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We propose a distribution-free approach to the study of random geomet-
ric graphs. The distribution of vertices follows a Poisson point process with
intensity function nf (·), where n ∈ N, and f is a probability density function
on R

d . A vertex located at x connects via directed edges to other vertices that
are within a cut-off distance rn(x). We prove strong law results for (i) the
critical cut-off function so that almost surely, the graph does not contain any
node with out-degree zero for sufficiently large n and (ii) the maximum and
minimum vertex degrees. We also provide a characterization of the cut-off
function for which the number of nodes with out-degree zero converges in
distribution to a Poisson random variable. We illustrate this result for a class
of densities with compact support that have at most polynomial rates of decay
to zero. Finally, we state a sufficient condition for an enhanced version of the
above graph to be almost surely connected eventually.

1. Introduction and main results. In this paper we study the asymptotic
properties related to connectivity of random geometric graphs where the under-
lying distribution of the vertices may not be uniform. A random geometric graph
(RGG) consists of a set of vertices that are distributed in space independently, ac-
cording to some common probability density function. The edge set of the graph
consists of the set of all pairs of points that are within a specified cut-off distance.
Our point of departure from usual random geometric graphs is the specification of
a cut-off function r(·) that determines the edge set. A directed edge exists, from a
vertex located at x to another vertex located at y, provided the distance between x

and y is less than r(x).
Our motivation for the study of such graphs comes from applications in wireless

networks. In models of wireless networks as RGGs, the nodes are assumed to be
communicating entities that are distributed randomly in space according to some
underlying density. Nodes are assumed to communicate effectively with other
nodes that are within a cut-off distance, that is, proportional to the transmission
power. Hence, the transmission power has to be sufficiently large for the network
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to be connected. However, nodes that are within each other’s transmission range
interfere and thus cannot transmit simultaneously. In order to maximize spatial
reuse, that is, the simultaneous use of the medium by several nodes to communi-
cate, the transmission power should be minimized. Thus the asymptotic behavior
of the critical radius of connectivity in a random geometric graph as the number of
vertices becomes large is of considerable interest.

Often the nodes are assumed to be distributed in [0,1]d according to a Poisson
point process of intensity n ∈ N. In this case, it is known that the critical connec-
tivity radius scales as O((logn/n)1/d). If the underlying density is nonuniform
but bounded away from zero, then (see Penrose [12]) the asymptotic behavior of
the largest nearest neighbor distance in the graph is O((f −1

0 logn/n)1/d), where
f0 > 0 is the minimum of the density over its support. Note that the asymptotics
of the largest nearest neighbor distance is determined by the reciprocal of the min-
imum of the density, since it is in the vicinity of the minimum that the nodes are
sparsely distributed.

In many applications such as mobile ad-hoc networks and sensor networks,
the distribution of the nodes may be far from uniform (see, e.g., Foh et al. [2],
Santi [13]). In the case of nonuniform distribution of nodes, it is not efficient from
the point of view of maximizing spatial reuse, for all nodes to use the same cut-
off radius. Nodes near the mode of the density require a much smaller radius than
those at locations where the density is small. Further, the infimum of the den-
sity over its support could be zero (f0 = 0). In such cases the asymptotics of the
largest nearest neighbor distance or the connectivity threshold will be very differ-
ent from that given above. One of the major objectives in a wireless sensor network
is to maximize battery life, and hence it is important to minimize the energy ex-
pended in data transmission. These considerations leads us to RGGs with location-
dependent choice of radii. In many applications, it is assumed that the nodes know
or can effectively estimate their location (Akkaya and Younis [1], Langendoen and
Reijers [8]).

We prescribe a formula for a critical location dependent cut-off radius depend-
ing on the intensity, so that almost surely the resulting graphs do not have isolated
nodes eventually. A useful property of the graphs we construct is that the distri-
bution of out-degree is independent of the location of the nodes. Vertex degree
distributions are important in designing algorithms for distributed computations
over wireless networks where the performance worsens with increasing vertex de-
grees (Giridhar and Kumar [3]). We derive strong law bounds for the maximum
and minimum vertex degrees. By considering a finer parametrization of the cut-off
function, we show that the number of vertices with zero out-degree converges to
a Poisson distribution, under some conditions on the underlying density. We il-
lustrate the result with some examples. A result of this nature for usual random
geometric graphs with the uniform and exponentially decaying densities of nodes
can be found in Penrose [10], Gupta and Iyer [4], respectively.
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The solution to the connectivity problem for random geometric graphs for non-
vanishing densities with compact support and dimensions d ≥ 2 can be found,
for example, in Chapter 13 of Penrose [9]. In one dimension, this problem is
studied for densities in [0,1] with polynomial rate of decay to zero in Han and
Makowski [6], while in Gupta, Iyer and Manjunath [5] the density is assumed to
be exponential or truncated exponential. In two dimensions, the asymptotic distri-
bution for the critical connectivity threshold for a large class of densities, includ-
ing elliptically contoured distributions, distributions with independent Weibull-
like marginals and distributions with parallel level curves is derived in Hsing and
Rootzen [7]. In dimensions d ≥ 2, Penrose [11] obtains the asymptotic distribu-
tion for the connectivity threshold when the nodes are distributed according to a
standard normal distribution. In this paper, we derive a sufficient condition for the
RGGs with location-dependent radius to be almost surely connected eventually.

In summary, our primary motivation in proposing the study of graphs with lo-
cation dependent radii is as follows. It is to enable the design and study of wireless
and sensor networks that allow nonstandard distribution of nodes obtained by fit-
ting densities to empirical data obtained from actual deployments. Given such a
density, each individual node can be programmed to choose a transmission radius
depending on its location so that the network is connected with high probabil-
ity. Further, any change in the underlying distribution over time due to failures,
re-deployments, etc., can be easily accommodated by appropriately changing the
transmission radii. As far as analyzing these graphs is concerned, the key features
to contend with are that the edges are directed and that the cut-off radius is speci-
fied implicitly.

In order to state our results we need some notation.

1.1. Notation. Let f be a continuous probability density function with support
S ⊂ R

d . For any random variable X with density f , we denote it by X
d∼ f . Let

the metric on R
d be given by one of the �p norms 1 ≤ p ≤ ∞, denoted by ‖ · ‖.

Let θd denote the volume of the unit ball in R
d . We denote by B̄ the closure of the

set B . Let X = {X1,X2, . . .} be a sequence of i.i.d. points distributed according
to f . Let {Nn}n≥1 be a nondecreasing sequence of Poisson random variables with
E[Nn] = n and define the sequence of sets

Pn = {X1,X2, . . . ,XNn}, n ≥ 1.(1.1)

Note that Pn is a Poisson point process with intensity nf . For any r > 0 and x ∈ R
d

we denote by B(x, r) the open ball of radius r centered at x. For any Borel set
B ⊂ R

d and any point process P , P[B] represents the number of points of P in B ,
and define

F(B) :=
∫
B

f (x) dx.(1.2)

We now define the random geometric graphs of interest with location-dependent
radii.
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DEFINITION 1. For any n ≥ 1, let Pn be the set given by (1.1). For any func-
tion r : Rd → [0,∞), the random geometric graph Gn(f, r) is defined to be the
graph with vertex set Pn, and the directed edge set

En = {〈Xi,Xj 〉 :Xi,Xj ∈ Pn,‖Xi − Xj‖ ≤ r(Xi)}.

We will also consider an augmented version of the above random geometric
graph which is obtained by making all the edges in Gn(f, r) bi-directional.

DEFINITION 2. The enhanced random geometric graph G̃n(f, r) associated
with the graph Gn(f, r) is defined to be the graph with vertex set Pn and (undi-
rected) edge set

Ẽn = {{Xi,Xj } :Xi,Xj ∈ Pn, 〈Xi,Xj 〉 ∈ En or 〈Xj,Xi〉 ∈ En

}
.

In the communication application described in the Introduction, the following
procedure will give a graph whose edge set will contain the edges of the enhanced
graph G̃n. Upon deployment, the nodes broadcast their radius. All nodes reset their
transmission radius to be the maximum of their original radius and the ones they
receive from the broadcast. Note that this is done only once. Clearly all the di-
rected links in the original graph now become bi-directional together with possible
creation of some directed edges. Thus if the enhanced graph G̃n is connected, then
so is the graph obtained by this procedure.

1.2. Main results. For any fixed c > 0, define the sequence of cut-off func-
tions {rn(c, x)}n≥1, via the equation∫

B(x,rn(c,x))
f (y) dy = c

logn

n
, x ∈ S.(1.3)

Later we will have occasion to take c to be a function of x and n as well. We will
denote Gn(f, rn(c, ·)) by Gn and the associated enhanced graph by G̃n, when c,
f are fixed and rn is as defined in (1.3). By the Palm theory for Poisson point
processes (Theorem 1.6, [9]), the expected out-degree of any node in Gn will be

E[deg(X1)] = n

∫
B(x,rn(c,x))

f (y) dy = c logn,

which is the same as the vertex degree in the usual random geometric graph defined
on uniform points in the connectivity regime. Let P x and Ex denote the Palm
distributions of Pn conditional on a vertex located at x. By the Palm theory for
Poisson point processes, the expected out-degree of a node located at x ∈ R

d in
the graph Gn will be

Ex[deg(x)] = c logn.
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Thus the expected vertex degree of a node in Gn does not depend on the location
of the node. In fact, the number of points of Pn \ {x} that fall in B(x, rn(c, x))

under P x will follow a Poisson distribution with mean c logn.
Let Wn = Wn(c) be the number of nodes in Gn that have zero out-degree, that

is,

Wn = ∑
Xi∈Pn

1{Pn[B(Xi,rn(c,Xi))\{Xi}]=0}.(1.4)

For each n ≥ 1, define

dn = inf{c > 0 :Wn = 0}.(1.5)

In other words, dn is the critical cut-off parameter, that is, the smallest c, so that the
graphs Gn(f, rn(c, ·)) do not have any node with zero out-degree. Our first result
is a strong law for this critical cut-off parameter dn.

THEOREM 1.1. Let dn be the critical cut-off parameter as defined in (1.5).
Then almost surely,

lim
n→∞dn = 1.(1.6)

Let Gn = Gn(f, rn(c, ·)) be the random geometric graphs as defined in Def-
inition 1 with rn as in (1.3). Consider the enhanced random geometric graph
G̃n = G̃n(f, rn(c, ·)) associated with Gn; see Definition 2. We now state a strong
law result for the critical cut-off parameter to eleminate isolated nodes in the
graph G̃n. Let W̃n be the number of isolated nodes, that is, nodes with degree
zero, in the enhanced graph G̃n. Define

d̃n := inf{c > 0 : W̃n = 0}.(1.7)

Clearly d̃n ≤ dn by construction. The following theorem shows that the threshold
required to eleminate isolated nodes in the enhanced graph G̃n is the same as for
the graph Gn.

THEOREM 1.2. Let d̃n be as defined in (1.7). Then, almost surely,

lim
n→∞ d̃n = 1.(1.8)

The exact asymptotics for the connectivity threshold for random geometric
graphs requires a lot of elaborate computations; see Chapter 13, [9]. We provide a
sufficient condition that requires only a local computation at each node and makes
use of the connectivity threshold for the usual uniform random geometric graphs.

Let X be a random variable with probability density function f with support
S ⊂ R

d, d ≥ 2. Suppose that f admits a mapping h :S → R
d such that h(X)

is uniformly distributed on [0,1]d . For example, if the coordinates of X are in-
dependently distributed, then the coordinate mappings of h will be the marginal
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distributions. Recall that θd denotes the volume of the unit ball. For any ε > 0, let
{mn}n≥1 be the sequence defined by

mn(ε)
d = (1 + ε)

m logn

nθd

, n ≥ 1,

where

m = max
0≤j≤d−1

2j (d − j)

d
.(1.9)

For any set B , we denote by h(B) the image of the set B under h. Suppose that the
functions rn(c, x) are as defined in (1.3). Define the sequence of functions,

cn(ε, x) := inf{c :h(B(x, rn(c, x))) ⊃ B(h(x),mn(ε))}, x ∈ S,(1.10)

and {rn(cn, ·)}n≥1 to be functions on S that satisfy the equation∫
B(x,rn(cn,x))

f (y) dy = cn(ε, x)
logn

n
, n ≥ 1.(1.11)

Let Gn(f, rn(cn)) be the graphs defined as in Definition 1 with r replaced by
rn(cn). Let G̃n(f, rn(cn)) be the enhanced graphs associated with Gn(f, rn(cn)),
that is, the graphs obtained by making the edges in Gn(f, rn(cn)) bi-directional.

THEOREM 1.3. Let X
d∼ f , and suppose that h(X) is uniform on [0,1]d ,

d ≥ 2. Then for any ε > 0, almost surely, the sequence of enhanced random ge-
ometric graphs G̃n(f, rn(cn)) is connected for all sufficiently large n.

In particular, the above result implies that

P(G̃n(f, rn(cn)) is connected ) → 1 as n → ∞.

Our next result is on strong law asymptotics for the maximum and minimum vertex
degrees for the sequence of graphs Gn. Let H : [0,∞) −→ [0,∞) be defined by
H(0) = 1 and

H(a) = 1 − a + a loga, a > 0.(1.12)

The function H has a unique turning point at the minima a = 1. Let H−1+ :
[0,∞) → [1,∞) be the inverse of H restricted to [1,∞) and H−1− : [0,1] → [0,1]
be the inverse of the restriction of H to [0,1].

THEOREM 1.4. For any c > 0, let �n = �n(c) be the maximum and δn =
δn(c) be the minimum vertex out-degree of the graph Gn = Gn(f, rn(c, ·)). Then
with probability 1,

lim sup
n→∞

�n

logn
≤ cH−1+ (c−1).(1.13)
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If c < 1, then δn → 0 almost surely. If c > 1, then with probability 1,

lim inf
n→∞

δn

logn
≥ cH−1− (c−1).(1.14)

Note that (1.14) does not shed any light on what happens to the minimum vertex
degree when c = 1. This requires a finer parametrization of the cut-off function.
For any β ∈ R, define r̂n(β, ·) :S → [0,∞) to be functions satisfying

F(B(x, r̂n(β, x))) =
∫
B(x,r̂n(β,x))

f (y) dy = logn + β

n
,(1.15)

for all n sufficiently large for which logn + β > 0, and arbitrarily otherwise.
Since β is fixed, we will write r̂n(x) for r̂n(β, x). For each n ≥ 1, define the sets

An(x) := {y ∈ R
d :‖x − y‖ ≤ r̂n(x) + r̂n(y)},(1.16)

Ân(x) := {y ∈ R
d : max{r̂n(x), r̂n(y)} ≤ ‖x − y‖ ≤ r̂n(x) + r̂n(y)},(1.17)

Kn(x, y) := B(y, r̂n(y)) \ B(x, r̂n(x)), x, y ∈ S.(1.18)

THEOREM 1.5. Let Ŵn be the number of nodes of out-degree zero in the graph
Ĝn = Gn(f, r̂n(β, ·)), where r̂n(β, ·) is as defined in (1.15). Suppose that f satis-
fies the following two conditions for all n sufficiently large:

(1) There exists a constant α ∈ (0,1), such that for all n sufficiently large

inf
x∈S

inf
y∈Ân(x)

F (Kn(x, y)) ≥ α

(
logn + β

n

)
,(1.19)

(2)

sup
x∈S

F (An(x)) = o(nα−1) as n → ∞.(1.20)

Then,

Ŵn
d→ Po(e−β)(1.21)

as n → ∞, where Po(λ) denotes a Poisson random variable with mean λ.

As noted earlier, Poisson approximation results for the number of isolated nodes
are available only for a small class of distributions. Condition (1.20) can be re-
placed by the following sufficient condition which, as will be shown below, is
easier to verify for some classes of densities.

sup
x∈S

F (B(x,2r̂n(x))) = o(nα−1) as n → ∞.(1.22)

THEOREM 1.6. Suppose that the hypothesis (1.19) of Theorem 1.5 and (1.22)
are satisfied, then (1.21) holds true.
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Our final result is an illustration of the use of the above theorem to a class of
densities with compact support that have at most polynomial rates of decay to
zero. Let f be a continuous density with compact support S ⊂ R

d , d ≥ 2. Let
Bi = B(xi, ri), i = 1,2, . . . , k, be nonintersecting balls such that f (x) = 0 on the
boundary of these balls. For each i = 1,2, . . . , k, there exists integers mi and pij ,
j = 1,2, . . .mi and constants 0 ≤ ηi < ri < δi such that, either

f (y) =
mi∑

j=1

Aij (‖y − xi‖ − ri)
pij , y ∈ B(xi, δi) \ Bi and

f (y) = 0, y ∈ Bi \ B(xi, ηi),

or

f (y) =
mi∑

j=1

Aij (ri − ‖y − xi‖)pij , y ∈ Bi \ B(xi, ηi) and

f (y) = 0, y ∈ B(xi, δi) \ Bi,

and f (y) > 0 elsewhere in S. The density can vanish, for example, over water
bodies which may contain islands (which are being approximated by balls), and
the density decays to zero polynomially near the boundary of these balls. In partic-
ular, S itself could be taken to be a ball with the density decaying polynomially to
zero at the boundary of S in a radially symmetric fashion. We will denote by H the
set of all densities of the above form. The class H contains many of the standard
distributions such as the uniform, triangular, beta, etc., truncated versions of stan-
dard distributions with unbounded support such as the Gaussian, gamma, etc. In
Santi [13] the density is assumed to be continuous and bounded away from 0 over
[0,1]2, which is contained in H. The class H also contains the higher dimensional
extensions of the polynomial densities considered in Foh et al. [2] and Han and
Makowski [6]. As remarked earlier, since our motivation was to allow for nonstan-
dard densities, H contains functions that are the modulus of analytic functions in
the interior of S.

COROLLARY 1.7. The conclusion of Theorem 1.6 holds for any density in
class H.

2. Proofs.

PROOF OF THEOREM 1.1. First we will show that

lim sup
n→∞

dn ≤ 1.(2.1)

Fix ε > 0 and let c = 1+ε. Let nk = kb, k ≥ 1, where the constant b will be chosen
later. Let Wn(c) be as defined in (1.4). For each n ≥ 1, define the events

An := {Wn(c) > 0}.
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Recall that Pn[B] denotes the number of points of the point process Pn that fall in
the set B . Set

Bk :=
nk+1⋃
n=nk

An, k ≥ 1.

We will show that
∞∑

k=1

P [Bk] < ∞.(2.2)

It will then follow by the Borel–Cantelli lemma that almost surely, only finitely
many of the events Bk (and hence the An) happen. Consequently, with probabil-
ity 1, dn ≤ 1 + ε, eventually. Since ε > 0 is arbitrary, this will prove (2.1).

For each k ≥ 1, let Hk be the event that there is a vertex X ∈ Pnk+1 that has
out-degree zero in the graph G(Pnk

∪ {X}, rnk+1(c)), that is,

Hk = ⋃
X∈Pnk+1

{
Pnk

[B(X, rnk+1(c)) \ {X}] = 0
}
.

Since we have assumed the variables Nn to be nondecreasing and the functions
rn(c, x) are nonincreasing in n for each fixed c and x, we have

An ⊂ Hk, nk ≤ n ≤ nk+1.

Consequently,

Bk ⊂ Hk, k ≥ 1.(2.3)

By the Palm theory for Poisson point processes (Theorem 1.6, [9]), (1.2) and (1.3),
we have

P [Hk] ≤ E

[ ∑
X∈Pnk+1

1{Pnk
[B(X,rnk+1 (c))\{X}]=0}

]

= nk+1

∫
Rd

e
−nkF (B(x,rnk+1 (c)))

f (x) dx

(2.4)

= nk+1 exp
(
−c

nk

nk+1
lognk+1

)

= (k + 1)b exp
(
−(1 + ε)

(
k

k + 1

)b

log(k + 1)b
)
.

Choose γ > 0 so that (1 − γ )(1 + ε) > 1, and pick b such that(
(1 − γ )(1 + ε) − 1

)
b > 1.

For sufficiently large k, we have(
k

k + 1

)b

> (1 − γ ).
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Using this in (2.4) , we get for all k sufficiently large

P [Hn] ≤ 1

(k + 1)((1−γ )(1+ε)−1)b
,

which is summable in k. (2.2) now follows from the above inequality and (2.3).
This proves (2.1) by the arguments following (2.2). To complete the proof, we
need to show that

lim inf
n→∞ dn ≥ 1.(2.5)

Fix c < 1 and pick u such that c < u < 1. Choose x0 such that f (x0) > 0. Since f

is continuous, we can and do fix a R > 0 satisfying g0u < f0, where

f0 = inf
x∈B(x0,R)

f (x), g0 = sup
x∈B(x0,R)

f (x).

Let ε > 0 be such that

ε1/d + c1/d < u1/d .(2.6)

Choose R0 > 0 such that 2R0 < R and let B0 := B(x0,R0). Define the sequence
of functions {r̄n(·)}n≥1 by

r̄n(v)d = v logn

θdf0n
, 0 ≤ v ≤ 1.

Let σn be the maximum number such that there exists σn many disjoint balls of
radius r̄n(u) with centers in B0. Then (see Lemma 2.1, [12]), we can find a con-
stant c1 such that for all n sufficiently large,

σn ≥ c1n

logn
.(2.7)

Let {x1, x2, . . . , xσn} be the deterministic set of points in B0 such that the balls
B(xi, r̄n(u)), i = 1,2, . . . , σn, are disjoint. Let En(x) be the event that there is
exactly one point of Pn in B(x, r̄n(ε)) with no other point in B(x, r̄n(u)), that is,

En(x) = {P[B(x, r̄n(ε))] = 1, Pn[B(x, r̄n(u)) \ B(x, r̄n(ε))] = 0}.(2.8)

Note that the events {P[B(x, r̄n(ε))] = 1} and {P[B(x, r̄n(u)) \ B(x, r̄n(ε))] = 0}
are independent. Hence for any x ∈ B0, we have

P [En(x)] = nF(B(x, r̄n(ε)))e
−nF(B(x,r̄n(ε)))e−nF(B(x,r̄n(u)))\B(x,r̄n(ε))

= nF(B(x, r̄n(ε)))e
−nF(B(x,r̄n(u))).

Note that for all x ∈ B0 and all n sufficiently large, B(x, r̄n(u)) ⊂ B(x0,R). Hence
for all n sufficiently large and x ∈ B0, we have

P [En(x)] ≥ nf0θd r̄n(ε)
d exp(−ng0θd r̄n(u)d)

= ε logn exp
(
−g0u

f0
logn

)
(2.9)

= εn−g0u/f0 logn.
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Using the fact that the events En(xi), i = 1, . . . , σn, are independent, the inequality
1 − x ≤ e−x , and (2.7), (2.9), we get

P

[(
σn⋃
i=1

En(xi)

)c]
≤ exp

(−εσnn
−(g0u)/f0 logn

) ≤ exp
(−c1εn

1−(g0u)/f0
)
,

which is summable in n since g0u < f0. Hence, by the Borel–Cantelli lemma,
almost surely, for all sufficiently large n the event En(xi) happens for some i =
i(n). Hence w.p. 1, for all n sufficiently large, we can find a random sequence
j (n) such that Xj(n) ∈ Pn, and there is no other point of Pn within a distance
r̄n(u) − r̄n(ε) of Xj(n). By (2.6),

r̄n(u) − r̄n(ε) ≥ r̄n(c).

Since Xj(n) ∈ B0, from (1.3) and the remark above (2.9), we get for sufficiently
large n, ∫

B(Xj(n),rn(c,Xj(n)))
f (y) dy = c

logn

n
(2.10)

= θdf0r̄n(c)
d ≤

∫
B(Xj(n),r̄n(c))

f (y) dy.

Hence rn(c,Xj(n)) ≤ r̄n(c). It follows that there is no other point of Pn in
B(Xj(n), rn(c,Xj(n))), that is, Xj(n) has out-degree zero in Gn = G(Pn, rn(c)).

Consequently w.p. 1, dn ≥ c for all n sufficiently large. Since c < 1, this
proves (2.5). �

PROOF OF THEOREM 1.2. Since the graph G̃n is obtained by making all the
edges in Gn bi-directional, W̃n ≤ Wn. Consequently d̃n ≤ dn, and hence by Theo-
rem 1.1 we have

lim sup
n→∞

d̃n ≤ 1.

Thus it suffices to show that

lim inf
n→∞ d̃n ≥ 1.(2.11)

Fix c < 1, and let x0,R,R0 and r̄n be as in the second part of the proof of The-
orem 1.1. Recall the random sequence j (n), defined on a set of probability one,
such that for sufficiently large n, the point Xj(n) ∈ Pn has no other point of Pn

within a distance r̄n(c). Since 2R0 < R, by the same arguments as in (2.10), we
have rn(x, c) ≤ r̄n(c) for all x ∈ B(x0,2R0) and all n sufficiently large. Thus al-
most surely, none of the points X ∈ Pn, that fall in the ball B(x0,2R0)\B(x0,R0),
have an out-going edge to Xj(n) for all sufficiently large n.
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On the other hand, for any point x /∈ B(x0,2R0), suppose B(x, rn(c, x)) ∩
B(x0,R0) �= φ. Then we can find a point y such that ‖y − x0‖ = 3R0/2 such
that B(y,R0/2) ⊂ B(x, rn(c, x)). However,

c
logn

n
=

∫
B(x,rn(c,x))

f (u) du ≥
∫
B(y,R0/2)

f (u) du ≥ f0θRd
0

2d
,

which clearly is not possible for sufficiently large n. Thus there can be no edge
leading from a point of Pn in B(x0,2R0)

c to Xj(n). Hence the points Xj(n) ∈ Pn

have zero in-degree as well for sufficiently large n. Consequently, with probabil-
ity 1, d̃n ≥ c for all sufficiently large n for any c < 1. This proves (2.11) and thus
completes the proof of Theorem 1.2. �

PROOF OF THEOREM 1.3. For any ε > 0, let cn = cn(ε, ·), n ≥ 1, be as de-
fined in (1.10). Consider the random geometric graph Ḡn induced by the map-
ping h and the enhanced graph G̃n = G̃n(f, rn(cn, ·)). The vertex set of the graph
Ḡn is the set {h(X) :X ∈ Pn} with edges between any two vertices Yi = h(Xi) and
Yj = h(Xj ) provided there is an edge between Xi and Xj in the graph G̃n. The
vertices of Ḡn are distributed according to a homogenous Poisson point process
on [0,1]d with intensity n.

Let m be as defined in (1.9). Now by Theorem 13.2, [9] (with kn ≡ 0), we have

lim
n→∞

nθT d
n

logn
= m,

almost surely, where Tn is the threshold for simple connectivity in the usual uni-
form random geometric graph on [0,1]d (nodes being distributed according to a
homogenous Poisson point process with intensity n).

By definition of cn(ε), in the graph Ḡn, each vertex is connected to all its neigh-
bors that are within a distance mn(ε) almost surely for all sufficiently large n. It
follows that almost surely, the graphs Ḡn, and hence the graphs G̃n are connected
for all sufficiently large n. �

PROOF OF THEOREM 1.4. We first show (1.13). Fix c > 0 and ε ∈ (0,1).

Define the sequence

cn = (1 + ε)cH−1+
(

1 + ε

c

)
logn, n ≥ 1.

Fix a constant b such that bε > 1, and let nk = kb, k ≥ 1. Define the events An :=
{�n ≥ cn}, n ≥ 1. Let

Bk :=
nk+1⋃
n=nk

An, k ≥ 1.(2.12)
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Since Nn, cn are increasing, and rn(c, x) is decreasing pointwise in n, we have

Bk ⊂ ⋃
X∈Pnk+1

{Pnk+1[B(X, rnk
(c,X))] ≥ cnk

+ 1}.(2.13)

By the Palm theory for Poisson point processes (Theorem 1.6, [9]),

P(Bk) ≤ E

[ ∑
X∈Pnk+1

1{Pnk+1 [B(X,rnk
(c,X))\{X}]≥cnk

}
]

(2.14)
= nk+1

∫
Rd

P
(
Po(nk+1F(B(x, rnk

(c, x)))) ≥ cnk

)
f (x) dx,

where Po(λ) denotes a Poisson random variable with mean λ. From (1.3), we have
for sufficiently large k,

nk+1F(B(x, rnk
(c, x))) = nk+1

nk

c lognk ≤ (1 + ε)cb log k.

Hence for sufficiently large k, by definition of H−1+ , we get

cnk

nk+1F(B(x, rnk
(c, x)))

≥ (1 + ε)cH−1+ ((1 + ε)/c)b log k

(1 + ε)cb log k
(2.15)

= H−1+
(

1 + ε

c

)
> 1.

Hence using the Chernoff bound for the Poisson distribution (see Lemma 1.2, [9]),
we get

P
(
Po(nk+1F(B(x, rnk

(c, x)))) ≥ cnk

)
≤ e−nk+1F(B(x,rnk

(c,x)))H(cnk
/(nk+1F(B(x,rnk

(c,x))))).

Since H is increasing in [1,∞) and nk+1 > nk , using (2.15) we can bound the
probability on the left-hand side in the above equation by

exp
(
−nk+1

nk

cb log kH

(
H−1+

(
1 + ε

c

)))
≤ exp

(−(1 + ε)b log k
)
.

Substituting this bound in (2.14), we get for sufficiently large k,

P(Bk) ≤ (k + 1)b

kb(1+ε)
≤ (1 + ε)

1

kbε
,

which is summable in k, since bε > 1. Hence, by the Borel–Cantelli lemma, almost
surely only finitely many of the events Bk and hence An happen. Hence, almost
surely,

�n

logn
≤ (1 + ε)cH−1+

(
1 + ε

c

)
,
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eventually. The result now follows since ε > 0 is arbitrary.
The result for δn(c) in case c < 1 follows from Theorem 1.1. For the case c > 1,

the proof of (1.14) is entirely analogous to that of (1.13), and so we provide the
corresponding expressions. Fix ε ∈ (0,1) such that (1 + ε) < (1 − ε)c. Let b > 0
be such that bε > 1, and define the sequence nk = kb, k ≥ 1. Define the events
An := {δn ≤ cn} where

cn = (1 − ε)cH−1−
(

1 + ε

(1 − ε)c

)
logn, n ≥ 1.

Let the events Bk be as defined in (2.12). The expression analogous to (2.13) will
be

Bk ⊂ ⋃
X∈Pnk

{Pnk
[B(X, rnk+1(c,X))] ≤ cnk+1 + 1}.(2.16)

For sufficiently large k,

nkF (B(x, rnk+1(c, x))) = nk

nk+1
c lognk+1 ≥ (1 − ε)cb log(k + 1).

Hence for sufficiently large k, by our choice of ε, we get

cnk+1

nkF (B(x, rnk+1(c, x)))
≤ (1 − ε)cH−1− ((1 + ε)/((1 − ε)c))b log(k + 1)

(1 − ε)cb log(k + 1)
(2.17)

= H−1−
(

1 + ε

(1 − ε)c

)
< 1.

Again using the Chernoff bound and proceeding as in the previous proof, we will
get

P(Bk) ≤ nk exp
(
−(1 − ε)cb log(k + 1)

1 + ε

(1 − ε)c

)
,

≤ (1 + ε)
1

(k + 1)bε
,

which is summable in k. Since ε > 0 is arbitrary, (1.14) now follows by the Borel–
Cantelli lemma and the arguments used earlier to infer (1.13). �

The proof of Theorem 1.5 uses the following lemma, which is a straightforward
extension of Theorem 6.7, [9]. Let dTV denote the total variation distance between
two random variables. Let r̂n(β), Ĝn and Ŵn, be as in Theorem 1.5. We will use
the notation, Bn(x) = B(x, r̂n(x)),

B̄n(x) = {
y :‖y − x‖ ≤ 3 max{r̂n(x), r̂n(y)}},

B̂n(x) = {
y : max{r̂n(x), r̂n(y)} ≤ ‖y − x‖ ≤ 3 max{r̂n(x), r̂n(y)}},

and P x
n = Pn ∪{x}. Recall that Pn(B) denotes the number of points of Pn that fall

in the set B .
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LEMMA 2.1. Let f be a continuous density on R
d . Then, for the graph Ĝn,

we have

dTV(Ŵn,Po(E[Ŵn])) ≤ min
(

3,
1

E[Ŵn]
)(

I (1)
n + I (2)

n

)
,(2.18)

where

I (1)
n = n2

∫
Rd

f (x) dx

∫
B̄n(x)

f (y) dy

(2.19)
× P [Pn(Bn(x)) = 0]P [Pn(Bn(y)) = 0],

I (2)
n = n2

∫
Rd

f (x) dx

∫
B̂n(x)

f (y) dy

(2.20)
× P [P y

n (Bn(x)) = 0, P x
n (Bn(y)) = 0].

PROOF. The proof is identical to the proof of Theorem 6.7, [9] with the follow-
ing obvious change. In the definition of dependency neighborhood, the parameter r

is replaced by the function supx∈Hmi∪Hmj
r̂n(x). �

PROOF OF THEOREM 1.5. By the Palm theory for Poisson point processes,

E[Ŵn] = n

∫
Rd

f (x) dx e−n
∫
Bn(x) f (y) dy,

where Bn(x) is as defined above Lemma 2.1. Using (1.15), we get

E[Ŵn] = e−β.

Hence, by Lemma 2.1, it suffices to show that I
(1)
n , I

(2)
n converge to zero as

n → ∞. Again, using the Palm theory and (1.15), we get

I (1)
n = n2

∫
Rd

f (x) dx

∫
B̄n(x)

f (y) dy e−n
∫
Bn(x) f (u)due

−n
∫
Bn(y) f (v) dv

(2.21)
= e−2β

∫
Rd

f (x) dx

∫
B̄n(x)

f (y) dy → 0

as n → ∞, by the dominated convergence theorem, since r̂n(β, x) → 0 for each
x ∈ R

d . Next we will show that I
(2)
n → 0, as n → ∞.

I (2)
n = n2

∫
Rd

f (x) dx

∫
B̂n(x)

f (y) dy e
−n

∫
Bn(x)∪Bn(y) f (u)du

(2.22)
= I (21)

n + I (22)
n ,

where

I (21)
n := n2

∫
Rd

f (x) dx

∫
B̂n(x)∩{y : ‖y−x‖≥r̂n(x)+r̂n(y)}

f (y) dy e
−n

∫
Bn(x)∪Bn(y) f (u) du

,

I (22)
n := n2

∫
Rd

f (x) dx

∫
Ân(x)

f (y) dy e
−n

∫
Bn(x)∪Bn(y) f (u)du

,
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where Ân(x) is as defined in (1.17). Consider the inner integral in I
(21)
n . On the

set B̂n(x) ∩ {y : r̂n(x) + r̂n(y) ≤ ‖x − y‖}, we have Bn(x) ∩ Bn(y) = φ, and hence
by (1.15)∫

Bn(x)∪Bn(y)
f (u) du =

∫
Bn(x)

f (u) du +
∫
Bn(y)

f (u) du = 2
logn + β

n
.

Thus, I
(21)
n converges to zero using the same arguments as in (2.21). It remains to

show that I
(22)
n → 0 as n → ∞. Since Bn(x) ∪ Bn(y) = Bn(x) ∪ Kn(x, y), where

Kn(x, y) = Bn(y) \ Bn(x), we get from (1.15), (1.19), that I
(22)
n is bounded by

a constant times

n1−α
∫

Rd
f (x)F (An(x)) dx,(2.23)

where An(x) is as defined in (1.16). The expression in (2.23) converges to zero as
n → ∞ by (1.20). �

PROOF OF THEOREM 1.6. Note that in the proof of Theorem 1.5, (1.20)
is used only to prove that (2.23) converges to zero. Hence it suffices to show
that (2.23) converges to zero under (1.22). Let An(x) be as defined in (1.16). Then

An(x) = (
An(x) ∩ {r̂n(y) ≤ r̂n(x)}) ∪ (

An(x) ∩ {r̂n(x) ≤ r̂n(y)})
⊂ B(x,2r̂n(x)) ∪ (

An(x) ∩ {r̂n(x) ≤ r̂n(y)}).
Using this, the expression in (2.23) is bounded by

n1−α

(∫
Rd

f (x)F (B(x,2r̂n(x))) dx +
∫

Rd
f (x) dx

∫
An(x)∩{r̂n(x)≤r̂n(y)}

f (y) dy

)
.

Applying Fubini’s theorem to the second term above, we see that the above ex-
pression is bounded by

2n1−α
∫

Rd
f (x)F (B(x,2r̂n(x))) dx,

which converges to zero by (1.22). �

PROOF OF COROLLARY 1.7. Let B = B(0,1). Consider the following two
classes of densities:

C+ :=
{
f : Rd → [0,∞), f continuous ,

∫
Rd

f (y) dy = 1, inf
x∈Supp(f )

f (x) > 0
}
,

where Supp(f ) is the support of f . Denote by CE the set of functions f :B →
[0,∞) such that for some r ∈ (0,1) and p ∈ N, f (x) = 0, x ∈ B(0, r), and f (x) =
A(‖x‖ − r)p, x ∈ B \ B(0, r), with

∫
B f (y) dy = 1. Let CI be the set of functions

f :B → [0,∞) such that for some p ∈ N, f (x) = A(1 − ‖x‖)p, x ∈ B, with
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∫
B f (y) dy = 1. We first prove the result for densities f ∈ C+ ∪ CE ∪ CI . To do this

we need to verify conditions (1.19) and (1.22).
Step 1. Fix f ∈ C+. Let S = Supp(f ) and f∗ = infx∈S f (x) > 0 and f ∗ =

supx∈S f (x). By (1.15), for any x ∈ S and for all n large enough, we get

f∗θd r̂n(x)d ≤ logn + β

n
≤ f ∗θd r̂n(x)d,

or
1

f ∗θd

logn + β

n
≤ r̂n(x)d ≤ 1

f∗θd

logn + β

n
.(2.24)

To prove (1.19), note that for any y ∈ Ân(x), we can inscribe a ball of radius
r̂n(y)/2 inside Kn(x, y). From this and (2.24), for all n sufficiently large, we get

F(Kn(x, y)) ≥ f∗θd

(
r̂n(y)

2

)d

≥
(

f∗
2df ∗

)(
logn + β

n

)
.

This proves (1.19) with α = f∗
2df ∗ < 1. By (2.24) we have

F(B(x,2r̂n(x))) ≤ f ∗2dθd r̂n(x)d = o(n1−α) as n → ∞.(2.25)

This proves (1.22). Thus the Poisson convergence result holds for any f ∈ C+.
Step 2. Next we prove the result for f ∈ CE . Proof for f ∈ CI is similar and so

we omit it. Let Br = B \ B(0, r). Recall that f (x) = 0 over B(0, r) and is of the
form f (x) = A(‖x‖ − r)p over Br .

For any x, y ∈ Br , we have by (1.15),

F(B(y, r̂n(y))) = F(B(x, r̂n(x))) = logn + β

n
.(2.26)

Note that the density is radially increasing, that is, f (x) ≤ f (y) if ‖x‖ ≤ ‖y‖. If
y ∈ Ân(x), then y /∈ B(x, r̂n(x)). If ‖x‖ ≤ ‖y‖, then using (2.26) and the mono-
tonicity of f we get

F(Kn(x, y)) = F
(
B(y, r̂n(y)) \ B(x, r̂n(x))

) ≥ 1

2

(
logn + β

n

)
.

On the other hand if y ∈ Ân(x) and ‖y‖ ≤ ‖x‖, then by (2.26) and the monotonic-
ity of f we have F(B(y, r̂n(y)) ∩ B(x, r̂n(x))) ≤ 1

2(
logn+β

n
). Hence

F(Kn(x, y)) ≥ 1

2

(
logn + β

n

)
.

Thus (1.19) holds with α = 1
2 . Next we verify (1.22) over Br . By (1.15), we have

logn + β

n
= F(B(x, r̂n(x))) =

∫
B(x,r̂n(x))∩Br

A(‖y‖ − r)p dy.(2.27)



NONUNIFORM RANDOM GEOMETRIC GRAPHS 2065

By changing to polar coordinates, the integral on the right-hand side of the above
equation has the bounds

c1r̂n(x)p+d ≤
∫
B(x,r̂n(x))∩Br

A(‖y‖ − r)p dy ≤ c2r̂n(x)p+d,(2.28)

for some positive constants c1, c2. From (2.27) and (2.28), we get

r̂n(x)p+d ≤ c−1
1

logn + β

n
,

and hence for some constant c,

F(B(x,2r̂n(x))) ≤ c2(2r̂n(x))p+d ≤ c
logn + β

n
= o(n−1/2).

This proves (1.22). The result now follows for any f ∈ CE by Theorem 1.6.
Step 3. Let f ∈ H. Set S0 = S \ S1 where S1 = ⋃k

i=1(B(xi, δi) \B(xi, ηi)). The
conditions of Theorem 1.6 hold for S0 by Step 1, and over S1 by Step 2. This
completes the proof of Corollary 1.7. �
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