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Abstract. In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are
much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively
some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the
existence of random metrics, the volume forms of which coincide with the multifractal random measures.

Résumé. Dans ce papier, nous étudions des problèmes de transport optimal pour des mesures aléatoires multifractales. Puisque ces
mesures sont beaucoup moins régulières que ce que la théorie requiert habituellement, nous introduisons une nouvelle notion de
transport qui peut être vue intuitivement comme du transport à étapes multiples. En application, nous construisons des changements
de temps multifractals et nous établissons l’existence de métriques aléatoires pour lesquelles les formes volume sont des mesures
aléatoires multifractales.
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1. Introduction

On the Borelian subsets of Rm, consider a measure M formally defined by

M(A) =
∫

A

eγX(x)−(γ 2/2)E[X(x)2] dx, (1.1)

where γ > 0 is a parameter, (X(x))x∈Rm is a Gaussian distribution with covariance function given by

K(x,y) = Cov
(
γX(x), γX(y)

) = γ 2 ln+
T

|y − x| + g(x, y), (1.2)

and g is a continuous bounded function. Actually, whatever the function g is, the part that really matters in (1.2) is the
logarithmic part. Such measures are called Gaussian multiplicative chaos associated to K and were first rigorously
defined in [5].

The above situation can be generalized to the situation

M(A) =
∫

A

eω(x) dx, (1.3)

where the process ω is a suitable Lévy distribution: the resulting measures are called log-infinitely divisible multi-
fractal random measures, MRM for short (see Section 2.1 for a reminder of the construction). Such measures exhibit
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interesting properties like stationarity, isotropy, long-range dependence, fat tail distributions and, because of their log
part in (1.2) (or a suitable generalization for Lévy distributions), possess a remarkable scaling property, the so-called
stochastic scale invariance:

(
M(λA)

)
A⊂B(0,T )

law as λ→0� (
λmeΩλM(A)

)
A⊂B(0,T )

, (1.4)

where Ωλ is an infinitely divisible random variable, independent of (M(A))A⊂B(0,T ). When M satisfies the above
relation (1.4) with = instead of �, we will say that M satisfies the exact stochastic scale invariance property (or M is
ESSI for short).

The purpose of this paper is to investigate (optimal) transportation problems associated to these measures. A trans-
port map between two probability measures μ,ν is a map that pushes μ forward to ν. The transport map is said to be
optimal if it realizes the infimum of a cost functional among all the possible transport maps. For usual cost functionals,
existence and uniqueness of an optimal transport map are strongly connected to the regularity of the measures μ,ν.
Concerning MRM, their regularity is much weaker than that required in optimal transportation theory. So we give
new notions of transportation that can be applied to MRM. Though our result presents an intrinsic interest because
we construct non-trivial transport maps between measures that are much less regular than those usually involved in
optimal transportation theory, this study is originally motivated by the construction of multifractal random changes of
time and the construction of metric spaces the volume form of which is given by the MRM, as explained in Section 3.
The latter construction allows to construct random metric spaces exhibiting nice scaling properties (see Section 3).

2. Background and main results

In this section, we first give the basic background in order to state rigorously the main results of the paper. Since the
function g in (1.2) does not play a part in what follows, we focus on the case where the measure M satifies the exact
scale invariance property.

2.1. Reminder of the construction of ESSI MRM

We present below the generalization of (1.1) to the situation where X is a Lévy distribution. For further details,
the reader is referred to [7]. To characterize such a Lévy distribution, we consider the characteristic function of an
infinitely divisible random variable Z, which can be written as E[eiqZ] = eϕ(q) where (Lévy–Khintchine’s formula)

ϕ(q) = ibq − 1

2
σ 2q2 +

∫
R∗

(
eiqx − 1 − iq sin(x)

)
ν(dx)

and ν(dx) is a so-called Lévy measure satisfying
∫

R∗ min(1, x2)ν(dx) < +∞. We also introduce the Laplace expo-
nent ψ of Z by ψ(q) = ϕ(−iq) for each q such that both terms of the equality make sense, and we assume that
ψ(1) = 0 (renormalization condition), ψ(2) < +∞ and

∫
[−1,1] |x|ν(dx) < +∞ (sufficient conditions for existence of

MRM).
Now we define the process ω of (1.3). We remind that this process has to be stationary, isotropic and suitably scale

invariant. Such properties come from the combination of several ingredients that we recall now. We introduce the
unitary group G of Rm, that is

G = {
M ∈ Mm(R);MMt = I

}
,

and H its unique right translation invariant Haar measure with mass 1 defined on the Borel σ -algebra B(G). We also
introduce the so-called space-scale half-space, that is

S = {
(t, y); t ∈ R, y ∈ R∗+

}
,

with which we associate the measure (on the Borel σ -algebra B(S))

θ(dt,dy) = y−2 dt dy.
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Then we consider an independently scattered infinitely divisible random measure μ associated to (ϕ,H ⊗ θ) and
distributed on G × S. It is worth recalling that such a measure satisfies the following properties:

• For every sequence of disjoint sets (An)n of G × S, (μ(An))n is a sequence of independent random variables and

μ

(⋃
n

An

)
=

∑
n

μ(An), almost surely.

• For any H ⊗ θ -measurable set A, μ(A) is an infinitely divisible random variable whose characteristic function is

E
(
eiqμ(A)

) = eϕ(q)H⊗θ(A).

Given T , let us define the function f : R+ → R by

f (l) =
{

l, if l ≤ T ,
T , if l ≥ T .

The cone-like subset Al(t) of S is defined by

Al(t) = {
(s, y) ∈ S;y ≥ l,−f (y)/2 ≤ s − t ≤ f (y)/2

}
.

For any x ∈ Rm and g ∈ G, we denote by x
g

1 the first coordinate of the vector gx. The cone product Cl(x) is then
defined as

Cl(x) = {
(g, t, y) ∈ G × S; (t, y) ∈ Al

(
x

g

1

)}
,

and the process ωl (0 < l < T ) by ωl(x) = μ(Cl(x)) for x ∈ Rm.
The Radon measure M is then defined as the almost sure limit (in the sense of weak convergence of Radon mea-

sures) by

M(A) = lim
l→0+ Ml(A) = lim

l→0+

∫
A

eωl(x) dx

for any Lebesgue measurable subset A ⊂ Rm. The convergence is ensured by the fact that the family (Ml(A))l>0 is a
right-continuous positive martingale. The structure exponent of M is defined by

∀q ≥ 0, ζ(q) = dq − ψ(q)

for all q such that the right-hand side makes sense. The measure M is different from 0 if and only if there exists ε > 0
such that ζ(1 + ε) > m (or equivalently ψ ′(1) < m). In that case, we have:

Theorem 2.1. The measure M is stationary, isotropic and satisfies the exact stochastic scale invariance property: for
any λ ∈]0,1],

(
M(λA)

)
A⊂B(0,T )

law= (
λmeΩλM(A)

)
A⊂B(0,T )

,

where Ωλ is an infinitely divisible random variable, independent of (M(A))A⊂B(0,T ), the law of which is characterized
by:

E
[
eiqΩλ

] = λ−ϕ(q).

Furthermore, the support of such measures is full in the sense that

Proposition 2.2. If the measure M is non-degenerate, that is ψ ′(1) < m, we have Supp(M) = Rm. Consequently,
every Borelian subset of Rm with null M-measure has its complement dense in Rm for the Euclidian distance.
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(a) γ 2 � 0.1 (b) γ 2 � 1.5

(c) γ 2 � 2 (d) γ 2 � 3.9

Fig. 1. Simulations of the density of a log-normal MRM with various intermittency parameters γ appearing in (1.1). The structure exponent

matches ξ(q) = (2 + γ 2

2 )q − γ 2

2 q2. In dimension 2, the measure is non-degenerate provided that 0 < γ 2 < 4. The last two simulations are colored
with a logarithmic intensity scale.

Proof. For a given ball B(x, r) ⊂ Rm, the event {M(B(x, r)) > 0} is measurable with respect to the asymptotic
sigma algebra generated by (ωl)l>0. By the 0–1 law, it has probability 0 or 1. Because of the uniform integrability
of the martingale (Ml(A))l>0 for each Borelian subset A with finite Lebesgue measure (denoted by λ(A)), we have
E[M(B(x, r))] = λ(B(x, r)) > 0. We deduce P(M(B(x, r)) > 0) = 1. Hence, P a.s., M(B(x, r)) > 0 for all the balls
B(x, r) with rational centers and radii. �

2.2. Optimal transport for MRM

Though we only focus on MRMs as constructed in Section 2.1, we stress that our results straightforwardly extend to
more general MRMs as in [4,5]. The reader may consult the Appendix for a brief reminder about optimal transport
theory. In particular, we adopt the notations used in the Appendix. We denote by BR the closed ball of Rm centered at
0 with radius R and by CR its Lebesgue measure. We define λR as the renormalized Lebesgue measure on BR with
mass 1 and the renormalized probability measure on BR

M(dx) = 1

M(BR)
M(dx).
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Originally, our problem was to construct a nice (as much as possible) mapping that pushes the MRM M forward
to the Lebesgue measure. Of course, there are several possibilities to achieve that construction. Among all the possi-
bilities, we focus on optimal transportation theory because it features many interesting qualities: measurability with
respect to the randomness, isotropy, regularity, etc. Basic results ensure that there exists an optimal transport map
pushing M forward to the Lebesgue measure λR (for a quadratic cost function) provided that the measure M does not
give mass to small sets. Though that condition is usually not satisfied by MRMs, this is true when the intermittency
parameter ψ ′(1) is small:

Theorem 2.3. When ψ ′(1) < 1, the measure M does not give mass to small sets. Hence there is a unique optimal
transport map (for the Euclidian quadratic cost) that pushes the renormalized probability measure M forward to the
renormalized Lebesgue measure.

We can thus apply the classical transportation theory (see Theorem A.3). There exist two optimal transport maps

χ : Supp(χ) → Supp(Γ ) and Γ : Supp(Γ ) → Supp(χ)

(the supports of which are Borelian and contained in BR), that respectively push the Lebesgue measure λR forward to
M and vice-versa, meaning

χ#λR = M and Γ#M = λR. (2.1)

They are both unique as gradients of convex functions satisfying (2.1). Moreover they are bijections, inverse from
each other. They are respectively λR and M-almost surely defined, meaning M(Supp(Γ )) = 1 and λR(Supp(χ)) = 1,
so that both supports Supp(Γ ), Supp(χ) are dense in BR for the Euclidian distance.

We equip BR with the Riemannian metric

∀x ∈ BR,∀u,v ∈ Rm, ge
x(u, v) = M(BR)2

C2
R

(u, v),

where (·, ·) denotes the usual inner product on Rm. In that way, (BR,ge) is a Riemannian space in which the volume
form matches M(BR)×λR(dx) and the geodesic distance de is given by the Euclidian distance on BR up to a random
multiplicative constant:

de(x, y) = M(BR)

CR

|x − y|.

On the support Supp(Γ ) of Γ , we can define the distance dΓ by

∀x, y ∈ Supp(Γ ), dΓ (x, y) = de

(
Γ (x),Γ (y)

)
.

Hence there is an isometry, namely Γ , between the metric-measure space (Supp(Γ ), dΓ ,M) and the metric-measure
space (Supp(χ), de,M(BR) × λR). Since the closure of Supp(χ) with respect to the Euclidian distance is equal to
BR , the completion of the metric space (Supp(Γ ), dΓ ), denoted by (C,dΓ ), is isometric to (BR,de). That isometry,
which coincides with Γ on Supp(Γ ) is still denoted by Γ and its inverse, which coincides with χ on Supp(χ), is still
denoted by χ . Obviously, the metric space (C,dΓ ) is compact.

Furthermore, since Supp(Γ ) is a Borelian subset of BR as well as a Borelian subset of C (for the respective
topologies of BR and C) and since M(Supp(Γ )) = M(BR), the measure M can be extended to the whole of the
Borelian subsets of C by prescribing:

for any Borelian subset A of C, M(A) = M
(
A ∩ Supp(Γ )

)
.

Via pullback, the space C inherits the structure of Riemannian manifold (smooth, complete, connected, m-
dimensional manifold equipped with a smooth metric tensor). The (only) chart is given by Γ :C → BR . We summarize
below what we have proved as well as the properties inherited from the pullback metric:
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Theorem 2.4. If ψ ′(1) < 1, we can find a compact Riemannian manifold (C,g) and a Borelian subset B of BR such
that:

1. B is dense in BR for the Euclidian distance and has full M-measure, namely M(BR \ B) = 0,
2. C is the completion of B with respect to the geodesic distance on C,
3. the volume form on C coincides with the measure M on B ,
4. in the system of local coordinates given by the chart Γ , the Riemannian metric tensor on C reads

g = d(ω)
(
dx2

1 + · · · + dx2
m

)
with d(ω) = M(BR)2

C2
R

.

2.2.1. The strongly intermittent case 1 ≤ ψ ′(1) < m

Now we consider a log-infinitely divisible random measure M satisfying 1 ≤ ψ ′(1) < m. The measure M gives mass
to small sets so that we cannot use classical theorems of optimal transport theory if we consider the ambiant space BR

equipped with its Euclidian structure. It thus seems hopeless to solve the problem:

Find the mapping ϕ realizing the infimum: inf
ϕ:BR→BR

ϕ#M=λR

∫
BR

∣∣ϕ(x) − x
∣∣2

M(dx). (2.2)

Our strategy is the following: can we find a pair (M ′, T ′), where M ′ is a probability measure and T ′ is an optimal
(for the Euclidian quadratic cost) transport map pushing M ′ forward to λR , such that the following Monge type
optimization problem possesses a (unique) solution?

Find the mapping ϕ realizing the infimum: inf
ϕ:BR→BR

ϕ#M=λR

∫
BR

∣∣ϕ(x) − T ′(x)
∣∣2

M(dx). (2.3)

It turns out that the above problem is a mathematical formulation of the following intuitive observation: if we cannot
find an optimal transport pushing M forward to λR , can we find an intermediate measure M ′ and optimal transports
T ,T ′ respectively pushing M forward to M ′ and M ′ forward to λR? If the answer is positive, then the composition
T ′ ◦ T pushes M forward to λR . Though the composition T ′ ◦ T is in general not optimal for the Euclidian quadratic
cost, it is the composition of two gradients of convex functions, which is not bad in terms of regularity. So we
have formalized some kind of two-step optimal transport. And more generally, if we cannot find a two-step optimal
transport, is it possible to find a n-step optimal transport between M and λR , that is a composition of n gradients of
convex functions?

The reader may have the following objection: from classical theorems, existence of a (unique) optimal transport
map pushing M forward to M ′ or λR does not depend on the target measure (M ′ or λR) but only on M through the
fact that M does or does not give mass to small sets. So, a priori, two-step optimal transports may be as difficult to
exhibit as optimal transports. Our idea lies in the fact that problem (2.3) can be reformulated in a very simple way if
we equip the ball BR with an appropriate Riemannian structure. Indeed, if we change the unknown in (2.3), we get
the following equivalent problem

Find the mapping ψ realizing the infimum: inf
ψ :BR→BR

ψ#M=M ′

∫
BR

∣∣T ′(ψ(x)
) − T ′(x)

∣∣2
M(dx). (2.4)

It turns out that we can equip the ball BR with a Riemannian structure, the distance of which matches d(x, y) =
|T ′(x) − T ′(y)| and the volume form of which matches M ′ (up to a multiplicative constant). Problem (2.4) thus
reduces to a classical problem of optimal transportation theory on smooth Riemannian manifolds: for such a mapping
to exist, it is mainly sufficient that M does not give mass to the small sets associated to the distance d . That is the
main constraint when choosing the measure M ′: it must be the volume form associated to a Riemannian metric, the
small sets of which are not charged by M . Of course, the argument generalizes to n-step optimal transports.

The main difficulty thus lies in choosing the number n of steps and the intermediate measures. The crucial point
is the following. Given n ≥ 1, M can be seen as the composition of n multiplicative chaos (see Section 4.2): we
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can find n independent independently scattered log-infinitely divisible random measures μ(1), . . . ,μ(n) associated to
(ϕ/n, θ) (see Section 2.1). The corresponding processes ωl associated to μ(1), . . . ,μ(n) are respectively denoted by

ω
(1)
l , . . . ,ω

(n)
l . We define recursively for k ≤ n:

M(0)(dx) = dx and M(k)(dx) = lim
l→0

eω
(k)
l (x)M(k−1)(dx),

where the limits have to be understood in the sense of weak convergence of Radon measures. Then both measures M

and M(n) have the same law so that we assume, in what follows, that M and M(n) coincide. That procedure allows to
see each measure M(k) as a chaos with respect to M(k−1) with a reduced intermittency parameter ψ ′(1)/n. If we can
equip the ball BR with a Riemannian metric g(k−1) the volume form of which coincides with M(k−1), it turns out that
M(k) does not give mass to the g(k−1)-small sets provided that the intermittency parameter ψ ′(1)/n is small enough.
So it suffices to choose n big enough. In consequence there is a unique optimal transport map (w.r.t. to the quadratic
cost function associated to the metric g(k−1)) that pushes the renormalized measure M(k) forward to the renormalized
measure M(k−1). And so on for the different values of k ≤ n. Thus we claim:

Theorem 2.5. If 1 ≤ ψ ′(1) < m, we can find n ≥ 1 and n gradients of convex functions T (1), . . . , T (n) such that
∀k = 1, . . . , n, the mapping ϕ(k) = T (1) ◦ · · · ◦ T (k) pushes the measure M(k) forward to the Lebesgue measure and
minimizes the quantity

inf
T :BR→BR

T#M(k)=λR

∫
BR

∣∣T (x) − ϕ(k−1)(x)
∣∣2

M(k)(dx).

As a corollary, we get

Theorem 2.6. We can find a compact Riemannian manifold (C,g) and a Borelian subset B of BR such that:

1. B is dense in BR for the Euclidian distance and has full M-measure, namely M(BR \ B) = 0,
2. C is the completion of B with respect to the geodesic distance on C,
3. the volume form on C coincides with the measure M on B ,
4. in the system of local coordinates given by the chart ϕ(n), the Riemannian metric tensor on C reads

g = d(ω)
(
dx2

1 + · · · + dx2
m

)
with d(ω) = M(BR)2

C2
R

.

Remark 2.7. In Theorems 2.4 and 2.5, if R < T , by scale invariance, the random variable d has the same law as

e2ΩR/T M(BT )2

C2
T

where ΩR/T is an infinitely divisible random variable the law of which is characterized by E[eqΩR/T ] =
(R
T

)−ψ(q). So the radius R of the ball BR influences the random metric through a log-infinitely divisible random
variable, which turns out to be log-normal for log-normal MRM.

We conclude the presentation of our results by the following remarks. First, the choice of the quadratic cost can be
discussed since it does not, a priori, exhibit any intrinsic property. However it possesses the main advantage of being
tractable. Second, in the strongly intermittent case, it is worth emphasizing that it is hopeless to maintain uniqueness of
the transport map as soon as it is not characterized as the infimum of a Monge type optimization problem. Hence, there
are plenty of transport maps pushing the renormalized measure M forward to the renormalized Lebesgue measure.
But many of them are untractable and very singular (see for instance the measurable isomorphism [8], Introduction).
We justify our approach by the fact that our transport map enjoys, as much as possible, usual properties of an optimal
transport map:

• In terms of uniqueness, the mappings T (1), . . . , T (n) (and thus the mappings ϕ(k) for k = 1, . . . , n) are entirely
determined as soon as the intermediate measures M(k) (for k = 1, . . . , n) are prescribed. This maintains some
tractabality when we want to characterize our transport map. Of course, there is some flexibility in the choice of
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the measure M(k) and it would be interesting to know if there is an optimal choice for these intermediate measures.
For instance, one can imagine choosing a sequence that minimizes a quantity like

inf
M(1),...,M(n−1)

n∑
k=1

inf
T :BR→BR

T#M(k)=λR

∫
BR

∣∣T (x) − ϕ(k−1)(x)
∣∣2

M(k)(dx).

To be honest, we fell short of establishing any global uniqueness criterion.
• In terms of regularity, our transport map is “as nice as possible” as a composition of gradients of convex functions.

We have the feeling that this is a legitimate requirement when it is not possible to express it as the gradient of a
single convex function.

3. Applications

3.1. Multifractal random changes of time

The main motivation of our paper is to construct multidimensional multifractal random changes of times via optimal
transportation maps associated with MRMs. This idea originates from Mandelbrot in the 1-d case: if B is a 1-d
Brownian motion and M is a 1-d MRM, we can define the process t �→ BM[0,t]. This process has been widely used
in financial modelling since it enjoys nice properties: it is a square-integrable martingale with long-range correlated
stationary increments and non-linear power law spectrum. Extending that construction to the multidimensional case
is the purpose of what follows.

Let us fix R > 0 (with T < R) and a m-dimensional MRM as constructed in Section 2.1. Let Γ,χ be the maps
pushing M forward to M(BR)

CR
dx and vice versa (sticking to the previous notations, we denote by B the support of Γ ).

We further consider an independent Gaussian white noise W(dx) defined on Rm. Given x ∈ Rm, we denote by C(x)

the cube [0, x1] × · · · × [0, xm] (with the convention that, if xi < 0, the interval [0, xi] stands for [xi,0]). Finally, we
define the process

∀x ∈ BR, B(x) = W
(
Γ

(
B ∩ C(x)

))
.

It is readily seen that the process B is isotropic and stochastically scale invariant:

∀λ ≤ 1,
√

M(BR)
(
B(λx)

)
x∈B(0,T )

law= √
CRλm/2e(1/2)Ωλ

(
B(x)

)
x∈B(0,T )

, (3.1)

where Ωλ is an infinitely divisible random variable, independent of (B(x))x∈B(0,T ), the law of which is characterized
by:

E
[
eiqΩλ

] = λ−ϕ(q).

This scale invariance property depends on the radius R. An interesting question is to pass to the infinite volume limit:
by the ergodic theorem, M(BR)

CR
converges almost surely to 1 as R → ∞. Therefore, equation (3.1) can be seen for R

large as an approximate stochastic scale invariance equation. We leave as an open problem the study of Γ as R → ∞
(existence, characterization of a limit). We stress that, in great generality, infinite volume transportation theory is a
wide open area.

Of course, we can generalize this approach to construct multifractal random changes of time to many other multi-
dimensional stochastic processes like Lévy noise, fractional Brownian motion, and so on. . .

3.2. Random metrics associated with MRMs

A special case of (1.1) in a bounded domain of dimension 2 has recently received much attention. When X is the
Gaussian Free Field (GFF), that is a Gaussian process with covariance function given by the Green function of the
Laplacian, the measure M (Gaussian multiplicative chaos associated to the Green function) is called the Liouville
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quantum measure (see [3]). For several years, much effort has been made to understand the geometry of these mea-
sures. A recent important step was to prove the so-called KPZ formula [2,3,6].

Roughly speaking, the KPZ formula gives the correspondence between the Hausdorff dimension of a set as seen
by the Lebesgue measure and the Hausdorff dimension of this set as seen by the measure M . More precisely, for a
given compact set E ⊂ BR and a mesure ν, the s-dimensional Hausdorff measure of E w.r.t. to ν is the quantity:

Hs(ν,E) = lim
δ→0

Hs
δ (E, ν), where

(3.2)

Hs
δ (ν,E) = inf

{∑
n

ν(Bn)
s/2;E ⊂

⋃
Bn,Bn open Euclidian ball 0 < M(Bn) ≤ δ

}
.

Then we define the Hausdorff dimension dimν
H (E) of the set E w.r.t. to the measure ν:

dimν
H (E) = inf

{
s > 0;Hs(ν,E) = 0

} = sup
{
s > 0;Hs(ν,E) = +∞}

. (3.3)

When ν is given by the Lebesgue measure, the corresponding Hausdorff measures and dimensions will be called
Euclidian, and denoted with the superscript e. The KPZ formula asserts that the Euclidian Hausdorff dimension
dime

H (E) and the random Hausdorff dimension dimM
H (E) are linked by the relation

KPZ formula. Almost surely, we have

ξ

(
dimM

H (E)

2

)
= dime

H (E), (3.4)

where ξ is the so-called structure exponent of M :

ξ(q) =
(

2 + γ 2

2

)
q − γ 2

2
q2.

Actually, formula (3.4) remains valid for any log infinitely divisible MRM as soon as M possesses moments of
negative order (see [2,6]).

A further step in the understanding of the KPZ formula is to construct random metric spaces exhibiting KPZ
phenomena: we want the KPZ formula to remain true when defining the random Hausdorff dimension with the help
of the constructed random metric instead of the measure M . Of special interest for specialists of quantum gravity is
to make that random metric space closely related to random planar maps (see [3] and references therein).

Inspired by the aforementioned problem, we present below a toy construction of a flat Riemannian manifold the
volume form of which coincides with M . We stick to the context of quantum measure but our construction remains
true for more general MRMs (as in (2.1), see also [1,4]). Theorem 2.6 allows to understand the measure M on BR as
the volume form of a flat Riemannian manifold (up to a set of null M-measure). Such a structure permits to define
fundamental objects such as distance, arclength, geodesics associated to the measure M . The geodesics are easily
described via the transport maps. By sticking to the notations of Theorem 2.5, we define Γ = ϕ(n) and χ = Γ −1.
Since Γ is an isometry of metric spaces, a curve γ : [0,1] → C is a geodesic on C if and only if Γ (γ ) ⊂ BR is a
geodesic for the Euclidian metric, that is a segment. The geodesic joining x, y ∈ B ⊂ BR (parameterized by constant
speed) is thus given by

γ x,y : t ∈ [0,1] → χ
(
tΓ (x) + (1 − t)Γ (y)

) ∈ C.

Because the general theory of optimal transport suffers a definite lack of strong estimates concerning the optimal
transport maps, we cannot prove the KPZ formula connecting the Hausdorff dimensions defined in terms of distances
(not measures) and we leave that point as an open question.

Furthermore we stress that our model is likely to have no relation with the expected random metric space that
should appear in the context of Liouville quantum gravity: no branching properties of geodesics, not a conformal
metric, . . . For instance, with a properly regularized version of the weights, we illustrate in Fig. 2 that our geodesics
are sensitive to the oriented directions of mass deformation of M whereas properly defined conformal geodesics are
sensible to mass allocation only.
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Fig. 2. Simulations of conformal geodesics (weighted by the density of a properly regularized MRM along the path) and geodesics obtained via
optimal transport for a log-normal MRM for γ 2 � 1.5.

4. Proofs

We first prove the key estimate of the paper. We adapt a strategy first used in Kahane’s original paper on multiplicative
chaos [5].

4.1. Fundamental result

Let B be a Borelian subset of BR and κ be a probability measure on BR supported by B , meaning κ(B) = 1. We
assume that the set B is equipped with a distance d and that the completion of B with respect to the distance d ,
denoted by (C,d), is compact. We assume that the Borelian subsets of B with respect to the Euclidian topology
coincide with the Borelian subsets of B w.r.t. the distance d so that we can extend the measure κ to the whole
Borelian sigma-algebra of C by prescribing

∀A ⊂ C Borelian, κ(A) = κ(A ∩ B).

The classes Rα,R−
α

For any α > 0, we introduce the set Rα of Radon measures ν on C satisfying: for any ε > 0, there are δ > 0, D > 0
and a d-compact subset Kε ⊂ C such that ν(C \ Kε) < ε and the measure νε(dx) = 1Kε(x)ν(dx) satisfies

∀U d-open ball, νε(U) ≤ D × Diamd(U)α+δ, (4.1)

where Diamd denotes the diameter of the ball U with respect to the distance d . We further define the set of Radon
measures R−

α = ⋂
β<α Rβ .

We further give an energy condition for a Radon measure ν to be in the class R−
α . For α > 0, we define

Cα(ν) =
∫

C

∫
C

1

d(x, y)α
ν(dx)ν(dy). (4.2)

It is plain to see that

ν satisfies Cα(ν) < +∞ ⇒ ν ∈ R−
α .

Conversely a measure ν obeying (4.1) satisfies Cβ(ν) < +∞ for each β < α + δ.
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Notations. In what follows, we use the superscript e (i.e. Re
α , Re−

α and Ce
β ) to mention that the distance d is equal to

the Euclidian distance.

Proposition 4.1. Assume that the measure κ belongs to Re
α . Let N be the Radon measure on BR defined, P-almost

surely, as the following limit (in the sense of weak limit of Radon measures):

N(dx) = lim
l→0

Nl(dx), where Nl(dx)
def.= eωl(x)κ(dx).

If ψ(2) < α then the martingale (Nl(B))l is uniformly integrable and, consequently, N is non-trivial and almost
surely supported by B .

Proof. We remind the reader of the fact that the family (Nl(B))l is a right-continuous positive martingale and thus
converges almost surely.

Since κ belongs to Rα , for each ε > 0, we can find δ > 0, D > 0 and a compact subset K such that κ(C \ K) < ε

and

lim sup
r→∞

lnκ(Bx
r )

r
< −α − δ uniformly for x ∈ K,

where Bx
r stands for the d-ball of radius e−r and center x. This implies Cβ(κK) < +∞ for each α < β < α + δ.

Then we compute

E
[
Nl(B ∩ K)2] =

∫
B∩K

∫
B∩K

eψ(2)Kl(|y−x|)κ(dx)κ(dy),

where Kl is given on Rm by

Kl(x) =
∫

G

ρl(gx)H(dg),

where ρl(y) (y ∈ R) is defined by ln(T /|y|) if l ≤ |y| ≤ T , ρl(y) = ln(T /l) + 1 − |y|/l if |x| ≤ l and 0 otherwise. In
particular, on B , Kl is not greater than C + ln T

|x| for some positive constant C. As a consequence, for some positive
constant C′ which may change along the inequalities, we have

sup
l

E
[
Nl(B ∩ K)2] ≤ C′

∫
B∩K

∫
B∩K

eψ(2) lnT/|y−x|κ(dx)κ(dy) ≤ C′Cβ(κ) < +∞

since ψ(2) < β . The martingale (̃νl(B ∩ K))l is bounded in L2(Ω) and is therefore uniformly integrable. It is plain
to deduce that the martingale (̃νl(B))l is uniformly integrable. �

Theorem 4.2. (1) Assume that the measure κ belongs to Rα ∩ Re
ς for some ς > ψ(2). Then

N ∈ Rα(ς−ψ(2))/ς+ψ(2)−ψ ′(1).

Consequently, we also have:

κ ∈ R−
α ∩ Re−

ς for some ς > ψ(2) ⇒ N ∈ R−
α(ς−ψ(2))/ς+ψ(2)−ψ ′(1)

.

(2) In particular, we have in the Euclidian case: if κ ∈ Re
α (resp. Re−

α ) and ψ(2) < α then N ∈ Re
α−ψ ′(1)

(resp.

Re−
α−ψ ′(1)

).

Proof. Since κ belongs to Rα ∩ Re
ς , for each ε > 0, we can find δ > 0 and a compact subset K ′ for the d-topology

(d-compact for short) such that κ(C \ K ′) < ε/2 and

lim sup
r→∞

lnκ(Bx
r )

r
< −α − δ uniformly for x ∈ K ′, (4.3)
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where Bx
r still stands for the d-ball of radius e−r .

Since κ belongs to Re
ς , for each ε > 0, we can find a compact subset K ′′ for the Euclidian topology such that

κ(BR \ K ′′) < ε/4 and Cβ(1K ′′(x)κ(dx)) < +∞ for each β < ς . K ′′ ∩ B is a Borelian subset of B (for the Euclidian
topology) and hence a Borelian subset of C. Since M is inner regular on C (recall that C is compact), we can find a
d-compact set K̃ of C such that K̃ ⊂ K ′′ and M(K ′′ \ K̃) < ε/4. Finally we set K = K ′ ∩ K̃ , which is d-compact.
The set K also satisfies: M(C \ K) < ε, (4.3) is valid on K and Ce

β(1B∩K) < +∞ for any β ≤ ς .
Even if it means multiplying κ by a constant, we assume κ(K) = 1. We consider on Ω ×K the probability measure

Q defined by

∫
Ω×K

f (ω,x)dQ = E

[∫
K

f (ω,x)N(dx)

]

for all measurable non-negative functions f .
Given l′ < l, we define

ωl′,l(x) = ωl(x) − ωl′(x).

For a sequence l1 < · · · < ln, the random variables ωl1,l2, . . . ,ωln−1,ln are Q-independent and

∫
eλωli ,lj dQ = E

[
e(1+λ)ωli ,lj

(x)] = eψ(1+λ) ln(lj / li ).

The process u ∈ R+ �→ ωe−u is therefore an integrable Lévy process (we can consider a version that is right-continuous
with left limits). From the strong law of large numbers, we have

Q a.s.,
ωe−u

u
→ ψ ′(1) as u → ∞.

This implies that, P a.s.,

N a.s.,
ωe−u

u
→ ψ ′(1) as u → ∞.

Therefore, P a.s., for each ε > 0 we can find a compact K1
ε ⊂ K such that N(K \ K1

ε ) < ε and
ωe−u (x)

u
→ ψ ′(1)

uniformly w.r.t. x ∈ K1
ε as u → ∞. Now we define

Nq(dy) = lim
l→0

eωl,e−q (y)
κ(dy) and Pq(x) =

∫
Bqx∩K

Nq(dy).

We further define the function θq by

θq(x, y) =
{

1, if d(x, y) ≤ e−q ,
0, otherwise.

Thus we have Pq(x) = ∫
K

θq(x, y)Nq(dy) and

∫
Pq dQ = E

∫
K

∫
K

θq(x, y)Nq(dy)N(dx)

≤
∫

B∩K

∫
B∩K

θq(x, y)eψ(2)(C+ln(e−q/|x−y|))κ(dx)κ(dy)

≤ eψ(2)C

∫
B∩K

∫
B∩K

θq(x, y)e−qψ(2) 1

|y − x|ψ(2)
κ(dx)κ(dy).
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By using the above relation, we obtain∫ ∑
n≥1

eβnPn dQ =
∑
n≥1

∫
B∩K

∫
B∩K

e(β−ψ(2))nθn(y, x)
1

|y − x|ψ(2)
κ(dx)κ(dy).

Note that (for some positive constant D)

∑
n≥1

e(β−ψ(2))nχn(y, x) =
∑

1≤n≤− lnd(x,y)

e(β−ψ(2))n ≤ D
1

d(x, y)β−ψ(2)

in such a way that we obtain∫ ∑
n≥1

eβnPn dQ ≤ D

∫
B∩K

∫
B∩K

1

|y − x|ψ(2)

1

d(x, y)β−ψ(2)
κ(dx)κ(dy).

We want to prove that the latter integral is finite for a well chosen β . We fix

ψ(2) < β = (α + δ/2)
ς − ψ(2)

ς
+ ψ(2).

We consider p,q > 1 satisfying the relation 1
p

+ 1
q

= 1 and given by

p = ς

ψ(2)
and q = ς

ς − ψ(2)
.

By Hölder’s inequality, we have[∫
B∩K

∫
B∩K

1

|y − x|ψ(2)

1

d(x, y)β−ψ(2)
κ(dx)κ(dy)

]

≤
[∫

B∩K

∫
B∩K

1

|y − x|pψ(2)
κ(dx)κ(dy)

]1/p[∫
B∩K

∫
B∩K

1

d(x, y)q(β−ψ(2))
κ(dx)κ(dy)

]1/q

≤ (
Ce

ς

(
1K∩B(x)κ(dx)

))1/p(
Cα+δ/2

(
1K∩B(x)κ(dx)

))1/q
,

in such a way that the above integrals are finite.
We deduce that, Q a.s., eβnPn → 0 as n → ∞. Therefore, P a.s., eβnPn → 0 as n → ∞ N -almost surely. So we

can find a compact K2
ε ⊂ C such that N(C \ K2

ε ) < ε and

lim sup
n→∞

lnPn(x)

n
≤ −β uniformly for x ∈ K2

ε .

Finally we can set K̄ = K1
ε ∩ K2

ε and NK̄(dx) = 1K̄ (x)N(dx). We obtain

lim sup
n→∞

lnNK̄(Bx
n )

n
= lim sup

n→∞

ln
∫
K̄∩Bx

n
eωe−n (x)Nn(dx)

n

≤ −β + ψ ′(1)

uniformly w.r.t. t ∈ K̄ . We have proved N ∈ Rα(ς−ψ(2))/ς+ψ(2)−ψ ′(1) P-almost surely. �

4.2. Composition of MRM

Now we prove that a non-degenerate log-infinitely divisible random measure M , i.e. satisfying ψ(2) < +∞ and
ψ ′(1) < d , can be decomposed as an iterated multiplicative chaos (see also [10]).
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Since ψ(2) < +∞ we can find an integer n such that

mψ(2) < n
(
m − ψ ′(1)

)
. (4.4)

Then we can find n independent independently scattered log-infinitely divisible random measures μ(1), . . . ,μ(n) as-
sociated to (ϕ/n, θ) (remind of the definition in Section 2.1). We assume that the random measures μ(1), . . . ,μ(n)

are constructed on the probability spaces (Ω(1),P(1)), . . . , (Ω(n),P(n)). We define Ω = Ω(1) × · · · × Ω(n) equipped
with the product σ -algebra and the product probability measure P = P(1) ⊗ · · · ⊗ P(n). The corresponding processes
ωl associated to μ(1), . . . ,μ(n) are respectively denoted by ω

(1)
l , . . . ,ω

(n)
l . Finally, we denote by E(i) the conditional

expectation given the variables (μ(k))k �=i .
We define recursively for k ≤ n:

M(0)(dx) = dx and M(k)(dx) = lim
l→0

eω
(k)
l (x)M(k−1)(dx),

where the limits have to be understood in the sense of weak convergence of Radon measures. Note that the choice of
n makes valid the relation

∀k ≤ n − 1,
mψ(2)

n
< m − k

n
ψ ′(1).

Hence, we can apply recursively Proposition 4.1 and Theorem 4.2 (with the distance d equal to the Euclidian distance
and κ ∈ Re−

m is the Lebesgue measure) to prove that, for each k ≤ n,

M(k) ∈ Re−
m−(k/n)ψ ′(1)

and E(k)
[
M(k)(BR)

] = M(k−1)(BR) P a.s.

Thus we have M(n) ∈ Re−
m−ψ ′(1)

and E[M(n)(BR)] = λ(BR) (the Lebesgue measure of BR).

What we now want to prove is that the measure M(n) has the same law as the measure

M(dx) = lim
l→0

eω
(1)
l (x)+···+ω

(n)
l (x) dx.

We consider on Ω the σ -algebra Gl generated by {ω(1)
r (x), . . . ,ω

(n)
r (x);x ∈ Rm,T > r > l}. The conditional expec-

tation of M(n)(E) w.r.t. Gl is easily computed since, for each k ≤ n, the martingale (M
(k)
l (A))l is P(k)-uniformly

integrable. Indeed, we have:

E
[
M(n)(A)|Gl

] = E
[
E

[
M(n)(A)|μ(1), . . . ,μ(n−1),

(
ω(n)

r (x)
)
x∈Rm,T >r>l

]|Gl

]
= E

[
E(n)

[
M(n)(A)|(ω(n)

r (x)
)
x∈Rm,T >r>l

]|Gl

]
= E

[∫
A

eω
(n)
l (x)M(n−1)(dx)

∣∣∣Gl

]
= · · ·
=

∫
A

eω
(n)
l (x)+···+ω

(1)
l (x) dx.

This latter quantity has the same law as Ml(A). Since the martingale (E[M(n)(A)|Gl])l is uniformly integrable, we
deduce that the family (Ml(A))l is uniformly integrable. Hence, both random variables M(A) and M(n)(A) have the
same law. In particular, M ∈ Re

m−ψ ′(1)
.

Corollary 4.3. If ψ(2) < +∞ and ψ ′(1) < m, then M belongs to Re−
m−ψ ′(1)

.

Remark 4.4. The same composition argument shows that if a measure κ ∈ Re
α and if M is defined as the limit

M(dx) = lim
l→0

eωl(x)κ(dx)
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and satisfies ψ(2) < +∞ then M ∈ Rα−ψ ′(1). Though we won’t use it in this paper, this is an important result con-
cerning the structure of the support of multifractal random measures.

4.3. Proof of Theorem 2.3

In the case where ψ(2) < +∞ and ψ ′(1) < 1, we will prove that the measure M does not give mass to small sets. Let
S ⊂ BR be a small set, that is a set with Hausdorff dimension (w.r.t. the Euclidian distance) not larger than m − 1.

From Corollary 4.3, M belongs to the class Re−
m−ψ ′(1)

. Since ψ ′(1) < 1, M then belongs to the class Re
m−1+β for

some β > 0. We fix ε > 0. So, P a.s., we can find a compact set K ⊂ BR and δ,D > 0 such that M(BR \ K) ≤ ε and
for all open balls U ⊂ BR :

M(U ∩ K) ≤ D diame(U)m−1+β+δ.

Since m − 1 + β + δ > dimH (S), we can find a covering of S by open balls (Ui)i such that∑
i

diame(Ui)
m−1+β+δ < ε.

Then we have

M(S) ≤ M(S \ K) + M(S ∩ K) ≤ ε +
∑

i

M(Ui ∩ K) ≤ ε +
∑

i

diame(Ui)
1+β+γ ≤ 2ε.

As we can make ε as small as we please, we deduce M(S) = 0.

4.4. Proof of Theorems 2.5 and 2.6

We proceed recursively to prove the existence of an optimal transport between the measure M(k−1) and M(k) on some
appropriate Riemannian manifold:

(1) Step 1: We focus on the measure M(1), which has structure exponent ξ (1)(q) = mq − ψ(q)
n

. Relation (4.4) and
the convexity of ψ imply the following inequalities

ψ ′(1)

n
≤ ψ(2)

n
= 1

m

mψ(2)

n
<

1

m

(
m − ψ ′(1)

)
< 1.

Hence we can apply Theorem 2.3 to find two optimal transport maps χ(1),Γ (1) that respectively push λR forward to
M(1) and vice versa. Furthermore, the quantity

inf
T :BR→BR

T#M(1)=λR

∫
BR

∣∣T (x) − x
∣∣2

M(1)(dx)

is achieved at Γ (1). We can also apply Theorem 2.4 to find a compact Riemannian manifold (C(1), g(1)) and a Borelian
subset B(1) of BR such that:

– B(1) is dense in BR for the Euclidian distance and has full M(1)-measure, that is M(1)(BR \ B(1)) = 0,
– C(1) is the completion of B(1) with respect to the geodesic distance on C(1),
– the volume form on C(1) coincides with the measure M(1) on B(1),
– in a system of local coordinates, the Riemannian metric tensor on C(1) reads

g(1) = θ(1)(ω)
(
dx2

1 + · · · + dx2
m

)
with θ(1)(ω) = M(1)(BR)2

C2
R

.

Furthermore, from Proposition 4.1 and Theorem 4.2, M(1) ∈ Re−
m−ψ ′(1)/n

. This ends up the first step of the induction.

(2) Step 2: We assume that, for some k < n, we may find a compact Riemannian manifold (C(k), g(k)) and a
Borelian subset B(k) of BR such that:
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– B(k) is dense in BR for the Euclidian distance and has full M-measure, that is M(k)(BR \ B(k)) = 0,
– C(k) is the completion of B(k) with respect to the geodesic distance on C(k),
– the volume form on C(k) coincides with the measure M(k) on B(k),
– in a system of local coordinates, the Riemannian metric tensor on C(k) reads,

g(k) = θ(k)(ω)
(
dx2

1 + · · · + dx2
m

)
with θ(k)(ω) = M(k)(BR)2

C2
R

.

We denote by ϕ(k) = Γ (1) ◦ · · · ◦ Γ (k) : (C(k), g(k)) → (BR,de) the isometry constructed recursively. From Propo-
sition 4.1, the measure M(k+1) is supported by B(k) almost surely, that is M(k+1)(BR \ B(k)) = 0 almost surely, so
that M(k+1) extends to a measure on C(k) by prescribing:

∀A ⊂ C(k) Borelian, M(k+1)(A) = M(k+1)
(
A ∩ B(k)

)
.

Furthermore, from Section 4.2, we have M(k) ∈ Re−
m−(k/n)ψ ′(1)

. We now apply Theorem 4.2 where the distance d is

equal to the geodesic distance on C(k), denoted by d(k) (the corresponding class Rα will be denoted by R
(k)
α ). Since

M(k) is the volume form on (C(k), g(k)), we have

M(k)(U) = Drm for any open ball U with radius r.

Hence M(k) ∈ R
(k)−
m . The assumptions of Theorem 4.2 are thus satisfied with α = m and ς = m − k

n
ψ ′(1) (and thus

we have ψ(2)/n < ς because of (4.4)). It follows that M(k+1) ∈ R
(k)−
m(1−ψ(2)/(mn−kψ ′(1)))+(ψ(2)−ψ ′(1))/n

. Because of
(4.4) again, we have

m

(
1 − ψ(2)

mn − kψ ′(1)

)
+ ψ(2) − ψ ′(1)

n
> m

(
1 − ψ(2)

mn − kψ ′(1)

)

> m − mψ(2)

n(m − ψ ′(1))

> m − 1,

so that we can show, as in the proof of Theorem 2.3, that M(k+1) does not charge the small sets of (C(k), g(k)). Hence
we can apply Theorem A.3 to find two optimal transport maps α(k+1), β(k+1) that respectively push M(k) forward to
M(k+1) and vice versa. Furthermore, β(k+1) can be rewritten as (ϕ(k))−1 ◦ Γ (k+1) ◦ ϕ(k) where Γ (k+1) :BR → BR is
the gradient of some convex function. The function ϕ(k+1) = ϕ(k) ◦ β(k+1) = Γ (k+1) ◦ · · · ◦ Γ (1) thus pushes M(k+1)

forward to λR . Besides the quantity

inf
T :BR→BR

T#M(k+1)=M(k)

∫
BR

d(k)
(
T (x), x

)2
M(k+1)(dx)

is achieved at β(k+1). Since d(k)(x, y) = de(ϕ
(k)(x), ϕ(k)(y)), we deduce that β(k+1) realizes the above infimum if

and only if ϕ(k+1) = ϕ(k) ◦ β(k+1) realizes the infimum

inf
T :BR→BR

T#M(k+1)=λR

∫
BR

∣∣T (x) − ϕ(k)(x)
∣∣2

M(k+1)(dx).

Then we can apply the same machinery as in Section 2.2 to construct the (k + 1)th Riemannian structure, which ends
up the induction.
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4.5. Proof of relation (3.1)

Let x1, . . . , xn ∈ B(0, T ), u1, . . . , un ∈ R and λ ≤ 1. We have

E
[
eiu1

√
M(BR)B(λx1)+···+iun

√
M(BR)B(λxn)

]
= E

[
eiu1

√
M(BR)W(Γ (B∩C(λx1)))+···+iun

√
M(BR)W(Γ (B∩C(λxn)))

]
= E

[
eiu1

√
M(BR)

∫
Rd (

∑n
k=1 uk1Γ (B∩C(λxk))(x))W(dx)

]
.

By conditioning w.r.t. M,Γ that are independent from W , we deduce:

E
[
eiu1

√
M(BR)B(λx1)+···+iun

√
M(BR)B(λxn)

]
= E

[
e−(1/2)M(BR)

∫
Rd (

∑n
k=1 uk1Γ (B∩C(λxk))(x))2 dx

]
= E

[
e−(1/2)M(BR)

∫
Rd (

∑n
k=1 uk1B∩C(λxk)(χ(x)))2 dx

]
= E

[
e−(CR/2)

∫
Rd (

∑n
k=1 uk1C(λxk)(x))2M(dx)

]
.

Now we use the scale invariance property of the measure M (see Theorem 2.1):

E
[
eiu1

√
M(BR)B(λx1)+···+iun

√
M(BR)B(λxn)

]
= E

[
e−(CR/2)λmeΩλ

∫
Rd (

∑n
k=1 uk1C(xk)(x))2M(dx)

]
.

By using the same computations we have the relation:

E
[
eiu1

√
CRλm/2e(1/2)ΩλB(x1)+···+iun

√
CRλm/2e(1/2)ΩλB(xn)

]
= E

[
e−(CR/2)λmeΩλ

∫
Rd (

∑n
k=1 uk1C(xk)(x))2M(dx)

]
,

from which relation (3.1) follows.

Appendix: Background about optimal transport theory

A.1. Monge problem

We remind the reader of the following classical results

Definition A.1 (Push-forward of measures). Let μ,ν be two measures respectively defined on the measured spaces
E and F . We will say that a measurable mapping ϕ :F → E pushes the measure ν forward to μ if both measures μ

and ν ◦ ϕ−1 coincide. In that case, we write ϕ#ν = μ.

Definition A.2 (Small sets). Given a metric space (X,d) with Hausdorff dimension n, a small set is a set with
Hausdorff dimension not greater than n − 1.

Given two probability measures μ and ν on BR , a coupling of (μ, ν) is a probability measure π on BR × BR with
marginals μ and ν. A coupling π is said to be deterministic if there is a measurable map T :BR → BR such that the
map x ∈ BR �→ (x, T (x)) pushes μ forward to π . In particular, for all ν-integrable function ϕ, one has∫

BR

ϕ(y)dν(y) =
∫

BR

ϕ
(
T (x)

)
dμ(x).
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Such a map T is called a transport map between μ and ν.
The Monge–Kantorovich problem on the ball BR can be formulated as follows. Given a cost function c defined on

BR × BR , one looks for a coupling π of (μ, ν) that realizes the infimum

C(μ,ν) = inf
∫

BR×BR

c(x, y)dπ(x, y),

where the infimum runs over all the coupling π of (μ, ν). Such a coupling is called optimal transference plan. If the
coupling π is deterministic, the corresponding transport map T is called optimal transport map. The optimal transport
cost is then the value∫

BR×BR

c
(
x,T (x)

)
dμ(x).

The search of deterministic optimal transference plans is called the Monge problem.

A.2. Solution to the Monge problem

We have (see [8], Theorem 10.28, and [9], Theorem 2.12 iv, for the last statement)

Theorem A.3. Let X be a Riemannian manifold isometric (as a smooth Riemannian manifold) to the closed ball
BR . We denote by f : X → BR the corresponding isometry of Riemannian structures. Let c : X × X → R be the cost
function given by

c(x, y) = d(x, y)2

and μ,ν two probability measures on X . Assume that the measure μ does not give mass to small sets. Then:

(1) There is a unique (in law) optimal coupling π of (μ, ν) and it is deterministic.
(2) There is a unique optimal transport map T (i.e. uniquely determined μ almost everywhere) solving the Monge

problem. Furthermore, we can find a lower semi-continuous convex function φ defined on BR such that

T (x) = f −1 ◦ ∇φ ◦ f (x)

for every x ∈ f −1({y ∈ R;φ is differentiable at y}).
(3) Supp(ν) = T (Supp(μ)).
(4) Finally, if ν does not give mass to small sets either, then there is also a unique optimal transport map T ′ solving

the Monge problem (of pushing ν forward to μ). We can also find a lower semi-continuous convex function ψ defined
on BR such that

T ′(x) = f −1 ◦ ∇φ ◦ f (x)

for every x ∈ f −1({y ∈ R;ψ is differentiable at y}). T and T ′ satisfy, for μ almost every x ∈ X and ν almost every
y ∈ X ,

T ′ ◦ T (x) = x, T ◦ T ′(y) = y.

Proof. There is an easy way to deduce the above theorem from [8], Theorem 10.28. Because of the isometry with
the closed ball BR , the above theorem is basically of Euclidian nature. Indeed, it is plain to see that π is an optimal
coupling of μ,ν for the cost function c(x, y) = d(x, y)2 on X × X if and only if Π = π#(f,f ) is a coupling of the
probability measures of f#μ,f#ν on BR . In the same way, T : X → X is an optimal transport map such that T#μ = ν

if and only if θ = f ◦ T ◦ f −1 is an optimal transport map such that θ#(f#μ) = f#ν for the Euclidian quadratic cost
on BR . So the proof of the above theorem boils down to applying [8], Theorem 10.28, in the Euclidian case with
quadratic cost function. It is then plain to complete the proof. �
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Remark A.4. In case (4) is satisified, it is more convenient to restrict the support of T and T ′ respectively to {x ∈
X ;φ is differentiable at f (x) and T ′ ◦ T (x) = x} and {x ∈ X ;ψ is differentiable at f (x) and T ◦ T ′(x) = x}. In that
way, T : Supp(T ) → Supp(T ′) and T ′ : Supp(T ′) → Supp(T ) are both bijections.
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