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PHYLOGENETIC MIXTURES: CONCENTRATION OF MEASURE
IN THE LARGE-TREE LIMIT

BY ELCHANAN MOSSEL1 AND SEBASTIEN ROCH2

University of California, Berkeley, and University of California, Los Angeles

The reconstruction of phylogenies from DNA or protein sequences is
a major task of computational evolutionary biology. Common phenomena,
notably variations in mutation rates across genomes and incongruences be-
tween gene lineage histories, often make it necessary to model molecular
data as originating from a mixture of phylogenies. Such mixed models play
an increasingly important role in practice.

Using concentration of measure techniques, we show that mixtures of
large trees are typically identifiable. We also derive sequence-length require-
ments for high-probability reconstruction.

1. Introduction. Phylogenetics [10, 22] is centered around the reconstruction
of evolutionary histories from molecular data extracted from modern species. The
assumption is that molecular data consists of aligned sequences and that each po-
sition in the sequences evolves independently according to a Markov model on a
tree, where the key parameters are (see Section 3 for formal definitions):

• Rate matrix. An r × r mutation rate matrix Q, where r is the alphabet size.
A typical alphabet is the set of nucleotides {A,C,G,T}, but here we allow more
general state spaces. Without loss of generality, we denote the alphabet by R =
[r] = {1, . . . , r}. The (i, j)th entry of Q encodes the rate at which state i mutates
into state j .

• Binary tree. An evolutionary tree T , where the leaves are the modern species and
each branching represents a past speciation event. The leaves are labeled with
names of species. Without loss of generality, we assume the labels are X = [n].

• Branch lengths. For each edge e, we have a scalar branch length we which mea-
sures the expected total number of substitutions per site along edge e. Roughly
speaking, we is the amount of mutational change between the end points of e.

The classical problem in phylogenetics can be stated as follows:
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• Phylogenetic tree reconstruction (PTR): Unmixed case. Given n molecular se-
quences of length k,

{sa = (si
a)

k
i=1}a∈[n]

with si
a ∈ [r], which have evolved according to the process above with indepen-

dent sites, reconstruct the topology of the evolutionary tree.

There exists a vast theoretical literature on this problem; see, for example, [22] and
references therein.

However, various phenomena, notably variations in mutation rates across
genomes and incongruences between gene lineage histories, often make it nec-
essary to model molecular data as originating from a mixture of different phyloge-
nies.

Here, using concentration of measure techniques, we show that mixtures of
large trees are typically identifiable. By typically, we mean informally that our
results hold under conditions guaranteeing that the tree topologies present in the
mixture are sufficiently distinct. (See Section 2.2 for a careful statement of the
theorems.) In particular, we give a broad new class of conditions under which
mixtures are identifiable, and we extend, to more general substitution models, pre-
vious results on the total variation distance between Markov models on trees. Our
proofs are constructive in that we provide a computationally efficient reconstruc-
tion algorithm. We also derive sequence-length requirements for high-probability
reconstruction.

Our identifiability and reconstruction results represent an important first step
toward dealing with more biologically relevant mixture models (such as the ones
mentioned above) in which the tree topologies tend to be similar. In particular, in
a recent related paper [18], we have used the techniques developed here to recon-
struct common rates-across-sites models.

1.1. Related work. Most prior theoretical work on mixture models has focused
on the question of identifiability. A class of phylogenetic models is identifiable if
any two models in the class produce different data distributions. It is well known
that unmixed phylogenetic models are typically identifiable [6]. This is not the
case in general for mixtures of phylogenies. For instance, Steel et al. [24] showed
that for any two trees one can find a random scaling on each of them, such that
their data distributions are identical. Hence it is hopeless, in general, to reconstruct
phylogenies under mixture models. See also [9, 13, 14, 23, 26, 27] for further
examples of this type.

However, the negative examples constructed in the references above are not
necessarily typical. They use special features of the mutation models (and their in-
variants) and allow themselves quite a bit of flexibility in setting up the topologies
and branch lengths. In fact, recently a variety of more standard mixture models
have been shown to be identifiable. These include the common GTR + � model
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[1, 28] and GTR + � + I model [5], as well as some covarion models [3], some
group-based models [2] and so-called r-component identical tree mixtures [20].
Although these results do not provide practical algorithms for reconstructing the
corresponding mixtures, they do give hope that these problems may be tackled
successfully.

Beyond the identifiability question, there seems to have been little rigorous
work on reconstructing phylogenetic mixture models. One positive result is the
case of the molecular clock assumption with across-sites rate variation [24], al-
though no sequence-length requirements are provided. There is a large body of
work on practical reconstruction algorithms for various types of mixtures, no-
tably rates-across-sites models and covarion-type models, using mostly likelihood
and Bayesian methods; see, for example, [10] for references. But the optimization
problems they attempt to solve are likely NP-hard [7, 21]. There also exist many
techniques for testing for the presence of a mixture (e.g., for testing for rate het-
erogeneity), but such tests typically require the knowledge of the phylogeny; see,
for example, [11].

Here we give both identifiability and reconstruction results. The proof of our
main results relies on the construction of a clustering statistic that discriminates
between distinct phylogenies. A similar approach was used recently in [18]. There,
however, the problem was to distinguish between phylogenies with the same topol-
ogy, but different branch lengths. In the current work, a main technical challenge
is to analyze the simultaneous behavior of such a clustering statistic on distinct
topologies. A similar statistic was also used in [25] to prove a special case of The-
orem 2 below. However, in contrast to [25], our main result requires that a cluster-
ing statistic be constructed based only on data generated by the mixture—that is,
without prior knowledge of the topologies to be distinguished. Finally, unlike [18]
and [25], we consider the more general GTR model.

2. Definitions and results.

2.1. Basic definitions.

Phylogenies. A phylogeny is a graphical representation of the speciation his-
tory of a group of organisms. The leaves typically correspond to current species.
Each branching indicates a speciation event. Moreover we associate to each edge a
positive weight. This weight can be thought roughly as the amount of evolutionary
change on the edge. More formally, we make the following definitions; see, for
example, [22]. Fix a set of leaf labels X = [n] = {1, . . . , n}.

DEFINITION 2.1 (Phylogeny). A weighted binary phylogenetic X-tree (or
phylogeny) T = (V ,E;φ;w) is a tree with vertex set V , edge set E, leaf set L

with |L| = n, and a bijective mapping φ :X → L such that:
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(1) The degree of all internal vertices V − L is exactly 3.
(2) The edges are assigned weights w :E → (0,+∞).

We let Tl[T ] = (V ,E;φ) be the leaf-labelled topology of T .

DEFINITION 2.2 (Tree metric). A phylogeny T = (V ,E;φ;w) is naturally
equipped with a tree metric dT :X × X → (0,+∞) defined as follows:

∀a, b ∈ X dT (a, b) = ∑
e∈PathT (φ(a),φ(b))

we,

where PathT (u, v) is the set of edges on the path between u and v in T . We will
refer to dT (a, b) as the evolutionary distance between a and b. In a slight abuse
of notation, we also sometimes use dT (u, v) to denote the evolutionary distance as
above between any two vertices u, v of T .

We will restrict ourselves to the following standard special case.

DEFINITION 2.3 (Regular phylogenies). Let 0 < f ≤ g < +∞. We denote by
Y

(n)
f,g the set of phylogenies T = (V ,E;φ;w) with n leaves such that f ≤ we ≤ g,

∀e ∈ E. We also let Yf,g = ⋃
n≥1 Y

(n)
f,g .

GTR model. A commonly used model of DNA sequence evolution is the fol-
lowing GTR model; see, for example, [22]. We first define an appropriate class of
rate matrices.

DEFINITION 2.4 (GTR rate matrix). Let R be a set of character states with
r = |R|. Without loss of generality we assume that R = [r]. Let π be a probability
distribution on R satisfying πx > 0 for all x ∈ R. A general time-reversible (GTR)
rate matrix on R, with respect to stationary distribution π , is an r × r real-valued
matrix Q such that:

(1) Qxy > 0 for all x �= y ∈ R.
(2)

∑
y∈R Qxy = 0, for all x ∈ R.

(3) πxQxy = πyQyx , for all x, y ∈ R.

By the reversibility assumption, Q has r real eigenvalues

0 = �1 > �2 ≥ · · · ≥ �r.

We normalize Q by fixing �2 = −1.

DEFINITION 2.5 (GTR model). Consider the following stochastic process.
We are given a phylogeny T = (V ,E;φ;w) and a finite set R with r elements.
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Let π be a probability distribution on R and Q be a GTR rate matrix with respect
to π . Associate to each edge e ∈ E the stochastic matrix

M(e) = exp(weQ).

The process runs as follows. Choose an arbitrary root ρ ∈ V . Denote by E↓ the set
E directed away from the root. Pick a state for the root at random according to π .
Moving away from the root toward the leaves, apply the channel M(e) to each
edge e independently. Denote the state so obtained sV = (sv)v∈V . In particular,
sL is the state at the leaves, which we also denote by sX . More precisely, the joint
distribution of sV is given by

μV (sV ) = πρ(sρ)
∏

e=(u,v)∈E↓
[M(e)]susv .

For W ⊆ V , we denote by μW the marginal of μV at W . Under this model, the
weight we is the expected number of substitutions on edge e in the continuous-
time process. We denote by D[T ,Q] the probability distribution of sV . We also let
Dl[T ,Q] denote the probability distribution of

sX ≡ (
sφ(a)

)
a∈X.

More generally, we consider k independent samples {si
V }ki=1 from the model

above, that is, s1
V , . . . , sk

V are i.i.d. D[T ,Q]. We think of (si
v)

k
i=1 as the sequence

at node v ∈ V . Typically, R = {A,G,C,T} and the model describes how DNA
sequences stochastically evolve by point mutations along an evolutionary tree un-
der the assumption that each site in the sequences evolves independently. When
considering many samples {si

V }ki=1, we drop the subscript to refer to a single sam-
ple sV .

Mixed model. We introduce the basic mixed model which will be the focus of
this paper. We will use the following definition. We assume that Q is fixed and
known throughout.

REMARK 2.1 (Unknown rate matrix). See the concluding remarks for an ex-
tension of our techniques when Q is unknown.

DEFINITION 2.6 (�-mixture). Let � be a positive integer. In the �-mixture
model, we consider a finite set of phylogenies

T = {Tθ = (Vθ ,Eθ ;φθ ;wθ)}�θ=1

on the same set of leaf labels X = [n] and a positive probability distribution
ν = (νθ )

�
θ=1 on [�]. Consider k i.i.d. random variables N1, . . . ,Nk with distri-

bution ν. Then, conditioned on N1, . . . ,Nk , the samples {si
X}ki=1 generated un-

der the �-mixture model (T, ν,Q) are independent with conditional distribution
s
j
X ∼ Dl[TNj ,Q], j = 1, . . . , k. We denote by Dl[(T, ν,Q)] the probability distri-

bution of s1
X . We will refer to Tθ as the θ -component of the mixture (T, ν,Q).
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We assume that � is fixed and known throughout. As above, we drop the super-
script to refer to a single sample sX with corresponding component indicator N .
To simplify notation, we let

dTθ = dθ ∀θ ∈ [�].
Some notation. We will use the notation [n]2 = {(a, b) ∈ [n] × [n] :a ≤ b},

[n]2= = {(a, a)}a∈[n] and [n]2�= = [n]2 − [n]2=. We also denote by [n]4�= the set of

pairs (a1, b1), (a2, b2) ∈ [n]2�= such that (a1, b1) �= (a2, b2) (as pairs). We use the

notation poly(n) to denote the growth condition usually written �(nC) for some
C > 0.

2.2. Main results. We make the following assumptions on the mutation model.

ASSUMPTION 1. Let 0 < f ≤ g < +∞, and ν > 0. We will use the following
set of assumptions on a �-mixture model (T, ν,Q):

(1) Regular phylogenies: Tθ ∈ Yf,g,∀θ ∈ [�].
(2) Minimum frequency: νθ ≥ ν,∀θ ∈ [�].

We denote by �-M[f,g, ν, n] the set of �-mixture models on n leaves satisfying
these conditions.

REMARK 2.2 (No minimum frequency). See the concluding remarks for an
extension of our techniques when the minimum frequency assumption is not satis-
fied.

Tree identifiability. Our first result states that, under Assumption 1, �-mixture
models are identifiable—except for an “asymptotically negligible fraction.” To for-
malize this notion, we use the following definition. Note that �-M[f,g, ν, n] is a
compact subset of a finite product of metric spaces [4] which we equip with its
Borel σ -algebra.

DEFINITION 2.7 (Permutation-invariant measure). Let

A ⊆ �-M(f, g, ν, n)

be a Borel set. Given � permutations � = {�θ }θ∈[�] of X, we let

�[T] ≡ {�θ [Tθ ]}θ∈[�] ≡ {(Vθ ,Eθ ;φθ ◦ �θ ;wθ)}θ∈[�],
where ◦ indicates composition, and

A� = {(T, ν,Q) ∈ �-M(f, g, ν, n) : (�[T], ν,Q) ∈ A}.
A probability measure λ on �-M(f, g, ν, n) is permutation-invariant if for all A

and � as above, we have the following:

λ[A] = λ[A�].
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REMARK 2.3. Alternatively one can think of a permutation-invariant measure
as first picking unlabeled trees, branch weights and mixture frequencies according
to a specified joint distribution, and then labeling the leaves of each tree in the
mixture independently, uniformly at random. Note that the independent labeling
of the trees is needed for our proof. It ensures that the phylogenies in the mixture
are typically, “sufficiently distinct.” Generalizing our results, possibly in a weaker
form, to mixtures of “similar” phylogenies is an important open problem. See [18]
for recent progress in this direction.

For two �-mixture models (T, ν,Q) and (T′ = {T ′
θ }θ∈[�], ν′,Q), we write

(T, ν,Q) � (T′, ν′,Q),

if there is no bijective mapping h of [�] such that

Tl[Tθ ] = Tl

[
T ′

h(θ)

] ∀θ ∈ [�].
In words, (T, ν,Q) and (T′, ν′,Q) are not equivalent up to component re-labeling.

THEOREM 1 (Tree identifiability). Fix 0 < f ≤ g < +∞, and ν > 0. Then,
there exists a sequence of Borel subsets

An ⊆ �-M(f, g, ν, n), n ≥ 1,

such that the following hold:

(1) For any sequence of permutation-invariant measures λn, n ≥ 1, respec-
tively, on �-M(f, g, ν, n), n ≥ 1, we have

λn[An] = 1 − on(ν, f, g)

as n → ∞. Here on(ν, f, g) indicates convergence to 0 as n → ∞ for fixed ν,f, g.
(2) For all

(T, ν,Q) � (T′, ν′,Q) ∈ ⋃
n≥1

An,

we have

Dl[(T, ν,Q)] �= Dl[(T′, ν′,Q)].

REMARK 2.4. As remarked above, our proof requires that the phylogenies
in the mixture are “sufficiently different.” This is typically the case under a
permutation-invariant measure. Roughly speaking, the complements of the sets An

in the previous theorem contain those exceptional instances where the phylogenies
are too “similar.” See the proof for a formal definition of An.
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Tree distance. We also generalize to GTR models a result of Steel and Székely:
phylogenies are typically far away in variational distance [25]. The techniques
in [25] apply only to group-based models and other highly symmetric models;
see [25] for details. Let ‖ · ‖TV denote total variation distance; that is, for two
probability measures D, D′ on a measure space (
, F ) define

‖D − D′‖TV = sup
B∈F

|D(B) − D′(B)|.

THEOREM 2 (Tree distance). Let {An}n be as in Theorem 1 where � = 2 and
ν = 1/2 [in which case we necessarily have ν = (1/2,1/2)]. Then for all

(T, ν,Q) ∈ ⋃
n≥1

An,

we have

‖Dl[T1,Q] − Dl[T2,Q]‖TV = 1 − on(1).

REMARK 2.5. Note that ν plays no substantive role in the previous theorem
other than to determine An.

Tree reconstruction. The proof of Theorems 1 and 2 rely on the following
reconstruction result of independent interest. We show that the topologies can be
reconstructed efficiently with high confidence using polynomial length sequences.
Recall that k denotes the sequence length.

THEOREM 3 (Tree reconstruction). Fix 0 < f ≤ g < +∞, and ν > 0. Then,
there exists a sequence of Borel subsets

An ⊆ �-M(f, g, ν, n), n ≥ 1,

such that the following hold:

(1) For any sequence of permutation-invariant measures λn, n ≥ 1, respec-
tively, on �-M(f, g, ν, n), n ≥ 1, we have

λn[An] = 1 − on(ν, f, g)

as n → ∞.
(2) For all

(T, ν,Q) ∈ ⋃
n≥1

An,

the topologies of (T, ν,Q) can be reconstructed in time polynomial in n and k

using polynomially many samples (i.e., k is polynomial in n) with probability 1 −
on(ν, f, g) under the samples and the randomness of the algorithm.

REMARK 2.6. The subsets {An}n in Theorems 1 and 3 are in fact the same.

The rest of the paper is devoted to the proof of Theorem 3 which implies Theo-
rems 1 and 2.
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2.3. Proof overview. The proof of Theorem 3 relies on the construction of a
clustering statistic that discriminates between distinct phylogenies.

Clustering statistic. Fix 0 < f ≤ g < +∞ and ν > 0. Suppose for now that
� = 2, and let λ be a permutation-invariant probability measure on �-M[f,g,
ν,n]. It will be useful to think of λ as a two-step procedure: first pick unlabeled,
weighted topologies; and second, assign a uniformly random labeling to the leaves
of each tree. Pick a �-mixture model (T, ν,Q) according to λ. We will denote by
Pλ and Eλ probability and expectation under λ. Similarly, we denote by Pl and
El (resp., PA and EA) probability and expectation under (T, ν,Q) (resp., under
the randomness of our algorithm), as well as combinations such as PA,λ with the
obvious meaning.

Let z = (zx)
r
x=1 be a (real-valued) right eigenvector of Q corresponding to

eigenvalue �2 = −1 and normalize z so that

r∑
x=1

πxz
2
x = 1.

(Any negative eigenvalue could be used instead.) Consider the following one-
dimensional mapping of the samples ([17], Lemma 5.3): for all i = 1, . . . , k and
a ∈ X,

σ i
a = zsi

a
.(1)

Recall that we drop the superscript when referring to a single sample. It holds that

El[σa|N = θ ] = 0.(2)

Moreover, following a computation in [17], Lemma 5.3, letting a ∧ b be the most
recent common ancestor of a and b (under the arbitrary choice of root ρ) one has

qθ (a, b) = El[σaσb|N = θ ] − El[σa|N = θ ]E[σb|N = θ ]
= El[σaσb|N = θ ]

=
r∑

x=1

πxEl[σaσb|N = θ, sa∧b = x]
(3)

=
r∑

x=1

πxEl[σa|N = θ, sa∧b = x]El[σb|N = θ, sa∧b = x]

=
r∑

x=1

πx

(
e−dθ (a∧b,a)zx

)(
e−dθ (a∧b,b)zx

)

= e−dθ (a,b)
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and

q(a, b) = El[σaσb] − El[σa]El[σb] = El[σaσb] =
�∑

θ=1

νθe
−dθ (a,b).(4)

We use a statistic of the form

U = 1

|ϒ |
∑

(a,b)∈ϒ

σaσb,(5)

where ϒ ⊆ [n]2�=. For U to be effective in discriminating between T1 and T2, we
require the following (informal) conditions:

(C1) The difference in conditional expectations

� = ∣∣El[U |N = 1] − El[U |N = 2]∣∣
is large.

(C2) The statistic U is concentrated around its mean under both Dl[T1,Q] and
Dl[T2,Q].

(C3) The set ϒ can be constructed from data generated by the mixture
(T, ν,Q).

A U satisfying C1–C3 could be used to infer the hidden variables N1, . . . ,Nk and,
thereby, to cluster the samples in their respective component.

Prior work. In [18], it was shown in a related context that taking ϒ = [n]2�= is
not in general an appropriate choice, as it may lead to a large variance. Instead, the
following lemma was used.

CLAIM (Disjoint close pairs [25]; see also [18]). For any T ∈ Y
(n)
f,g , there ex-

ists a subset ϒ ⊆ [n]2�= such that the following hold:

(1) |ϒ | = 
(n);
(2) ∀(a, b) ∈ ϒ , dT (a, b) ≤ 3g;
(3) ∀(a1, b1) �= (a2, b2) ∈ ϒ , the paths PathT (a1, b1) and PathT (a2, b2) are

edge-disjoint. We will say that such pairs are T -disjoint.

For special Q matrices, it was shown in [25] and [18] that such a ϒ for T = T1,
say, can be used to construct a clustering statistic [similar to (5)] concentrated
under Dl[T1,Q]. In particular, the T1-disjointness assumption above implies the
independence of the variables σa1σb1 and σa2σb2 under the Q matrices considered
in [18, 25]. Moreover, Steel and Székely [25] proved the existence of a further
subset that is also T2-disjoint, but their construction requires the knowledge of T2.
Here we show how to satisfy conditions C1–C3 under GTR models.
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High-level construction. We give a sketch of our techniques. Formal state-
ments and full proofs can be found in Sections 3, 4 and 5. For α > 0, let

ϒα,θ = {(a, b) ∈ [n]2�= :dθ (a, b) ≤ α}
and

ϒα = ⋃
θ∈[�]

ϒα,θ .

Because the variables N1, . . . ,Nk are hidden, we cannot infer ϒα,θ directly from
the samples, for instance, using (3). Instead:

(Step 1) Using (4) and the estimator

q̂(a, b) = 1

k

k∑
i=1

σ i
aσ i

b,

we construct a set with size linear in n satisfying

ϒ4g ⊆ ϒ ′ ⊆ ϒCc

for an appropriate constant Cc; see Lemma 4.1.

Define

ϒ ′
θ = ϒ ′ ∩ ϒCc,θ .

For general GTR rate matrices, Tθ -disjointness of (a1, b1), (a2, b2) ∈ ϒ ′
θ does not

guarantee independence of σa1σb1 and σa2σb2 under Dl[Tθ ,Q]. Instead, we choose
pairs that are far enough from each other by picking a sufficiently sparse random
subset of ϒ ′; see Lemma 3.8. We say that (a1, b1), (a2, b2) ∈ ϒ ′

θ are Tθ -far if the
smallest evolutionary distance between {a1, b1} and {a2, b2} is at least Cf log logn

for a constant Cf > 0 to be determined.

(Step 2) We take a random subset ϒ ′′ of ϒ ′ with

|ϒ ′′| = �(logn);
see Lemma 4.2.

Denoting

ϒ ′′
θ = ϒ ′′ ∩ ϒCc,θ ,

we show that all (a1, b1) �= (a2, b2) ∈ ϒ ′′
θ are Tθ -far. Under a permutation-

invariant λ, a pair (a, b) ∈ ϒα,1 is unlikely to be in ϒα,2. In particular, we show
that, under λ, the intersection of ϒ ′′

1 and ϒ ′′
2 is empty. In fact, a pair (a, b) ∈ ϒα,1

is likely to be such that d2(a, b) is large. We say that (a, b) ∈ [n]2�= is Tθ -stretched
if dθ (a, b) ≥ Cst log logn for a constant Cst > 0 to be determined. We show that
all (a, b) ∈ ϒ ′′

1 are T2-stretched; see Lemma 3.7.
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To infer ϒ ′′
θ , we consider the quantity

r̂(c1, c2) = 1

k

k∑
i=1

[σ i
a1

σ i
b1

σ i
a2

σ i
b2

− q̂(a1, b1)q̂(a2, b2)]

for c1 = (a1, b1) �= c2 = (a2, b2) ∈ [n]2�=. We note that if (a, b) ∈ ϒ ′′ is T2-
stretched, then

El[σaσb|N = 2] ≈ El[σa|N = 2]El[σb|N = 2] = 0

and

q(a, b) ≈ ν1q1(a, b).

There are then two cases:

(I) If c1 = (a1, b1) �= c2 = (a2, b2) ∈ ϒ ′′
1 (and similarly for ϒ ′′

2 ), they are T1-far
and each is T2-stretched. Moreover we show that (c1, c2) is T2-far. Therefore,

q(a1, b1) ≈ ν1q1(a1, b1), q(a2, b2) ≈ ν1q1(a2, b2),

and we show further that

El[σa1σb1σa2σb2]
≈ ν1El[σa1σb1 |N = 1]El[σa2σb2 |N = 1]

+ ν2El[σa1 |N = 2]El[σb1 |N = 2]El[σa2 |N = 2]El[σb2 |N = 2]
≈ ν1q1(a1, b1)q1(a2, b2).

So

r̂(c1, c2) ≈ ν1(1 − ν1)q1(a1, b1)q1(a2, b2) > 0.

(II) On the other hand, if c1 = (a1, b1) ∈ ϒ ′′
1 and c2 = (a2, b2) ∈ ϒ ′′

2 , then c1 is
T2-stretched, and c2 is T1-stretched. Moreover we show that (c1, c2) is both T1-far
and T2-far. Therefore,

q(a1, b1) ≈ ν1q1(a1, b1), q(a2, b2) ≈ ν2q2(a2, b2),

and we show that

El[σa1σb1σa2σb2] ≈ ν1El[σa1σb1 |N = 1]El[σa2 |N = 1]El[σb2 |N = 1]
+ ν2El[σa1 |N = 2]El[σb1 |N = 2]El[σa2σb2 |N = 2]

≈ 0.

So

r̂(c1, c2) ≈ −ν1q1(a1, b1)ν2q2(a2, b2) < 0;
see Lemma 3.9.
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The argument above leads to the following step.

(Step 3) For all pairs c1 = (a1, b1) and c2 = (a2, b2) in ϒ ′′, we compute r̂(c1, c2). Using
cases I and II, we then infer the sets ϒ ′′

1 and ϒ ′′
2 . We form the clustering statistics

U i
θ = 1

|ϒ ′′
θ |

∑
(a,b)∈ϒ ′′

θ

σ i
aσ i

b

for θ = 1,2 and i = 1, . . . , k; see Lemma 4.3.

By the arguments in cases I and II above, we get that for (a, b) ∈ ϒ ′′
1 ,

El[σaσb|N = 1] ≈ ν1q1(a, b),

whereas

El[σaσb|N = 2] ≈ El[σa|N = 2]El[σb|N = 2] ≈ 0,

so that (dropping the superscript to refer to a single sample)

El[U1|N = 1] > C�,

whereas

El[U1|N = 2] < C�

for a constant C� > 0 to be determined later; see Lemma 3.10. Moreover, the
properties of ϒ ′′

θ discussed in cases I and II allow us to prove further that Uθ is
concentrated around its mean; see Lemma 3.11. This leads to the following step.

(Step 4) Divide the samples i = 1, . . . , k into two clusters K1 and K2, according to whether

U i
1 > C� or U i

2 > C�,

respectively; see Lemma 5.1.

Once the samples are divided into pure components, we apply standard recon-
struction techniques to infer each topology.

(Step 5) For θ = 1,2, reconstruct the topology Tl[Tθ ] from the samples in Kθ ; see Lem-
ma 5.3.

General �. When � > 2, we proceed as above and construct a clustering
statistic for each component.

3. Main lemmas. In this section, we derive a number of preliminary results.
These results are also described informally in Section 2.3.

Fix a GTR matrix Q and constants � ≥ 2, 0 < f ≤ g < +∞ and ν > 0. Let λ be
a permutation-invariant probability measure on �-M[f,g, ν, n]. Pick a �-mixture
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model (T, ν,Q) according to λ, and generate k independent samples {si
X}ki=1 from

Dl[(T, ν,Q)]. We work with the mapping {σX}ki=1 defined in (1).
Throughout we assume that the number of samples is k = nCk for some Ck > 0

to be fixed later.

3.1. Useful lemmas. We will need the following standard concentration in-
equalities; see, for example, [19]:

LEMMA 3.1 (Azuma–Hoeffding inequality). Suppose Z = (Z1, . . . ,Zm) are
independent random variables taking values in a set S, and h :Sm → R is any
t-Lipschitz function: |h(z) − h(z′)| ≤ t whenever z, z′ ∈ Sm differ at just one coor-
dinate. Then, ∀ζ > 0,

P[|h(Z) − E[h(Z)]| ≥ ζ ] ≤ 2 exp
(
− ζ 2

2t2m

)
.

LEMMA 3.2 (Chernoff bounds). Let Z1, . . . ,Zm be independent Poisson tri-
als such that, for 1 ≤ i ≤ m, P[Zi = 1] = pi where 0 < pi < 1. Then, for
Z = ∑m

i=1 Zi , M = E[Z] = ∑m
i=1 pi , 0 < δ− ≤ 1, and δ+ > 2e − 1,

P[Z < (1 − δ−)M] < e−Mδ2−/2

and

P[Z > (1 + δ+)M] < 2−(1+δ+)M.

3.2. Large-sample asymptotics. Denoting K = [k], let Kθ ⊆ K be those sam-
ples coming from component θ , that is,

Kθ = {i ∈ K :Ni = θ}.
LEMMA 3.3 (Size of Kθ ). Under Pl , for any Cs > 1, we have

C−1
s ≤ |Kθ |

νθk
≤ Cs

for all θ ∈ [�], except with probability exp(−
(nCk)).

PROOF. Recall that ν ≤ νθ ≤ 1 − ν. Using Lemma 3.1 with m = k and

ζ = νθk max{1 − C−1
s ,Cs − 1} = νθk(Cs − 1)

gives the result. �

Consider the estimators

q̂θ (a, b) = 1

|Kθ |
∑
i∈Kθ

σ i
aσ

i
b
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and

q̂(a, b) = 1

k

k∑
i=1

σ i
aσ

i
b.

Let

qθ (a, b) = e−dθ (a,b)

and

q(a, b) =
�∑

θ=1

νθqθ (a, b).

LEMMA 3.4 (Accuracy of q̂). Fix 0 < Cq < Ck/2. Under Pl , we have

|q̂(a, b) − q(a, b)| ≤ n−Cq

and

|q̂θ (a, b) − qθ (a, b)| ≤ n−Cq

for all θ ∈ [�] and all (a, b) ∈ [n]2�= except with probability exp(−poly(n)).

PROOF. For each (a, b) ∈ [n]2�=, q̂(a, b) is a sum of k independent variables.

By Lemma 3.1, taking m = k, t = k−1 maxi |zi |2, ζ = n−Cq , we have

|q̂(a, b) − q(a, b)| ≤ n−Cq ,

except with probability 2 exp(−
(nCk−2Cq )). Note that there are at most n2 ele-
ments in [n]2�= so that the probability of failure is at most

2n2 exp(−
(nCk−2Cq )) = exp(−
(nCk−2Cq )).

Using Lemma 3.3, the same holds for each θ . The overall probability of failure
under Pl is exp(−
(nCk−2Cq )). �

Following the same argument, a similar result holds for

r̂(c1, c2) = 1

k

k∑
i=1

[σ i
a1

σ i
b1

σ i
a2

σ i
b2

− q̂(a1, b1)q̂(a2, b2)]

for c1 = (a1, b1) �= c2 = (a2, b2) ∈ [n]2�=. Let

r(c1, c2) = El[r̂(c1, c2)].
LEMMA 3.5 (Accuracy of r̂). Under Pl , we have

|r̂(c1, c2) − r(c1, c2)| ≤ n−Cq

for all c1 = (a1, b1) �= c2 = (a2, b2) ∈ [n]2�= except with probability exp(−poly(n)).
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3.3. Combinatorial properties. For α > 0, let

ϒα,θ = {(a, b) ∈ [n]2�= :dθ (a, b) ≤ α}(6)

and

ϒα = ⋃
θ∈[�]

ϒα,θ .(7)

The lower bound below follows from a (stronger) lemma in [25]; see also [18].

LEMMA 3.6 (Size of ϒα,θ ). For all α > 0 and θ ∈ [�],
1
4n ≤ |ϒα,θ | ≤ 2�α/f �n.

In particular,
1
4n ≤ |ϒα| ≤ �2�α/f �n.

PROOF. For a ∈ X and α ≥ 4g, let

Bα(a) = {v ∈ V :dθ (φθ (a), v) ≤ α}.
Since Tθ is binary, there are at most 2�α/f � vertices within evolutionary distance α,
that is,

|Bα(a)| ≤ 2�α/f �.
Restricting to leaves gives the upper bound.

Let

�α = {
a ∈ [n] :dθ (a, b) > α,∀b ∈ [n] − {a}},

that is, �α is the set of leaves with no other leaf at evolutionary distance α in Tθ .
We will bound the size of �α . Note that for all a, b ∈ �α with a �= b, we have
Bα/2(a) ∩ Bα/2(b) = ∅ by the triangle inequality. Moreover, it holds that for all
a ∈ �α

|Bα/2(a)| ≥ 2�α/(2g)�,
since Tθ is binary, and there is no leaf other than a in Bα/2(a). Hence, we must
have

|�α| ≤ 2n − 2

2�α/(2g)� ≤
(

1

2�α/(2g)�−1

)
n

as there are 2n − 2 nodes in Tθ . Now, for all a /∈ �α assign an arbitrary leaf at
evolutionary distance at most α. Then

|ϒα,θ | ≥ 1

2
(n − |�α|)

≥ 1

2

(
1 − 1

2�α/(2g)�−1

)
n,
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where we divided by 2 to avoid double-counting. The result follows from the as-
sumption α ≥ 4g. �

Let Cc > 4g, Cf > 0, and Cst > Cf to be fixed later.

DEFINITION 3.1 (Tθ -quasicherry). We say that (a, b) ∈ [n]2�= is a Tθ -quasi-
cherry if (a, b) ∈ ϒCc,θ .

DEFINITION 3.2 (Tθ -stretched). We say that (a, b) ∈ [n]2�= is Tθ -stretched if
dθ (a, b) ≥ Cst log logn.

DEFINITION 3.3 (Tθ -far). We say that c1 = (a1, b1) �= c2 = (a2, b2) ∈ [n]2�=
are Tθ -far if

dθ (c1, c2) ≡ min
{
dθ (x1, x2) :x1 ∈ {a1, b1}, x2 ∈ {a2, b2}} ≥ Cf log logn.

Let ϒ ′ be any subset satisfying

ϒ4g ⊆ ϒ ′ ⊆ ϒCc(8)

and let

ϒ ′
θ = ϒ ′ ∩ ϒCc,θ .(9)

Let C
p
sp > 0 to be fixed later. Keep each (a, b) ∈ ϒCc independently with probabil-

ity

psp = C
p
sp logn

n

to form the set ϒ ′′
Cc

, and let

ϒ ′′ = ϒ ′ ∩ ϒ ′′
Cc

.

Let 0 < C−
sp < C+

sp < +∞ be constants (to be determined).

DEFINITION 3.4 (Properly sparse). A subset ϒ4g ⊆ ϒ ′′ ⊆ ϒCc with

ϒ ′′
θ = ϒ ′′ ∩ ϒCc,θ , θ ∈ [�],

is properly sparse if it satisfies the following properties: For all θ ∈ [�]:
(1) We have C−

sp logn ≤ |ϒ ′′
θ | ≤ C+

sp logn.

(2) All c1 = (a1, b1) �= c2 = (a2, b2) ∈ ϒ ′′ are Tθ -far.
(3) All pairs in ϒ ′′

θ are Tθ ′-stretched for θ ′ �= θ .
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Let

ϒ ′′
Cc,θ

= ϒ ′′
Cc

∩ ϒCc,θ , θ ∈ [�],
and

ϒ ′′
4g,θ = ϒ4g ∩ ϒ ′′

Cc,θ
, θ ∈ [�].

LEMMA 3.7 (Sparsification). There exist constants 0 < C−
sp < C+

sp < +∞
such that, under PA,λ, the set ϒ ′′

Cc
as above satisfies the following properties, ex-

cept with probability 1/poly(n): for all θ ∈ [�]:
(1) We have C−

sp logn ≤ |ϒ ′′
4g,θ | and |ϒ ′′

Cc,θ
| ≤ C+

sp logn.

(2) All c1 = (a1, b1) �= c2 = (a2, b2) ∈ ϒ ′′
Cc

are Tθ -far.
(3) All pairs in ϒ ′′

Cc,θ
are Tθ ′ -stretched for θ ′ �= θ .

In particular, the set ϒ ′′ as above is properly sparse. Moreover, the claim holds for
any C−

sp > 0 by taking C
p
sp > 0 large enough.

Intuitively, part (2) follows from the sparsification step whereas part (3) is a
consequence of the permutation-invariance of λ. We give a formal proof next.

PROOF OF LEMMA 3.7. For part (1), we use Lemma 3.2. Take

1

4
Cp

sp logn ≤ M4g ≡ C
p
sp logn

n
|ϒ4g,θ |

and

MCc ≡ C
p
sp logn

n
|ϒCc,θ | ≤ 2�Cc/f �Cp

sp logn.

With δ− = 1/2, δ+ = 5, we have

PA[|ϒ ′′
4g,θ | < (1 − δ−)M4g] < e−M4gδ2−/2 = 1

poly(n)

and

PA[|ϒ ′′
Cc,θ

| > (1 + δ+)MCc ] < 2−(1+δ+)MCc = 1

poly(n)
.

The first part follows from the choice

C−
sp = C

p
sp

8

and

C+
sp = 6Cp

sp2�Cc/f �.
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For the second part, let c1 = (a1, b1) be a pair in ϒ ′′
Cc

. Let S be the collection
of pairs c2 = (a2, b2) �= c1 in the original set ϒCc that are within evolutionary
distance Cf log logn of c1 in Tθ , that is,

d(c1, c2) ≤ Cf log logn.

Note that the number of leaves within evolutionary distance Cf log logn from a1
or b1 is at most 2 · 2�Cf log logn/f �. Moreover, each such leaf can be involved in
at most �2�Cc/f � pairs, since any pair in ϒCc must be a Tθ ′-quasicherry for some
θ ′ ∈ [�] and the number of leaves at evolutionary distance Cc from a vertex in a
tree in Yf,g is at most 2�Cc/f �. Hence

|S| ≤ 2 · 2�Cf log logn/f � · �2�Cc/f � = O(logn).

Therefore the probability that any c2 ∈ S remains in ϒ ′′
Cc

is at most O(log2 n/n).
Assuming part (1) holds, summing over ϒ ′′

Cc
, and applying Markov’s inequality,

we get

PA[|c1 �= c2 ∈ ϒ ′′
Cc

: c1, c2 are not Tθ -far| ≥ 1] = O

(
log3 n

n

)
+ 1

poly(n)
.

This gives the second part.
For the third part, consider a Tθ -quasicherry (a, b). Thinking of λ as assigning

leaf labels in Tθ ′ uniformly at random, the probability that b is within evolutionary
distance Cst log logn of a in Tθ ′ is at most

Pλ[(a, b) is not Tθ ′-stretched] ≤ 2�Cst log logn/f �

n
= O

(
logn

n

)
,

where the numerator in the second expression is an upper bound on the number of
vertices at evolutionary distance Cst log logn of a in Tθ ′ . Summing over all pairs
in ϒ ′′

Cc,θ
and assuming the bound in part (1) holds, the expected number of pairs

in ϒ ′′
Cc,θ

that are not Tθ ′-stretched is O(log2 n/n). By Markov’s inequality,

PA,λ[|{(a, b) ∈ ϒ ′′
Cc,θ

: (a, b) is not Tθ ′-stretched}| ≥ 1] ≤ O

(
log2 n

n

)
+ 1

poly(n)
.

This gives the third part. �

3.4. Mixing. We use a mixing argument similar to [15]. Let

Qmin = min
x �=y

Qxy,

which is positive by assumption. We think of Q as acting as follows. From a
state x, we have two type of transitions to y �= x:

(i) We jump to state y at rate Qmin > 0.
(ii) We jump to state y at rate Qxy − Qmin ≥ 0.
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Note that a transition of type (i) does not depend on the starting state. Hence if P
is a path from u to v in Tθ , N = θ , and a transition of type (i) occurs along P ,
then σu is independent of σv . The probability, conditioned on N = θ , that such a
transition does not occur, is e−dθ (u,v)(r−1)Qmin .

Let ϒ ′′ ⊆ [n]2�= be a properly sparse set. We show next that pairs in ϒ ′′ are
independent with high probability. We proceed by considering the paths joining
them and arguing that transitions of type (i) are likely to occur on them by the
combinatorial properties in Definition 3.4. Formally, fix θ ∈ [�], and consider two
pairs c1 = (a1, b1) �= c2 = (a2, b2) ∈ ϒ ′′. By Definition 3.4, c1 and c2 are Tθ -far.
There are three cases without loss of generality:

(1) c1, c2 are Tθ -quasicherries. In the subtree of Tθ connecting {a1, b1, a2, b2},
called a quartet, the paths PathTθ (a1, b1) and PathTθ (a2, b2) are disjoint. This
is denoted by the quartet split a1b1|a2b2. Let P θ [c1, c2] be the internal path
of the quartet. Note that by Definition 3.4 the length of P θ [c1, c2] is at least
Cf log logn − 2Cc. Denote by P θ

c1
[c1, c2] the subpath of P θ [c1, c2] within evo-

lutionary distance 1
3Cf log logn of c1.

(2) c1 is a Tθ -quasicherry, and c2 is Tθ -stretched. Consider the subtree of Tθ

connecting {a1, b1, a2}, called a triplet, and let u be the central vertex of it. Let
P θ [c1, a2] be the path connecting u and a2. Note that by Definition 3.4, the length
of P θ [c1, a2] is at least Cf log logn − Cc. Denote by P θ

c1
[c1, a2] the subpath of

P θ [c1, a2] within evolutionary distance 1
3Cf log logn of c1. Similarly, denote by

P θ
a2

[c1, a2] the subpath of P θ [c1, a2] within evolutionary distance 1
3Cf log logn

of a2.
(3) c1, c2 are Tθ -stretched. Let P θ [a1, a2] be the path connecting a1 and a2.

Note that by Definition 3.4 the length of P θ [a1, a2] is at least Cf log logn.
Denote by P θ

a1
[a1, a2] the subpath of P θ [a1, a2] within evolutionary distance

1
3Cf log logn of a1. Similarly, let P θ [a1, b1] be the path joining a1 and b1,
and let P θ

a1
[a1, b1] be the subpath of P θ [a1, b1] within evolutionary distance

1
3Cst log logn > 1

3Cf log logn of a1.

Condition on N = θ . For each c1 = (a1, b1) ∈ ϒ ′′
θ , let E θ

c1
be the following event:

Each subpath P θ
c1

[c1, c2], c2 �= c1 ∈ ϒ ′′
θ , and each subpath P θ

c1
[c1, a2], c2 = (a2, b2) ∈

ϒ ′′ − ϒ ′′
θ , undergo a transition of type (i) during the generation of sample σX .

Similarly, for each c1 = (a1, b1) ∈ ϒ ′′ − ϒ ′′
θ , let E θ

c1
= E θ

a1
∩ E θ

b1
where E θ

a1
is the

following event (and similarly for E θ
b1

):

Each subpath P θ
a1

[c2, a1], c2 ∈ ϒ ′′
θ , each subpath P θ

a1
[a1, a2], c2 = (a2, b2) ∈ ϒ ′′ −

ϒ ′′
θ with c1 �= c2, as well as subpath P θ

a1
[a1, b1] undergo a transition of type (i) during

the generation of sample σX .

Note that, under E θ
c1

, the random variable σa1σb1 is independent of every other
such random variable in ϒ ′′. Moreover, in the case c1 ∈ ϒ ′′ − ϒ ′′

θ , then further
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σa1 is independent of σb1 . The next lemma shows that most of the events above
occur with high probability implying that a large fraction of σa1σb1 ’s are mutually
independent.

LEMMA 3.8 (Pair independence). Let ϒ ′′ ⊆ [n]2�= be a properly sparse set.
Conditioned on N = θ , let

I = {c1 ∈ ϒ ′′ : E θ
c1

holds}.
For any 0 < εI < 1 and CI > 0, there exist Cf , Cst > Cf and C−

sp > 0 large

enough so that the following holds except with probability n−CI under Pl :

|I| ≥ (1 − εI )|ϒ ′′|.
PROOF. Condition on N = θ . Note that the E θ

c1
’s are mutually independent

because the corresponding paths are disjoint by construction. By a union bound
over ϒ ′′, for all c1 ∈ ϒ ′′,

Pl[(E θ
c1

)c|N = θ ] ≤ 2C+
sp logn · e−((1/3)Cf log logn−2Cc)(r−1)Qmin

(10)

= 1

poly(logn)

for Cf large enough. Applying Lemma 3.2 with

M = |ϒ ′′| · Pl[(E θ
c1

)c|N = θ ]
and δ+ > 2e such that

(1 + δ+)M = εI |ϒ ′′| ≥ εI C−
sp logn,

we get

Pl[|ϒ ′′ − I| > εI |ϒ ′′|] ≤ 2−εI |ϒ ′′| = 1

nCI

by taking C−
sp large enough in Definition 3.4. �

We use the independence claims above to simplify expectation computations.

LEMMA 3.9 (Expectation computations). Let ϒ ′′ ⊆ [n]2�= be a properly sparse
set. The following hold. For all θ �= θ ′ ∈ [�]:

(1) ∀(a, b) ∈ ϒ ′′
θ ,

qθ (a, b) ≥ e−Cc .

(2) ∀(a, b) ∈ ϒ ′′ − ϒ ′′
θ ,

qθ (a, b) = 1

poly(logn)
.
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(3) ∀(a, b) ∈ ϒ ′′
θ ,

q(a, b) = νθqθ (a, b) + 1

poly(logn)
.

(4) ∀c1 = (a1, b1) �= c2 = (a2, b2) ∈ ϒ ′′
θ ,

r(c1, c2) = νθ (1 − νθ )qθ (a1, b1)qθ (a2, b2) + 1

poly(logn)

≥ 1

2
ν(1 − ν)e−2Cc > 0.

(5) ∀c1 = (a1, b1) ∈ ϒ ′′
θ , c2 = (a2, b2) ∈ ϒ ′′

θ ′ ,

r(c1, c2) = −νθqθ (a1, b1)νθ ′qθ ′(a2, b2) + 1

poly(logn)

≤ −1

2
νe−2Cc < 0.

PROOF. Parts (1) and (2) follow from the fact that qθ (a, b) = e−dθ (a,b),
dθ (a, b) ≤ Cc for all (a, b) ∈ ϒ ′′

θ and dθ (a, b) ≥ Cst log logn for all (a, b) ∈
ϒ ′′ − ϒ ′′

θ from Definition 3.4. Part (3) follows from parts (1) and (2).
For part (4), let c1 = (a1, b1) �= c2 = (a2, b2) ∈ ϒ ′′

θ . Note that

El[σa1σb1σa2σb2 |N = θ, E θ
c1

, E θ
c2

] = El[σa1σb1 |N = θ ]El[σa2σb2 |N = θ ]
= qθ (a1, b1)qθ (a2, b2)

and

El[σa1σb1σa2σb2 |N = θ ′, E θ ′
c1

, E θ ′
c2

] = El[σa1 |N = θ ′]El[σb1 |N = θ ′]
× El[σa2 |N = θ ′]El[σb2 |N = θ ′]

= 0

by (2), so that

El[σa1σb1σa2σb2] = νθqθ (a1, b1)qθ (a2, b2) + 1

poly(logn)

from (10). Then part (4) follows from Lemma 3.4 and part (3).
For part (5), let c1 = (a1, b1) ∈ ϒ ′′

θ , c2 = (a2, b2) ∈ ϒ ′′
θ ′ . Let θ ′′ �= θ, θ ′. Note

that

El[σa1σb1σa2σb2 |N = θ, E θ
c1

, E θ
c2

] = El[σa1σb1 |N = θ ]
× El[σa2 |N = θ ]El[σb2 |N = θ ]

= 0
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and

El[σa1σb1σa2σb2 |N = θ ′, E θ ′
c1

, E θ ′
c2

] = El[σa1σb1 |N = θ ′]
× El[σa2 |N = θ ′]El[σb2 |N = θ ′]

= 0.

Moreover, since c1, c2 /∈ ϒ ′′
θ ′′ ,

El[σa1σb1σa2σb2 |N = θ ′′, E θ ′′
c1

, E θ ′′
c2

] = El[σa1 |N = θ ′′]El[σb1 |N = θ ′′]
× El[σa2 |N = θ ′′]El[σb2 |N = θ ′′]

= 0.

Hence

El[σa1σb1σa2σb2] = 0 + 1

poly(logn)

from (10). Then part (5) follows from Lemma 3.4 and part (3). �

3.5. Large-tree concentration. Let ϒ ′′ ⊆ [n]2�= be a properly sparse set. Con-
sider the clustering statistic

Uθ = 1

|ϒ ′′
θ |

∑
(a,b)∈ϒ ′′

θ

σaσb.

We show that Uθ is concentrated and separates the θ -component from all other
components.

LEMMA 3.10 (Separation). There exists C� > 0 such that for θ ′ �= θ

El[Uθ |N = θ ] > C�

and

El[Uθ |N = θ ′] < C�.

PROOF. By Definition 3.4, all (a, b) ∈ ϒ ′′
θ are Tθ ′-stretched. Hence

El[Uθ |N = θ ] ≥ e−Cc

and

El[Uθ |N = θ ′] = 1

poly(logn)

by Lemma 3.9. Taking C� = 1
2e−Cc gives the result. �
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LEMMA 3.11 (Concentration of Uθ ). For all εU > 0 and CU > 0, there are
Cf > 0, Cst > Cf and C−

sp > 0 large enough such that for all θ, θ ′ (possibly equal)

Pl

[∣∣Uθ ′ − El[Uθ ′ |N = θ ]∣∣ ≥ εU |N = θ
] ≤ 1

nCU
.

PROOF. Let I be as in Lemma 3.8, and let U I
θ be the same as Uθ with the sum

restricted to I . From Lemmas 3.7 and 3.8, conditioned on I , U I
θ is a normalized

sum of �(logn) independent bounded variables. Concentration of U I
θ therefore

follows from Lemma 3.1 using m = 
(logn), t = O(1/ logn) and ζ = 1
2εU . Tak-

ing εI = 1
2εU maxi z

2
i and CI > CU in Lemma 3.8 as well as C−

sp > 0 large enough
gives the result. �

4. Constructing the clustering statistic from data. In this section, we pro-
vide details on the plan laid out in Section 2.3.

Fix a GTR matrix Q and constants � ≥ 2, 0 < f ≤ g < +∞ and ν > 0. Let λ

be a permutation-invariant probability measure on �-M[f,g, ν, n]. In this section,
we work directly with samples {σ i

X}ki=1 generated from an unknown �-mixture
model (T, ν,Q) picked according to λ.

Our goal is to construct the clustering statistics {Uθ }�θ=1 from {σ i
X}ki=1. These

statistics will be used in the next section to reconstruct the topologies of the model
(T, ν,Q).

4.1. Clustering algorithm. We proceed in three steps. Let

Cc = − ln
(

1

3�(1 − ν)
νe−4g

)

and

ω = 2
3νe−4g.

The algorithm is the following:

(1) (Finding quasicherries) For all pairs of leaves a, b ∈ [n], compute q̂(a, b),
and set

ϒ̂ ′ = {(a, b) ∈ [n]2�= : q̂(a, b) ≥ ω}.
(2) (Sparsification) Construct ϒ̂ ′′ by keeping each (a, b) ∈ ϒ̂ ′ independently

with probability

psp = C
p
sp logn

n
.
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(3) (Inferring clusters) For all c1 �= c2 ∈ ϒ̂ ′, compute r̂(c1, c2), and set c1 ∼ c2
if

r̂(c1, c2) > 0.

Let ϒ̂ ′′
θ , θ = 1, . . . , �̂, be the equivalence classes of the transitive closure of ∼.

(4) (Final sets) Return ϒ̂ ′′
θ , θ ∈ [�].

4.2. Analysis of the clustering algorithm. We show that each step of the pre-
vious algorithm succeeds with high probability.

LEMMA 4.1 (Finding quasicherries). The set ϒ̂ ′ satisfies the following, except
with probability at most exp(−poly(n)) under Pl :

ϒ4g ⊆ ϒ̂ ′ ⊆ ϒCc.

PROOF. We prove both inclusions. For all θ ∈ [�] and (a, b) ∈ ϒ4g,θ ,

qθ (a, b) ≥ e−4g

and

q(a, b) ≥ νe−4g > 2
3νe−4g = ω.

By Lemma 3.4,

q̂(a, b) ≥ ω,

except with probability exp(−poly(n)).
Similarly for any (a, b) ∈ ϒ̂ ′, by Lemma 3.4, if

q̂(a, b) ≥ ω = 2
3νe−4g,

then

q(a, b) ≥ 1
3νe−4g,

so that there is θ ∈ [�] with

νθqθ (a, b) ≥ 1

3�
νe−4g.

That is,

qθ (a, b) ≥ 1

3�(1 − ν)
νe−4g

and

dθ (a, b) ≤ − ln
(

1

3�(1 − ν)
νe−4g

)
= Cc.

Hence (a, b) ∈ ϒCc,θ . �



2454 E. MOSSEL AND S. ROCH

LEMMA 4.2 (Sparsification). Assuming that the conclusions of Lemma 4.1
hold, ϒ̂ ′′ is properly sparse, except with probability 1/poly(n).

PROOF. This follows from Lemma 4.1 and the choice of psp . �

LEMMA 4.3 (Inferring clusters). Assuming that the conclusions of Lemmas
4.1 and 4.2 hold, we have �̂ = �, and there is a bijective mapping h of [�] such
that

ϒ̂ ′′
h(θ) = ϒ ′′

θ

with the choice ϒ ′ = ϒ̂ ′ in Section 3.3, except with probability exp(−poly(n)).

PROOF. It follows from Lemmas 3.5 and 3.9 that ∼ is an equivalence
relation with equivalence classes ϒ ′′

θ , θ = 1, . . . ,�, except with probability
exp(−poly(n)). �

5. Tree reconstruction. We now show how to use the clustering statistics to
build the topologies. The algorithm is composed of two steps: we first bin the
sites according to the value of the clustering statistics; we then use the sites in
one of those bins and apply a standard distance-based reconstruction method. We
show that the content of the bins is made of sites from the same component—thus
reducing the situation to the unmixed case.

Let

C� = 1
2e−Cc,

εU = 1
3e−Cc

and

εI = 1

2
εU max

i
z2
i .

Moreover take Cf , Cst , C
p
sp and C−

sp so that the lemmas in Section 3 hold.
To simplify notation, we rename the components so that h is the identity.

5.1. Site binning. Let ϒ̂ ′′
θ , θ ∈ [�], be the sets returned by the algorithm in

Section 4. Assume that the conclusions of Lemmas 4.1, 4.2 and 4.3 hold. We bin
the sites with the following procedure:

(1) (Clustering statistics) For all i = 1, . . . , k and all θ = 1, . . . ,�, compute

Û i
θ = 1

|ϒ̂ ′′
θ |

∑
(a,b)∈ϒ̂ ′′

θ

σ i
aσ

i
b.
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(2) (Binning sites) For all θ = 1, . . . ,�, set

K̂θ = {i ∈ [k] : Û i
θ > C�}.

We show that the binning is successful with high probability.

LEMMA 5.1 (Binning the sites). Assume that the conclusions of Lemmas 4.1,
4.2 and 4.3 hold. For any Ck , there exists CU large enough so that, for all θ ∈ [�],

K̂θ = Kθ ,

except with probability 1/poly(n).

PROOF. This follows from Lemmas 3.10 and 3.11 by a union bound over all
samples. �

5.2. Estimating a distorted metric.

Estimating evolutionary distances. We estimate evolutionary distances on
each component. For all θ ∈ [�], let K̂θ be as above and assume the conclusions
of Lemma 5.1 hold.

(1) (Estimating distances) For all θ = 1, . . . ,� and a �= b ∈ [n], compute

q̂θ (a, b) = 1

|K̂θ |
∑
i∈K̂θ

σ i
aσ

i
b.

LEMMA 5.2 (Estimating distances). Assume the conclusions of Lemma 5.1
hold. The following hold except with probability exp(−poly(n)): for all θ ∈ [�]
and all a �= b ∈ [n],

|q̂θ (a, b) − qθ (a, b)| ≤ 1

nCq
.

PROOF. The result follows from Lemma 3.4. �

Tree construction. To reconstruct the tree, we use a distance-based method
of [8]. We require the following definition.

DEFINITION 5.1 (Distorted metric [12, 16]). Let T = (V ,E;φ;w) be a phy-
logeny with corresponding tree metric d , and let τ,� > 0. We say that d̂ :X×X →
(0,+∞] is a (τ,�)-distorted metric for T or a (τ,�)-distortion of d if:

(1) (Symmetry) For all a, b ∈ X, d̂ is symmetric, that is,

d̂(a, b) = d̂(b, a);
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(2) (Distortion) d̂ is accurate on “short” distances; that is, for all a, b ∈ X, if
either d(a, b) < � + τ or d̂(a, b) < � + τ , then

|d(a, b) − d̂(a, b)| < τ.

An immediate consequence of [8], Theorem 1, is the following.

CLAIM (Reconstruction from distorted metrics [8]). Let T = (V ,E;φ;w) be
a phylogeny in Yf,g . Then the topology of T can be recovered in polynomial time
from a (τ,�)-distortion d̂ of d as long as

τ ≤ f

5
and

� ≥ 5g logn.

REMARK 5.1. The constants above are not optimal but will suffice for our
purposes.

See [8] for the details of the reconstruction algorithm.
We now show how to obtain a (f/5,5g logn)-distortion with high probability

for each component.

LEMMA 5.3 (Distortion estimation). There exist Cq,Ck > 0 so that, given that
the conclusions of Lemma 5.2 hold, for all θ ∈ [�],

d̂θ (a, b) = − ln(q̂θ (a, b)+), (a, b) ∈ X × X,

is a (f/5,5g logn)-distortion of dθ .

PROOF. Fix θ ∈ [�]. Define

Ł−
2 = {(a, b) ∈ X × X :dθ (a, b) ≤ 15g logn}

and

Ł+
2 = {(a, b) ∈ X × X :dθ (a, b) > 12g logn}.

Let (a, b) ∈ Ł−
2 . Note that

e−dθ (a,b) ≥ exp(−15g logn) ≡ 1

nC′
q
,

where the last equality is a definition. Then, taking Cq (and hence Ck) large
enough, from Lemma 5.2, we have

|d̂θ (a, b) − dθ (a, b)| ≤ f

5
.
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Similarly, let (a, b) ∈ Ł+
2 . Note that

e−dθ (a,b) < exp(−12g logn) ≡ 1

nC′′
q
,

where the last equality is a definition. Then, taking Cq large enough, from Lem-
ma 5.2 we have

d̂θ (a, b) ≥ 5g logn + f

5
. �

6. Proof of main theorems. We are now ready to prove the main theorems.

PROOF OF THEOREM 3. Let C1,C2 > 0. Let An be the subset of those �-
mixture models (T, ν,Q) in �-M[f,g, ν, n] for which part (3) of Lemma 3.7
holds with probability at least 1−n−C1 under the random choices of the algorithm.
By the proof of Lemma 3.7, for small enough C1,C2 > 0, we have λn[Ac

n] ≤ n−C2 .
On An, the lemmas in Sections 3, 4 and 5 hold with probability 1 − 1/poly(n).
Then the topologies are correctly reconstructed by the claim in Section 5.2. �

PROOF OF THEOREM 1. Let

(T, ν,Q) � (T′, ν′,Q) ∈ ⋃
n≥1

An.

Then, by Theorem 3, the algorithm correctly reconstructs the topologies in
(T, ν,Q) with probability 1 − 1/poly(n) on sequences of length k = poly(n). Re-
peating the reconstruction on independent sequences and taking a majority vote,
we get almost sure convergence to the correct topologies. The same holds for
(T′, ν′,Q). Hence,

Dl[(T, ν,Q)] �= Dl[(T′, ν′,Q)]. �

PROOF OF THEOREM 2. Let

(T, ν,Q) ∈ ⋃
n≥1

An

with � = 2 and ν = (1/2,1/2). Then, from the proof of Lemma 5.1, there exists
a clustering statistic such that samples from T1 and T2 are correctly distinguished
with probability 1 − 1/poly(n). Recall that

‖D − D′‖TV = sup
B∈F

|D(B) − D′(B)|.

Taking B to be the event that a site is recognized as belonging to component 1 by
the clustering statistic above, we get

‖Dl[T1,Q] − Dl[T2,Q]‖TV = 1 − on(1). �
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7. Concluding remarks. Our techniques also admit the following extensions:

• When Q is unknown, one can still apply our technique by using the following
idea. Note that all we need is an eigenvector of Q with negative eigenvalue.
Choose a pair (a, b) of close leaves using, for instance, the classical log-det
distance [22]. Under a permutation-invariant measure, (a, b) is stretched in all
but one component, with high probability. One can then compute an eigenvector
decomposition of the transition matrix between a and b. We leave out the details.

• The minimum frequency assumption is not necessary as long as one has an up-
per bound on the number of components and that one requires only that frequent
enough components be detected and reconstructed. We leave out the details.
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