))x>0, all analytic on D, such that

a(s) = sh
(
sδ

)
and Fx(s) = shx

(
sδ

)
for every s ∈ D. Furthermore, h and (hx)x>0 are analytic at every s0 ∈ ∂D \ {1}.

Proof. Assume first that δ ≥ 2. Define

h(s) = α

(∑
n

p1+δns
n − 1

)
and hx(s) =

∑
n

P (Zx = 1 + δn)sn.

By Lemma 6.1, pk+δn = P(Zx = k + δn) = 0 for every k ∈ {2, . . . , δ} and n ∈ Z, whence a(s) = sh(sδ) and Fx(s) =
shx(s

δ) for every s ∈ D.
We now claim that a and Fx are analytic at every s0 ∈ ∂D with sδ

0 �= 1. Note that if δ ≥ 2, this implies that h and hx

are analytic at every s0 ∈ ∂D \ {1}, since the function s �→ sδ has an analytic inverse in a neighbourhood of any s �= 0.
First note that by [11], Lemma XV.2.3, p. 475, we have |∑n pns

n
0 | < 1 for every s0 ∈ ∂D, such that sδ

0 �= 1, whence
a(s0) �= 0. Now write the differential equation (6.1) in the form

a′ = 2ca + 2(s − f (s))

a
=: g(a, s).

Since the radius of convergence of f is greater than 1 by hypothesis, g is analytic at (a(s0), s0). Furthermore, a is
continuous at s0, since

∑
n pns

n converges absolutely for every s ∈ D. Fact 5.2 now shows that a is analytic at s0.
It remains to show that Fx is analytic at s0. Kolmogorov’s forward and backward equations (3.2) and (3.3) imply

that a(s)F ′
x(s) = a(Fx(s)) on [0,1], and the analytic continuation principle implies that this holds on D. Now, let

s0 ∈ ∂D, such that sδ
0 �= 1. Then we have just shown that a is analytic and non-zero at s0. Furthermore, |Fx(s0)| < 1,

by the above stated lemma in [11] and Lemma 6.1. Thus, the function f (w, s) = a(w)/a(s) is analytic at (Fx(s0), s0),
hence we can apply Fact 5.2 again to conclude that Fx is analytic at s0 as well. �

The next lemma ensures that we can ignore certain degenerate cases appearing in the course of the analysis of (3.5).
It is the analytic interpretation of the probabilistic results in Section 2.

Lemma 6.3. 1 is a singular point of a(s). If c = c0, then a′′(1) = +∞.

Proof. If c = c0, the second assertion follows from Theorem 1.1 or from Neveu’s result that E[Zx log+ Zx] = ∞
for x > 0 (see the remark before Theorem 1.1). This implies that 1 is a singular point of a(s). If c > c0, Proposi-
tion 2.1 implies that E[sZx ] = ∞ for every s > 1, whence 1 is a singular point of the generating function Fx(s) by
Pringsheim’s theorem ([13], Theorem IV.6, p. 240). By Corollary 5.9, it follows that 1 is a singular point of a(s) as
well. �

The next theorem is the core of the proof of Theorem 1.2.
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Theorem 6.4. Under the assumptions of Theorem 1.2, for every ϕ ∈ (0,π) there exists r > 0, such that a(s) possesses
an analytical extension (denoted by a(s) as well) to G(ϕ, r). Moreover, as 1 − s → 1 in G(ϕ, r), the following holds.

− If d = 1, then

a(1 − s) = −c0s + c0
s

log 1/s
− c0s

log log 1/s

(log 1/s)2
+ Õ

(
s

(log 1/s)2

)
. (6.2)

− If d > 1, then there is a K = K(c,f ) ∈ C \ {0} and a polynomial P(s) = ∑�d�
n=2 cns

n, such that

if d /∈ N: a(1 − s) = −λcs + P(s) + Ksd + o
(
sd

)
, (6.3)

if d ∈ N: a(1 − s) = −λcs + P(s) + Ksd log s + o
(
sd

)
. (6.4)

Proof of Theorem 6.4. We set b(s) = a(1 − s). By (6.1),

−b′(s)b(s) = 2cb(s) + 2
(
1 − s − f (1 − s)

)
on D(1,1). (6.5)

Since f is analytic at 1 by hypothesis, there exists 0 < ε1 < 1 − q and a function g analytic on D(0, ε1) with g(0) =
g′(0) = 0, such that f (1 − s) = 1 − (m + 1)s + g(s) for s ∈ D(0, ε1).

As a first step, we analyse (6.5) for real non-negative s. Since ε1 < 1 − q , b(s) < 0 on (0, ε1), whence we can
divide both sides by b(s) to obtain

db

ds
= −2cb − c2

0s + 2g(s)

b
on (0, ε1). (6.6)

Introduce the parameter t (s) = ∫ ε1
s

dr
−b(r)

, s ∈ (0, ε1], such that t (ε1) = 0, t (0+) = +∞ and t (s) is strictly decreas-
ing on (0, ε1]. There exists then an inverse s(t) on [0,∞), which satisfies s′(t) = b(s(t)). Hence, we have

db

dt
= db

ds

ds

dt
= −2cb(t) − c2

0s(t) + 2g
(
s(t)

)
on (0,∞).

In matrix form, this becomes

d

dt

(
b

s

)
= M

(
b

s

)
+

(
2g(s)

0

)
, M =

(−2c −c2
0

1 0

)
(6.7)

for t ∈ (0,∞). Note that this extends (4.2) to the subcritical case. This time, the Jordan decomposition of M is given
by

A−1MA =
(−λc 0

0 −λc

)
, A =

(−λc −λc

1 1

)
, if c > c0, (6.8)

and by (4.3), if c = c0. Setting(
b

s

)
= A

(
B

S

)
, (6.9)

transforms (6.7) into

dB

dt
= −λcB + [B,S]2,

dS

dt
= −λcS + [B,S]2, if c > c0, (6.10)

dB

dt
= −c0B + S + [B,S]2,

dS

dt
= −c0S + [B,S]2, if c = c0 (6.11)
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for t ∈ (0,∞). Furthermore, by (6.9), we have

s = B + S, (6.12)

S =
{

(λc − λc)
−1(b + λcs), if d > 1,

b + c0s, if d = 1,
(6.13)

B =
{

(λc − λc)
−1(b + λcs), if d > 1,

−b + (1 − c0)s, if d = 1.
(6.14)

From now on, let ε2, ε3, . . . be positive numbers that are as small as necessary. By the strict convexity of b and the
fact that b′(0) = −λc by Lemma 2.4, equation (6.13) implies that S is a strictly convex non-negative function of s on
[0, ε2). This implies that the inverse s = s(S) exists and is non-negative and strictly concave on [0, ε3). It follows that
t (S) = t (s(S)) exists on [0, ε4). Equations (6.10) and (6.11) then yield for S ∈ (0, ε4),

dB

dS
= dB + [B,S]2

S + [B,S]2
, if c > c0, (6.15)

dB

dS
= B − c−1

0 S + [B,S]2

S + [B,S]2
, if c = c0. (6.16)

By (6.12) and the fact that s(S) is strictly concave, B is a strictly concave function of S as well, hence strictly
monotone on (0, ε5). We claim that B(S)2 = o(S) as S → 0. For d > 1, one checks by (6.13) that S(s) ∼ s, as s → 0,
whence B(S) = o(S), as S → 0, by (6.12). If d = 1, then b′(0) = −c0 by Lemma 2.4 and b′′(0) = +∞ by Lemma 6.3.
Equation (6.13) then implies that S(s)/s2 → +∞ as s → 0, whence s(S) = o(

√
S). The claim now follows by (6.12).

Proposition A.4 now tells us that there exists a function h(z) = [z]2, such that the function s(S) = S −h(B(S)) has
an inverse S(s) on (0, ε6) and b(s) = B(S(s)) satisfies the Briot–Bouquet equation

sb′ =
{

db + [b, s]2, if d > 1,

b − c−1
0 s + [b, s]2, if d = 1 (6.17)

on (0, ε6). By Fact 5.4 and Remark 5.5, there exists then a function ψ(z,u) = u + rz + [z,u]2, r ∈ C, such that
b(s) = ψ(s, u(s)), where

u(z) = Czd, if d /∈ N and u(z) = Czd log z, if d ∈ N

for some constant C = C(c,f ) ∈ C (the form of u in the case d ∈ N can be obtained from the one in Fact 5.4 by
changing ψ , C and K). Moreover, comparing the coefficient of s on both sides of (6.17), we get, if d > 1, r = dr ,
whence r = 0 and if d = 1: r + C = r − c−1

0 , whence C = −c−1
0 .

Assume now d > 1. Then b = u(s) + [s, u(s)]2. Recall that B = b and S = s + h(b). By (6.12),

s = B + S = b + s + h(b) = s + u(s) + [
s, u(s)

]
2,

such that s′(s) = 1 + o(1) and s(s) = s + [s]2 + o(sγ ), as s → 0, where γ = (d + �d�)/2, if d /∈ N and γ = d − 1/2,
if d ∈ N. By Lemmas A.6 and A.8, for every ϕ0 ∈ (0,π) there exists r0 > 0, such that the inverse s(s) exists and is
analytic on H(ϕ0, r0) and satisfies

s(s) = s + [s]2 + o
(
sγ

)
, as s → 0.

This entails that

u(s) = Csd = C
(
s + o(s)

)d = Csd + o
(
sd

)
, if d /∈ N,

u(s) = Csd log s = C
(
s + o

(
s3/2))d log

(
s + o(s)

) = Csd log s + o
(
sd

)
, if d ∈ N \ {1},

sn = [s]2 + o
(
sγ+1) + o

(
sγ 2) = [s]2 + o

(
sd

)
for all n ≥ 2.
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It follows that

b(s) = b
(
s(s)

) = u(s) + [s]2 + o
(
sd

)
, as s → 0.

We finally get by (6.9),

b = −λcB − λcS = −λcs + (λc − λc)b = −λcs + (λc − λc)u(s) + [s]2 + o
(
sd

)
,

which proves (6.3) and (6.4).
If d = 1, recall that u(z) = c−1

0 z log 1
z

and b = u(s) + rs + [s, u(s)]2 for some r ∈ C. By (6.12),

s = B + S = b + s + h(b) = u(s) + (r + 1)s + [
s, u(s)

]
2,

such that s′(s) = c−1
0 log( 1

s
) + O(1) and s(s) = c−1

0 s log 1
s

+ (r + 1)s + o(s). Lemma A.6 now implies that for every
ϕ0 ∈ (0,π) there exists r0 > 0, such that the inverse s(s) exists and is analytic on H(ϕ0, r0). Now, by (6.9),

b = −c0s + S = −c0s + s + h(b) = −c0s + s + O
(
s3/2).

Lemma A.9 now yields (6.2). �

Remark 6.5. The reason why we cannot explicitly determine the constant K in Theorem 6.4 is that we are analysing
(3.5) only locally around the point 1. Since the solution of (3.5) with boundary conditions a(q) = a(1) = 0 is unique
(this follows from the uniqueness of the travelling wave solutions to the FKPP equation), a global analysis of this
equation should be able to exhibit the value of K . But it is probably easier to refine the probabilistic arguments of
Section 2, which already give a lower bound that can be easily made explicit.

The asymptotics established in Theorem 6.4 for the infinitesimal generating function can now be readily transferred
to the generating functions Fx(s).

Corollary 6.6. Under the assumptions of Theorem 1.2, for every x > 0 and ϕ ∈ (0,π) there exists r > 0, such that
Fx(s) = E[sZx ] can be analytically extended to G(ϕ, r). Furthermore, the following holds as 1 − s → 1 in G(ϕ, r).

− If d = 1, then

Fx(1 − s) = 1 − ec0xs + c0xec0x

(
s

log 1/s
− s log log 1/s

(log 1/s)2

)
+ Õ

(
s

(log 1/s)2

)
. (6.18)

− If d > 1, then there is a polynomial Px(s) = ∑�d�
n=2 cns

n, such that

if d /∈ N: Fx(1 − s) = 1 − eλcxs + Px(s) + Kxdsd + o
(
sd

)
, (6.19)

if d ∈ N: Fx(1 − s) = 1 − eλcxs + Px(s) + Kxs
d log s + o

(
sd

)
, (6.20)

where Kx = K(eλcx − eλcx)/(λc − λc), with K being the constant from Theorem 6.4.

Proof. Let 0 < ϕ0 < ϕ. By Theorem 6.4, there exists r0 > 0, such that a(s) can be analytically extended to G(ϕ0, r0)

and satisfies the hypothesis of Corollary 5.10. It follows that there exists r > 0, such that Fx(s) can be analytically
extended to G(ϕ, r) and maps G(ϕ, r) into G(ϕ0, r0). Hence, the functions

w(s) = 1 − Fx(1 − s) and I (s) =
∫ w(s)

s

f ∗(1 − r)dr,

where f ∗(s) is defined as in (5.4), are analytic in H(π−ϕ, r). In what follows, we always assume that s ∈ H(π−ϕ, r).
Appearance of the symbols ∼,O, Õ,o means that we let s go to 0 in H(π − ϕ, r).
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First of all, we note that by Proposition 5.8, we have

w(s) = seλcx exp
(
I (s)

) = seλcx

(
1 + I (s) +

∞∑
k=2

I (s)k

k!

)
. (6.21)

Now assume d > 1. By Theorem 6.4, a(1 − s) = −λcs +[s]2 +u(s)+ o(sd), where u(s) = Ksd or u(s) = Ksd log s,
according to whether d /∈ N or d ∈ N, respectively. It follows that

f ∗(1 − s) = λc

a(1 − s)
+ 1

s
= −1

s

(
1 − [s]1 − u(s)

λcs
+ o

(
sd−1))−1

+ 1

s

= [s]0 − u(s)

λcs2
+ o

(
sd−2).

Now,
∫ w(s)

s
o(rd−2)dr = o(sd−1), since w(s) ∼ seλcx by Lemma 2.4. Thus,

I (s) =
∫ w(s)

s

f ∗(1 − r)dr = [
w(s), s

]
1 −

∫ w(s)

s

u(r)

λcr2
dr + o

(
sd−1). (6.22)

Since
∫ w(s)

s
r−2u(r)dr = O(sd−1 log s), equations (6.21) and (6.22) now give

w(s) = seλcx

(
1 + [

w(s), s
]

1 −
∫ w(s)

s

u(r)

λcr2
dr + o

(
sd−1)). (6.23)

If d ≥ 2, we deduce that w(s) = seλcx + o(s3/2). Straightforward calculus now shows that∫ w(s)

s

u(r)

λcr2
dr = Kx

eλcx

u(s)

s
+ [

w(s), s
]

1 + o
(
sd−1), (6.24)

and (6.23) and (6.24) now yield

w(s) = seλcx + [
w(s), s

]
2 − Kxu(s) + o

(
sd

)
.

Repeated application of this equation shows that w(s) = seλcx + [s]2 − Kxu(s) + o(sd), which yields (6.19) and
(6.20).

In the critical case d = 1, Theorem 6.4 tells us that

f ∗(1 − s) = 1

s

(
− 1

log 1/s
+ log log 1/s

(log 1/s)2
+ Õ

(
1

(log 1/s)2

))
. (6.25)

Write λ = λc = c0. For our first approximation of w(s), we note that

I (s) ∼ −
∫ seλx

s

1

r log 1/r
dr ∼ − 1

log 1/s

∫ seλx

s

1

r
dr = − λx

log 1/s
,

hence, by (6.21),

w(s) = seλx

(
1 − λx

log 1/s
+ o

(
1

log 1/s

))
. (6.26)

To obtain a finer approximation, we decompose I (s) into

I (s) =
∫ seλx

s

f ∗(1 − r)dr +
∫ w(s)

seλx

f ∗(1 − r)dr =: I1(s) + I2(s).
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We then have

I1(s) = − λx

log 1/s
+ λx

log log 1/s

(log 1/s)2
+ Õ

(
1

(log 1/s)2

)
,

and, because of (6.26),

−I2(s) ∼
∫ seλx(1+λx/ log s)

seλx

1

r log 1/r
dr ∼ λx

(log 1/s)2
.

Plugging this back into (6.21) finishes the proof. �

Proof of Theorem 1.2. Let x > 0. We want to apply the methods from singularity analysis reviewed in Section 5.3 to
the functions a and Fx , if δ = 1, or the functions h and hx from Lemma 6.2, if δ ≥ 2. Let ϕ ∈ (0,π/2). By Theorem 6.4
and Corollary 6.6, there exists r0 > 0, such that a and Fx can be analytically extended to G(ϕ, r0), which implies that
for some ϕ1 ∈ (ϕ,π/2) and r1 ∈ (0, r), h and hx can be extended to G(ϕ1, r1), as well. Moreover, by Lemma 6.2, each
of these functions is analytic in a neighbourhood of every point of C = {s ∈ ∂D: |1 − s| ≥ r1/2}, which is a compact
set. Hence, there exists a finite number of neighbourhoods which cover C. It is then easy to show that there exists
r > 0, such that the functions are analytic in Δ(ϕ1, r).

If δ = 1, we can then immediately apply Facts 5.6 and 5.7, together with the asymptotics on a and Fx established
in Theorem 6.4 and Corollary 6.6, to prove Theorem 1.2.

If δ ≥ 2, let q(s) be the inverse of s �→ sδ in a neighbourhood of 1, then h(s) = a(q(s))/q(s) near 1, by Lemma 6.2.
But since q ′(1) = 1/δ, we have

h(1 − s) = a

(
1 −

(
1

δ
s + c2s

2 + c3s
3 + · · ·

))(
1 + c′

1s + c′
2s + · · ·)

for some constants cn, c
′
n, and so equations (6.2), (6.3) and (6.4) transfer to h with the coefficient of the main singular

term divided by δd . We can therefore use Facts 5.6 and 5.7 for the function h to obtain the asymptotic for (pδn+1)n∈N
in Theorem 1.2. In the same way, equations (6.18), (6.19) and (6.20) yield asymptotics for hx , such that we can use
again Facts 5.6 and 5.7 to prove the second part of Theorem 1.2. �

Appendix

A.1. A renewal argument for branching diffusions

Let W = (Wt)t≥0 be a diffusion on an interval with endpoints a′ ≤ 0 < a, such that limx↓0 P
x[T0 < t] = 1 for every

t > 0, where T0 = inf{t ≥ 0: Wt = 0} and W0 = x, P
x -almost surely. For x ∈ (0, a), and only in the scope of this

section, we define P x to be the law of the branching diffusion starting with a single particle at position x where the
particles move according to the diffusion W and branch with rate β according to the reproduction law with generating
function f (s). Moreover, particles hitting the point 0 are absorbed at that point. Denote by Z the number of particles
absorbed during the lifetime of the process and define us(x) = P x[sZ] for s ∈ [0,1) and x ∈ (0, a).

Lemma A.1. Let s ∈ [0,1) and G be the generator of the diffusion W . Then

Gus = β(us − f ◦ us) on (0, a), with us(0+) = s.

Proof. The proof proceeds by a renewal argument similar to the one in [22]. As for the BBM, for an individual u,
we denote by ζu its time of death, Xu(t) its position at time t and Lu the number of u’s children. Define the event
A = {∃t ∈ [0, ζ∅): X∅(t) = 0}. For s ∈ [0,1) we have by the strong branching property

us(x) = Ex
[
sZ

] = sP x(A) + Ex
[(

EX∅(ζ∅−)
[
sZ

])L∅ ,Ac
]

= sPx(T0 < ξ) + E
x
[
f

(
us(Wξ )

)
, ξ ≤ T0

]
,
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where W = (Wt)t≥0 is a diffusion with generator G starting at x under Px , T0 = inf{t ≥ 0: Wt = 0} and the random
variable ξ is exponentially distributed with rate β and independent from W . Setting v(x) = P

x(T0 < ξ) we get by
integration by parts

v(x) =
∫ ∞

0
βe−βt

P
x(T0 < t)dt =

∫ ∞

0
e−βt

P
x(T0 ∈ dt) = E

x
[
e−βT0

]
,

and therefore Gv = βv on (0, a) ([8], Paragraph II.1.10, p. 18).
Denote the β-resolvent of the diffusion by Rβ . By the strong Markov property,

E
x
[
f

(
us(Wξ )

)
, ξ ≤ T0

] = E
x

[∫ ∞

0
βe−βtf

(
us(Wt)

)
dt

]
− E

x

[∫ ∞

T0

βe−βtf
(
us(Wt)

)
dt

]
= βRβ(f ◦ us)(x) − βE

x
[
e−βT0

]
Rβ(f ◦ us)(0),

hence us = Cs,βv + βRβ(f ◦ us), with Cs,β = s − βRβ(f ◦ us)(0). It follows that

Gus = βCs,βv + β2Rβ(f ◦ us) − β(f ◦ us) = β(us − f ◦ us) on (0, a).

By the above hypothesis on W , P
x(T0 < ξ) → 1 as x ↓ 0, whence us(0+) = s. �

A.2. Addendum to the proof of Theorem 1.1

With the notation used in the proof of Theorem 1.1, recall that for some constant K > 0 we have(
φ′ + c0φ

)
(x) ∼ φ(x)/x ∼ Ke−c0x, as x → ∞.

In what follows, formulae containing the symbols ∼ and o(·) are meant to hold as s ↓ 0. The above equation yields

a(1 − s) = φ′(φ−1(s)
) = −c0s + (

φ′ + c0φ
)(

φ−1(s)
) = −c0s + (c0 + o(1))s

log(1/s)
. (A.1)

Now, by (3.5), we have

a′(1 − s)a(1 − s) = 2c0a(1 − s) + c2
0s − g(s),

where we recall that g(s) was defined as g(s) = 2(f (1 − s) − 1 + f ′(1)s). From the above equation, one gets

a′′(1 − s) = −(a(1 − s))−3((c0a(1 − s) + c2
0s − g(s)

)2 − g′(s)a(1 − s)2),
and an application of Lemma 4.1 and (A.1) yields (4.7).

Kolmogorov’s forward and backward equations (3.2) and (3.3) give

F ′
x(s) = a(Fx(s))

a(s)
,

and taking the derivative on both sides of this equation gives

F ′′
x (s) = a(Fx(s))

a(s)2

(
a′(Fx(s)

) − a′(s)
)
. (A.2)

By (4.7) and F ′
x(1) = E[Zx] = ec0x , we get

a′(Fx(1 − s)
) − a′(1 − s) = −

∫ 1−Fx(1−s)

s

a′′(1 − r)dr ∼ − c2
0x

(log s)2
.
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This equation, together with (A.2) now yields

F ′′
x (1 − s) ∼ −c0ec0xs

c2
0s

2

(
− c2

0x

(log s)2

)
,

which is (4.8).

A.3. Reduction to Briot–Bouquet equations

In this section, we show how one can reduce differential equations as those obtained in the proof of Theorem 1.2 to
the canonical form (5.1). It is mostly based on pages 64 and 65 of [5].

Lemma A.2. Let λ ∈ (0,1] and p ∈ C. Then the equation

w′ = λw + [w,z]2

z + pw + [w,z]2
(A.3)

has an analytic solution w(z) = [z]2 in a neighbourhood of the origin.

Proof. We choose the ansatz w = z · w1. This transforms (A.3) into

zw′
1 + w1 = λzw1 + z2[w1, z]0

z + pzw1 + z2[w1, z]0
= λw1 + z[w1, z]0

1 + [w1, z]1
.

Writing the inverse of the denominator as a power series in w1 and z, this equals(
λw1 + z[w1, z]0

)(
1 + [w1, z]1

) = λw1 + rz + [w1, z]2

for some r ∈ C. This finally yields

zw′
1 = (λ − 1)w1 + rz + [w1, z]2.

Since λ − 1 is not a positive integer, this equation now has an analytic solution w1(z) = [z]1 by Fact 5.3, whence
w(z) = zw1(z) = [z]2 solves (A.3). �

Remark A.3. The important point in Lemma A.2 is that the coefficient of z in the numerator of (A.3) is 0, which is
why w′(z) = 0.

Proposition A.4. Let λ ≥ 1 and p ∈ R. Suppose w(z) is a strictly monotone real-valued function on (0, ε), ε > 0,
with w(z)2 = o(z) as z → 0 and satisfying

w′ = λw + pz + [w,z]2

z + [w,z]2
on (0, ε). (A.4)

Then there exists h(z) = [z]2 and ε1 > 0, such that z = z − h(w) has an inverse z = z(z) on (0, ε1) and such that

z
dw

dz
= λw + pz + [w, z]2 on (0, ε1). (A.5)

Proof. By hypothesis, w(z) is monotone on (0, ε) and therefore possesses an inverse z = z(w) on (0, δ), δ > 0, which
satisfies

dz

dw
= λ−1z + [w,z]2

w + pλ−1z + [w,z]2
. (A.6)
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By Lemma A.2, there exists then an analytic solution z = g(w) = [w]2 to (A.6), since λ−1 ∈ (0,1] by hypothesis.
Setting z = z − g(w) transforms (A.6) into a differential equation, which has z = 0 as a solution, hence it is of the
form

dz

dw
= λ−1z + z[w, z]1

w + pλ−1z + [w, z]2
.

We have dz/dz = 1 + g′(w(z))w′(z) = 1 + O(w(z)w′(z)). By (A.4),

w(z)w′(z) = O
(
w(z)2/z + w(z)

) = o(1),

by hypothesis. Hence, there exists ε1 > 0, such that z(z) is strictly increasing on (0, ε1) and therefore has an inverse.
Thus, w(z) = w(z(z)) satisfies

dw

dz
= w + pλ−1z + [w, z]2

λ−1z(1 + [w, z]1)
on (0, ε2)

for some ε2 > 0. Expanding (1 + [w, z]1)
−1 as a power series at (w, z) = (0,0) gives (A.5). �

A.4. Inversion of some analytic functions

The results in this section are needed in the proofs of Corollary 5.10 and Theorem 1.2.

Lemma A.5. Let ϕ ∈ (0,π), r > 0 and h be an analytic function on H(ϕ, r) with h(z) = o(z) as z → 0. Then there
exists r1 > 0, such that for all z1, z2 ∈ H(ϕ, r1),

log z1 − log z2 +
∫ z1

z2

h(z)dz �= 0.

Proof. Let z1, z2 ∈ H(ϕ, r). Write zi = aieiϕi , with ai > 0, ϕi ∈ (−ϕ,ϕ), i = 1,2. Define the paths

γ1(t) = a2ei(tϕ1+(1−t)ϕ2) and γ2(t) = (
ta1 + (1 − t)a2

)
eiϕ1, t ∈ [0,1],

such that their concatenation forms a path from z2 to z1 in H(ϕ, r). Then∫
γ1

h(s)ds = |ϕ1 − ϕ2| · a2o(1/a2) and
∫

γ2

h(s)ds = | loga1 − loga2|o(1).

As a consequence,∣∣∣∣∫ z1

z2

h(s)ds

∣∣∣∣ = (|ϕ1 − ϕ2| + | loga1 − loga2|
)
o(1) ≤ √

2| log z1 − log z2|o(1).

This proves the statement. �

Lemma A.6. Let r > 0 and ϕ ∈ (0,π]. Let g and h be analytic functions on H(ϕ, r) with g′(z) = 1 + o(1), h′(z) =
log 1

z
+ O(1), g(z) → 0 and h(z) → 0 as z → 0 in H(ϕ, r). Then for each ϕ0 ∈ (0, ϕ) and ϕ1 ∈ (ϕ0, ϕ) there exist

r0, r1 > 0, such that g and h are injective on H(ϕ1, r1) and the images of H(ϕ1, r1) by g and h contain H(ϕ0, r0).

Proof. By hypothesis, g(z) = z+o(z) as z → 0 in H(ϕ, r), whence argg(z) = arg z+o(1). Thus, there exists r1 > 0,
such that g(H(ϕ1, r1)) ⊂ C \ (−∞,0].

Suppose that there exist z1, z2 ∈ H(ϕ1, r1), such that g(z1) = g(z2). Let γ be a path from z2 to z1 in H(ϕ1, r1).
Then g ◦ γ is a loop in C \ (−∞,0], whence

0 =
∫

g◦γ
1

z
dz =

∫
γ

g′(z)
g(z)

dz = log z1 − log z2 +
∫

γ

o

(
1

z

)
dz.
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By Lemma A.5, we can choose r1 so small, that this equality cannot hold, whence g is injective on H(ϕ1, r1).
Since g(z) → 0 and argg(z) = arg z + o(1) as z → 0, there exists r0 > 0, such that g(∂H(ϕ1, r1)) encloses

H(ϕ0, r0). Now, since g is injective on H(ϕ1, r1), H(ϕ1, r1) and g(H(ϕ1, r1)) are conformally equivalent, whence
g(H(ϕ1, r1)) is simply connected. It follows that g(H(ϕ1, r1)) ⊃ H(ϕ0, r0).

Exactly the same arguments hold for h, since h(z) = z(log 1
z
+O(1)) by hypothesis, whence argh(z) = arg z+o(1)

and h′(z)/h(z) = 1/z + o(1/z) as z → 0. �

Lemma A.7. Let r > 0, ϕ ∈ (0,π] and t ∈ R. Let g be an analytic function on H(ϕ, r) with

g′(z) = 1

z
+ c

z log z
+ O

(
1

z| log z|γ
)

, as z → 0 in H(ϕ, r)

for some c ∈ R and γ > 1. Then for each 0 < ϕ0 < ϕ1 < ϕ there exist r0, r1 > 0, such that g is injective on H(ϕ1, r1)

and g(z) + t ∈ g(H(ϕ1, r1)) for every z ∈ H(ϕ0, r0).

Proof. By the hypothesis on g, we have for z1, z2 ∈ H(ϕ, r),

g(z1) − g(z2) = log z1 − log z2 +
∫ z1

z2

o(1/z)dz.

By Lemma A.5, there exists therefore r1 > 0, such that g is injective on H(ϕ1, r1).
Since 1/(x| logx|γ ) is integrable near 0, we have

g(z) = log z + c log

(
log

1

z

)
+ o(1), as z → 0,

where we assume without loss of generalisation that the constant of integration is 0. It follows that Reg(z) → −∞
and Img(z) = arg z + o(1) as z → 0, since c ∈ R. Hence, there exists an R ∈ R, such that g(∂H(ϕ1, r1)) encloses
the strip S = S−(R,ϕ1). As in the proof of Lemma A.6, it follows that S ⊂ g(H(ϕ1, r1)). Furthermore, again by the
asymptotics of Reg and Img, there exists r0 > 0, such that g(s) + t ∈ S for every s ∈ G(ϕ0, r0). This concludes the
proof. �

Lemma A.8. Let w(z) be an analytic function on an open subset of C \ (−∞,0], such that w(z) → 0 as z → 0 and

z = w + a2w
2 + · · · + anw

n + o
(
wγ

)
, as z → 0

for some n ∈ N, γ > n and a2, . . . , an ∈ C. Then there exist b2, . . . , bn ∈ C, such that

w(z) = z + b2z
2 + · · · + bnz

n + o
(
zγ

)
, as z → 0.

Proof. For every i ∈ N, we have by hypothesis

zi = wi + ai,i+1w
i+1 + · · · + ai,nw

n + o
(
wγ

)
for some ai,i+1, . . . , ai,n ∈ C. For 2 ≤ k ≤ n, define recursively (with b1 = 1)

bk = −(a1,k + b2a2,k + · · · + bk−1ak−1,k).

Then, z + b2z
2 + · · · + bnzn = w + o(wγ ). The statement now follows from the fact that w(z) ∼ z as z → 0 by

hypothesis, whence o(wγ ) = o(zγ ). �

Lemma A.9. Let w(z) be an analytic function on an open subset of C \ (−∞,0], such that w(z) → 0 as z → 0 and

cz = w log
1

w
+ Cw + o(w), as z → 0
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for some constants c > 0, C ∈ C. Then

w = cz

log 1/z

(
1 − log log 1/z + C − log c + o(1)

log 1/z

)
, as z → 0.

Proof. Set f (z) = w(z)/z. By hypothesis, log z ∼ logw = log z + logf (z), whence logf (z) = o(log z). Now define
g(z) by

w(z) = cz

log 1/z
g(z),

such that logg(z) = logf (z) − log log 1
z

= o(log z). By hypothesis,

cz ∼ w log
1

w
= cz

log 1/z
g(z)

(
log log

1

z
+ log

1

z
− log c − logg(z)

)
∼ czg(z),

whence g(z) ∼ 1, which implies logg(z) = o(1). It now follows from the hypothesis that

cz = cz

log 1/z
g(z)

(
log log

1

z
− log cz + C + o(1)

)
,

whence

g(z) =
(

1 + log log 1/z + C − log c + o(1)

log 1/z

)−1

.

The statement now follows from the series representation of (1 + z)−1 at z = 0. �
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