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NO-ARBITRAGE OF SECOND KIND IN COUNTABLE MARKETS
WITH PROPORTIONAL TRANSACTION COSTS

BY BRUNO BOUCHARD AND ERIK TAFLIN

Université Paris Dauphine and EISTI

Motivated by applications to bond markets, we propose a multivariate
framework for discrete time financial markets with proportional transaction
costs and a countable infinite number of tradable assets. We show that the
no-arbitrage of second kind property (NA2 in short), recently introduced by
Rásonyi for finite-dimensional markets, allows us to provide a closure prop-
erty for the set of attainable claims in a very natural way, under a suitable
efficient friction condition. We also extend to this context the equivalence
between NA2 and the existence of many (strictly) consistent price systems.

1. Introduction. Motivated by applications to bonds markets, for which it is
acknowledged that all possible maturities have to be taken into account, many
papers have been devoted to the study of financial models with infinitely many
risky assets; see, for example, [1, 4, 5, 8, 16] and the references therein. To the
best of our knowledge, models with proportional transaction costs have not been
discussed so far. This paper is a first attempt to treat such situations in a general
framework.

As a first step, we restrict to a discrete time setting where a countable infinite
number of financial assets is available. Time belongs to T := {0, . . . , T }.

Following the modern literature on financial models with proportional trans-
action costs (see [14] for a survey), financial strategies are described here by
RN-valued (Ft )t∈T-adapted processes ξ = (ξt )t∈T, where (Ft )t∈T is a given fil-
tration that models the flow of available information, and each component ξ i

t of
ξt = (ξ i

t )i≥1 ∈ RN describes the changes in the position on the financial asset i

induced by trading on the market at time t .
When the number of financial assets is finite, say d , one can view each compo-

nent ξ i
t as the amount of money invested in the asset i or as a number of units of

asset i held in the portfolio.
The main advantage of working in terms of units is that it is numéraire free;

see the discussions in [13] and [18]. In such models, the self-financing condi-
tion is described by a cone valued process K̂ = (K̂t )t∈T which incorporates bid-
ask prices. Namely, a financial strategy is said to satisfy the self-financing condi-
tion if ξt ∈ −K̂t a.s. for all t ∈ T, where −K̂t (ω) := {y ∈ Rd :yi ≤ ∑

i �=j (a
ji −
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aijπ
ij
t (ω)),∀i ≤ d , for some a = (aij )i,j≥1 ∈ Rd×d with nonnegative entries}. In

the above formulation, π
ij
t stands for the number of units of asset i required in

order to buy one unit of asset j at time t . The self-financing condition then just
means that the changes ξt in the portfolio can be financed (in the large sense) by
passing exchange orders (aij )i,j≥1 on the market, that is, aij ≥ 0 represents the

number of units of asset j that are obtained against aijπ
ij
t units of asset i.

Under the so-called efficient friction assumption, namely π
ij
t π

ji
t > 1 for all i, j

and t ≤ T , and under suitable no arbitrage conditions (e.g., the strict no-arbitrage
condition of [12] or the robust no-arbitrage condition of [18]; see also [13]), one
can show that there exists a martingale Ẑ = (Ẑt )t≤T such that, for all t ≤ T , Ẑt

lies in the interior of the (positive) dual cone K̂∗
t of K̂t , which turns out to be given

by

K̂∗
t (ω) = {z ∈ Rd : 0 ≤ zj ≤ ziπ

ij
t (ω), i, j ≤ d}.

The martingale Ẑ has then the usual interpretation of being associated to a fictitious
frictionless market which is cheaper than the original one, that is, Ẑ

j
t /Ẑi

t < π
ij
t ,

and such that the classical no-arbitrage condition holds, that is, Ẑ is a martingale.
This generalizes to the multivariate setting the seminal result of [11].

The existence of such a martingale can then be extended to the continuous set-
ting (see [10] for a direct approach in a one-dimensional setting and [9] for a
multivariate extension based on a discrete time approximation), which, in turn,
allows us to prove that the set of attainable claims is closed is some sense; see,
for example, Lemma 12 and the proof of Theorem 15 in [3]; see also [2] and [6].
Such a property is highly desirable when one is interested by the formulation of a
dual representation for the set of super-hedgeable claims, or by existence results in
optimal portfolio management; see the above papers and the references therein.

The aim of this paper is to propose a generalized version of the above results
to the context of discrete time models with a countable infinite number of assets,
with the purpose of providing later a continuous time version.

When the number of assets is countable infinite, the first difficulty comes from
the notion of interior associated to the sequence of dual cones (K̂∗

t )t∈T. Indeed,
a natural choice would be to define K̂t (ω) as a subset of l1, the set of elements x =
(xi)i≥1 ∈ RN such that |x|l1 := ∑

i≥1 |xi | < ∞, so as to avoid having an infinite
global position in a subset of financial assets; see [21] for a related criticism on
frictionless continuous time models. In this case, K̂∗

t should be defined in l∞, the
set of elements x = (xi)i≥1 ∈ RN such that |x|l∞ := supi≥1 |xi | < ∞. But, for the

topology induced by | · |l∞ , the sets K̂∗
s (ω) have no reason to have a nonempty

interior, except under very strong conditions on the bid-ask matrices (π
ij
t (ω))i,j .

We therefore come back to the original modelization of [12] in which finan-
cial strategies are described through amounts of money invested in the different
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risky assets. Namely, we assume that the bid-ask matrix (π
ij
t )i,j takes the form

((1 + λ
ij
t )S

j
t /Si

t )i,j where Sk
t stands for the price, in some numéraire, of the risky

asset k, and λ
ij
t is a positive coefficient (typically less than 1) interpreted as a

proportional transaction cost. The changes ξt in the portfolio due to trading at
time t , now quoted in terms of the numéraire, thus take values in the set −Kt

where Kt(ω) := {(Si
t (ω)yi)i≥1, y ∈ K̂t (ω)}. Viewed as a subset of l1, Kt(ω) has a

dual cone K∗
t (ω) ⊂ l∞ which takes the form

K∗
t (ω) := {

z ∈ l∞ : 0 ≤ zj ≤ zi(1 + λ
ij
t (ω)

)
, i, j ≥ 1

}
,

and whose interior in l∞ is now nonempty under mild assumptions, for example,
if λ

ij
t (ω) ≥ ε(ω) a.s. for all i, j ≥ 1 for some random variable ε taking strictly

positive values.
This approach, although not numéraire free, allows us to bound the global

amount invested in the different subsets of assets, by viewing Kt as a subset of l1,
while leaving open the possibility of finding a process Z such that such Zt lies in
the interior of K∗

t a.s., that is, such that Ẑ := ZS still satisfies Ẑ
j
t /Ẑi

t < π
ij
t for all

i, j .
We shall see below that, under a suitable no-arbitrage condition, one can actu-

ally choose Z in such a way that ZS is a martingale, thus recovering the above
interpretation in terms of arbitrage free fictitious market. Moreover, we shall show
that the set of terminal wealths induced by financial strategies defined as above is
indeed closed in a suitable sense; see Theorems 3.1 and 3.2. This means that we
do not need to consider an additional closure operation in order to build a nice du-
ality theory or to discuss optimal portfolio management problems, as it is the case
in frictionless markets; cf. [20] and [21] for a comparison with continuous time
settings.

Another difficulty actually comes from the notion of no-arbitrage to be used in
such a context. First, we should note that various, a priori not equivalent, notions
of no-arbitrage opportunities can be used in models with proportional transaction
costs. We refer to [14] for a complete presentation and only mention one important
point: the proofs of the closure properties, of the set of attainable claims, obtained
in [12] and [18], under the strict no-arbitrage and the robust no-arbitrage property,
heavily rely on the fact that the boundary of the unit ball is closed in Rd (for
the pointwise convergence). This is no more true, for the pointwise convergence,
when working in l1 viewed as a subspace of RN with unit ball defined with | · |l1 . In
particular, it does not seem that they can be reproduced in our infinite-dimensional
setting.

However, we shall show that the notion of no-arbitrage of second kind (in short
NA2), recently introduced by [17] under the label “no-sure profit in liquidation
value,” is perfectly adapted. It says that the terminal value VT of a wealth process
cannot take values a.s. in KT if the wealth process at time t , Vt , does not already
take values a.s. in Kt , for t ≤ T . Note that Vt ∈ Kt if and only if −Vt ∈ −Kt . Since
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Vt + (−Vt) = 0, this means that Kt is the set of position holdings at time t that can
be turned into a zero position, after possibly throwing away nonnegative amounts
of financial assets, that is, Kt is the set of “solvable” positions at time t . Hence, the
NA2 condition means that we cannot end up with a portfolio which is a.s. solvable
if this was not the case before, which is a reasonable condition.

Under this condition, we shall see that a closure property can be proved under
the assumption that K∗

t has a.s. a nonempty interior, for all t ≤ T , which is, for in-

stance, the case if ε ≤ λ
ij
t (ω) ≤ ε−1 a.s. for all i, j ≥ 1 and t ≤ T , for some ε > 0.

We shall also extend to our framework the PCE (Prices Consistently Extendable)
property introduced in [17], which we shall call MSCPS (Many Strictly Consistent
Price Systems) to follow the terminology of [7].

The rest of the paper is organized as follows. We first conclude this Introduc-
tion with a list of notation that will be used throughout paper. The model and our
key assumptions are presented in Section 2. Our main results are reported in Sec-
tion 3. The proofs of the closure properties are collected in Section 4, in which
we also prove a dual characterization for the set of attainable claims and discuss
the so-called B-property. The existence of Many Strictly Consistent Price Sys-
tems is proved in Section 5. We then discuss elementary properties of cones in
infinite-dimensional spaces and under which conditions our key assumption, As-
sumption 2.1 below, holds. Finally, in Section 7, we explain how our results can
be generalized to a more abstract setting.

Notation: We identify the set of R-valued maps on N with the topological vector
space (hereafter TVS) RN, with elements of the form x = (xi)i≥1. The set RN is
endowed with its canonical product topology, also called the topology of pointwise
convergence: (xn)n≥1 in RN converges pointwise to x ∈ RN if xi

n → xi for all

i ≥ 1. We set M = RN2
, whose elements are denoted by a = (aij )i,j≥1, define M+

as the subset of M composed by elements with nonnegative components, and use
the notation M1+ [resp., Mf,+] to denote the set of elements a in M+ such that∑

i,j≥1 aij < ∞ [resp., only a finite number of the aij ’s are not equal to 0].
For p ∈ [1,∞) [resp., p = ∞], we denote by lp [resp., l∞] the set of elements

x ∈ RN such that |x|lp = (
∑

i≥1 |xi |p)1/p < ∞ [resp., |x|l∞ = supi≥1 |xi | < ∞].
For the natural ordering, l

p
+ is the closed cone of positive elements x ∈ lp , that is,

xi ≥ 0 for all i. Given x, y ∈ RN, we write xy for (x1y1, x2y2, . . .) ∈ RN, x/y for
(x1/y1, x2/y2, . . .) ∈ RN and x · y for

∑
i≥1 xiyi whenever it is well defined. To

j ∈ N, we associate the element ej of RN satisfying e
j
j = 1 and ei

j = 0 for i �= j .
We shall also use the notation 1 = (1,1, . . .).

We define cf as the space of finite real sequences, and c0 as the closed subspace
of elements x ∈ l∞ such that limi→∞ xi = 0. In the following, we shall use the
notation μ to denote an element of (0,∞)N such that 1/μ ∈ l1. To such a μ, we
associate the Banach space l1(μ) [resp., the set l1+(μ)] of elements x ∈ RN such
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that xμ ∈ l1 [resp., xμ ∈ l1+]. The Banach space c0(1/μ) is defined accordingly.
x ∈ c0(1/μ) if and only if x/μ ∈ c0. Recall that l1 [resp., l1(μ)] is the topological
dual of c0 [resp., c0(1/μ)].

For a normed space (E,‖ · ‖E), we define the natural distance dE(x, y) := ‖x −
y‖E , denote by dE(x,A) [resp., dE(B,A)] the distance between x [resp., the set
B ⊂ E] and the set A ⊂ E.

We shall work on a complete probability space (�, F ,P) supporting a discrete-
time filtration F = (Ft )t∈T. F0 is the completion of the trivial σ -algebra and with-
out loss of generality, we assume that FT = F .

Given a real locally convex TVS E, with topological dual E′, and a σ -sub-
algebra G ⊂ F , we denote by Ew the linear space E endowed with the weak
topology [i.e., the σ(E,E′) topology], B(Ew) stands for the corresponding Borel
σ -algebra, and we write L0(E, G) to denote the collection of weakly G -measurable
E-valued random variables. A subset B of � × E is said to be weakly G -
measurable if B ∈ G ⊗ B(Ew). When (E,‖ · ‖E) is a separable Banach space,
the elements of L0(E, G) are indeed strongly measurable; cf. Section V.4 of [22].
For 1 ≤ p ≤ ∞, we then use the standard notation Lp(E, G) for the elements
X ∈ L0(E, G) such that E[‖X‖p

E] < ∞ if 1 ≤ p < ∞, and ‖X‖E is essentially
bounded if p = ∞. In the case of the nonseparable space l∞, the elements
X ∈ L0(l∞, G) still have a G -measurable norm |X|l∞ . We therefore also use the
notation Lp(l∞, G) as defined above, although this space does not have all the
usual “nice properties” of Lp-spaces. We omit G when G = F .

Any inequality between random variables or inclusion between random sets has
to be taken in the a.s. sense.

2. Model formulation.

2.1. Financial strategies and no-arbitrage of second kind. We consider a fi-
nancial market in discrete time with proportional transaction costs supporting a
countable infinite number of tradable assets. The evolution of the asset prices is
described by a (0,∞)N-valued F-adapted process S = (St )t∈T. Throughout the
paper, we shall impose the following technical condition:

St/Ss ∈ L1(l∞) for all s, t ∈ T.(2.1)

Similar conditions are satisfied in continuous time models without transaction
costs; cf. Theorem 2.2 of [8].

REMARK 2.1. Note that one could simply assume that St/Ss ∈ l∞ for all
s, t ∈ T, which is a natural condition, and replace the original measure P by P̃

defined by

dP̃/dP = exp
(
− ∑

s,t∈T

|St/Ss |l∞
)/

E

[
exp

(
− ∑

s,t∈T

|St/Ss |l∞
)]

,

which is equivalent and for which (2.1) holds.
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The transaction costs are modeled as a M+-valued adapted process λ = (λt )t≤T .
This means that buying one unit of asset j against units of asset i at time t costs
π

ij
t := (S

j
t /Si

t )(1 + λ
ij
t ) units of asset i.

Throughout the paper, we shall assume that

λii
t = 0 and (1 + λ

ij
t )(1 + λ

jk
t ) ≥ (1 + λik

t ) ∀i, j, k ≥ 1 and t ∈ T(2.2)

and that

sup
t∈T,i,j≥1

‖λij
t ‖L∞ < ∞.(2.3)

Note that these conditions have a natural economic interpretation. The first is
equivalent to πii

t = 1 and π
ij
t π

jk
t ≥ πik

t for all i, j, k ≥ 1 and t ∈ T; compare
with [18].

A portfolio strategy is described as a RN-valued adapted process ξ = (ξ)t∈T

satisfying at any time t ∈ T

ξ i
t ≤ ∑

j≥1

(
aji − aij (1 + λ

ij
t )

) ∀i ≥ 1 for some a ∈ L0(M+, Ft ),

whenever this makes sense, or equivalently,

−ξt ≥ ∑
i �=j

aij (
(1 + λ

ij
t )ei − ej

)
for some a ∈ L0(M+, Ft ).(2.4)

As explained in the Introduction, ξ i
t should be interpreted as the additional net

amount of money transferred at time t to the account invested in asset i after mak-
ing transactions on the different assets. The quantity aji should be interpreted as
the amount of money transferred to the account i by selling aji(1 + λ

ji
t )/S

j
t units

of asset j . The above inequality means that we allow the investor to throw away
money from the different accounts.

In order to give a mathematical meaning to the above expressions, let us define
the random convex cones K̃t as the convex cones generated by elements of finite
length in l1+ and the set of vectors on the right-hand side of (2.4) obtained by finite
sums,

K̃t (ω) =
{
x ∈ l1 :x = ∑

i �=j

aij ((
1 + λ

ij
t (ω)

)
ei − ej

) + ∑
i≥1

biei

for some a ∈ Mf,+, b ∈ cf ∩ l1+
}

and define the set of admissible strategies as

A := {ξ = (ξt )t∈T F-adapted : ξt ∈ −Kt for all t ∈ T},
where Kt(ω) denotes the l1-closure of K̃t (ω).
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REMARK 2.2. Note that, by construction, Kt(ω) is a closed convex cone in l1

of vertex 0 satisfying l1+ ⊂ Kt(ω) and such that Kt(ω) ∩ cf is dense in Kt(ω).

For ease of notation, we also define

AT
t := {ξ ∈ A : ξs = 0 for s < t}.

To an admissible strategy ξ ∈ A, we associate the corresponding portfolio pro-
cess V ξ corresponding to a zero initial endowment,

V
ξ
t :=

t∑
s=0

ξsSt/Ss.(2.5)

The ith component corresponds to the amount of money invested in the ith asset
at time t . Note that the additional amount of money ξ i

s invested at time s in the ith
asset corresponds to ξ i

s /S
i
s units of the ith asset, whose value at time t is (ξ i

s /S
i
s)S

i
t .

We then define the corresponding sets of terminal portfolio values,

X T
t := {V ξ

T : ξ ∈ AT
t }.

We can now define our condition of no-arbitrage of the second kind, which is
similar to the one used in [7] and [17] for finite-dimensional markets. It simply
says that a trading strategy cannot ensure that we end up with a solvable position
at time T if the position was not already a.s. solvent at previous times t ≤ T .

CONDITION 2.1 (NA2). For all t ∈ T,

η ∈ L0(l1, Ft ) \ L0(Kt , Ft ) ⇒ (ηST /St + X T
t ) ∩ L0(KT ) = ∅.

REMARK 2.3. For later use, note that it follows from NA2 that X T
0 ∩

L0(KT ) = {0} whenever Kt is a.s. proper [i.e., Kt ∩ (−Kt) = {0}]. Indeed, fix
a nontrivial ξ ∈ A and suppose that V

ξ
T ∈ L0(KT ). Since ξ �= 0, there is a smallest

t∗ such that ξt∗ �= 0 (as a random variable). It follows that V
ξ
T = ξt∗ST /St∗ + g for

some g ∈ X T
t∗+1. The condition NA2 then implies that ξt∗ ∈ L0(Kt∗, Ft∗). How-

ever ξ ∈ A, so ξt∗ ∈ L0(−Kt∗, Ft∗). Since Kt∗ ∩ (−Kt∗) = {0}, this leads to a
contradiction.

REMARK 2.4. Note that a simple condition implying NA2 is: λ is constant
(in time and ω), and there exists a probability measure Q ∼ P such that S is a Q-
martingale. Indeed, under the above assumption, ηST /St + ∑T

s=t ξsST /Ss ∈ KT

implies η + ∑T
s=t EQ[ξs | Ft ] ∈ KT by convexity of KT , for ξ ∈ AT

t . Since ξs ∈
−Ks and the latter is constant and convex, we have EQ[ξs | Ft ] ∈ −Ks = −KT .
Hence, η ∈ KT = Kt .
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2.2. The efficient friction assumption. In this paper, we shall assume that a
version of the so-called efficient friction assumption holds. In finite-dimensional
settings, this means that λ

ij
t + λ

ji
t > 0 for all i �= j and t ∈ T, or equivalently that

Kt is a.s. proper [i.e., Kt ∩ (−Kt) = {0}], or that the positive dual of each Kt has
a.s. nonempty interior, for all t ∈ T; see [12].

In our infinite-dimensional setting, the positive dual cone of Kt(ω) is defined as

K∗
t (ω) := {z ∈ l∞ : z · x ≥ 0 for all x ∈ Kt(ω)}

or, more explicitly,

K∗
t (ω) = {

z ∈ l∞ : 0 ≤ zj ≤ zi(1 + λ
ij
t (ω)

)
, i, j ≥ 1

}
,(2.6)

and the above mentioned condition could naively read

inf(λij
t + λ

ji
t ) > 0,(2.7)

where the inf is taken over t ∈ T and i �= j . However, it is not sufficient in order to
ensure that K∗

t has a.s. a nonempty interior, as shown in Remark 6.1 below.
We shall therefore appeal to a generalized version of the Efficient Friction (in

short EF) assumption of [12] which is directly stated in terms of the random cones
K∗

t in l∞. Theorem 2.1 below provides a natural condition under which it is satis-
fied.

ASSUMPTION 2.1 (EF). The M+-valued adapted process λ, satisfying (2.2)
and (2.3), has the property that for all t ∈ T, and P-a.e. ω the dual cone K∗

t (ω) has
an interior point θt (ω) such that θt ∈ L0(l∞, Ft ).

It is easy to find sufficient conditions on the transactions costs λ such that the
Efficient Friction Assumption 2.1 is satisfied. The following result is a direct con-
sequence of Proposition 6.1 reported in Section 6 below.

THEOREM 2.1. Assume that

infλij
t (ω) > 0 a.s.,(2.8)

where the inf is taken over t ∈ T and i �= j . Then the Efficient Friction Assump-
tion 2.1 is satisfied with θt (ω) = 1.

REMARK 2.5. (1) If condition (2.8) is replaced by the weaker one (2.7) used
in finite-dimensional settings, then Theorem 2.1 is no longer true. See Remark 6.1
for a counter example.

(2) There are λ giving rise to EF not covered by Theorem 2.1. One such case
is given by λ defined by λij = 1 for all i �= j except λ12 = 0. In fact, for this case,
Lemma 6.3 gives that (3/2,1,1, . . .) ∈ int(K∗

t ).
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(3) There are several possible generalizations of the concept of Efficient Fric-
tion to infinite-dimensional spaces. In fact, in the finite-dimensional case a closed
convex cone C is proper if and only if its dual cone

C′ := {z ∈ E′ : 〈z, x〉 ≥ 0 for all x ∈ C}
(we use here the notation C ′ in place of C∗ since it is more standard in the Banach
space literature) has a nonempty interior, while in the case of a Banach space we
only have (see Section 6 for details)(

int(C′) �= ∅
) ⇒ (C′ has the generating property)

⇔ (C is normal) ⇒ (C is proper).

So, in EF we have chosen the strongest of these conditions.
(4) Under EF, for all ξ ∈ L0(l∞, Ft ), dl∞(ξ, ∂K∗

t ) is a real Ft -measurable r.v.,
where ∂K∗

t (ω) is the border of K∗
t (ω); see Section 6. This is easy to prove, but

nontrivial since l∞ is not separable.
(5) The choice of the spaces has to be done with some care. For instance, if the

λij ’s are time independent and uniformly bounded by some constant c > 0, and
if K̃ and K are defined in lp with 1 < p < ∞, instead of l1, then K∗ = {0} and
K = lp . In fact, with p−1 + q−1 = 1, y ∈ K∗ if and only if y ∈ lq and 0 ≤ yj ≤
yi(1 + λij ) for all i �= j ≥ 1. In particular, yj

1+c
≤ yi for i �= j ≥ 1, so that y /∈ lq

whenever there exists j ≥ 1 such that yj > 0. This shows that K∗ = {0}, which
then implies that K = lp .

3. Main results. In this section, we state our main results. The proofs are
collected in the subsequent sections.

From now on, we denote by L0
t,b the subset of random variables g ∈ L0(l1)

bounded from below in the sense that

g + ηST /St ∈ KT for some η ∈ L0(l1+, Ft ).(3.1)

In the following, a subset B ⊂ L0
t,b is said to be t-bounded from below if there

exists c ∈ L0(R+, Ft ) (called a lower bound) such that any g ∈ B satisfies (3.1)
for some η ∈ L0(l1+, Ft ) such that |η|l1 ≤ c.

Our first main result is a Fatou-type closure property for the sets X T
t in the

following sense:

DEFINITION 3.1. Let (gn)n≥1 be a sequence in L0(l1), which converges a.s.
pointwise to some g ∈ L0(l1) and fix t ∈ T.

We say that (gn)n≥1 is t-Fatou convergent with limit g if {gn :n ≥ 1} is a subset
of L0

t,b which is t-bounded from below.
We say that a subset B of L0(l1) is t-Fatou closed, if, for any sequence (gn)n≥1

in B , which t-Fatou converges to some g ∈ L0(l1), we have g ∈ B .
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THEOREM 3.1. Assume that NA2 and EF hold. Then X T
t is t-Fatou closed,

for all t ∈ T.

REMARK 3.1. We shall provide in Section 4.3 a counter example showing that
the above closure property does not hold in general if we replace Assumption 2.1
by the weaker one, λ

ij
t + λ

ji
t > 0 for all t ∈ T and i �= j . The question whether it

holds under (2.7) above is left open.

The above Fatou closure property can then be translated in a ∗-weak closure
property of the set of terminal portfolio holding labeled in time-t values of the as-
sets, that is, St X T

t /ST = {StVT /ST ,VT ∈ X T
t }. Recall that μ denotes any element

of RN such that 1/μ ∈ l1+.

THEOREM 3.2. Assume that NA2 and EF hold. Then, the set (St X T
t /ST ) ∩

L∞(l1(μ)) is σ(L∞(l1(μ)), L1(c0(1/μ)))-closed for all t ∈ T.

REMARK 3.2. Note that we use the spaces l1(μ) and c0(1/μ), with μ ∈
(0,∞)N such that 1/μ ∈ l1, in the above formulation instead of the more natu-
ral ones l1 and c0. The reason is that bounded sequences (xn)n≥1 in l1(μ) have
components satisfying |xi

n| ≤ c1/μi for some c > 0 independent of i and n and
where 1/μ ∈ l1+. In particular, x + c/μ ∈ l1+. This allows us to appeal to the Fatou
closure property of Theorem 3.1; see the proof of Theorem 3.2 in Section 4. We
shall actually see in Remark 4.1 below that the above closure property cannot be
true in general if we consider the (more natural) σ(L∞(l1), L1(c0))-topology.

By using standard separation arguments, Theorem 3.2 allows us, as usual, to
characterize the set of attainable claims in terms of natural dual processes.

In models with proportional transaction costs, they consist of elements of the
sets MT

t (K∗ \ {0}) of RN-valued F-adapted processes Z on Tt := {t, t +1, . . . , T }
such that Zs ∈ K∗

s \ {0}, for all s ∈ Tt , and ZS is a RN-valued martingale
on Tt , t ∈ T. Following the terminology of [18], elements of the form ZS with
Z ∈ MT

t (K∗ \ {0}) are called consistent price system (on Tt ).

THEOREM 3.3. Assume that NA2 and EF hold. Fix t ∈ T. Then, MT
t (K∗ \

{0}) �= ∅. Moreover, for any g ∈ L0(l1) such that g + ηST /St ∈ L0(l1+) for some
η ∈ L0(l1+, Ft ), we have

g ∈ X T
t ⇔ E[ZT · g | Ft ] ≤ 0 for all Z ∈ MT

t (K∗ \ {0}).
We note that the above conditional expectation E[ZT · g | Ft ] is well defined as

a R∪{∞}-valued Ft -measurable r.v. In fact g+ηST /St ∈ L0(l1+) implies that ZT ·
g ≥ −ZT · (ηST /St ) where η/St ∈ L0(l1, Ft ) and ZT ST ∈ L1(l∞) by definition.

Following arguments used in [17] and [7], one can also prove that the so-called
B condition holds under NA2.
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CONDITION 3.1 (B). The following holds for all t ∈ T and ξ ∈ L0(l1, Ft ):

Zt · ξ ≥ 0 ∀Z ∈ MT
t (K∗ \ {0}) ⇒ ξ ∈ Kt.

THEOREM 3.4. NA2 ⇔ (B and MT
0 (K∗ \ {0}) �= ∅).

It finally implies the existence of Strictly Consistent Price Systems, that is,
elements of the sets MT

t (intK∗) of processes Z ∈ MT
t (K∗ \ {0}) such that

Zs ∈ intK∗
s , for all s ∈ Tt . The NA2 condition actually turns out to be equiva-

lent to the existence of a sufficiently big sets of consistent price systems, which
is referred to as the Many Consistent Price Systems (MCPS) and Many Strictly
Consistent Price Systems (MSCPS) properties.

CONDITION 3.2. We say that the condition MCPS [resp., MSCPS] holds if
for all t ∈ T and η ∈ L0(intK∗

t , Ft ) such that ηSt ∈ L1(l∞, Ft ), there exists Z ∈
MT

t (K∗ \ {0}) [resp., Z ∈ MT
t (intK∗)] such that Zt = η.

THEOREM 3.5. Assume that EF holds. Then, the three conditions NA2, MCPS
and MSCPS are equivalent.

4. Closure properties and duality. We start with the proof of our closure
properties which are the main results of this paper.

4.1. Efficient frictions and Fatou closure property. The key idea for proving
the closure property of Theorem 3.1 is the following direct consequence of the EF
Assumption 2.1.

COROLLARY 4.1. Suppose that EF holds. Then, for all t ∈ T, there exists
α ∈ L0(R+, Ft ) such that

|ξ |l1 ≤ α|η|l1 ∀(ξ, η) ∈ L0(−Kt, Ft ) × L0(Kt , Ft ) such that ξ + η ∈ Kt.

PROOF. According to the EF Assumption 2.1 there exists θt ∈ L0(l∞, Ft )

such that θt (ω) is an interior point of K∗
t (ω) for P-a.e. ω ∈ �. Define

α(ω) := 8|θt (ω)|l∞
(

1

dl∞(θt (ω), ∂K ′
t (ω))

)2

.

Then α ∈ L0(R+, Ft ) by (4) of Remark 2.5. We observe that ξt (ω) ∈ (Kt(ω) −
ηt (ω)) ∩ (ηt (ω) − Kt(ω)), according to the hypotheses and the fact that Kt +
Kt = Kt . Lemma 6.1 and Lemma 6.2, with C = Kt(ω), f0 = θt (ω), x = ξt (ω),
y = ηt (ω) and b = 1/2, then apply, which proves the corollary with the above
defined α. �
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As an almost immediate consequence of the above corollary, we can now obtain
under NA2 the following important property of sequential relative compactness of
lower bounded subsets [see (3.1)] of

X T
t,b := X T

t ∩ L0
t,b.

COROLLARY 4.2. Assume that EF and NA2 hold. Fix t ∈ T and let (ξn)n≥1

be a sequence in AT
t such that (V

ξn

T )n≥1 is a sequence in X T
t,b which is t-bounded

from below. Then:

(i) (ξn
t )n≥1 is a.s. bounded in l1.

(ii) There is a sequence (nk)k≥1 in L0(N, Ft ) such that (ξ
nk
t )k≥1 converges

pointwise a.s. to some ξt ∈ L0(−Kt, Ft ).

PROOF. Let c ∈ L0(R+, Ft ) be a lower bound for (V
ξn

T )n≥1 so that (V
ξn

T , ηn)

satisfy (3.1) in place of (g, η), for all n ≥ 1, where the sequence (ηn)n≥1 in
L0(l1+, Ft ) satisfies supn≥1 |ηn|l1 ≤ c.

(i) We then have V
ξn

T + ηnST /St = (ηn + ξn
t )ST /St + (V

ξn

T − ξn
t ST /St ) ∈

KT where V
ξn

T − ξn
t ST /St ∈ X T

t+1, recall (2.5). Hence, NA2 implies that ηn +
ξn
t ∈ Kt . The claim then follows from Corollary 4.1, l1+ ⊂ Kt and the fact that

supn≥1 |ηn|l1 ≤ c, which imply supn≥1 |ξn
t |l1 ≤ αc for some α ∈ L0(R+, Ft ).

(ii) It follows, in particular from the above claim, that |(ξn
t )i | ≤ αc for all

n, i ≥ 1. For i = 1, we can then construct a Ft -measurable sequence (n1
k)k≥1 ∈

L0(N, Ft ) such that ((ξ
n1

k
t )1)k≥1 converges a.s. and is also a.s. uniformly bounded

in l1; see, for example, [15]. Iterating this procedure on the different components,

we obtain after κ steps a sequence (nκ
k )k≥1 ∈ L0(N, Ft ) such that ((ξ

nκ
k

t )i)k≥1 con-

verges a.s. for all i ≤ κ . It follows that the sequence (ξ
nk

k
t )k≥1 converges a.s. point-

wise to some Ft -measurable random variable ξt with values in RN. Since |ξn
t |l1 is

a.s. uniformly bounded, ξt ∈ l1 a.s. �

We can now conclude the proof of Theorem 3.1 by appealing to an inductive
argument.

PROOF OF THEOREM 3.1. If t = T , the result is an immediate consequence
of Corollary 4.2. We now assume that it holds for some 0 < t + 1 ≤ T and show
that this implies that it holds for t as well. Let (gn)n≥1 be a sequence in X T

t

which is t-Fatou convergent with limit g ∈ L0(l1). Then, by definition, there exist
c ∈ L0(R, Ft ) and ηn ∈ L0(l1+, Ft ) such that |ηn|l1 ≤ c and gn + ηnST /St ∈ KT

for all n ≥ 1. Let the sequence (ξn)n≥1 in AT
t be such that V n

T = gn for all n ≥ 1,
where V n = V ξn

. It then follows from Corollary 4.2 that we can find a sequence
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(nk)k≥1 in L0(N, Ft ) such that (ξ
nk
t )k≥1 is a.s. bounded in l1 and converges point-

wise a.s. to some ξt ∈ L0(−Kt, Ft ). Clearly, (ξnk )k≥1 is a sequence in AT
t since

(nk)k≥1 is Ft -measurable, and V
nk

T = gnk
where the later converges a.s. pointwise

to g as k → ∞. Moreover, gnk
− ξ

nk
t ST /St = V

nk

T − ξ
nk
t ST /St ∈ X T

t+1 and (gnk
−

ξ
nk
t ST /St ) + (ηnk

+ ξ
nk
t )ST /St ∈ L0(KT ). Since (ηnk

+ ξ
nk
t )k≥1 is a.s. bounded in

l1 and (gnk
− ξ

nk
t ST /St )k≥1 converges a.s. pointwise to g − ξtST /St ∈ X T

t+1, the
fact that X T

t+1 is (t + 1)-Fatou closed, this implies that g − ξtST /St ∈ X T
t+1 and

therefore that g ∈ X T
t . �

4.2. Weak closure property and the dual representation of attainable claims.
We now turn to the proof of Theorem 3.2 which will allow us to deduce the dual
representation of Theorem 3.3 by standard separation arguments. It is an easy con-
sequence of Theorem 3.1 once the suitable spaces have been chosen.

PROOF OF THEOREM 3.2. Fix t ∈ T and set F = L1(c0(1/μ)), so that F ′ =
L∞(l1(μ)), where we recall that 1/μ ∈ l1+. Let B1 denote the unit ball in F ′, and
define the set � := (St X T

t /ST ) ∩ B1.
By the Krein–Šmulian theorem (cf. corollary, Chapter IV, Section 6.4 of [19]),

it suffices to show that � is σ(F ′,F )-closed. To see this, let (hα)α∈I be a net
in � which converges σ(F ′,F ) to some h ∈ B1. After possibly passing to con-
vex combinations, we can then construct a sequence (fn)n≥1 in � which con-
vergences a.s. pointwise to h. In fact, this follows from Lemma 4.1 below with
E = (L1(R))N. This implies that the sequence (fnST /St )n≥1 in X T

t converges
to hST /St a.s. pointwise. Since fn ∈ B1, we have fn + 1/μ ∈ l1+, and therefore
fnST /St + (1/μ)ST /St ∈ KT . This shows that the sequence (fnST /St )n≥1 is t-
Fatou convergent with limit hST /St ∈ L0(l1). It thus follows from Theorem 3.1
that hST /St ∈ X T

t and therefore that h ∈ �. �

To complete the proof of Theorem 3.2, we now state the following technical
lemma which was used in the above arguments.

LEMMA 4.1. Let E and F be locally convex TVS, with topological duals E′
and F ′ and let T(E) be the topology of E. Suppose F ′ ⊂ E, E′ ⊂ F and that E

is metrizable. If (xα)α∈I is a net in F ′, with convex hull J and converging in the
σ(F ′,F ) topology to x, then there exists a sequence (yn)n≥1 in J , which is T(E)

convergent to x.

PROOF. Since F ′ ⊂ E and E′ ⊂ F , the topology on F ′ induced by σ(E,E′)
is weaker than the σ(F ′,F ) topology. The net (xα)α∈I then also converges in the
σ(E,E′) topology, so x ∈ J̄ the σ(E,E′)-closure of J . Since J̄ is also T(E)-
closed (cf. Corollary 2, Chapter II, Section 9.2 of [19]) and (E,T(E)) is metriz-
able, it now follows that there exists a sequence in J which is T(E)-convergent
to x. �
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From now on, we follow the usual ideas based on the Hahn–Banach separation
theorem. For ease of notation, we set X̃ T

0 = (S0X T
0 /ST ) ∩ L∞(l1(μ)), and let

X̃ T
s,0 denote the set of elements of the form −αeiS

i
0/S

i
t χ{Si

t ≥ε} or α(ej − (1 +
λ

ij
t )ei)S0/Stχ{Sj

t ∧Si
t ≥ε} for some t ∈ T, i, j ≥ 1, ε > 0 and α ∈ L∞(R+, Ft ). Note

that

X̃ T
s,0 ⊂ X̃ T

0 .(4.1)

PROPOSITION 4.1. (1) Suppose that EF and NA2 hold. Then, for all η ∈
L∞(l1(μ)) \ X̃ T

0 , there exists Y ∈ L1(c0(1/μ)) such that

E[Y · X] ≤ 0 < E[Y · η] for all X ∈ X̃ T
0 .

(2) Suppose that 0 �= Y ∈ L1(c0(1/μ)) and that for all X ∈ X̃ T
s,0

E[Y · X] ≤ 0.

Then Zt := E[Y | Ft ]S0/St satisfies ZtSt = E[ST ZT | Ft ] and Zt ∈ L0(K∗
t , Ft ) \

{0} for all t ∈ T.

PROOF. In this proof, we use the notation F := L1(c0(1/μ)) and F ′ :=
L∞(l1(μ)).

(1) The set X̃ T
0 being convex and σ(F ′,F )-closed, by Theorem 3.2, it follows

from the Hahn–Banach separation theorem that we can find Y ∈ F such that

sup
X∈X̃ T

0

E[Y · X] < E[Y · η].

Since X̃ T
0 is a cone that contains 0, we clearly have

sup
X∈X̃ T

0

E[Y · X] = 0 < E[Y · η].(4.2)

(2) First note that E[Y | Ft ] ∈ F , so that Z is well defined as a RN-valued pro-
cess, and that (4.2) implies ZT �= 0 as a random variable. Moreover, the fact that the
left-hand side inequality of the proposition holds for simple strategies of the form
−αeiS

i
0/S

i
t χ{Si

t ≥ε} and α(ej − (1 + λ
ij
t )ei)S0/Stχ{Sj

t ∧Si
t ≥ε}, for all t ∈ T, i, j ≥ 1,

ε > 0 and α ∈ L∞(R+, Ft ), implies that Zt := E[Y | Ft ]S0/St = E[ST ZT | Ft ]/St

satisfies 0 ≤ Z
j
t ≤ Zi

t (1 +λ
ij
t ), i, j ≥ 1, for all t ∈ T. Hence, Zt ∈ K∗

t by (2.6). Fi-
nally, P[Z = ZT �= 0] > 0 implies that P[Zt �= 0] > 0 for t < T . �

REMARK 4.1. Note that the statement of Theorem 3.2 cannot be true in
general if we consider the weak topology σ(L∞(l1),L1(c0)) on the space
(St X T

t /ST ) ∩ L∞(l1) instead of σ(L∞(l1(μ)), L1(c0(1/μ))) on (St X T
t /ST ) ∩

L∞(l1(μ)). Indeed, if S0X T
t /ST ∩ L∞(l1) was closed in the topology σ(L∞(l1),
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L1(c0)), then the same arguments as in the proof of Proposition 4.1 above would
imply the existence of a random variable ZT such that ZT ∈ K∗

T \ {0} and

ZT ST /S0 ∈ c0. Recalling (2.6), this would imply that 0 ≤ Z
j
T ≤ (1 + λ

ij
T )Zi

T for
all i, j ≥ 1 and Zi

T Si
T /Si

0 → 0 a.s. as i → ∞. Since Z1
T is not identically equal

to 0, this cannot hold, except if Si
T /Si

0 → 0 as i → ∞ on a set of nonzero mea-
sure, which is in contradiction with (2.1). The closure property stated in terms
of σ(L∞(l1(μ)),L1(c0(1/μ))) does obviously not lead to such a contradiction
since (2.3) and (2.1) imply that ZT ST /S0 ∈ l∞ so that (Zi

T Si
T /Si

0)/μ
i → 0 a.s. as

i → ∞, whenever 1/μ ∈ l1.

COROLLARY 4.3. Suppose that EF and NA2 hold. Then, MT
t (K∗ \ {0}) �= ∅

for all t ∈ T.

PROOF. It follows from NA2 that e1 ∈ L∞(l1(μ))\ X̃ T
0 . Using Proposition 4.1

and (4.1) then implies that there exists Y ∈ L1(c0(1/μ)) such that

E[Y · X] ≤ 0 < E[Y · e1] for all X ∈ X̃ T
s,0.(4.3)

Let Y denote the set of random variables Y ∈ L1(c0(1/μ)) satisfying the left-
hand side of (4.3) for all X ∈ X̃ T

s,0. We claim that there exists Ỹ ∈ Y such that

a := supY∈Y P[Y 1 > 0] = P[Ỹ 1 > 0]. To see this, let (Yn)n≥1 be a maximizing se-
quence. It follows from Proposition 4.1 that E[Yn] ∈ K∗

0 and Y i
n ≥ 0 for all i ≥ 1.

Moreover, we can assume that P[Y 1
n > 0] > 0. We can then choose (Yn)n≥1 such

that E[Y 1
n ] = 1. Recalling (2.3)–(2.6), this implies that there exists c > 0 such

that 0 ≤ E[Y i
n] ≤ (1 + c)E[Y 1

n ] = (1 + c) for all i ≥ 1. Using Komlos lemma,
a diagonalization argument and Fatou’s lemma, we can then assume, after pos-
sibly passing to convex combinations, that (Yn)n≥1 converges a.s. pointwise to
some Y ∈ L1(R+)N. Set Ỹ := ∑

n≥1 2−nYn. It follows from the monotone con-
vergence theorem that it satisfies the left-hand side of (4.3) for all X ∈ X̃ T

s,0.

Moreover, P[Ỹ 1 > 0] ≥ P[Y 1
n > 0] → a so that P[Ỹ 1 > 0] = a. We now show that

P[Ỹ 1 > 0] = 1. If not, there exists A ∈ F with P[A] > 0 such that Ỹ 1 = 0 on A.
Since e1χA ∈ L∞(l1(μ)) \ X̃ T

0 , by NA2, it follows from Proposition 4.1 that we
can find Y ∈ L1(c0(1/μ)) such that such that

E[Y · X] ≤ 0 < E[Y · e1χA] for all X ∈ X̃ T
0 .

By (4.1), Y + Ỹ ∈ Y and P[Y 1 + Ỹ 1 > 0] > P[Ỹ 1 > 0] since E[Y · e1χA] > 0 im-
plies that P[{Y 1 > 0} ∩ A] > 0, a contradiction. To conclude the proof it suffices
to observe that Z defined by Z̃t := E[Ỹ | Ft ]S0/St satisfies Z̃tSt = E[ST Z̃T | Ft ]
and Z̃t ∈ L0(K∗

t , Ft ) \ {0} for all t ∈ T, by Proposition 4.1 again. Moreover,
(2.6) and P[Ỹ 1 > 0] = 1 implies that P[Ỹ i > 0] = 1 for all i ≥ 1. This shows that
Z̃t ∈ L0(K∗

t \ {0}, Ft ) for all t ∈ T. �
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The statement of Theorem 3.3 is then deduced from Proposition 4.1 and the
following standard result.

LEMMA 4.2. Fix ξ ∈ AT
t and Z ∈ MT

t (K∗ \ {0}), for some t ∈ T. If V
ξ
T +

ηST /St ∈ KT for some η ∈ L0(l1, Ft ), then

Zs · V ξ
s−1Ss/Ss−1 ≥ Zs · V ξ

s ≥ E
[
Z(s+1)∧T · V ξ

(s+1)∧T | Fs

] ≥ −Zs · ηSs/St

for all t ≤ s ≤ T , with the convention V
ξ
−1/S−1 = 0.

PROOF. Note that the left-hand side inequality just follows from the fact that
ξs ∈ −Ks while Zs ∈ K∗

s , and the definition of V ξ in (2.5). We now prove the
two other inequalities. For s = T , it follows from the fact that ZT ∈ K∗

T and V
ξ
T +

ηST /St ∈ KT . Assuming that it holds for t < s + 1 ≤ T , we have Zs+1 · V
ξ
s+1 ≥

−Zs+1 ·ηSs+1/St . On the other hand, the already proved, left-hand side inequality
above implies Zs+1 · V

ξ
s+1 ≤ Zs+1 · V

ξ
s Ss+1/Ss . Since E[Zs+1Ss+1 | Fs] = ZsSs

by definition of MT
t (K∗ \ {0}), this shows that the above property holds for s as

well. �

We now turn to the proof of Theorem 3.3. The basic argument is standard, up to
additional technical difficulties related to our infinite-dimensional setting.

PROOF OF THEOREM 3.3. The fact that MT
t (K∗ \ {0}) �= ∅ for all t ∈ T

follows from Corollary 4.3. We now fix g ∈ L0
t,b. In view of Lemma 4.2, it is clear

that

g ∈ X T
t ⇒ E[ZT · g | Ft ] ≤ 0 for all Z ∈ MT

t (K∗ \ {0}).
It remains to prove the converse implication. We therefore assume that

E[ZT · g | Ft ] ≤ 0 for all Z ∈ MT
t (K∗ \ {0})(4.4)

and show that g ∈ X T
t .

(i) The case where S0g/ST ∈ L∞(l1(μ)) is handled by very standard argu-
ments based on Proposition 4.1 and Corollary 4.3. We omit the proof.

(ii) We now turn to the case where g ∈ L0(l1(μ)) is such that g + ηST /St ∈
KT for some η ∈ L0(l1+(μ), Ft ). We first construct a sequence (gn)n≥1 defined as
gn := (g1{|S0g/ST |

l1(μ)
≤n} − η(ST /St )1{|S0g/ST |

l1(μ)
>n})1{|S0η/St |l1(μ)

≤n}. Since (4.4)

holds, g − gn ∈ KT on {|S0η/St |l1(μ) ≤ n} ∈ Ft and ZT ∈ K∗
T for Z ∈ MT

t (K∗ \
{0}), we have E[ZT · gn | Ft ]1{|S0η/St |l1(μ)

≤n} ≤ 0 for all Z ∈ MT
t (K∗ \ {0}) for

all n ≥ 1. Moreover, S0gn/ST ∈ L∞(l1(μ)) for n ≥ 1. It then follows from (i) that
the sequence (gn)n≥1 belongs to X T

t . Moreover, gn + ηST /St ∈ KT for all n ≥ 1.
Hence, (gn)n≥1 t-Fatou converges to g. Appealing to the t-Fatou closure property
of Theorem 3.1 thus implies that g ∈ X T

t .
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(iii) We then consider the case where g ∈ L0
t,b and is such that g− := ((gi)−)i≥1

satisfies −g− + ηST /St ∈ l1+(μ) for some η ∈ L0(l1+(μ), Ft ). We now define the
sequence (gn)n≥1 by gi

n := gi1{gi≤n/(2iμi)} for i ≥ 1. It satisfies the requirement of
(ii) above and is t-Fatou convergent to g since gn + ηST /St ≥ −g− + ηST /St ∈
l1+(μ) ⊂ KT . Moreover, E[ZT · gn | Ft ] ≤ 0 for all Z ∈ MT

t (K∗ \ {0}) since gi
n ≤

gi for all i ≥ 1 and (4.4) holds. By (ii), this implies that gn ∈ X T
t for all n ≥ 1.

Since X T
t is t-Fatou closed, by Theorem 3.1, this implies that g ∈ X T

t .
(iv) We now turn to the case where g ∈ L0(l1) and g + ηST /St ∈ l1+ for some

η ∈ L0(l1+, Ft ). Let M̄T
t denote the subset of elements Z ∈ MT

t (K∗ \ {0}) such
that Z1

t = 1, fix ε > 0, and note that (4.4) implies that

E[ZT · (g − εe1ST /St ) | Ft ] ≤ −ε for all Z ∈ M̄T
t ,(4.5)

since Z ∈ M̄T
t implies E[Z1

T S1
T /S1

t | Ft ] = Z1
t = 1. Let gn be defined by gi

n :=
gi1{gi≥0 or i<n}, i ≥ 1. Note that, for all Z ∈ M̄T

t ,

E[ZT · (gn − g) | Ft ] ≤ E

[∑
i≥n

Zi
T (gi)−

∣∣ Ft

]

≤ E

[∑
i≥n

Zi
T ηiSi

T /Si
t

∣∣ Ft

]

= ∑
i≥n

ηiZi
t ,

where the second inequality comes from the fact that g + ηST /St ∈ l1+ implies
(gi)− ≤ ηiSi

T /Si
t for all i ≥ 1. Now observe that (2.3) and (2.6) imply that 0 ≤

Zi
t ≤ (1 + ct ) for all i ≥ 1 and Z ∈ M̄T

t , for some ct ∈ L0(R, Ft ). It then follows
from the above inequalities, (4.5) and the fact that η ∈ l1 that

lim sup
n→∞

ess sup
Z∈M̄T

t

E[ZT · (gn − εe1ST /St ) | Ft ] ≤ −ε.

We can then find a sequence (nε)ε>0 in L0(N, Ft ) such that nε → ∞ a.s. as ε → 0
and

E[ZT · (gnε − εe1ST /St ) | Ft ] ≤ 0 for all Z ∈ M̄T
t .

Moreover, gnε − εe1ST /St satisfies the conditions of (iii) above with ηnε :=
(ηi1i≤nε )i≥1 + εe1 [recall (2.1)] and therefore belongs to X T

t for all ε > 0. We
conclude again by using the fact that X T

t is t-Fatou closed, by Theorem 3.1, and
that gnε + ηST /St ∈ l1+ ⊂ KT for all ε > 0. �

We conclude this section with the proof of Theorem 3.4.
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PROOF OF THEOREM 3.4. We follow the arguments of [7] which we adapt
to our context. Let us first fix an arbitrary g ∈ (ξST /St + X T

t ) ∩ KT . In view
of Lemma 4.2 applied with η = ξ , one has −Zt · ξ ≤ E[ZT · g | Ft ] ≤ 0 for all
Z ∈ MT

t (K∗ \ {0}). It then follows from B that ξ ∈ Kt .
We now prove the converse assertion. Let us consider ξ ∈ L0(l1, Ft ) such

that Zt · ξ ≥ 0 for all Z ∈ MT
t (K∗ \ {0}). We can then find α ∈ L0(l1+, Ft )

such that −ξ + α ∈ l1+. By definition of MT
t (K∗ \ {0}), we have 0 ≤ Zt · ξ =

E[ZT · ξST /St | Ft ] for all Z ∈ MT
t (K∗ \ {0}). Moreover, −ξ + α ∈ l1+ implies

−ξST /St + αST /St ∈ l1+, according to (2.1). It then follows from Theorem 3.3
applied to g = −ξST /St that −ξST /St ∈ X T

t . Hence, 0 ∈ ξST /St + X T
t , which by

NA2 implies that ξ ∈ Kt . �

4.3. A counter example. In this section, we provide a counter example show-
ing that Theorem 3.1 can be false if Assumption 2.1 is replaced by a weaker one
as in Remark 3.1.

We consider a one-period model, T = 1, in which S0 = (1,1, . . .), S1
1 = 1 and

Si
1 := Uibi + Di(1 − bi), i ≥ 2,

where (bi)i≥2 is a sequence of independent Bernoulli random variables such that
P[bi = 1] = 1/2, Ui := 1 + 1/i and Di := 1 − 1/i, i ≥ 2. Note that each S is a
martingale.

The transaction costs coefficients λ
ij
t are defined by λ1i

0 = λi1
1 = λii

t = 0 for

i ≥ 1 and t = 0,1, and by λ
ij
0 = 1/(i − 1) when i ≥ 2 and i �= j , λ

ij
1 = 1 when

j ≥ 2 and i �= j .
This market clearly satisfies (2.2), the condition of Remark 3.1

λ
ij
t + λ

ji
t > 0 for all t ∈ T and i �= j ,

and we shall show that it also satisfies the NA2 Condition 2.1. Indeed, by formula
(2.6) one obtains that

K∗
0 = {z ∈ l∞ : z1 ≥ 0, zi ∈ z1[1 − 1/i,1], i ≥ 2}

and

K∗
1 = {z ∈ l∞ : z1 ≥ 0, zi ∈ z1[1,2], i ≥ 2}.

In Condition 2.1, the case t = 1 is trivial. We next consider the case t = 0.
Suppose that ξ ∈ A, η ∈ l1 and (η + ξ0)S1/S0 + ξ1 ∈ L0(K1, F1). We must show
that η ∈ K0. First note that u := (η + ξ0)S1/S0 ∈ L0(K1, F1), by definition of A,
and thus satisfies z · u ≥ 0 for all z ∈ K∗

1 , or equivalently, with α := η + ξ0,

z · u = α1 + ∑
i≥2

ziαi(1 + εi/i) ≥ 0 ∀zi ∈ [1,2], εi ± 1.
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By choosing zi = 1 and εi = −1 if αi ≥ 0, and, zi = 2 and εi = +1 if αi < 0 we
obtain

A := α1 + ∑
i≥2

(
αi+(1 − 1/i) − 2αi−(1 + 1/i)

) ≥ 0,

where a+ = max{0, a} and a− = max{0,−a}.
With B := α1 + ∑

i≥2(α
i+(1 − 1/i) − αi−), we have B ≥ A and

z · α = α1 + ∑
i≥2

αizi ≥ B ∀z ∈ K∗
0 with z1 = 1.

This shows that z · α ≥ 0 for all z ∈ K∗
0 , so α ∈ K0. It then follows that η ∈ K0 −

ξ0 ⊂ K0, which proves that NA2 is satisfied.
We now show that X 1

0 is not 0-Fatou closed. To see this, let us set

h1 := ∑
i≥2

yi(2bi − 1) where yi = i−(1+ε) for i ≥ 2

for some ε > 0. We claim that, for each n ≥ 1, gn := (h1 − n−1,0,0, . . .) ∈ X 1
0 ,

while g∞ := (h1,0,0, . . .) /∈ X 1
0 . Since (gn)n Fatou-converges to g∞, as a uni-

formly bounded sequence in L∞(l∞) that converges a.s. pointwise, this shows
that X 1

0 is not Fatou-closed.
It remains to prove the above claims. We first show that gn ∈ X 1

0 . To see this,
let us define the sequence ξn by

ξ
n,i
0 := 12≤i≤Ini

−ε − 1i=1
∑

2≤j≤In

j−ε,

ξ
n,i
1 := −12≤i≤Ini

−εSi
1 + 1i=1

∑
2≤j≤In

j−εS
j
1 , i ≥ 1,

where

In := min
{
k ≥ 2 :

∑
i≥k

yi(2bi − 1) ≤ n−1
}
.

Note that ξn ∈ A by our choice of the structure of the transaction costs. Moreover,
V

ξn

1 =: (V n,1,0,0, . . .) with

V n,1 = ∑
2≤i≤In

i−ε(Si
1 − 1) = 2

∑
2≤i≤In

yibi − ∑
2≤i≤In

yi ≥ h1 − n−1,

where we used the fact that Si
1 − 1 = 2bi/i − 1/i. This proves that gn ∈ X 1

0 . We
now show that g∞ /∈ X 1

0 . Let X̃ 1
0 and Ã be defined as X 1

0 and A but for λ = 0.
Clearly, X 1

0 ⊂ X̃ 1
0 − L0(RN+), so that it suffices to show that g∞ /∈ X̃ 1

0 − L0(RN+).
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Suppose that g∞ ∈ X̃ 1
0 −L0(RN+). Then one can find ξ ∈ l1 and c ∈ L0(RN+) (recall

that S0 = 1) such that

h1 = ∑
i≥2

ξ i(Si
1 − 1) − c1.

On the other hand

h1 = ∑
i≥2

yi(2bi − 1)

= ∑
i≥2

ξ̂ i (Si
1 − 1) − ĉ where ĉ = 0 and ξ̂ i := i−ε for i ≥ 2,

where the above decomposition is unique in
⋃

q<∞ lq ×L0(RN+), by independence

of the Bernoulli random variables (bi)i≥2. This is a contradiction since ξ̂ /∈ l1,
which proves that g∞ /∈ X̃ 1

0 − L0(RN+).

5. On the existence of many consistent price systems. We split the proof
of Theorem 3.5 into three parts. It follows from ideas introduced in [17] and [7]
which we adapt to our context.

THEOREM 5.1. Assume that EF holds. Then, NA2 ⇒ MCPS.

PROOF. We divide the proof into several points. In this proof, we use the nota-
tion F := L1(c0(1/μ)) and F ′ := L∞(l1(μ)). From now on, we fix η ∈ L0(intK∗

t )

such that ηSt ∈ L1(l∞, Ft ). We set G′ = R+η, which is the dual cone of G =
{y :y ∈ l1, y · x ≥ 0 ∀x ∈ G′}. We also set � := (−L0(G, Ft ) + X T

t St/ST ) ∩ F ′.

(1) We first show that � is σ(F ′,F )-closed. Let B1 be the unit ball in F ′.
Arguing as in the proof of Theorem 3.2, it suffices to show that, for any se-
quence (hn)n≥1 ⊂ � ∩ B1 that converges a.s. to some h, we have h ∈ �. Let
(ζn,Vn)n≥1 ⊂ −L0(G, Ft ) × X T

t be such that ζn + VnSt/ST = hn for all n ≥ 1.
Since hn ∈ B1, we have |hi

n| ≤ 1/μi for all i ≥ 1 and therefore hn + 1/μ ∈ l1+ with
1/μ ∈ l1+. It follows that (ζn + 1/μ)ST /St + Vn = hnST /St + (1/μ)ST /St ∈ KT ,
which, by NA2, implies that ζn + 1/μ ∈ Kt . Since η ∈ L0(intK∗

t , Ft ), we can find
ε ∈ L0((0,1), Ft ) such that ηn := η − ε(1ζ i

n≥0 − 1ζ i
n<0)i≥1 ∈ K∗

t for all n ≥ 1. It
follows that 0 ≤ ηn · (ζn + 1/μ) ≤ −ε|ζn|l1 + η · ζn + (η + ε1) · 1/μ. On the other
hand, we have η · ζn ≤ 0 by definition of G and G′. This shows that (|ζn|l1)n≥1
is a.s. uniformly bounded. After possibly passing to (Ft -measurable random) sub-
sequences (see the arguments used in the proof of Corollary 4.2), we can then as-
sume that (ζn)n≥1 converges a.s. in the product topology to some ζ ∈ L0(l1, Ft ).
Moreover, we can find (αn)n≥1 ⊂ L0(l1+, Ft ) satisfying ess supn |αn|l1 < ∞ and
such that −ζn + αn ∈ l1+ for all n ≥ 1. The identity Vn = hnST /St − ζnST /St then
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leads to Vn + (1/μ+αn)ST /St ∈ KT since −ζn +αn ∈ l1+ and hn + 1/μ ∈ l1+. We
conclude by appealing to Theorem 3.1.

(2) We now show that � ∩ L0(RN+) = {0}. Fix (ζ,V ) ∈ (−L0(G, Ft ) × X T
t )

such that ζ + V St/ST ∈ � ∩ L0(RN+). Then ζST /St + V ∈ L0(l1+), so that ζ ∈ Kt

by NA2. Since η ∈ intK∗
t , this implies that η · ζ > 0 on {ζ �= 0}. On the other

hand, the definition of G and G′ leads to η · ζ ≤ 0. This shows that ζ = 0. An
induction argument, based on NA2 and the fact that Ks ∩ (−Ks) = 0 for all s ∈ T,
then implies that V = 0.

(3) We can now complete the proof. By the Hahn–Banach separation theorem,
the fact that � is a convex σ(F ′,F )-closed cone, that � ∩ L0(RN+) = {0} and a
standard exhaustion argument, we can find Y ∈ F such that E[Y · h] ≤ 0 for all
h ∈ �, and Y i > 0 for all i ≥ 1. Defining the process Z by Zs := E[YSt | Fs]/Ss

for t ≤ s ≤ T , we obtain Zi > 0 for all i ≥ 1. Using the fact that −L0(G, Ft ) ∩
F ′ ⊂ �, we also obtain that Zt ∈ G′. From the fact that X T

t St/ST ∩ F ′ ⊂ �, we
then deduce, as in the proof of Proposition 4.1, that Zs ∈ K∗

s , for t ≤ s ≤ T . Since
Zt ∈ G′, we can find a nonnegative Ft -measurable α such that Zt = αη. Since
Zt �= 0, it follows that α > 0 a.s. Thus, (Zs/α)t≤s≤T satisfies the required result.

�

LEMMA 5.1. Assume that EF holds. Then, MCPS ⇔ MSCPS.

PROOF. As in [7], we use a finite recursion from time T to time 0 to prove that
MCPS ⇒ MSCPS. Let MSCPS(t) be the statement in MSCPS for t ≤ T given.
Suppose that MCPS is true. Then MSCPS(T ) is trivially satisfied.

We now suppose that MSCPS(s + 1) is true for some 0 ≤ s < T . Then, there
exists an element X̃ ∈ MT

s+1(intK∗). Since X̃s+1Ss+1 ∈ L1(l∞), we can define

X̃s := E[X̃s+1Ss+1 | Fs]/Ss and Xt := X̃t/(1 + |X̃s |l∞) for s ≤ t ≤ T . Then 0 <

|Xs |l∞ < 1 and X restricted to the interval (s, T ] belongs to MT
s+1(intK∗).

Fix η ∈ L0(intK∗
s , Fs), let d be its distance to the border of K∗

s and set α = (1∧
d)/2. It follows from formula (6.2) of Lemma 6.3 below that α is Fs -measurable.
Since |Xs |∞ < 1, we have

η − αXs ∈ L0(intK∗
s , Fs).(5.1)

Let us now choose η such that ηSs ∈ L1(l∞, Fs). Then ηSs −αXsSs ∈ L1(l∞, Fs),
and MCPS implies that there exists Y ∈ MT

s (K∗ \ {0}) such that Ys = η −αXs . In
view of (5.1), Ys ∈ L0(intK∗

s , Fs).
For s ≤ t ≤ T , define Zt = Yt + αXt . Then Zs = η ∈ L0(intK∗

s , Fs). Since,
for s + 1 ≤ t ≤ T , Yt ∈ L0(K∗

t \ {0}, Ft ) and Xt ∈ L0(intK∗
t , Ft ), and since

α > 0, it follows that Zt ∈ L0(intK∗
t , Ft ) for such t . Hence Z ∈ MT

s (intK∗),
so MSCPS(s) is true. �

PROOF OF THEOREM 3.5. In view of the above results, it remains to show
that MCPS ⇒ NA2. Fix ξ ∈ L0(l1, Ft ) \ L0(Kt , Ft ) such that (ξST /St + X T

t ) ⊂
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L0(KT ). Without loss of generality, we can assume that ξ ∈ L∞(l1, Ft ), since
otherwise we could replace ξ by ξ/|ξ |l1 and use the fact that X T

t /|ξ |l1 = X T
t ,

recall that K is a cone valued process. It then follows from Lemma 4.2 that 0 ≥
−Zt · ξ for all Z ∈ MT

t (K∗ \ {0}). By the definition of MCPS, this implies that
η · ξ ≥ 0 for all η ∈ L∞(intK∗

t , Ft ). This shows that ξ ∈ Kt . �

6. Elementary properties of K and K∗. In this section, by a cone is meant
a convex cone C of vertex 0 ∈ C, and (E,‖ · ‖E) denotes a Banach space with
canonical bilinear form 〈·, ·〉. We recall that a cone C in E, is said to be normal
(cf. Chapter V, Section 3.1 of [19]) if there exists k ≥ 1 such that

‖x‖E ≤ k‖x + y‖E ∀x, y ∈ C.(6.1)

The purpose of the first two results is to obtain that Kt is normal (a.s.) under EF
and an explicit expression of the constant k, used to establish measurability prop-
erties of the random cones Kt and K∗

t and to establish bounds on order intervals
defined by Kt .

LEMMA 6.1. Let C be a cone in the Banach space E, and suppose that the
dual cone

C′ := {z ∈ E′ : 〈z, x〉 ≥ 0 for all x ∈ C}
has an interior point f0. Then C is a normal cone and one can choose k =
4‖f0‖E′/dE′(f0, ∂C′) in (6.1).

PROOF. Let d = dE′(f0, ∂C′), and let B̄(a, r) denote the closed ball in E′ of
radius r > 0 centered at a. We define a norm p in E by

p(x) = sup{|〈f, x〉| :f ∈ B̄(f0, d)}, x ∈ E.

Substitution of f = f0 + dg, g ∈ B̄(0,1) into this definition and the fact that
d ≤ ‖f0‖E′ give that p(x) ≤ ‖f0‖E′‖x‖E + d‖x‖E ≤ 2‖f0‖E′‖x‖E . On the other
hand, we have

‖x‖E = sup{|〈g, x〉| :g ∈ B̄(0,1)},
which for g = (f − f0)/d ∈ B̄(0,1) with f ∈ B̄(f0, d) similarly provides

‖x‖E ≤ sup
{

1

d
|〈f, x〉| + 1

d
|〈f0, x〉| :f ∈ B̄(f0, d)

}
≤ 2

d
p(x).

Hence p(·) and ‖ · ‖E are equivalent norms, since for x ∈ E

d

2
‖x‖E ≤ p(x) ≤ 2‖f0‖E′‖x‖E.
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For x, y ∈ C, it follows directly from the fact that B̄(f0, d) ⊂ C′ and the def-
inition of p that p(x + y) ≥ p(x). Then by the equivalence of the norms, for all
x, y ∈ C,

‖x‖E ≤ 2

d
p(x) ≤ 2

d
p(x + y) ≤ 4

d
‖f0‖E′‖x + y‖E,

which completes the proof by comparing with (6.1). �

LEMMA 6.2. Let C be a cone in the Banach space E, and suppose that f0
is an interior point of the dual cone C′. Then, there exists a > 0 such that for all
y ∈ E

(C − y) ∩ (y − C) ⊂ B̄(0, a〈f0, y〉).
Moreover (since C is a normal cone), for any k ≥ 1 satisfying (6.1) and any b ∈
(0,1), one can choose

a = k/(bdE′(f0, ∂C′)).

PROOF. One observes that x ∈ (C − y)∩ (y −C) if and only if z+ := x + y ∈
C and z− := y − x ∈ C. Since C is normal according to Lemma 6.1, it follows
that, for ε = ±,

‖zε‖E ≤ k‖z+ + z−‖E = 2k‖y‖E.

Then

‖x‖E = 1
2‖z+ − z−‖E ≤ 1

2(‖z+‖E + ‖z−‖E) ≤ 2k‖y‖E.

Since f0 is an interior point of C′, there exists r > 0, such that f0 − rg ∈ C′ for all
g ∈ E′ such that ‖g‖E′ ≤ 1. For r > 0 sufficiently small, we thus have

‖y‖E = sup
‖g‖E′≤1

|〈g, y〉| = sup
‖g‖E′≤1

〈g, y〉 = sup
g∈Ay

〈g, y〉

= 1

r
sup
g∈Ay

(〈f0, y〉 + 〈rg − f0, y〉) ≤ 1

r
〈f0, y〉,

where Ay denotes the set of elements g ∈ E′ satisfying ‖g‖E′ ≤ 1 and 〈g, y〉 ≥ 0,
and the last inequality follows from f0 − rg ∈ C′ while y ∈ C. This shows
that the inequality of the lemma is satisfied with a = 2k/r . One can choose
r = bdE′(f0, ∂C′)) with b ∈ (0,1), which gives the stated choice of a. �

We now return to the particular case of E = l1 and in the sequel of this section,
for ease of notation, we restrict to the case where λ is deterministic and constant in
time. We therefore omit the time index in λ, K and K∗. We set � := (1 + λ) and
use the notation

δu := inf
i �=j

(ui�ij − uj ) where u ∈ l∞.
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LEMMA 6.3. Assume that there exists some c > 0 such that λii = 0 and 0 ≤
λij ≤ c for all i �= j ≥ 1. Then, u is an interior point of K∗ (in l∞) if and only if
δu > 0.

Suppose moreover that the interior of K∗ is nonempty. Then u ∈ ∂K∗ if and
only if δu = 0, u ∈ l∞ \ K∗ if and only if δu < 0 and the distance between a point
u ∈ l∞ and the border ∂K∗ is

dl∞(u, ∂K∗) =
∣∣∣∣ inf
i �=j

1

1 + �ij
(ui�ij − uj )

∣∣∣∣.(6.2)

PROOF. By definition, u ∈ intK∗ if and only if ∃r > 0 such that u+ B̄(0, r) ⊂
K∗, where B̄(0, r) denotes the closed ball in l∞ centered at 0 and with radius r .
Equivalently, z = u+|u|l∞r ′ε satisfies (2.6) for all ε ∈ B̄(0,1), where r ′ = r/|u|l∞
and u �= 0. For given i �= j , choosing ε = −ei + ej leads to

r ′|u|l∞(1 + �ij ) ≤ ui�ij − uj .(6.3)

In particular, δu ≥ r ′|u|l∞ > 0 if u ∈ intK∗. Conversely, if δu > 0, then we can
find r ′ > 0 such that (6.3) holds. This implies that

uj + |u|l∞r ′ ≤ (ui − |u|l∞r ′)�ij , i, j ≥ 1,

so that u + |u|l∞r ′ε ∈ K∗ for all ε ∈ B̄(0,1), that is, u ∈ intK∗.
In the sequel of the proof, suppose that intK∗ is nonempty. According to (2.6),

u ∈ K∗ if and only if δu ≥ 0, and we have proved that u ∈ intK∗ if and only if
δu > 0. So it follows that u ∈ l∞ \K∗ if and only if δu < 0 and that u ∈ ∂K∗ if and
only if δu = 0.

It remains to prove (6.2). Let d denote the right-hand side of (6.2). Suppose first
that δu > 0. For all δ > 0 we can choose i �= j such that 1

1+�ij (ui�ij − uj ) <

d + δ. Then, δu+(d+δ)(−ei+ej ) < 0, so u + (d + δ)(−ei + ej ) /∈ K∗. This shows
that dl∞(u, ∂K∗) ≤ d . Conversely, for all ε ∈ B̄(0,1) δu+dε ≥ 0, so u + dε ∈ K∗.
Hence, d ≤ dl∞(u, ∂K∗) which proves (6.2), when δu > 0. Proceeding similarly,
we obtain for the case δu < 0 that δu+dε ≤ 0 for all ε ∈ B̄(0,1), and that for all
δ > 0 there exists i �= j such that δu+(d+δ)(ei−ej ) > 0. To complete the proof we
note that (6.2) gives dl∞(u, ∂K∗) = 0, when δu = 0. �

PROPOSITION 6.1. Assume that there exists some c > 0 such that λii = 0 and
0 ≤ λij ≤ c for all i �= j ≥ 1. Then, the following assertions:

(1) ∃ε > 0 such that λij ≥ ε ∀i �= j ;
(2) 1 is an interior point of K∗;
(3) K is a normal cone;
(4) K∗ has the generating property, that is, l∞ = K∗ − K∗;
(5) ∃ε > 0 such that λij + λji ≥ ε ∀i �= j ,

satisfy: (1) ⇔ (2) ⇒ (3) ⇔ (4) ⇒ (5).
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PROOF. The equivalence of (1) and (2) is a direct consequence of Lemma 6.3.
The equivalence between (3) and (4) is standard; cf. Chapter V, Section 3.5 of [19].

In the rest of the proof, we shall use the following notation:

fij := �ijei − ej for i �= j ≥ 1, x := ∑
i �=j

aij fij and y := ∑
i �=j

bij fij ,

where a, b ∈ Mf,+ will be given by the context.
We now prove that (1) implies (3). Since x = ∑

i �=j (�
ijaij − aji)ei and

|fij |l1 = �ij + 1, we have∑
i �=j

(�ij − 1)aij ≤ |x|l1 ≤ ∑
i �=j

(�ij + 1)aij ≤ (2 + c)
∑
i �=j

aij .

Then, according to the above inequality,

ε
∑
i �=j

aij ≤ |x|l1 ≤ (2 + c)
∑
i �=j

aij .

Similarly,

ε
∑
i �=j

(aij + bij ) ≤ |x + y|l1 .

Combining the above inequalities leads to

|x|l1 ≤ (2 + c)
∑
i �=j

aij ≤ (2 + c)
∑
i �=j

(aij + bij ) ≤ 2 + c

ε
|x + y|l1 .

It then follows that

|x|l1 ≤ 2 + c

ε
|x + y|l1

for all x, y ∈ K , which proves that K is normal.
It remains to prove that (3) implies (5). Let us assume that the condition (3) is

satisfied. Let x and y be defined as above with a, b ∈ Mf,+ such that bij = aji for
all i, j ≥ 1, and set dij := aij + bij = aij + aji , so that dij = dji , and x + y =∑

i �=j dij (�ij − 1)ei . Then,

|x + y|l1 = ∑
i �=j

dij (�ij − 1) = 1

2

∑
i �=j

dij (λij + λji) = ∑
i �=j

aij (λij + λji).

Since K is normal, there is k ≥ 1, independent on x and y, such that |x|l1 ≤ k|x +
y|l1 , which, combined with the previous inequality, implies

|x|l1 ≤ k
∑
i �=j

aij (λij + λji).

Considering the case where x = fmn for some m �= n, then leads to 2 + λmn ≤
k(λmn + λnm). It follows that λmn + λnm ≥ 2/k, which, by the arbitrariness of
(m,n), proves that (5) is satisfied. �
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REMARK 6.1. Assertion (5) of Proposition 6.1 does not imply that K is nor-
mal [assertion (3)], or equivalently that K∗ has the generating property (4). Since
intK∗ �= ∅ implies that K∗ has the generating property, this shows that (5) does
not imply that intK∗ �= ∅. An example is given by the case where λij = 1 for
i < j and λij = 0 for i ≥ j .

Indeed, assume that λ satisfies the above condition, let x ∈ l∞ be defined by
x = (1,0,1,0, . . .) and suppose that it can be written as x = y1 − y2, for some
y1, y2 ∈ K∗. First note that the definition of λ implies that

0 ≤ yj ≤ yi ≤ 2yj for j < i whenever y ∈ K∗.(6.4)

In view of the left-hand side of (6.4) and the identity x = y1 − y2, we should then
have y2n−1

1 = a2n−1 +n, y2n
1 = a2n +n, y2n−1

2 = a2n−1 +n−1 and y2n
2 = a2n +n

for n ≥ 1, where (an)n≥1 is an increasing nonnegative sequence. On the other
hand, the right-hand side of (6.4) implies that 0 ≤ yi ≤ 2y1 for i > 1. This leads
to a contradiction, therefore showing that x /∈ K∗ −K∗, that is, that the generating
property is not satisfied.

7. Concluding remarks. Our main results could be obtained in a more ab-
stract setting as described below.

Let us consider the situation where (Kt)t∈T is just assumed to be a family of
random cones, together with the following properties, for P-a.e. ω ∈ � and all
t ∈ T:

(i) Kt(ω) is a closed convex cone in l1 of vertex 0 satisfying l1+ ⊂ Kt(ω). The
dual cone K∗

t (ω) has an interior point θt (ω) such that θt ∈ L0(l∞, Ft ).
(ii) dl∞(θt , ∂K∗

t ) ∈ L0((0,∞), Ft ).
(iii) There exists a family Et ⊂ L∞(Kt ∩ cf ) such that K∗

t (ω) = {z ∈ l∞ : z ·
ζt (ω) ≥ 0 for all ζt ∈ Et }.

(iv) There exists a constant C, independent of ω, such that z ∈ K∗
t (ω) ⇒ |zi | ≤

C(1 + |z1|) for all i ≥ 1.

The proofs of Theorems 3.1 and 3.2 only appeal to (i) and (ii) above. The
proof of Proposition 4.1 is adapted under (iii) by replacing the simple elements
−αeiS

i
0/S

i
t χ{Si

t ≥ε} and α(ej − (1 + λ
ij
t )ei)S0/Stχ{Sj

t ∧Si
t ≥ε} by −αζtS0/StχEζt

where Eζt := {Sj
t ≥ ε, for all j ≥ 1 such that ζ

j
t �= 0} for ζt ∈ Et . Hence, Proposi-

tion 4.1 remains true under (i), (ii) and (iii). If we now add (iv) as an assumption,
one can repeat the arguments of the proof of Corollary 4.3. No other modification
is then required to prove Theorem 3.3. Theorems 3.4 and 3.5 similarly hold under
(i)–(iv).

In the case where Et is countable, Et = {ζit , i ≥ 1}, the properties (i), (ii) and (iii)
are not independent. An adapted version of Lemma 6.3 is indeed true with minor
changes: dl∞(u, ∂K∗) = |infi≥1

1
|ζi |l1 (u · ζi)|. It follows that (i) and (iii) implies (ii)

in this case.
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As explained in the Introduction, we have considered here a model in which
financial strategies are described by amounts of money as opposed to number of
units. The main reason is that, in the latter setting, our assumption EF would im-
pose a strong nondegeneracy condition on the bid ask matrices (π

ij
t )ij . Note also

that the linear function x �→ Sx does not define an isomorphism of “nice” TVS, so
that there is no such natural way to pass from a model in amounts to a model in
quantities. Obviously, from the pure mathematical point of view, one can always
consider an abstract family of cones, as described above, and set S ≡ 1, so as to
recover a general model for strategies labeled in terms of units.
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