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SPREADING SPEEDS IN REDUCIBLE MULTITYPE BRANCHING
RANDOM WALK

BY J. D. BIGGINS

University of Sheffield

This paper gives conditions for the rightmost particle in the nth genera-
tion of a multitype branching random walk to have a speed, in the sense that
its location divided by n converges to a constant as n goes to infinity. Further-
more, a formula for the speed is obtained in terms of the reproduction laws.
The case where the collection of types is irreducible was treated long ago. In
addition, the asymptotic behavior of the number in the nth generation to the
right of na is obtained. The initial motive for considering the reducible case
was results for a deterministic spatial population model with several types of
individual discussed by Weinberger, Lewis and Li [J. Math. Biol. 55 (2007)
207–222]: the speed identified here for the branching random walk corre-
sponds to an upper bound for the speed identified there for the deterministic
model.

1. Introduction. The process starts with a single particle located at the origin.
This particle produces daughter particles, which are scattered in R, to give the first
generation. These first-generation particles produce their own daughter particles to
give the second generation, and so on. As usual in branching processes, the nth-
generation particles reproduce independently of each other. Particles have types
drawn from a finite set, S , and the distribution of a particle’s family depends on its
type. More precisely, reproduction is defined by a point process (with an intensity
measure that is finite on bounded sets) on S × R with a distribution depending
on the type of the parent. The first component of the point process determines
the distribution of that child’s reproduction point process, its type, and the second
component gives the child’s birth position relative to the parent’s. Multiple points
are allowed, so that in a family there may be several children of the same type born
in the same place.

Let Z be the generic reproduction point process, with points {(σi, zi)}, and Zσ

the point process (on R) of those of type σ . Let Pν and Eν be the probability
and expectation associated with reproduction from a parent with type ν ∈ S . Thus,
EνZσ is the intensity measure of the positions of children of type σ born to a
parent of type ν at the origin. The usual Markov-chain classification ideas can be
used to classify the types: the type-space is divided, using the relationship “can
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have a descendant of this type,” into self-communicating classes, each of which
corresponds to an irreducible multitype branching process. Two types are in the
same class exactly when each can have a descendant, in some generation, of the
other type. A class will be said to precede another if the first can have descendants
in the second, and then the second will be said to stem from the first.

Let Z(n) be the nth-generation point process. Let Z
(n)
σ be the points of Z(n)

with type σ . Later, exponential moment conditions on the intensity measure of Z

will be imposed that ensure these are well-defined point processes (because the
expected numbers in bounded sets are finite). Let F (n) be the information on all
families with the parent in a generation up to and including n − 1. Hence Z(n) is
known when F (n) is known. Let m(−θ) be the nonnegative matrix of the Laplace
transforms of the intensity measures EνZσ :

(m(θ))νσ =
∫

eθz
EνZσ (dz) = Eν

[∫
eθzZσ (dz)

]
.

Then it is well known, and verified by induction, that the powers of the matrix m

provide the transforms of the intensity measures EνZ
(n)
σ :

Eν

[∫
eθzZ(n)

σ (dz)

]
=
∫

eθz
EνZ

(n)
σ (dz) = (m(θ)n)νσ .(1.1)

Let B(n)
σ be the rightmost particle of type σ in the nth generation, so that

B(n)
σ = sup

{
z : z a point of Z(n)

σ

}
and let B(n) be the rightmost of these.

When the collection of types is irreducible, so that any type can occur in the line
of descent of any type, and there is a φ > 0 such that

sup
ν,σ

(m(φ))νσ < ∞,(1.2)

there is a constant � such that

B(n)

n
→ � a.s.-Pν,(1.3)

when the process survives. When this holds the speed, starting in ν, is �. This
result is in Biggins [(1976a), Theorem 4] and, in a more general framework where
time is not assumed discrete, in Biggins (1997), Section 4.1. Furthermore, with
the obvious adjustment for periodicity, the same result holds with B(n)

σ in place of
B(n)—when the type set is aperiodic this is in Biggins (1976b), Corollary V.4.1.
The theory for the irreducible process also provides various formulas for � in
terms of the reproduction process. The question addressed here is what happens
when the set of types is reducible.

Write the transpose of m in the canonical form of a nonnegative matrix, de-
scribed in Seneta (1973, 1981), Section 1.2. This amounts to ordering the rows,
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and the labels on the classes, so that when one class stems from another it is also
later in the ordering. Then there are irreducible blocks, one for each class, down
the diagonal and all other nonzero entries in m are above this diagonal structure.
Having done this, call the first class, C1, the second C2 up to the final one CK . Inter-
mediate classes need not be totally ordered by “descends from,” so their ordering
need not be unique.

Any irreducible matrix has a “Perron–Frobenius” eigenvalue (which is positive,
is largest in modulus and has corresponding left and right eigenvectors that are
strictly positive)—see Seneta (1973, 1981) or Lancaster and Tismenetsky (1985).
For θ ≥ 0, let exp(κi(θ)) be the “Perron–Frobenius” eigenvalue of the ith irre-
ducible block, which is infinite when any entry is infinite. Let κi(θ) = ∞ for θ < 0;
this is just a device to simplify the formulation, since the development concerns
only the right tails of the measures—left tails and the consideration of the leftmost
particle are just the mirror image. Call κi the PF+eigenvalue of the correspond-
ing matrix, which with these definitions is not necessarily its “Perron–Frobenius”
eigenvalue for strictly negative arguments. As Laplace transforms, the logarithms
of the nonzero entries in m are convex. Then κi is convex—see Lemma 4.3 below.

Let D(f ) be the set where the function f is not +∞, so that D(f ) = {θ :f (θ) <

∞}. Thus in the irreducible case (1.2) is equivalent to D(κ) ∩ (0,∞) �= ∅. Fur-
thermore, since each κi is convex, D(κi) must be an interval in [0,∞). For any
two classes Ci and Cj let

Di,j =⋂{D(mνυ) :ν ∈ Ci , υ ∈ Cj ,mνυ > 0},
which is the set where all of the entries in m linking Ci to Cj are finite. For any set
of reals A let A+ be all values either in A or greater than those in A. Thus, D+(f )

has the form [ϕ,∞) or (ϕ,∞), depending on whether f (ϕ) is finite or not.
Without loss of generality, assume that the initial type ν is in the first class, C1,

and that the speed is sought for a type σ in the final class, CK . Write i → j if
some ν ∈ Ci can have a child (i.e., an immediate descendant) with a type in Cj and
write i ⇒ j when i precedes j so that types in class Ci can have descendants in
some later generation with types in class Cj . Assume also, again without loss, that
every other class stems from the first and precedes the last. It is now possible to
give a result that illustrates the nature of the result on speed without the weight
of additional notation needed for its proof or for the results which establish rather
more.

THEOREM 1.1. Let ν ∈ C1, σ ∈ CK . Suppose that the process made up of indi-
viduals in C1 alone is supercritical and aperiodic (i.e., the mean matrix is primitive
and has “Perron–Frobenius” eigenvalue greater than 1) and survives with proba-
bility 1. Assume that

there are φi ∈ D(κi) with 0 < φ1 ≤ φ2 ≤ · · · ≤ φK(1.4)

and D+(κi) ∩ D(κj ) ⊂ Di,j whenever i → j.(1.5)
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Then

B(n)
σ

n
→ � = max

i⇒j
inf

0<ϕ≤θ
max

{
κi(ϕ)

ϕ
,
κj (θ)

θ

}
a.s.-Pν.

The conditions (1.4) and (1.5) both hold when the domain of finiteness of every
nonzero entry in the matrix m has the same nonempty intersection with [0,∞).

This result, other than the actual form of the limit, will be derived as a by-
product of a result on the size of Z

(n)
σ [na,∞) described later, in Theorem 2.4. That

approach to deriving the speed was used for the one-type process in Biggins (1977)
and for the irreducible process in Biggins (1997), Section 4.1. The comparatively
simple formula for the limit here is one of the main achievements of this study.
One interpretation of this formula for the speed is the following: look at each pair
of classes where one precedes the other, compute the speed as though these were
the only classes present, and then maximize over all such pairs.

It is probably worth being explicit about some of the assumptions that are not
made in Theorem 1.1 and the other main theorems. First, the point processes Z are
not constrained to have only a finite number of points. The conditions do mean that
there are only a finite number of points in any finite interval, but they do not prevent
intervals of the form (−∞, a] from having an infinite number of points. Second,
classes after the first one do not have to be supercritical. Third, classes after the
first one do not have to be primitive. Finally, it is not assumed that the dispersal
in a class is “nondegenerate,” so κi could be linear in θ when finite, which for a
one-type class corresponds to a deterministic displacement of the family from the
parent.

An initially unexpected phenomenon is contained within Theorem 1.1. Its
essence can be indicated even in the reducible two-type case. Suppose type a can
give rise to both type a and type b particles but type b give rise only to type b.
Type a or b considered alone forms a one-type branching random walk with speed
�a or �b, respectively. At first sight, it seems plausible that, when �a > �b, both
types spread at speed �a , driven by the type a particles, and that otherwise, when
�a ≤ �b, the two types move at their own speeds. This plausible conjecture can
be false; it is possible to find examples where, in the presence of type a, the type
b speed can be faster than max{�a,�b}. The fundamental reason for this “super-
speed” phenomenon is that the speed of spread is caused by the interplay between
the exponential growth of the population size and the exponential decay of the tail
of the dispersal distribution. It is possible for the growth in numbers of type a,
through the numbers of type b they produce, to increase the speed of type b from
that of a population without type a. When the type a dispersal distribution has
comparatively light tails, that speed can exceed also that of type a. In this cartoon
version, to get “super-speed” we need the population of a’s to grow quickly but the
b’s to have more chance of dispersing a long way. This also indicates a complica-
tion. There are two possible sources for a comparatively heavy-tailed distribution
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of the b’s. It could be that the a’s, in producing children of type b, disperse them
widely, or it could be that type b’s, in producing b’s, produce more spread than
type a’s producing a’s. Either effect can influence the speed of the b’s. In The-
orem 1.1, (1.4) concerns the growth and dispersion within each irreducible class
while (1.5) controls the dispersion involved in moving between classes. The in-
terpretation given above of the formula for the speed shows that, normally, the
two-type illustration of super-speed is archetypal—there is no possibility of addi-
tional “cooperation” from three or more classes that cannot be exhibited with just
two.

The stimulus for considering this problem was the work of Weinberger, Lewis
and Li (2007), where a deterministic version is discussed and the phenomenon
of “super-speed,” which they call “anomalous spreading speed,” is identified—
although there the actual speed is not identified. They also explore the relevance
of the phenomenon in a biological example. There are close relations between
these deterministic models—and also certain continuous-time ones which involve
coupled reaction-diffusion equations—and the branching models examined here.
A discussion of this connection, which is more than an analogy, and further illus-
tration of the “super-speed” phenomenon based on applying the results here in the
two-type case can be found in the second half of Biggins (2010).

It turns out that the results for the general case rest on those for a more re-
stricted class of processes. A multitype branching process will be called sequential
when each class has children only in its own class and the next one and there is
exactly one pair of types linking successive classes. Thus there is just one route
through the classes C1, . . . , CK , corresponding to the order of the indices. Also,
for i = 1, . . . ,K − 1, there is exactly one type in Ci that can produce offspring
in Ci+1, and just one type of offspring in Ci+1 that it can produce. The next section
describes most of the main results, which concern sequential processes. The shape
of the remainder of the paper will be indicated in the course of that section and the
subsequent one.

2. Results for the sequential case. Throughout this section, the process will
be assumed sequential. In the following one the main results for the general pro-
cess are given. Several transformations of functions will be needed to describe the
results. The first is a version of the Fenchel dual (F-dual) of the function f , given
by the convex function

f ∗(x) = sup
θ

{θx − f (θ)}.(2.1)

The second is sweeping strictly positive values to infinity: let

f ◦(a) =
{

f (a), when f (a) ≤ 0,
∞, when f (a) > 0.

Also, for any function f let

�(f ) = inf{a :f (a) > 0}.(2.2)
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Then �(f ) = �(f ◦). It will also be convenient to have a notation for taking the
F-dual and then sweeping positive values to infinity, so let

f ∗◦ = (f ∗)◦.(2.3)

Various properties of such functions are described in Section 4. In particular, f ∗◦ is
continuous when finite. The next two results, which are for the case with only
one class, demonstrate why these functions will be useful. Both results are given,
with an indication of their proofs, in Biggins [(1997), Section 4.1], and will be
discussed further in Section 5, where various results for the irreducible case that
are necessary preliminaries for the main proofs are obtained.

PROPOSITION 2.1. Suppose that there is just one class of types, that the ex-
ponential moment condition (1.2) holds and that the matrix m is primitive with
PF+eigenvalue κ . Let U be the upper end-point of the interval on which κ∗ is
finite. Then, for a �= U ,

lim
n

1

n
log
(
EνZ

(n)
σ [na,∞)

)= −κ∗(a).(2.4)

PROPOSITION 2.2. Under the conditions of Proposition 2.1 and the addi-
tional assumption that the process is supercritical [i.e., κ(0) > 0] and survives
with probability 1,

lim
n

1

n
log
(
Z(n)

σ [na,∞)
)= −κ∗◦(a)

(=(κ∗)◦(a)
)

a.s.-Pν(2.5)

for a �= �(κ∗) and

B(n)
σ

n
→ �(κ∗) = �(κ∗◦) a.s.-Pν.

In this case, there is a simple relationship between the behavior of Z
(n)
σ [na,∞)

and its expectation. When the expectation decays (geometrically) in (2.4) the actual
numbers, described by (2.5), are ultimately zero, leading to the limit there being in-
finite (which explains the sweeping to infinity). On the other hand, when expected
numbers grow the actual numbers grow in the same way. Thus the “expectation-
speed” and the “almost-sure-speed” are the same [and are both �(κ∗)]. In the re-
ducible process this need not be so—the “expectation-speed” can overestimate the
“almost-sure-speed.” The discussion here will concentrate on the “almost-sure-
speed,” but expected numbers, which are easier to study, will be considered briefly
in Section 12, mainly to illustrate the point just made.

The result on the speed in Proposition 2.2 is a consequence of the asymptotic
behavior of nth-generation numbers in intervals of the form (−∞, na]. The same
basic approach is used to study reducible sequential processes. There are two parts
to this: showing that a suitable function forms a lower bound and then showing that
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it also forms an upper bound. As might be anticipated from the role of the moment
condition (1.2) in the irreducible case, conditions on the finiteness of the entries in
m are needed. For the simplest lower bound these conditions will only concern the
entries in the irreducible blocks of m, as in (1.4). But for the upper bound the “off-
diagonal” entries have to be controlled too, leading to conditions like (1.5). The
basic idea for obtaining both bounds is to use induction on the number of classes,
with the formula for the bounds being given by suitable recursions.

Certain properties of the limit κ∗◦ in (2.5), which is a rate function in the large
deviations’ sense, are sufficiently important here to merit a name.

DEFINITION 1. A function will be called an r-function if it is increasing and
convex, takes a value in (−∞,0), is continuous from the left and is infinite when
strictly positive.

Whenever r is an r-function �(r) > −∞. Lemma 5.6 shows that κ∗◦ is an
r-function.

The next theorem, which is proved in Section 6, gives a lower bound on the
numbers, and hence on the speed. A notation for the convex minorant is needed.
For any two functions f and g, let C[f,g] be the greatest lower semi-continuous
convex function beneath both of them. (The restriction to lower semi-continuous
functions only affects values at the end-points of the set on which a convex function
is finite.)

THEOREM 2.3. Consider a sequential process with K classes, C1, . . . , CK ,
with corresponding PF+eigenvalues κ1, . . . , κK and in which C1, considered
alone, is primitive, supercritical and survives with probability 1. Assume that (1.4)
holds. Define ri recursively:

r1 = κ∗◦
1

(=(κ∗
1 )◦
); ri = C[ri−1, κ

∗
i ]◦ for i = 2, . . . ,K.(2.6)

Then for ν ∈ C1, σ ∈ CK and a �= �(rK)

lim inf
1

n
log
(
Z(n)

σ [na,∞)
)≥ −rK(a) a.s.-Pν,(2.7)

lim inf
n

B(n)
σ

n
≥ �(rK) a.s.-Pν(2.8)

and rK is an r-function.

The first complement to this lower bound is presented next. Once additional
ideas have been introduced, Theorem 2.6 will give the same conclusions under
weaker conditions.
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THEOREM 2.4. In the setup and conditions of Theorem 2.3, suppose also that,
for i = 1,2, . . . ,K − 1,(⋂

j≤i

D+(κj )

)
∩ D(κi+1) ⊂ Di,i+1.(2.9)

Then

1

n
log
(
Z(n)

σ [na,∞)
)→ −rK(a) a.s.-Pν(Nu)

for a �= �(rK), and

B(n)
σ

n
→ �(rK) a.s.-Pν.(Sp)

The condition (1.4) ensures that the set on the left in (2.9) contains φi , and so is
not empty. Note that (1.4) and (2.9) just involve comparing the domains of finite-
ness of the entries in m. Hence these conditions are easily applied in the general
(nonsequential) case. Note too that (1.5) in Theorem 1.1 is a stronger assumption
than (2.9) in this theorem.

To describe the remaining results in this section, one further transformation is
needed. As can be seen from Proposition 2.2, the critical function when looking
at actual numbers in the first class is κ∗◦ (rather than κ∗). Typically, there will be a
ϑ ∈ (0,∞) such that for a ≤ �(κ∗)

κ∗(a) = sup
θ

{θa − κ(θ)} = sup
θ≤ϑ

{θa − κ(θ)}.

Then, with κ̂(θ) = κ(θ) for θ ≤ ϑ and κ̂(θ) = θ�(κ∗) for θ > ϑ , it turns out that
κ∗◦ is the F-dual of κ̂ , that is, κ∗◦ = (κ̂)∗. Thus, in examining how actual numbers
in the first class influence numbers in the second, κ̂ should replace κ . This means
that the shape of κ only matters up to a certain point, after which it is replaced by a
suitable linear function. The details of κ beyond this point have become irrelevant
because they only influence κ∗ at positive values, which are swept to infinity.

Although this motivation is on the right lines, it turns out that the actual defini-
tion of the transformation is better framed somewhat differently in order to cover
all cases. It will also be useful to have a name for the class of functions the trans-
formation will apply to. Under the conditions of Proposition 2.1, κ satisfies the
next definition.

DEFINITION 2. A function is k-convex if it is convex, finite for some θ > 0
and infinite for all θ < 0.

The pointwise supremum of a collection of convex functions is convex, and
that of a collection of monotone functions is monotone. Hence, for k-convex f , it
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makes sense to define f � to be the maximal convex function such that f � ≤ f and
f �(θ)/θ is monotone decreasing in θ ∈ (0,∞). This function will be identically
minus infinity if there are no functions satisfying the constraints. Now let

ϑ(f ) = sup{θ :f (θ) = f �(θ)},(2.10)

where it is possible that ϑ(f ) = ∞. Proposition 7.1 will show that, in the typical
case, κ�(θ) is just the straight line θ�(κ∗) for θ > ϑ(κ), and that line is the tangent
to κ at ϑ(κ), which connects this definition with the motivation offered in the
previous paragraph.

An alternative recursion for the r-functions defined by (2.6) in Theorem 2.3
turns out to be more useful when considering upper bounds. This alternative recur-
sion is given in the next result. Let M[f,g](θ) = max{f (θ), g(θ)}.

PROPOSITION 2.5. Assume that (1.4) holds. Define fi recursively:

f1 = κ1; fi = M[f �
i−1, κi] for i = 2, . . . ,K.(2.11)

Then (f
�
i )∗ = f ∗◦

i = M[f �
i−1, κi]∗◦ = ri .

This is proved in Section 7, along with a variety of convexity results that con-
tribute to deriving formulas for the speed. The issues surrounding convexity are
more complicated than might be expected on the basis of the known results for the
irreducible case. For example, it is easy to construct (reducible) two-type examples
where f2 and r2 have properties that cannot arise in the one-type (or irreducible)
case. In particular, there are examples where f2 is linear (only) on a finite or a
semi-infinite interval and where r2 is linear (only) on a finite interval.

The notation has now been established to state a result giving (Nu) and hence
(Sp) in Theorem 2.4 under weaker conditions. The aim was to make these con-
ditions as general as is practicable, but that does mean they are also quite com-
plex. In Theorem 2.10, (Sp) will be established under yet weaker conditions. Let
ψ

i
= inf Di,i+1 and ψi = sup Di,i+1.

THEOREM 2.6. In the setup and conditions of Theorem 2.3, suppose that
(1.4) holds and that for i = 1,2, . . . ,K − 1,

there are φi,i+1 ∈ Di,i+1 with 0 < φi ≤ φi,i+1 ≤ φi+1.(2.12)

Let fi be as defined at (2.11). Suppose that, for i = 1,2, . . . ,K − 1,

either κi+1(θ) ≥ θ
(
f

�
i (ψi)/ψi

)
for θ ∈ [ψi,∞) or ϑ(fi) ≤ ψi(2.13)

and ⋂
j≤i

D+(κj ) ∩ D(κi+1) ⊂ [ψ
i
,∞).(2.14)

Then (Nu) and (Sp) hold.
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Complementing the lower bound in Theorem 2.3 is a two-stage process, involv-
ing first deriving an upper bound and then giving conditions for it to equal the
lower bound. The first stage is covered by the next result; its proof is in Section 8.
Let I (A) be the indicator function of A and let

χi = − log I (Di−1,i) for i = 2, . . . ,K,

so that χi is zero on Di−1,i and infinity otherwise.

THEOREM 2.7. Make the same assumptions as in Theorem 2.3. Define gi re-
cursively:

g1 = κ1; gi = M[(g�
i−1 + χi)

�, κi] for i = 2, . . . ,K.(2.15)

Then

lim sup
n

1

n
log
(
Z(n)

σ [na,∞)
)≤ −g∗◦

K(a) a.s.-Pν(2.16)

and

lim sup
n

B(n)
σ

n
≤ �(g∗

K) a.s.-Pν.(2.17)

Furthermore, −g∗◦
K(a) < ∞ for all a if (1.4) holds and (2.12) holds for i =

1,2, . . . ,K − 1.

A key point from Proposition 2.5, for the formulation of the rest of the results
in this section, is that (f ∗

K)◦ = f ∗◦
K = rK . Using this, and comparing (2.7) and (2.8)

with (2.16) and (2.17), immediately gives the following corollary.

COROLLARY 2.8. Make the same assumptions as in Theorem 2.3. Then (Nu)
holds if g∗◦

K = f ∗◦
K and (Sp) holds if �(f ∗

K) = �(g∗
K).

Thus, in the light of this corollary, proving Theorems 2.4 and 2.6 will entail
showing that the conditions imposed imply that g∗◦

K = f ∗◦
K . This is done in Sec-

tion 9.
It is possible that �(g∗

K) = �(f ∗
K) even though g∗◦

K and f ∗◦
K do not agree every-

where. Then the speed would be given through (Sp) of Theorem 2.4, even though
the behavior of the numbers was not described by (Nu). To investigate this pos-
sibility, alternative formulas for g∗◦

K and for f ∗◦
K and their associated speeds are

important. Those formulas are given next. The formula for �(f ∗
K) is critical in es-

tablishing the simpler one given in Theorem 1.1. Also, the formula for �(f ∗
K) is

the same one that is obtained as the upper bound on the speed in a deterministic
model by Weinberger, Lewis and Li [(2007), Proposition 4.1], so their bound can
be simplified, too.

The conventions that D0,1 = (0,∞) and ψK = ∞ are now adopted. It is worth
noting that in (2.18) θK is fixed, but in (2.19) it is one of the free variables in the
optimization.
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THEOREM 2.9. For a sequential process as described in Theorem 2.3, let gK

be given by (2.15). Then, for 0 < θK ∈ D+
K−1,K ,

gK(θK)

θK

= inf
{

max
i

{
κi(θi)

θi

}
: θ1 ≤ θ2 ≤ · · · ≤ θK, θi ∈ D+

i−1,i , θi ≤ ψi

}
(2.18)

and gK(θK) = ∞ for 0 < θK /∈ D+
K−1,K . Furthermore,

�(g∗
K) = inf

{
max

i

{
κi(θi)

θi

}
: θ1 ≤ θ2 ≤ · · · ≤ θK, θi ∈ D+

i−1,i , θi ≤ ψi

}
.(2.19)

Let fK be given by (2.11). These formulas hold with fK in place of gK on replacing
Di,i+1 by (0,∞) (and ψi by ∞) for i = 1,2, . . . ,K − 1.

Now, asking when the formulas for �(g∗
K) and �(f ∗

K) give the same result—
that is, when the extra restrictions in the optimization associated with the formula
for �(g∗

K) make no difference—leads to the following theorem. Both it and the
previous theorem are proved in Section 10, where a little more is also said about
formulas for �(f ∗

K).

THEOREM 2.10. In the setup and conditions of Theorem 2.3, suppose (2.12),
(2.13) and ϑ(κi+1) ≥ ψ

i
all hold for i = 1,2, . . . ,K − 1. Then �(g∗

K) = �(f ∗
K)

and (Sp) holds.

Theorem 2.7 also raises the question of whether the upper bound there, when
it is actually larger than the lower bound in Theorem 2.3, can be matched by a
corresponding lower bound. A full study of this is not attempted, but some key
results are given in the final section of the paper.

3. From sequential to general. The main idea here is to explain how in the
general case the number of particles of a specified type can be decomposed using
a finite collection of sequential branching processes. Consider σ ∈ CK . Each par-
ticle of type σ can be labeled by the classes that arise in its ancestry, tracing back
to the initial ancestor in C1, and then by the particular types that link the succes-
sive classes. This label will be called its genealogical type. Thus, for example, the
branching process arising from

m =

⎛⎜⎜⎝
m11 m12 m13 m14

0 m22 0 m24
0 0 m33 m34
0 0 0 m44

⎞⎟⎟⎠
contains exactly three routes through the classes from the first class to the fourth,
arising from(

m11 m14
0 m44

)
,

⎛⎝m11 m12 0
0 m22 m24
0 0 m44

⎞⎠ and

⎛⎝m11 m13 0
0 m33 m34
0 0 m44

⎞⎠ ,
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and each particle in the final class arises from a line of descent following one of
these three. For the second phase of the decomposition, each nonzero entry in m14
specifies a different type within the first route. Similarly, a pair of nonzero entries,
one drawn from m12 and the other from m24, specifies a type within the second
route.

Slightly more formally, let � be a label for genealogical type (so � records which
classes occur in the ancestry and which pairs of types link classes in that ancestry).
Now let (σ, �) be an augmented type that indicates those of type σ with genealog-
ical type �. There are only a finite number of different genealogical types, and, by
definition,

Z(n)
σ [na,∞) =∑

�

Z
(n)
σ,�[na,∞).(3.1)

Furthermore, each genealogical type corresponds to a sequential branching process
embedded within the original one.

The next two results follow by straightforward argument from the decomposi-
tion (3.1) and the continuity of r-functions when finite. Note that the minimum of
convex functions need not be convex, and so r in this theorem need not be convex,
and hence need not be an r-function, but it will share in the other properties of an
r-function.

THEOREM 3.1. Suppose that, for each �, there is an r-function, r� such that

n−1 log
(
Z

(n)
σ,�[na,∞)

)→ −r�(a) a.s.-Pν

for all a �= �(r�). Then

n−1 log
(
Z(n)

σ [na,∞)
)→ −r(a) = −min

�
{r�(a)} a.s.-Pν

for all a �= �(r) and

n−1B(n)
σ → �(r) a.s.-Pν.

THEOREM 3.2. Suppose that for each �

n−1B(n)
σ,� → �� a.s.-Pν.(3.2)

Then

n−1B(n)
σ → � = max

�
�� a.s.-Pν.

Obviously Theorems 3.1 and 3.2 can be applied to get the overall speed when
(Nu) and (Sp), respectively, hold for every embedded sequential process. The next
result shows that this overall speed is often not as difficult to calculate as at first
appears. Its proof will be described in Section 11.
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THEOREM 3.3. Suppose that (3.2) holds for each embedded sequential pro-
cess with �� = �(r�) and its associated r� given by the recursion (2.6) in Theo-
rem 2.3. Let � be the maximum speed obtained as in Theorem 3.2. Then

� = max
i⇒j

{�(C[κ∗◦
i , κ∗

j ])} = max
i⇒j

inf
0<ϕ≤θ

max
{
κi(ϕ)

ϕ
,
κj (θ)

θ

}
.

PROOF OF THEOREM 1.1. The conditions ensure that Theorem 2.4 holds for
each embedded sequential process. Then Theorem 3.3 gives the result. �

4. Preliminaries. The section introduces various notation and gives some
preliminary results on convexity, drawing heavily on other sources. Further con-
vexity results that are more particular to this study will be obtained in later sections.

A convex function is called proper when it is finite somewhere. A proper con-
vex function is called closed when it is lower semi-continuous—see Rockafellar
[(1970), Section 7, page 52] for a full discussion. For a convex function on R that
is finite on a nonempty interval, this is the same as demanding continuity from
within at the endpoints of its domain of finiteness. The closure f of the proper
convex function f on R is obtained by adjusting the values of f at these endpoints
to make it closed. Thus f ≤ f . By definition, an r-function is proper and closed
and so at first sight the nature of the results might suggest that attention could be
restricted throughout to closed convex functions. However, this is not so. By using
the off-diagonal entry in m, it is easy to construct (reducible) two-type examples
where g2 [given by the recursion (2.15)] is not closed (by being bounded on an
open interval but infinite at one of its endpoints).

LEMMA 4.1. (i) When f is convex, f ∗ is a closed convex function, as is f ∗◦
provided it is finite somewhere, and (f ∗)∗ = f .

(ii) If f and g are convex functions, then so is M[f,g] and, provided M[f,g]
is finite somewhere, M[f,g]∗ = C[f ∗, g∗].

PROOF. The first part is all contained in Rockafellar [(1970), Theorem 12.2],
except for the claim about f ∗◦, which follows easily from its definition at (2.3).
The first part of (ii) follows directly from the definitions and the second is in
Rockafellar (1970), Theorems 9.4, 16.5. �

LEMMA 4.2. When f is k-convex (as introduced in Definition 2):

(i) f ∗(a) > −∞ for all a;
(ii) f ∗(a) → ∞ as a ↑ ∞ and �(f ∗) < ∞;

(iii) f ∗ is increasing;
(iv) f ∗(a) < ∞ for some a;
(v) f ∗(a) → −f (0) as a ↓ −∞;

(vi) �(f ∗) > −∞ if and only if f (0) > 0.
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PROOF. When f (φ) < ∞, f ∗(a) ≥ φa − f (φ) > −∞ giving (i), and, since
φ > 0, letting a ↑ ∞ gives (ii). Furthermore, because f (θ) = ∞ for θ < 0,

f ∗(a) = sup
θ

{θa − f (θ)} = sup
θ≥0

{θa − f (θ)} ≤ sup
θ≥0

{θa′ − f (θ)},

when a′ ≥ a, so f ∗ is increasing in a. Since f is finite and convex there must be
finite A and B such that f (θ) ≥ Aθ −B for all θ and then f ∗(A) ≤ B , giving (iv).
Part (v) follows from Lemma 4.1(i) and Rockafellar (1970), Theorem 27.1(a).
Part (vi) follows directly from (iii), (v) and the definition of �. �

The next result gives properties of κ arising from irreducible m. It is worth
stressing that part (iii) includes claims about one-sided derivatives at the endpoints
of D(κ).

LEMMA 4.3. Suppose κ is the PF+eigenvalue of an irreducible m and that
(1.2) holds:

(i) D(κ) is a (possibly degenerate) interval containing the φ in (1.2);
(ii) κ is k-convex;

(iii) κ is continuous on the closure of D(κ), differentiable on D(κ) and analytic
on its interior;

(iv) κ is closed.

PROOF. Clearly (1.2) implies that κ(φ) < ∞. For convexity, see Kingman
(1961), Miller (1961) and Seneta (1973), Theorem 3.7. Part (ii) follows imme-
diately from this and (1.2). For analyticity on the interior, which is a straight-
forward application of the implicit function theorem, see Miller [(1961), Theo-
rem 1(a)], Lancaster and Tismenetsky [(1985), Theorem 11.5.1] or Biggins and
Rahimzadeh Sani (2005), Theorem 1(i). Each entry in m is continuous on the clo-
sure of the set where it is finite and so the same must be true of κ . Hence, when
κ is finite at the endpoint of the interval on which it is finite, Rockafellar [(1970),
Theorem 24.1] implies that the derivative extends continuously to this endpoint,
where the derivative at the endpoint is the one-sided one from within the interval.
Part (iv) follows directly from this and part (i). �

5. The irreducible case. The discussion starts with a simple lemma which is
easily deduced from Seneta (1973, 1981), Theorems 1.1, 1.5.

LEMMA 5.1. Let M be an irreducible matrix with all its entries finite and
nonnegative. Then M has a “Perron–Frobenius” eigenvalue (which is positive,
and of largest modulus) eρ , and there is a finite C that is independent of n, ν and
σ such that e−nρ(Mn)νσ ≤ C and, for primitive M , n−1 log(Mn)νσ → ρ.
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In this section it is assumed that there is just one class of types, so the matrix
m is irreducible, that the exponential moment condition (1.2) holds and that m has
PF+eigenvalue κ . In fact the matrix m is assumed primitive up to the final result
in the section, where periodic m are considered. Though rather simple, that exten-
sion to periodic m is important in establishing the main result. Most results in this
section are not novel, though several are (I believe) new and their discussion un-
derpins later developments. The first lemma is a simple upper bound on transforms
that is an ingredient in the upper bounds on numbers described in the proposition
that follows it.

LEMMA 5.2.

lim sup
n

1

n
log
(∫

eθxZ(n)
σ (dx)

)
≤ κ(θ) a.s.-Pν.

PROOF. Using (1.1),

1

n
log
∫

eθz
EνZ

(n)
σ (dz) = 1

n
log(m(θ)n)νσ .

Lemma 5.1 implies that

lim sup
n

1

n
log
(∫

eθx
EνZ

(n)
σ (dx)

)
≤ κ(θ) a.s.-Pν

and so for any ε > 0 and then large enough n

Eν

∫
eθxZ

(n)
σ (dx)

exp(n(κ(θ) + 2ε))
≤ exp(−nε).

This has a finite sum over n, giving the result. �

The next proposition derives three upper bounds; the first concerns expectations,
the second the probabilities of certain “extreme” events and the third actual num-
bers. These upper bounds on numbers are (nearly always) exact: that is the content
of Propositions 2.1, 5.5 and 2.5, which are all needed later.

PROPOSITION 5.3. For all σ , ν, and a,

lim sup
n

1

n
log
(
EνZ

(n)
σ [na,∞)

)≤ −κ∗(a),

lim sup
n

1

n
log
(
Pν

(
B(n)

σ ≥ na
))≤ min{−κ∗(a),0}

and

lim sup
n

1

n
log
(
Z(n)

σ [na,∞)
)≤ −κ∗◦(a) a.s.-Pν.
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PROOF. For θ ≥ 0,

eθna
EνZ

(n)
σ [na,∞) ≤

∫
eθz

EνZ
(n)
σ (dz) = (m(θ)n)νσ

so that

log
(
EνZ

(n)
σ [na,∞)

)≤ −nθa + log((m(θ)n)νσ ).

Hence, for θ ≥ 0, using Lemma 5.1,

lim sup
n

1

n
log
(
EνZ

(n)
σ [na,∞)

)≤ −(θa − κ(θ)
)
.

Since κ is defined to be infinite for θ < 0, this holds for all θ and so minimizing
the right-hand side over θ gives the first bound. Since

Pν

(
B(n)

σ ≥ na
)= EνI

(
B(n)

σ ≥ na
)≤ EνZ

(n)
σ [na,∞),

the second follows directly from this. Turning to the third, since

eθnaZ(n)
σ [na,∞) ≤

∫
eθzZ(n)

σ (dz),

Lemma 5.2, gives

lim sup
n

1

n
log
(
Z(n)

σ [na,∞)
)≤ −(θa − κ(θ)

)
a.s.-Pν

and minimizing over θ gives the third bound, with κ∗ in place of κ∗◦. However,
Z

(n)
σ [na,∞) is integer-valued and so can only decay geometrically by being zero

for all large n, which implies κ∗ can be replaced by κ∗◦. �

PROOF OF PROPOSITION 2.1. This is just an application of suitable large de-
viation theory based on

1

n
log
∫

eθz
EνZ

(n)
σ (dz) = 1

n
log(m(θ)n)νσ → κ(θ) for θ > 0,

which holds by Lemma 5.1. See Biggins [(1995), Section 7] for a little more detail
on the method. �

PROPOSITION 5.4.

sup
n

1

n
log
(
EσZ(n)

σ [na,∞)
)= −κ∗(a).

PROOF. Note that an = EσZ
(n)
σ [na,∞) is supermultiplicative (an+m ≥ anam)

and so standard theory of subadditive sequences gives that the supremum agrees
with the limit, and the latter has already been identified in Proposition 2.1. �
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The next result concerns the decay of the probability of a particle appearing to
the right of na. For the one-type process Rouault (1987) gives a result similar to the
next one under extra conditions and Rouault [(1993), Theorem 2.1] gives a much
sharper one. The multitype case does not seem to have been discussed before.

PROPOSITION 5.5. For a �= U ,
1

n
log
(
Pν

(
B(n)

σ ≥ na
))→ min{−κ∗(a),0}.

PROOF. Take b with b �= U and κ∗(b) > 0. Take ε > 0. Then, using Proposi-
tions 2.1 and 5.4, there is an r such that

−κ∗(b) ≥ 1

r
log
(
EσZ(r)

σ [rb,∞)
)≥ −κ∗(b) − ε.(5.1)

Starting from an initial ancestor of type σ , regard as its children all its de-
scendants r generations later of type σ and displaced at least rb from the ini-
tial particle’s position. Identify “children” of these children in the same way, and
so on. The resulting process is a (one-type) Galton–Watson process with mean
EσZ

(r)
σ [rb,∞). This process is subcritical, because exp(−rκ∗(b)) < 1. Let N(n)

be the number in its nth generation. Then, by arrangement, when the initial ances-
tor is of type σ ,

N(n) ≤ Z(nr)
σ [nrb,∞)

so that N(n) > 0 implies that B(nr)
σ ≥ nrb. Hence, using Asmussen and Hering

[(1983), Theorem III.1.6] to estimate P(N(n) > 0),
1

nr
log
(
Pσ

(
B(nr)

σ ≥ nrb
)) ≥ 1

nr
log
(
P
(
N(n) > 0

))
→ 1

r
log
(
EσZ(r)

σ [rb,∞)
)

≥ −κ∗(b) − ε.

Now, consider a process started from a type ν. Because m is primitive, there is an s

such that mn has all entries strictly positive for every n ≥ s. Then, for a suitable T ,
there is a positive probability of a descendant in generation s + r ′ of type σ and to
the right of T for each of r ′ = 0,1,2, . . . , r − 1. Let p be the minimum of these
probabilities. For b > a, all sufficiently large n and r ′ = 0,1,2, . . . , r − 1,

Pν

(
B(nr+s+r ′)

σ ≥ (nr + s + r ′)a
)≥ Pν

(
B(nr+s+r ′)

σ ≥ nrb + T
)

≥ pPσ

(
B(nr)

σ ≥ nrb
)
.

Therefore

lim inf
n

1

n
log
(
Pν

(
B(n)

σ ≥ na
))≥ lim inf

n

1

nr
log
(
Pσ

(
B(nr)

σ ≥ nrb
))

≥ −κ∗(b) − ε.
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This holds for any ε > 0 and b > a. Thus, since κ∗ is continuous from the right
except at U ,

lim inf
n

1

n
log
(
Pν

(
B(n)

σ ≥ na
))≥ min{−κ∗(a),0}

except possibly for a = U . The upper bound in Proposition 5.3 completes the
proof. �

LEMMA 5.6. Suppose that the branching process is supercritical [i.e., κ(0) >

0]. Then κ∗◦ is an r-function (as introduced at Definition 1).

PROOF. Lemma 4.3 gives that κ is k-convex and closed. Also, κ(0) > 0 be-
cause the process is supercritical. Hence, using Lemma 4.2, κ∗ is increasing, less
than zero somewhere, and convex. Thus κ∗◦ is a proper convex function that is
strictly negative somewhere, left-continuous and infinite when strictly positive and
so is an r-function. �

PROOF OF PROPOSITION 2.5. The argument is very similar to that for Propo-
sition 5.5. It will be convenient to let S be the survival set of the process, even
though Pν(S) = 1. Proposition 5.3 implies that (2.5) holds for a > �(κ∗), with the
limit being −∞. Hence, only a < �(κ∗) need to be considered. Take b > a but
with κ∗(b) < 0, which is possible because, by Lemma 5.6, κ∗◦ is an r-function,
and take ε ∈ (0,−κ∗(b)). As in Proposition 5.5, use Propositions 2.1 and 5.4, to
choose r such that (5.1) holds. Start from an initial ancestor of type σ , and identify
the embedded (one-type) Galton–Watson process as in Proposition 5.5. This now
has mean EσZ

(r)
σ [rb,∞) and is supercritical, because exp(−r(κ∗(b) + ε)) > 1.

Let N(n) be the number in its nth generation. Then, using, for example, Asmussen
and Hering [(1983), Theorems II.5.1, II.5.6] to get the limit of n−1 logN(n),

1

nr
log
(
Z(nr)

σ [nrb,∞)
) ≥ 1

nr
logN(n)

→ 1

r
log
(
EσZ(r)

σ [rb,∞)
)

≥ −κ∗(b) − ε

on the survival set of N(n), which has positive probability. Three matters remain:
allowing initial types different from σ ; dealing with generations that are not a
multiple of r ; and showing the result holds almost surely on the survival set of the
whole process and not just that of some embedded one. The argument for dealing
with all three is standard, and the idea is not complicated. It is to run the process
to some large generation, allow each type σ then present to initiate its own N(n),
and then use any that survives to provide a suitable lower bound. Here is a more
careful version.
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Fix σ . Let {z(s)
i : i} be the points of Z

(s)
σ . Recall that F (s) contains all infor-

mation on families with the parent in a generation up to and including s − 1.
Let N

(n)
s,i be the process N(n) initiated by the particle at z

(s)
i . By arrangement,

N
(n)
s,i contains points in the (nr + s)th generation to the right of nrb + z

(s)
i .

Given F (s), these processes are independent. Let S(s) be the event that at least
one of these processes survives. Fix s and r ′. For any i, for all large enough n,

(nr + sr + r ′)a − z
(sr+r ′)
i ≤ nrb and so

Z(nr+sr+r ′)
σ

[
(nr + sr + r ′)a,∞)≥ N

(n)
(sr+r ′),i

for all sufficiently large n. Hence

lim inf
n

1

(nr + r ′)
log
(
Z(nr+r ′)

σ

[
(nr + r ′)a,∞))≥ −κ∗(b) − ε(5.2)

on S(sr + r ′). Furthermore S(sr + r ′) ⊂ S((s + 1)r + r ′) ⊂ S and Pν(S(sr + r ′)) ↑
Pν(S) as r ↑ ∞. Hence (5.2) holds almost surely on S for each r ′ = 0,1,2, . . . ,

r − 1. Also, it holds for any ε > 0 and every b > a. Since κ∗ is continuous from
the right at a, this provides the lower bound to complement the upper bound in
Proposition 5.3.

Though it does not matter here, it is perhaps worth noting that, because
Z

(n)
σ [na,∞) is monotone in a, the null set in (2.5) can be taken independent of a.

�

Since the proof of Theorem 2.6 will be by induction on K it is worth stating
explicitly that the induction starts successfully.

COROLLARY 5.7. When K = 1, Theorem 2.6 holds.

PROOF. For K = 1, the condition (1.4) is equivalent to (1.2) and the condi-
tions (2.12), (2.13) and (2.14) are vacuous. Proposition 2.2 now gives the required
conclusions. �

When m is irreducible with period d > 1, md has d primitive blocks on its
diagonal, each with PF+eigenvalue κd . These primitive blocks partition the types
into d subclasses. The next result deals with the case where ν and σ are in the
same subclass. It is possible to say a bit more, dealing with ν and σ in different
subclasses, but this is not needed here.

PROPOSITION 5.8. If “primitive” is replaced by “irreducible with period
d > 1,” then Propositions 2.1 and 2.2 and all the results in this section continue to
hold, provided “n” is replaced by “nd” and ν and σ come from the same subclass.

PROOF. Apply the results to the primitive process obtained by only inspecting
every dth generation. �
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6. Lower bounds on numbers, main results. The objective in this section is
to prove Theorem 2.3. The main challenge is to show how in a sequential process
the numbers in the penultimate class contribute to numbers in the final class. The
first proposition shows two things: that the numbers in the penultimate class drive
the numbers of those first in their line of descent to be in the final class and that
those numbers drive the first in the line of descent of any other type in the final
class. To discuss this, let F

(n)
σ be the point process of those in generation n of

type σ that are first in their line of descent with this type. The subsequent theorem
explores how the numbers in F

(n)
σ combine with the growth of numbers within the

class.

PROPOSITION 6.1. Consider a sequential process. Let υ ∈ CK−1 and τ ∈ CK

be types for which mυτ > 0 and let ν ∈ C1. If there is an r-function r such that for
all a < �(r)

lim inf
1

n
log
(
Z(n)

υ [na,∞)
)≥ −r(a) a.s.-Pν,

then

lim inf
n

1

n
log
(
F (n)

σ [na,∞)
)≥ −r(a) a.s.-Pν(6.1)

for all a �= �(r) and σ ∈ CK .

THEOREM 6.2. Consider any process with final class CK having PF+eigen-
value κ and initial type ν /∈ CK . Suppose that for the r-function r and any σ ∈ CK ,
(6.1) holds for all a < �(r). Then

lim inf
n

1

n
log
(
Z(n)

σ [na,∞)
)≥ −C[r, κ∗]◦(a) a.s.-Pν

for all a < �(C[r, κ∗]).

Before starting the main proofs, three lemmas are proved. The second of these
identifies a characterization of C[r, κ∗] that arises in proving Theorem 6.2.

LEMMA 6.3. Suppose f is k-convex, r is an r-function and M[r∗, f ](φ) < ∞
for some φ > 0. Then C[r, f ∗]◦ is also an r-function.

PROOF. By Lemma 4.2, f ∗ is proper, closed, convex and increasing. Clearly
C[r, f ∗]◦ is convex. It is increasing, because both r and f ∗ are, and negative
somewhere, because r is. Since C[r, f ∗] is continuous from the left (by defini-
tion) the same must be true of C[r, f ∗]◦. Finally, using both parts of Lemma 4.1,
(M[r∗, f ])∗ = C[r, f ∗], and now Lemma 4.2(i) implies that (M[r∗, f ])∗ is not
identically −∞. �
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LEMMA 6.4. Under the same conditions as Lemma 6.3, for a < �(C[r, f ∗]),
C[r, f ∗](a) = inf{λr(b) + (1 − λ)f ∗(c) : (λ, b, c) ∈ Aa, r(b) < 0},

where Aa = {(λ, b, c) :λ ∈ [0,1], λb + (1 − λ)c = a,λr(b) + (1 − λ)f ∗(c) < 0}.
PROOF. Let c[f,g] be the convex minorant of f and g, so that C[f,g] is

the closure of c[f,g]. Since C[r, f ∗] is increasing and convex, it is continu-
ous and strictly negative on (−∞,�(C[r, f ∗])) and so on that set C[r, f ∗](a) =
c[r, f ∗](a). Furthermore, using Rockafellar [(1970), Theorem 5.6],

c[r, f ∗](a) = inf{λr(b) + (1 − λ)f ∗(c) :λ ∈ [0,1], λb + (1 − λ)c = a},
which equals inf{λr(b) + (1 − λ)f ∗(c) : (λ, b, c) ∈ Aa} when c[r, f ∗](a) < 0.
It remains to show that the additional constraint r(b) < 0 makes no difference,
by showing that excluded values of the function can be approximated closely
by included ones. The only possibility excluded is b = �(r), since r is infin-
ity when strictly positive. The corresponding values of the function being mini-
mized can be approximated arbitrarily well when λ < 1 by taking b ↑ �(r) keep-
ing c fixed and adjusting λ. To deal with the λ = 1 case, where a = b = �(r),
note first that if f ∗(ã) = ∞ for all ã > �(r), then, because r(ã) = ∞ for all
ã > �(r) also, the same will be true of the convex minorant of r and f ∗. Then
a = �(r) = �(C[r, f ∗]), contradicting a < �(C[r, κ∗]). Hence, there must be a
c > a with f ∗(c) < ∞. Then

(1 − ε)r

(
a − εc

1 − ε

)
+ εf ∗(c)

provides a suitable approximation as ε ↓ 0. �

LEMMA 6.5. Let Yn be Binomial on Nn trials with success probability pn and∑
n(Nnpn)

−1(1 − pn) < ∞. Then log(Yn) − log(Nnpn) → 0 as n → ∞ almost
surely.

PROOF. Chebyshev’s inequality gives that P(|Yn −EYn| ≥ εEYn) is bounded
above by (ε2Nnpn)

−1(1 − pn), and so Borel–Cantelli gives that Yn/(Nnpn) → 1.
�

PROOF OF PROPOSITION 6.1. Since r(a) = ∞ for a > �(r), the result holds
in these cases. Assume now that a < �(r). The result is proved first for σ = τ .
For some T there is a probability p > 0 that a particle of type υ has a child of
type τ to the right of T , because mυτ > 0. Then, given F (n), F

(n+1)
τ [nb − T ,∞)

is bounded below by a Binomial variable, Yn, on Z
(n)
υ [nb,∞) trials with success

probability p. Take b ∈ (a,�(r)) with r(b) < 0. Then, by Lemma 6.5, for ε > 0
and then large enough n

log
(
F (n+1)

τ [nb − T ,∞)
)≥ log(Yn) ≥ log

(
pZ(n)

υ [nb,∞)
)− ε.
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Hence

lim inf
1

n
log
(
F (n+1)

τ [nb − T ,∞)
)≥ −r(b)

and so

lim inf
1

n
logF (n)

τ [na,∞) ≥ −r(b) ↑ −r(a)

as b ↓ a, giving (6.1) for a < �(r) when σ = τ .
Suppose now that σ �= τ . Find a sequence of distinct types τ = σ(0) �= σ(1) �=

· · · �= σ(c) = σ such that each type can have children of the type following it in
the sequence. For some T , there is a probability p > 0 that a particle of type τ has
a descendant c generations later to the right of T and of type σ . Let F̃ (n+c) be the
point process of all those in F

(n+c)
σ with ancestors of type τ in generation n. Then,

given F (n), F̃ (n+c)[nb − T ,∞) is bounded below by a Binomial variable, Yn, on
F

(n)
τ [nb,∞) trials with success probability p. Thus

lim inf
1

n
log F̃ (n)[na,∞) ≥ −r(a),

when r(a) < 0. Clearly F
(n)
σ [x,∞) ≥ F̃ (n)[x,∞), giving the result. �

PROOF OF THEOREM 6.2. Let d be the period of CK . Take b < �(r) with
r(b) < 0, c < �(κ∗) with κ∗(c) < 0, ε > 0 and λ ∈ [0,1]. For each positive inte-
ger t , let n = n(t) and ñ = ñ(t) be chosen to be increasing in t with t = n + ñd

and with n/t → λ as n → ∞. Let Nt = F
(n)
σ [nb,∞). Then, using the assumption

that (6.1) holds, provided n = n(t) → ∞,

lim inf
t

1

t
logNt = lim inf

t

1

t
log
(
F (n)

σ [nb,∞)
)

= λ lim inf
n

1

n
log
(
F (n)

σ [nb,∞)
)

≥ −λr(b).

Given F (n), Z
(t)
σ [nb + ñdc,∞) is bounded below by Nt independent copies (un-

der Pσ ) of Z
(ñd)
σ [ñdc,∞). Propositions 2.1, 2.2 and 5.8 imply that most of these

copies should have size near exp(−ñdκ∗(c)). Let Yt be the number that are not too
far below their expectation, that is, the number with

log
(
Z(ñd)

σ [ñdc,∞)
)≥ ñd

(−κ∗(c) − ε
)
.

Then, given F (n), Yt is a Binomial variable with Nt trials and success probabil-
ity pt , where

pt = Pσ

(
log
(
Z(ñd)

σ [ñdc,∞)
)≥ ñd

(−κ∗(c) − ε
))

.



1800 J. D. BIGGINS

Propositions 2.2 and 5.8 imply that pt → 1 provided ñ(t) → ∞. Now

log
(
Z(t)

σ [nb + ñdc,∞)
)≥ logYt + ñd

(−κ∗(c) − ε
)

and, using Lemma 6.5, Yt/Nt → 1 almost surely when
∑

t (1/Nt) < ∞. Let
T (j) = max{t :n(t) = j}. For suitable small δ and then all sufficiently large n

logNt = log
(
F (n)

σ [nb,∞)
)≥ n

(−r(b) − δ
)
> 0.

Then, ∑
t

1

Nt

≤ C
∑
j

T (j)

exp(j (−r(b) − δ))

and this is finite provided T does not grow exponentially quickly, for which it
suffices that n(t)γ ≥ t for some γ > 1. Putting this together, provided ñ(t) → ∞
and n(t)γ ≥ t , which can both be arranged,

lim inf
t

1

t
log
(
Z(t)

σ [nb + ñdc,∞)
)≥ λ(−r(b)) + (1 − λ)

(−κ∗(c) − ε
)
.(6.2)

Note too that
nb + ñdc

t
=
(

n

t
b + ñd

t
c

)
→ λb + (1 − λ)c

so that (6.2) implies, using continuity of r at b and κ∗ at c,

lim inf
t

1

t
log
(
Z(t)

σ

(
t
[
λb + (1 − λ)c

)
,∞))≥ −(λr(b) + (1 − λ)κ∗(c)

)
.(6.3)

Consider instead the case where κ∗(c) ≥ 0, but still with t = n(t) + ñ(t)d . Let
pt = Pσ (B(ñd)

σ ≥ ñdc). Now, given F (n), Z
(t)
σ [nb + ñdc,∞) is bounded below by

a Binomial variable, Yt , on Nt = F
(n)
σ [nb,∞) trials with success probability pt .

Much as previously, provided n(t) → ∞, ñ(t) → ∞ and n(t)/t → λ, as t → ∞,
Propositions 5.5 and 5.8 give

lim inf
1

t
(logNt + logpt) ≥ −(λr(b) + (1 − λ)κ∗(c)

)
.

Therefore, using Lemma 6.5, when λr(b) + (1 − λ)κ∗(c) < 0,

lim inf
1

t
log
(
Z(t)

σ [nb + ñdc,∞)
)≥ lim inf

1

t
logYt

≥ −(λr(b) + (1 − λ)κ∗(c)
)

and so, using continuity of r at b, (6.3) holds in this case, too.
Hence (6.3) holds for any λ ∈ [0,1], any b such that r(b) < 0 and any c with

λr(b) + (1 − λ)κ∗(c) < 0. Fix a. Maximize the right of (6.3), using Lemma 6.4,
over (λ, b, c) ∈ Aa with r(b) < 0 to get

lim inf
t

1

t
log
(
Z(t)

σ [ta,∞)
)≥ C[r, κ∗](a).
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Now use that Z
(t)
σ [ta,∞) is integer-valued to replace C[r, κ∗] by C[r, κ∗]◦. �

PROOF OF THEOREM 2.3. The result holds for K = 1, by Corollary 5.7. Sup-
pose the result holds for K −1. By Lemmas 4.3 and 6.3, rK has the right properties.
Then, by Proposition 6.1 and then Theorem 6.2, (2.7) holds. �

7. Properties of f � and the recursion. The main objectives of this section
are to prove Proposition 7.1 giving properties of f � and to establish Proposition 2.5
giving the alternative recursion for ri .

Recall that f � is the maximal convex function that has f �(θ)/θ monotone de-
creasing in θ ∈ (0,∞) such that f � ≤ f , and that ϑ(f ) is given by (2.10). The next
result describes the structure of f � and shows ϑ(f ) is closely connected to �(f ∗).
It is worth mentioning that, although this proposition admits other possibilities, in
the main results here f (ϑ) and f (ϑ) will only be different in cases where f (ϑ) is
also infinite. The formula �(f ∗) = inf{f (θ)/θ : θ > 0} included in the proposition
is the one used for the speed in the irreducible blocks by Weinberger, Lewis and
Li (2007) in their model.

PROPOSITION 7.1. Suppose f is k-convex. Let � = �(f ∗), ϑ = ϑ(f ) and
ψ = inf D(f ). Then f � ≡ −∞ and ϑ = −∞ when � = −∞. Otherwise, ϑ ≥ 0
and f �(θ) = f (θ) for 0 ≤ θ < ϑ (by definition). When 0 ≤ ϑ < ∞,

f �(θ) = θ� < f (θ) for θ > ϑ

and

f �(ϑ) =
{

f (ϑ) ≥ f (ϑ) = ϑ�, when ϑ = ψ ,
ϑ� = f (ϑ) ≤ f (ϑ), when ϑ > ψ .

In all cases,

� = inf
θ>0

f �(θ)

θ
= inf

θ>0

f (θ)

θ
.(7.1)

When 0 ≤ ϑ < ∞, � = f (ϑ)/ϑ provided f is lower semi-continuous at ϑ and,
when ϑ = ∞, � = limθ↑∞ f (θ)/θ .

Recall that f ∗◦ is defined to be (f ∗)◦. Let

f � = (f ∗◦)∗ = ((f ∗)◦)∗

and

ϑ�(f ) = inf{θ :f �(θ) < f (θ)},
which is +∞ when this set is empty. Let ψ = inf D(f ). The next lemma, which
will be proved later in the section, says that f � and f � can only be different at ψ

where the former is f (ψ) and the latter is f (ψ). This motivates deriving properties
of f �.
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LEMMA 7.2. Let f be k-convex. Then ϑ(f ) = ϑ�(f ). When ϑ(f ) = −∞,
f � = f � ≡ −∞. When ϑ(f ) ≥ 0, f �(θ) = f �(θ) for θ > ψ , and f �(ψ) = f (ψ) ≥
f (ψ) = f �(ψ).

The next result establishes some properties of f �. In particular, the second part
shows that it is a candidate for f �, in that it has the right properties. Building on
these properties, the result following this one characterizes f �.

LEMMA 7.3. Let f be k-convex and � = �(f ∗).

(i) f �(θ) = supa≤�{θa − f ∗(a)} when � > −∞, and f � ≡ −∞ when � =
−∞;

(ii) f � ≤ f and f �(θ)/θ is decreasing as θ increases, so f � ≤ f �;
(iii) When θ ′ ≥ θ , f �(θ ′) ≤ f �(θ) + (θ ′ − θ)�.

PROOF. Since f ∗(a) > 0 for a > � and these are swept to infinity in f ∗◦,
applying the definitions gives (i). Now

f �(θ) = sup
a≤�

{θa − f ∗(a)} ≤ sup
a

{θa − f ∗(a)} = f (θ) ≤ f (θ)

using Lemma 4.1 for the second equality. Also,

f �(θ)

θ
= sup

a≤�

{
a − f ∗(a)

θ

}
and f ∗(a) ≤ 0 for these a, so this decreases as θ increases. This proves (ii). Max-
imizing θ ′a − f ∗(a) = θa − f ∗(a) + (θ ′ − θ)a over a ≤ � completes the proof.

�

At this point an additional convexity idea is needed. The subdifferential at φ of
a convex f , ∂f (φ), is defined as the set of slopes of possible tangents to f at φ.
More formally,

∂f (φ) = {a :f (θ) ≥ f (φ) + a(θ − φ) ∀θ}.
The set is empty when f is infinite at φ or has a one-sided derivative at φ that is
infinite in modulus, it contains a single value at points where f is differentiable,
and it is a nondegenerate closed interval in all other cases; see Rockafellar (1970),
Theorems 23.3, 23.4. In the last case the infimum of ∂f (φ) is the left point of this
interval and is the derivative of f from the left there.

LEMMA 7.4. Suppose f is proper and convex.

(i) If f is finite in a neighborhood of φ, then ∂f (φ) = ∂f (φ) and is certainly
nonempty.
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(ii) The following are equivalent: γ ∈ ∂f (φ); φγ −f (φ) = f ∗(γ ) (= sup{θγ −
f (θ) : θ}).

(iii) If f (φ) = f (φ), the statements in (ii) are also equivalent to φ ∈ ∂f ∗(γ )

and to φγ − f ∗(γ ) = sup{aφ − f ∗(a) :a} (=f (φ)).

PROOF. The assertion that ∂f (φ) is nonempty is in Rockafellar (1970), The-
orem 23.4. The equivalences are some of the results in Rockafellar (1970), Theo-
rem 23.5. �

LEMMA 7.5. Let h be k-convex with h(φ) < ∞. Suppose g is convex, g ≥ h,
g(φ) = h(φ) and γ ∈ ∂h(φ). Then:

(i) γ ∈ ∂g(φ) and g∗(γ ) = h∗(γ );
(ii) if h(θ) = g(θ) for all θ ≤ φ, then g∗(a) = h∗(a) for all a ≤ γ ;

(iii) if, in addition, g(θ) = ∞ for θ > φ, then g∗(a) = h∗(γ ) − φ(γ − a) =
φa − h(φ) for a > γ .

PROOF. Since g(φ) = h(φ) and g ≥ h,

∂h(φ) = {a :h(θ) ≥ h(φ) + a(φ − θ) ∀θ}
⊂ {a :g(θ) ≥ g(φ) + a(φ − θ) ∀θ}
= ∂g(φ).

Thus γ ∈ ∂h(φ) implies γ ∈ ∂g(φ), and then Lemma 7.4(ii) gives

h∗(γ ) = sup
θ

{θγ − h(θ)} = φγ − h(φ) = φγ − g(φ) = sup
θ

{θγ − g(θ)} = g∗(γ ).

This proves (i). For any θ

θa − h(θ) = θγ − h(θ) − θ(γ − a)

≤ φγ − h(φ) − θ(γ − a)

= φa − h(φ) − (θ − φ)(γ − a),

and so, when (θ − φ)(γ − a) ≥ 0, θa − h(θ) ≤ φa − h(φ). Hence, for a ≤ γ

h∗(a) = sup
θ

{θa − h(θ)} = sup
θ≤φ

{θa − h(θ)}

and this holds also for g, giving (ii). Also, for a > γ ,

sup
θ≤φ

{θa − h(θ)} = φa − h(φ) = φγ − h(φ) − φ(γ − a) = h∗(γ ) − φ(γ − a)

and when g(θ) = ∞ for θ > φ the first expression here is g∗(a). �

LEMMA 7.6. Let f be k-convex, � = �(f ∗), and ϑ = ϑ�(f ).
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(i) If � > −∞ and ∂f ∗(�) = ∅ or f ∗(�) < 0, then f � = f and ϑ = ∞.
(ii) If � > −∞ and ∂f ∗(�) �= ∅, then for any φ ∈ ∂f ∗(�)

f �(θ) =
{

f (θ), θ ≤ φ,
θ� − f ∗(�), θ ≥ φ.

(iii) f �(θ) = f (θ) if and only if θ ≤ ϑ .

PROOF. Assume ∂f ∗(�) = ∅. Then f ∗(a) = ∞ for a > �, using Rockafellar
(1970), Theorem 23.4. Also, if f ∗(�) < 0, then, since f ∗ is continuous when
finite, f ∗(a) = ∞ for a > �. Hence, in both cases,

f �(θ) = sup
a≤�

{θa − f ∗(a)} = sup
a

{θa − f ∗(a)} = f (θ),

and so ϑ�(f ) = inf{θ :f �(θ) < f (θ)} = ∞. This give (i). Now assume ∂f ∗(�) �=
∅. For any φ ∈ ∂f ∗(�), Lemma 7.5 (with h = f ∗ and g = f ∗◦) gives (ii) because
(f ∗)∗ = f .

Turning to the final part, the result is immediate (and without real content)
when � = −∞. It also holds when (i) holds. When (ii) holds ϑ�(f ) ≥ sup ∂f ∗(�),
but when f (φ) = f �(φ) = φ� − f ∗(�) Lemma 7.4(ii) gives φ ∈ ∂f ∗(�). Hence
ϑ�(f ) = sup ∂f ∗(�) and f �(θ) < f (θ) for all θ > ϑ�(f ). �

PROOF OF LEMMA 7.2. Let ϑ = ϑ�(f ) and � = �(f ∗). When � = −∞,
f ∗(a) > 0 for all a, f � ≡ −∞ and ϑ = −∞. If f � �≡ −∞, then, for some finite
A ≥ 0 and B , A + Bθ ≤ f �(θ) ≤ f (θ) and then f ∗(B) ≤ −A ≤ 0. Hence when
� = −∞, f � ≡ −∞ and ϑ(f ) = −∞.

Assume now that � > −∞, so that f � �≡ −∞. Then f �(ψ) = f (ψ). By Lem-
ma 7.3(ii), f � ≥ f � and using Lemma 7.6 f �(ψ) = f (ψ) ≤ f (ψ) = f �(ψ). We
need to show that f � and f � agree on (ψ,∞). When D(f ) = {ψ} the result holds.
Hence we may suppose D(f ) has a nonempty interior. Then f ≥ f � ≥ f � = f =
f on (ψ,ϑ). Thus the result holds when ϑ = ∞, and so we can assume ϑ < ∞,
and hence, by Lemma 7.6(i), that f ∗(�) = 0. Then, by Lemma 7.6(ii), f �(θ) =
f (θ) for θ ∈ (ψ,ϑ) and f �(θ) = �θ for θ ∈ [ϑ,∞). Suppose that for some φ > ψ ,
f �(φ) > f �(φ). Hence, φ ≥ ϑ and f �(φ) > �φ. Then

f �(φ)

φ
> � = f �(ϑ)

ϑ
= f (ϑ)

ϑ
= lim inf

θ→ϑ

f (θ)

θ
≥ lim inf

θ→ϑ

f �(θ)

θ
,

contradicting that f �(θ)/θ is decreasing and continuous at φ.
It remains to prove ϑ(f ) = ϑ in this case. Lemma 7.6(iii) gives

ϑ = inf{θ :f �(θ) < f (θ)} = sup{θ :f �(θ) = f (θ)}
and the relationship between f � and f � already established means this equals
sup{θ :f �(θ) = f (θ)} which is ϑ(f ). �
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PROOF OF PROPOSITION 7.1. This uses Lemmas 7.2 and 7.6. When � =
−∞, Lemma 7.2 contains the result. When ∂f ∗(�) = ∅ or f ∗(�) < 0 the charac-
terization of f � follows from Lemma 7.6(i). In the remaining cases ϑ = ϑ(f ) < ∞
and the characterization follows from Lemma 7.6(ii). The assertion about � fol-
lows from this characterization. �

The following lemma will be important in later sections. The one after it records
various facts needed to prove the alternative recursion in Proposition 2.5.

LEMMA 7.7. Let f be k-convex and a ∈ ∂f (θ).

(i) If θ > ϑ(f ), then f ∗(a) > 0.
(ii) If θ < ϑ(f ), then f ∗(a) ≤ 0.

PROOF. By Lemma 7.2, ϑ(f ) = ϑ�(f ). Lemma 7.4 gives

f (θ) = θa − f ∗(a) = sup
b

{θb − f ∗(b)} ≥ sup
b≤�

{θb − f ∗(b)} = f �(θ).

When θ > ϑ(f ) there is strict inequality, implying that f ∗(a) > 0.
If 0 = θ < ϑ(f ), then �(f ∗) > −∞ and so f ∗(a) = −f (0) < 0. Otherwise,

take θ < θ + ε < ϑ(f ). Note that f �(θ)/θ is decreasing on (0,∞) and equals
f (θ)/θ on (0, ϑ(f )), and that f �(θ) = f (θ) = θa − f ∗(a). Therefore

θ + ε

θ

(
θa − f ∗(a)

)= θ + ε

θ
f (θ) ≥ f (θ + ε) ≥ (θ + ε)a − f ∗(a).

Thus −εf ∗(a)/θ ≥ 0. �

LEMMA 7.8. Suppose f and κ are k-convex.

(i) f ∗◦ = (f �)∗◦ = (f �)∗ and f � = (f ∗◦)∗;
(ii) D(f �) = D+(f );

(iii) M[f �, κ�]� = M[f �, κ�] ≤ M[f �, κ].

PROOF. The first part follows easily from Lemmas 4.1 and 7.2, because f � =
(f ∗◦)∗, and the second from Lemmas 7.2 and 7.3(iii). For the final one, just note
that M[f �, κ�] inherits all the right properties from f � and κ�. �

PROOF OF PROPOSITION 2.5. By definition (2.6), f ∗◦
1 = κ∗◦

1 = r1. Suppose the
result is true for i − 1. By Lemmas 4.1(ii) and 7.8(i)

(f
�
i )∗ = f ∗◦

i = M[f �
i−1, κi]∗◦ = (M[f �

i−1, κi]∗)◦
= C[f ∗◦

i−1, κ
∗
i ]◦ = C[ri−1, κ

∗
i ]◦ = ri

as required. �
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LEMMA 7.9. Let fi be given by (2.11). When (1.4) holds, fi is closed and k-
convex, [φi,∞) ⊂ D(f

�
i ) =⋂

j≤i D+(κj ), −∞ < ri for each i, and if f1(0) > 0,
then fi(0) > 0.

PROOF. Using Lemma 4.3, f1 = κ1 is k-convex, and by Lemma 7.8(ii)
D(f

�
1 ) = D+(κ1). Hence the result is true for i = 1. Suppose the result holds for

i − 1. By definition,

D(fi) = D(M[f �
i−1, κi]) = D(f

�
i−1) ∩ D(κi) ⊃ [φi−1,∞) ∩ D(κi),

which is nonempty, since it contains φi by (1.4). Thus fi is k-convex and D(f
�
i )

contains [φi,∞). Furthermore, f
�
i−1 and κi are closed, so fi is, too. Since D(fi)

is nonempty D+(fi) = D(f
�
i−1) ∩ D+(κi), and then the induction hypothesis and

Lemma 7.8(ii) confirm the formula for D(f
�
i ). Now, by Lemma 4.2(i), −∞ <

(f
�
i )∗ = f ∗◦

i = ri . Since fi−1 is closed, fi−1(0) > 0 implies that f
�
i−1(0) = fi−1(0)

and then fi(0) ≥ f
�
i−1(0) = fi−1(0) > 0. �

8. Upper bounds on numbers. Here, Theorem 2.7 will be proved. The first
lemma presses the argument deployed at the start of the proof of Proposition 5.3
a little further. It notes that (8.1) implies the apparently stronger (8.3). The minor
distinction between f � and f � (=(f ∗◦)∗), exposed in Lemma 7.2, matters in this
result.

LEMMA 8.1. Suppose that for a k-convex f with �(f ∗) > −∞ and a point
processes P (n)

lim sup
n

1

n
log
(∫

eθxP (n)(dx)

)
≤ f (θ) a.s. ∀θ.(8.1)

Then

lim sup
n

1

n
log
(
P (n)[na,∞)

)≤ −f ∗◦(a) a.s. ∀a(8.2)

and

lim sup
n

1

n
log
(∫

eθxP (n)(dx)

)
≤ f �(θ) a.s. ∀θ.(8.3)

PROOF. For θ ≥ 0,

θna + logP (n)[na,∞) ≤ log
∫

eθxP (n)(dx)

and so using (8.1), minimizing over θ , and using that P (n)[na,∞) is eventually
zero when it decays gives (8.2). The assertions (8.1) and (8.3) are the same when
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ϑ(f ) = ∞. Hence we may assume ϑ(f ) < ∞. For ε > 0 and large enough n,
P (n)[n(�(f ∗) + ε),∞) = 0. Then, for θ ≥ ψ ,∫

eθxP (n)(dx) ≤ e(θ−ψ)(�(f ∗)+ε)n
∫

eψxP (n)(dx)

so that (8.1) gives

lim sup
1

n
log
(∫

eθxP (n)(dx)

)
≤ f (ψ) + (θ − ψ)�(f ∗) a.s.

Take ψ = θ when θ < ϑ(f ) and when θ = ϑ(f ) = inf D(f ), so in these cases the
right-hand side is just f (θ). Otherwise, take ψ ∈ D(f ) and then let ψ → ϑ(f ).
[If f is lower semi-continuous at ϑ(f ), taking ψ = ϑ(f ) will do.] Then the right-
hand side becomes f (ϑ(f )) + (θ − ϑ(f ))�(f ∗). Proposition 7.1 confirms that
the right-hand side is f � in all cases. �

Recall that −χi is the logarithm of the indicator function of the set Di−1,i .

LEMMA 8.2. In a sequential process with mυτ > 0 for υ ∈ CK−1 and τ ∈ CK ,
suppose that for all ν ∈ C1 and θ

lim sup
1

n
log
(∫

eθxZ(n)
υ (dx)

)
≤ f (θ) a.s.-Pν,

where f is k-convex with �(f ∗) > −∞. Let g = f � + χK and let κ be the
PF+eigenvalue of the final block in m, corresponding to CK . Then, for σ ∈ CK ,

lim sup
1

n
log
(∫

eθxZ(n)
σ (dx)

)
≤ M[g�, κ]�(θ) a.s.-Pν

and �(M[g�, κ]�) > −∞.

PROOF. Note first that f � ≤ g� ≤ M[g�, κ]�, so that �(f ∗) > −∞ implies
that �(g∗) > −∞ and that �(M[g�, κ]�) > −∞.

Recall that F
(n)
τ are those in the nth generation that are the first of type τ in their

line of descent. Taking conditional expectations,

E

[∫
eθxF (n+1)

τ (dx)
∣∣∣F (n)

]
=
(∫

eθxZ(n)
υ (dx)

)
mυτ (θ)

and so, using Lemma 8.1 and the definition of g,

lim sup
1

n
log E

[∫
eθxF (n+1)

τ (dx)
∣∣∣F (n)

]
≤ g(θ) a.s.-Pν.

Then conditional Borel–Cantelli [e.g., Chen (1978)] gives that

lim sup
1

n
log
(∫

eθxF (n)
τ (dx)

)
≤ g(θ) a.s.-Pν
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and a further application of Lemma 8.1 gives that

lim sup
1

n
log
(∫

eθxF (n)
τ (dx)

)
≤ g�(θ) a.s.-Pν.

The set of particles obtained as those first in their lines of descent that are either
in CK or in generation n forms an optional line, as in Jagers (1989). Let G(n)

contain all information on reproduction down lines of descent to particles in this
line. In this sequential process the first in any line of descent with a type in CK is
necessarily of type τ . For any σ ∈ CK and θ ,

E

[∫
eθxZ(n)

σ (dx)
∣∣∣G(n)

]
=

n∑
r=0

∫
eθxF (r)

τ (dx)(m(θ)n−r )τσ .

Hence, the bound just obtained, Lemma 5.1, and routine estimation give

lim sup
n

1

n
log E

[∫
eθxZ(n)

σ (dx)
∣∣∣G(n)

]
≤ M[g�, κ](θ) a.s.-Pν.

Conditional Borel–Cantelli and Lemma 8.1 complete the proof. �

LEMMA 8.3. Define gi by (2.15). Then gK is finite somewhere on (0,∞) if
and only if (1.4) holds and (2.12) holds for i = 1,2, . . . ,K − 1. When these hold
gK is k-convex,

[φK,∞) ⊂ D(g
�
K) =

( ⋂
j≤K

D+(κj )

)
∩
( ⋂

j≤K−1

D+
j,j+1

)
,

g
�
K is continuous on D(g

�
K), and −g∗

K(a) < ∞ for some finite a.

PROOF. Assume gK(φK) is finite. Then φK ∈ D(κK) and there is a φK−1,K ≤
φK such that (g

�
K−1 + χK)(φK−1,K) < ∞, which implies that φK−1,K ∈ DK−1,K

and that there is a φK−1 ≤ φK−1,K with gK−1(φK−1) finite. Hence, by induction
on K , gK(φ) finite for some positive φ implies that (1.4) holds and (2.12) holds
for i = 1,2, . . . ,K − 1.

Now suppose (1.4) holds and (2.12) holds for i = 1,2, . . . ,K − 1. All the as-
sertions of the lemma then hold with g1 = κ1 in place of gK . Suppose all the
assertions hold for gK−1. Then

D(g
�
K−1 + χK−1) = D+(gK−1) ∩ DK−1,K ⊃ [φK−1,∞) ∩ DK−1,K � φK−1,K .

Since this is nonempty,

D(gK) = D
(
M[(g�

K−1 + χK−1)
�, κK ])= D+(gK−1) ∩ D+

K−1,K ∩ D(κK)

and gK is continuous there, because g
�
K−1 is by assumption and κK is by Lem-

ma 4.3. Furthermore D(gK) ⊃ [φK−1,∞) ∩ D(κK) � φK and so is nonempty.
Then, using Lemma 7.8(ii),

D(g
�
K) = D+(gK) = D+(gK−1) ∩ D+

K−1,K ∩ D+(κK) ⊃ [φK,∞),
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and g� is continuous there. Substituting for D+(gK−1) gives the formula for
D+(gK). Lemma 4.2(i) gives the final part and the induction is complete. �

PROOF OF THEOREM 2.7. Note first that the final assertion is contained in
Lemma 8.3. Now, by Lemma 8.1, it is enough to show that

lim sup
1

n
log
(∫

eθxZ(n)
σ (dx)

)
≤ gK(θ) a.s.-Pν

and that �(g∗
K) > −∞. Both hold when K = 1, the first by Lemma 5.2, the second

by combining Lemmas 4.2(vi), 4.3(iv) and the assumption that κ1(0) > 0. Assume
the result holds for K − 1. Then it holds also for K , by Lemma 8.2 with f = gK−1
and κ = κK . �

9. Matching the lower and upper bounds. In this section Theorems 2.4
and 2.6 will be proved, using Theorem 2.7. These are cases where the upper bound
on numbers matches the lower bound based on Theorem 2.3. The simpler theorem
will be discussed first.

PROOF OF THEOREM 2.4. Let fi and gi be as (2.11) and (2.15). Clearly g1 =
f1 = κ1. Assume gi−1 = fi−1. Note first that (f

�
i−1 + χi)

� ≥ f
�
i−1 and so

gi = M[(g�
i−1 + χi)

�, κi] = M[(f �
i−1 + χi)

�, κi] ≥ M[f �
i−1, κi] = fi.

By Lemma 7.9, (2.9) is equivalent to D(f
�
i−1) ∩ D(κi) ⊂ Di−1,i (=D(χi)), and

when this holds M[f �
i−1 + χi, κi] = M[f �

i−1, κi]. Then,

gi = M[(f �
i−1 + χi)

�, κi] ≤ M[f �
i−1 + χi, κi] = M[f �

i−1, κi] = fi.

Hence gi = fi . Thus, by induction, gK = fK . Then g∗◦
K = f ∗◦

K , which by Corol-
lary 2.8 gives the result. �

The proof just given relies on a simple estimation of (f
�
i−1 +χi)

� and then D(κi)

making χi irrelevant. To deal with more cases it is necessary to refine the estima-
tion of (f

�
i−1 +χi)

� and make a more careful comparison of the result with κi . This
is done next.

LEMMA 9.1. Suppose f and κ are k-convex with �(f ∗) > −∞. Suppose C

is a convex set, and let χ(θ) = − log I (θ ∈ C), ψ = infC and ψ = supC. Let
χ1(θ) = − log I (θ ∈ C+) and χ2(θ) = − log I (θ ∈ (−∞,ψ]).

(i) �(M[(f � + χ)�, κ]∗) > −∞.
(ii) If D(f �) ∩ C �= ∅ and f � is continuous from the right at ψ , then

(f � + χ)�(θ) =
{

(f � + χ)(θ), θ < ψ ,
θ
(
f �(ψ)/ψ

)
, θ ≥ ψ .
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(iii) If, in addition to the conditions in (ii),

either κ(θ) ≥ θ
(
f �(ψ)/ψ

)
for θ ∈ [ψ,∞) or ϑ(f ) ≤ ψ,(9.1)

then

M[(f � + χ)�, κ] = M[f � + χ1, κ].
(iv) If, in addition to the conditions in (ii), D(f �) ∩ D(κ) ⊂ [ψ,∞), then

M[(f � + χ)�, κ] = M[(f � + χ2)
�, κ],

except possibly at ψ , and when they differ there the left-hand side is infinite.
(v) When the conditions in both (iii) and (iv) hold, M[(f � + χ)�, κ] =

M[f �, κ] except possibly at ψ , and when they differ there the left-hand side is
infinite.

PROOF. The proof of part (i) mimics the first part of the proof of Lemma 8.2.
The form of (f � + χ)� in (ii) follows from Proposition 7.1. Now, assume (9.1)
holds. In the first case, (f � +χ)� is dominated by κ in [ψ,∞) and equals f � on C.
In the second, since ϑ(f ) ≤ ψ < ∞ and f � is continuous from the right at ψ ,
�(f ∗) = f �(ψ)/ψ by Proposition 7.1; and so (f � +χ)� = f � on C+, and this also
holds when ψ = ∞. Hence in both cases M[(f � +χ)�, κ] = M[f � +χ1, κ], prov-
ing (iii). By (ii), (f � + χ)� and (f � + χ2)

� agree for θ ≥ ψ , and (f � + χ2)
� = f �

for θ < ψ . Since D(M[f �, κ]) = D(f �) ∩ D(κ), M[(f � + χ)�, κ] and M[f �, κ]
agree (and are both infinite) on (−∞,ψ) and by (ii) they agree on (ψ,ψ). They
also agree at ψ when ψ ∈ C and when it is not (f � + χ) is infinite there. This
proves (iv). The final part is an application of (iv) to f + χ1. �

PROOF OF THEOREM 2.6. Note first that, by Lemma 7.8(ii), D+(gK−1) =
D(g

�
K−1). Also, Lemmas 7.8(ii) and 7.9 show that the left of (2.14) is just D+(fi)∩

D(κi+1).
The proof is by induction. For it, add in the additional assertion that g

�
K = f

�
K ,

except possibly at inf D(fK) when g
�
K is infinite there. The result, including this

additional assertion, is true for K = 1. Assume the result and the addition are true
for K − 1. When (1.4) holds and (2.12) holds for i = 1,2, . . . ,K − 1, Lemma 8.3
implies that g

�
K−1 is finite at ψK−1 and so equals f

�
K−1 and is continuous from the

right there. Also, by the induction hypothesis D(g
�
K−1) ⊂ D(f

�
K−1) [and equals

it unless f
�
K−1 is finite and g

�
K−1 infinite at inf D(f

�
K−1) = inf D(fK−1)]. Hence

(2.13) and (2.14) with i = K − 1 mean Lemma 9.1(v) applies. Together with the
induction hypothesis this gives gK = M[f �

K−1, κK ] = fK except possibly at ψ
K−1

and inf D(f
�
K−1), where they can only differ with gK being infinite. Furthermore,

by Lemma 8.3, fK(φK) ≤ gK(φK) < ∞. Since both functions are proper and con-
vex, and fK is closed, they can only differ by gk being greater, and infinite, at the
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endpoints of D(fK). Hence g
�
K = f

�
K except possibly at inf D(f

�
K). Then these

two functions have the same F-dual, that is, g∗◦
K = f ∗◦

K . �

10. Formulas for the speed. The main objective here is to establish Theo-
rem 2.9 giving an alternative formula for the speed �(g∗

K), which plays a critical
role in the proof of Theorem 2.10. A few other remarks are also included about
computing the speed.

There are several alternative formulas for �(f ∗) from the irreducible case that
apply more widely to any k-convex f . One is contained in (7.1) in Proposition 7.1.
Another is that � = sup{a :f ∗(a) ≤ 0}, which holds because f ∗ is convex and in-
creasing. Furthermore, by convexity � is the unique solution to f ∗(�) = 0, pro-
vided only that there are a u and v with f ∗(u) < 0 ≤ f ∗(v) < ∞.

When f is differentiable throughout D(f ) and there is a θ such that θf ′(θ) −
f (θ) = 0, then �(f ∗) = f ′(θ)—this is straightforward calculus when θ is in the
interior of D(κ), and all cases are covered by Rockafellar (1970), Theorem 23.5(b).
Then �(f ∗) can be found by solving f (θ) = θf ′(θ) for θ . This is certainly relevant
in the irreducible case, since Lemma 4.3(iii) gives that f = κ is differentiable, but
need not be once there is more than one class.

LEMMA 10.1. Suppose that f and κ are k-convex with �(f ∗) > −∞, that
χ = − log I (θ ∈ C) for a convex C, that g = M[(f � + χ)�, κ] and that this g is
finite somewhere [so D(f �) ∩ C ∩ D(κ) �= ∅]. Let ψ = supC. For 0 < θ /∈ C+,
g(θ) = ∞. For 0 < θ ∈ C+,

g(θ)

θ
= inf

{
max

{
f (φ)

φ
,
κ(θ)

θ

}
: 0 < φ ≤ θ,φ ≤ ψ

}
,(10.1)

where the condition φ ≤ ψ can be omitted when (9.1) holds and f � is continuous
from the right at ψ .

PROOF. It is immediate from its definition that g(θ) = ∞ for 0 < θ /∈ C+. By
definition f �(θ)/θ is decreasing as θ increases for any convex f . For θ ∈ C+,

g(θ)

θ
= max

{
(f � + χ)�(θ)

θ
,
κ(θ)

θ

}

= inf
{

max
{
(f � + χ)�(φ)

φ
,
κ(θ)

θ

}
: 0 < φ ≤ θ

}

= inf
{

max
{
f �(φ)

φ
,
κ(θ)

θ

}
: 0 < φ ≤ θ,φ ∈ C

}
.(10.2)

Proposition 7.1 relates f � and f : f �(θ)/θ and f (θ)/θ agree and are decreasing
up to ϑ(f ); when ϑ(f ) < ∞, the former is constant and the latter is larger for
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θ > ϑ(f ), and either the two agree at θ = ϑ(f ) or the latter is larger. Hence,

g(θ)

θ
= inf

{
max

{
f (ϕ)

ϕ
,
κ(θ)

θ

}
: 0 < φ ≤ θ,ϕ ≤ φ ∈ C

}
.

This is (10.1) when ψ ∈ C. When it is not, the limit of f (ϕ)/ϕ as ϕ ↑ ψ is no
greater than f (ψ)/ψ and so replacing ϕ ≤ φ ∈ C by ϕ ≤ ψ in the formula will
not change the output.

Lemma 9.1(iii) shows that if (9.1) holds and f � is continuous from the right
at ψ , then the restriction to φ ∈ C in (10.2) can be replaced by φ ∈ C+. Then f

can replace f � if this restriction is dropped, too; that is, for θ ∈ C+,

g(θ)

θ
= inf

{
max

{
f �(φ)

φ
,
κ(θ)

θ

}
: 0 < φ ≤ θ,φ ∈ C+

}

= inf
{

max
{
f (φ)

φ
,
κ(θ)

θ

}
: 0 < φ ≤ θ

}
. �

PROOF OF THEOREM 2.9. The result is true for K = 1 as is the additional
condition that �(g∗

1) > −∞. Assume it is true along with this additional condition
for K − 1. Let θ = (θ1, θ2, . . . , θK−1), h(θ) = max{κi(θi)/θi : i ≤ K − 1} and let
�φ be the set the infimum is taken over in (2.18) for “K − 1” so that the induction
hypothesis is

gK−1(φ)

φ
= inf{h(θ) : θ ∈ �φ}.

By the previous lemma, for 0 < θ ∈ D+
K−1,K ,

gK(θ)

θ
= inf

{
max

{
gK−1(φ)

φ
,
κK(θ)

θ

}
: 0 < φ ≤ θ,φ ≤ ψK−1

}
.

Now

max
{
gK−1(φ)

φ
,
κK(θ)

θ

}
= max

{
inf{h(θ) : θ ∈ �φ}, κK(θ)

θ

}
and reordering the maximum and infimum on the right makes no difference. This
gives gK in the required form and Lemma 9.1(i) gives that �(g∗

K) > −∞, com-
pleting the induction. Then the formula for �(gK) is, by Proposition 7.1, obtained
by minimizing also over θ . The result for fK is just a special case. �

LEMMA 10.2. Assume (2.12) holds. In (2.18) and (2.19) the conditions “θi ≤
ψi” can be dropped if (2.13) holds for i = 1,2, . . . ,K − 1. The conditions “θi ∈
D+

i−1,i” can be dropped in (2.18) if ϑ(κi+1) ≥ ψ
i

for i = 1, . . . ,K − 2 and from
(2.19) if this holds also for i = K − 1. When both sets of conditions in (2.19) can
be dropped, �(g∗

K) = �(f ∗
K).
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PROOF. Lemma 8.3 gives that g
�
i is continuous at ψi . Then the proof that the

conditions θi ≤ ψi can be dropped in (2.18) is by induction on i using the last part
of Lemma 10.1. When ϑ(κi+1) ≥ ψ

i
for i = 1, . . . ,K − 2 the extra possibilities

included by discarding the conditions θi ∈ D+
i−1,i for i = 2, . . . ,K − 1 in (2.18)

are larger than those included and so make no difference to the infimum. (Here
θK ∈ D+

K−1,K cannot be excluded, since the infimum is not over θK .) The argument
simplifying (2.19) is the same. �

PROOF OF THEOREM 2.10. This is contained in Lemma 10.2. �

11. Simplifying the formula for the speed.

LEMMA 11.1. Assume f and κ are k-convex, that f (0) > 0 and that g =
M[f �, κ] is finite somewhere. Let ϑ = ϑ(g) [and, for later, � = �(g∗)]. Then the
following hold:

(i) g� ≥ M[f �, κ�];
(ii) ϑ(κ) ≤ ϑ ;

(iii) g(θ) = g�(θ) = M[f �, κ�](θ) for θ < ϑ .

PROOF. Let ϕ = inf{θ :κ(θ) > M[f �, κ�](θ)}. Observe that

M[f �, κ] = g ≥ g� = M[f �, κ]� ≥ M[f �, κ�]� = M[f �, κ�],
where the final equality is from Lemma 7.8(iii), which gives (i). There is equality
throughout when θ < ϑ(κ), since then κ�(θ) = κ(θ), and also when θ < ϕ. This
implies that ϑ(κ) ≤ ϑ , proving (ii), and that ϕ ≤ ϑ . Note too, for later in the proof,
that ϑ(κ) ≤ ϕ, because κ� and κ agree for θ < ϑ(κ). It remains to show that ϑ ≤ ϕ.
It is certainly true that ϑ ≤ ϕ when ϕ = ∞. Also if κ(θ) = ∞ for all θ > ϕ, then
g(θ) = ∞ for θ > ϕ, but, by Proposition 7.1, g� is finite for θ > ϕ and so ϑ ≤ ϕ.
In the remaining case ϕ < ∞, κ is finite on (ϕ,ϕ + ε) for some ε > 0, and there
are θi ↓ ϕ taken from this interval with g(θi) = κ(θi). By Lemma 7.4(i) ∂κ(θi) is
nonempty. Hence, by Lemma 7.5, g∗(a) = κ∗(a) for a ∈ ∂κ(θi). Since ϑ(κ) ≤ ϕ,
Lemma 7.7(i) implies that κ∗(a) > 0. Hence g∗(a) > 0 and Lemma 7.7(ii) gives
ϑ ≤ ϕ. �

LEMMA 11.2. Use the setup of Lemma 11.1.

(i) If � = max{�(f ∗),�(κ∗)}, then g�(θ) = M[f �, κ�](θ) except possibly at
θ = ϑ .

(ii) If � > max{�(f ∗),�(κ∗)}, then ϑ < ∞, and (M[f �, κ�](θ) − θ�) is
strictly positive when θ < ϑ and strictly negative when θ > ϑ .
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PROOF. Lemma 11.2(iii) gives g�(θ) = g(θ) = M[f �, κ�](θ) for θ < ϑ . As-
sume that � = max{�(f ∗),�(κ∗)} and that ϑ < ∞. Then Proposition 7.1 implies
that g�(θ) = θ� for θ > ϑ . Similarly, κ�(θ) = θ�(κ∗) for θ > max{0, ϑ(κ)}. If
� = �(κ∗), g� and κ� agree for θ > ϑ . If instead, � = �(f ∗) > �(κ∗), then, for
θ > ϑ , f �(θ) ≥ θ�(f ∗) = g�(θ). Hence, in both cases, using also Lemma 11.1(i),
g�(θ) = M[f �, κ�](θ) for θ > ϑ .

Assume now that � > max{�(f ∗),�(κ∗)}. Take a such that

max{�(f ∗),�(κ∗)} < a < �.

Using Lemma 4.1(ii) and the definition of �(·), M[f �, κ�]∗(a) = C[f ∗◦, κ∗◦](a) =
∞ and g∗(a) < 0. Hence g and M[f �, κ�] differ somewhere and so Lem-
ma 11.1(iii) implies that ϑ < ∞.

Since g(θ) ≥ �θ for all θ , M[f �, κ�](θ) = g(θ) ≥ �θ for θ < ϑ and θ� =
g�(θ) ≥ M[f �, κ�](θ) for θ > ϑ . It remains to show these inequalities are strict.
Since M[f �, κ�](θ)/θ is decreasing it can only equal � on an interval that, if
nonempty, includes ϑ . If the interval has a nonempty interior, then, by convexity
of M[f �, κ�], M[f �, κ�](θ) ≥ �θ for all θ , contradicting that M[f �, κ�](θ)/θ →
max{�(f ∗),�(κ∗)} < � as θ → ∞. �

LEMMA 11.3. In the setup of Lemma 11.1 assume also that f � and κ are
closed.

(i) If � = max{�(f ∗),�(κ∗)}, then g� = M[f �, κ�].
(ii) If � > max{�(f ∗),�(κ∗)}, then g�(θ) = θ� when θ ≥ ϑ and g�(θ) =

M[f �, κ�](θ) when θ < ϑ .

PROOF. When f � and κ are closed so are κ�, g, g� and M[f �, κ�]. Part (i)
now follows from Lemma 11.2(i) and part (ii) from Proposition 7.1 and Lem-
ma 11.1(iii). �

LEMMA 11.4. In the setup of Lemma 11.1, assume � > max{�(f ∗),�(κ∗)}.
Then g(θ) = κ(θ) > f �(θ) on (ϑ,∞).

(i) If D(κ) = {φ}, then ϑ = φ, κ(ϑ) < f �(ϑ) = g(ϑ) < ∞ and g is infinite
elsewhere.

(ii) If D(κ) is not a single point, then, for some ε > 0, g(θ) = f �(θ) > κ(θ)

on (ϑ − ε,ϑ).

PROOF. Using the definition of g and Lemma 11.2(ii),

M[f �, κ] = g(θ) > g�(θ) = �θ > M[f �, κ�] for θ ∈ (ϑ,∞).

Thus g agrees with κ and strictly exceeds f � on (ϑ,∞).
If ϑ = inf D(κ) < sup D(κ), then the closures of g and κ agree everywhere,

giving � = �(κ∗), which has been ruled out. Hence either D(κ) = {ϑ} and κ(ϑ) <
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f �(ϑ), giving (i), or inf D(κ) < ϑ ≤ sup D(κ). Assume the latter, so that there is
an ε > 0 such that κ is finite, and continuous, on (ϑ − ε,ϑ) and so κ� is finite and
continuous on (ϑ −ε,∞). When f � is infinite on (−∞, ϑ) the result holds. Hence
by adjusting ε, we can now assume f � is also finite on (ϑ − ε,∞). Say ϑ(κ) = ϑ .
Using continuity on (ϑ − ε,∞), Proposition 7.1 and Lemma 11.1(iii),

�ϑ = g�(ϑ) = max{f �(ϑ), κ�(ϑ)} > �(κ∗)ϑ = κ�(ϑ).

A further use of continuity now gives f �(θ) > κ�(θ) = κ(θ) on (ϑ − ε,ϑ) after, if
necessary, taking ε smaller. This proves (ii) in this case.

Say now that ϑ(κ) < ϑ , which by Lemma 11.1(ii) is the only other possibil-
ity, and adjust ε so that ϑ(κ) ≤ ϑ − ε. Suppose, for a contradiction, that there
is a ψ ∈ (ϑ − ε,ϑ) with κ(ψ) = g(ψ). Take a ∈ ∂κ(ψ), which is nonempty. By
Lemma 7.7(i), κ∗(a) > 0 because ψ > ϑ(κ), but g ≥ κ and so Lemma 7.5 gives
κ∗(a) = g∗(a). However, by Lemma 7.7(ii), ψ < ϑ implies g∗(a) ≤ 0. Hence
there is no such ψ and so g = f � > κ on (ϑ − ε,ϑ). �

LEMMA 11.5. In the setup and conditions of Proposition 2.5, suppose that
κ1(0) > 0 and that �(f ∗

K) > max{�(f ∗
K−1),�(κ∗

K)}. Then

fK = M
[
max

j
κ

�
j , κK

]
.

PROOF. For i = 1,2, . . . ,K , let

hi = M
[
max
j≥i

κ
�
j , κK

]
so that hK = κK . Now suppose that

fK = M[f �
i , hi+1],(11.1)

which is true, by definition, for i = K − 1. Induction will be used to show that this
holds also for i = 1, which is the required result because f

�
1 = κ

�
1.

Assume (11.1) holds for i and consider f
�
i = M[f �

i−1, κi]�. Using Lemmas 4.3,

7.9 and 11.3, there are two possibilities. One is that f
�
i = M[f �

i−1, κ
�
i ] everywhere,

in which case,

fK = max{f �
i−1, κ

�
i , hi+1} = M[f �

i−1, hi],(11.2)

giving (11.1) for i − 1. Otherwise, ϑ(fi) < ∞ and

f
�
i (θ) =

{
θ�(f ∗

i ), for θ ≥ ϑ(fi),

M[f �
i−1, κ

�
i ](θ), for θ < ϑ(fi).

Thus (11.2) holds for θ < ϑ(fi). Also, �(f ∗
i ) ≤ �(f ∗

K−1) < �(f ∗
K), which implies

that f ∗
K(�(f ∗

i )) < 0. Hence, for all θ , θ�(f ∗
i ) < fK(θ) and so, in particular, when

θ ≥ ϑ(fi)

fK(θ) = M[f �
i , hi+1](θ) = max{θ�(f ∗

i ), hi+1(θ)} = hi+1(θ).
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Thus, using this and Lemma 7.8(iii),

hi+1(θ) > θ�(f ∗
i ) = f

�
i (θ) ≥ M[f �

i−1, κ
�
i ](θ).

Hence, (11.2) also holds when θ ≥ ϑ(fi). This shows that (11.2) always holds
when (11.1) holds, which completes the inductive step. �

LEMMA 11.6. In a sequential process satisfying κ1(0) > 0 and (1.4), let rK
be given by the recursion (2.6) described in Theorem 2.3. Then

�(rK) = max
i⇒j

{�(C[κ∗◦
i , κ∗

j ])} = max
i⇒j

{�(M[κ�
i , κj ]∗)}.

PROOF. Note first that for a sequential process i ⇒ j is the same as i < j .
Take fi as in Proposition 2.5, so that ri = f ∗◦

i = (f
�
i )∗. Let � = �(rK) (=�(f ∗

K))

and ϑ = ϑ(fK). Since �(κ∗
K) ≤ �(C[κ∗◦

1 , κ∗
K ]), it would be enough to establish the

result for �(rK−1) in the case where � = max{�(rK−1),�(κ∗
K)}. Consequently,

we can assume that � > max{�(rK−1),�(κ∗
K)}. Now, Lemma 11.2 gives ϑ < ∞,

and f ∗
K(�) ≤ 0 implies that �θ ≤ fK(θ) everywhere.

Let

h = max{κ�
j : j ≤ K − 1}.

If h is infinite on (−∞, ϑ), then there is a J < K with κ
�
J infinite on (−∞, ϑ). If

D(κK) = {ϑ}, then, by Lemma 11.4(i), there is a J < K with κ
�
J (ϑ) > κK(ϑ).

In both these cases Lemma 11.4 implies that fK = M[κ�
J , κK ] and so � =

�(M[κ�
J , κK ]∗). Otherwise, using Lemma 11.4(ii), there is an ε > 0 such that h

and κK are finite and continuous on (ϑ − ε,ϑ). Now, suppose that h(ϑ) > κK(ϑ),
and take J < K with κJ (ϑ) = h(ϑ). Using the continuity of κK when finite, there
is an ε > 0 such that κK(θ) < κJ (θ) on (ϑ − ε,ϑ). Also, Lemma 11.4 implies that
κK is infinite on (ϑ,∞). Therefore, since κ

�
J (θ)/θ is decreasing in θ ,

� = inf
θ>0

fK(θ)

θ
≥ inf

θ>0

M[κ�
J , κK ](θ)

θ
= κ

�
J (ϑ)

ϑ
= fK(ϑ)

ϑ
= �(11.3)

and so again � = �(M[κ�
J , κK ]∗).

This leaves the case where, for some ε > 0, fK is finite on (ϑ − ε,ϑ] and
h(ϑ) ≤ κK(ϑ). Then κ

�
j is continuous on (ϑ − ε,∞) for every j and thus by

Lemma 11.4, fK(θ) = h(θ) > κK(θ) on (ϑ − ε,ϑ) and fK(θ) = κK(θ) > h(θ) on
(ϑ,∞). By continuity and Lemma 11.3(ii), h(ϑ) = κK(ϑ) = �ϑ . Let I be those
j < K with κ

�
j (ϑ) = �ϑ and let h̃ = max{κ�

j : j ∈ I}. By reducing ε if necessary,

fK = h̃ > κK on (ϑ − ε,ϑ). Let γj = inf ∂κ
�
j (ϑ) and take J to be an index giving

min{γj : j ∈ I}. Take ε′ > 0. Then, for some δ > 0, for θ ∈ (ϑ − δ,ϑ) and j ∈ I ,

κ
�
j (θ) ≤ κ

�
j (ϑ) + (γj − ε′)(θ − ϑ)

(=�ϑ + (γj − ε′)(θ − ϑ)
)
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for otherwise, by convexity, (γj −ε′) ∈ ∂κ
�
j (ϑ). Then, taking the max of these over

j ∈ I with δ as the minimum of those needed gives

fK(θ) = h̃(θ) ≤ �ϑ + (γJ − ε′)(θ − ϑ)

for θ ∈ (ϑ − δ,ϑ). But �θ ≤ fK(θ) everywhere. Hence

(γJ − ε′)(ϑ − θ) ≤ �(ϑ − θ)θ ∈ (ϑ − δ,ϑ)

and so γJ ≤ �. Therefore, for θ ≤ ϑ ,

fK(θ) ≥ κ
�
J (θ) ≥ �ϑ + γJ (θ − ϑ) ≥ �θ

and for θ > ϑ , fK(θ) = κK(θ) and is strictly greater than both κJ (θ) and �θ . Thus
(11.3) holds in this case, too, giving � = �(M[κ�

J , κK ]∗). �

PROOF OF THEOREM 3.3. Applying Lemma 11.6 to every sequential process
gives the first formula for �. Fix i ⇒ j . Let f = κi , κ = κj and g = M[f �, κ] so
that �(C[κ∗◦

i , κ∗
j ]) = �(g∗). Now, an application of Lemma 10.1 (with C = [0,∞))

and then of (7.1) in Proposition 7.1 gives the second formula. �

12. Expected numbers.

THEOREM 12.1. Consider a sequential process with K classes, C1, . . . , CK ,
with corresponding PF+eigenvalues κ1, . . . , κK and in which C1 is primitive. Sup-
pose that⋂

j≤K

D(κj ) �= ∅ and
⋂

j≤i+1

D(κj ) ⊂ Di,i+1 for i = 1, . . . ,K − 1.(12.1)

Define Ri recursively by R1 = κ∗
1 and Ri = C[Ri−1, κ

∗
i ] for i = 2, . . . ,K . Then

1

n
log
(
EνZ

(n)
σ [na,∞)

)→ −RK(a)(12.2)

except possibly at the upper endpoint of the interval on which RK is finite.

PROOF. Suppose that mυτ > 0 for υ ∈ CK−1 and τ ∈ CK . Then∫
eθz

EνZ
(n)
σ (dz) =

n−1∑
r=0

(m(θ)r)νυm(θ)υτ (m(θ)n−r−1)τσ

and so, by induction on the number of classes,

1

n
log
∫

eθz
EνZ

(n)
σ (dz) → max

i
{κi(θ)} for θ > 0.

The second part of (12.1) ensures the off-diagonal terms have no effect; the first
part ensures that the limit here is finite for some θ > 0. Induction on the number
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of classes shows that RK is the F-dual of maxi{κi(θ)}. Now, as in Proposition 2.1,
large deviation theory gives (12.2). �

Although RK is defined recursively it can be defined directly as the convex
minorant of κ∗

1 , . . . , κ∗
K . It is easy to see, by induction, that ri ≥ Ri , so that �(rK) ≤

�(RK). To see that Ri and ri really can be different, notice that the order of the
classes matters in ri but does not in Ri . It is easy to give a two-type reducible
example where �(rK) < �(RK). More specifically, arrange κ∗

1 and κ∗
2 so that:

(i) κ∗
1 (�) = κ∗

2 (�) = 0,
(ii) κ∗

1 (x) < κ∗
2 (x) for x > �,

(iii) their convex minorant is less than zero at �.
Then in computing �(rK), these last two conditions do not matter, and

�(rK) = �. However, they do matter in computing �(RK) which will be bigger
than �. Note too that, if instead of type 1 preceding type 2 here, type 2 preceded
type 1, then �(rK) = �(RK) and this would be an example of super-speed, as
described toward the end of the Introduction and in Biggins (2010).

13. Further lower bounds. Consider a sequential process with mυτ > 0 for
υ ∈ CK−1 and τ ∈ CK . Once either (2.13) or (2.14) fails for i = K −1, the behavior
of EυZτ [x,∞) starts to exert an influence: the spatial spread of the children in
the final class (of type τ ) born to a parent in the penultimate class (of type υ)
matters. It seems that some regularity is needed beyond knowledge of the interval
of convergence of mυτ to derive a result similar to Theorem 2.4 in this case. The
conditions (13.1) and (13.2) in the next result are on the tails of the distribution of
average numbers of type τ born to a type υ .

THEOREM 13.1. Make the same assumptions as in Theorem 2.3; define gi by
the recursion (2.15) in Theorem 2.7 and assume (2.12) holds. Let υ ∈ CK−1 and
τ ∈ CK be the types for which mυτ �= 0 and let

ψ = sup{ψ :mυτ (ψ) < ∞} = sup DK−1,K,

ψ = inf{ψ :mυτ (ψ) < ∞} = inf DK−1,K .

Assume also that

lim
1

n
log
(
Z(n)

υ [na,∞)
)= −g∗◦

K−1(a) a.s.-Pν.

Finally, assume both of the following: if (2.13) fails for i = K − 1, then

lim
x→∞

log EυZτ [x,∞)

x
= −ψ;(13.1)

if (2.14) fails for i = K − 1, then

lim
x→−∞

log EυZτ [x,∞)

x
= −ψ.(13.2)
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Then

lim
1

n
log
(
Z(n)

σ [na,∞)
)= −g∗◦

K(a) a.s.-Pν.

Note that Kawata [(1972), Theorem 7.7.4] shows that the lim sup of the se-
quences in (13.1) and (13.2) must be −ψ and −ψ , respectively. Thus, the sub-
stance of each condition is that the lim inf equals the corresponding lim sup. This
theorem improves on the lower bound in Theorem 2.3 in some cases, and matches
the upper bound already obtained. It is not too hard to obtain with the machinery
already established.

LEMMA 13.2. In a sequential process, let υ ∈ CK−1, τ ∈ CK , ψ and ψ as in
Theorem 13.1 and suppose that for ν ∈ C1, and k-convex f with �(f ∗) > −∞,

lim
1

n
log
(
Z(n)

υ [na,∞)
)= −f ∗◦(a) a.s.-Pν

for a �= �(f ∗). Let χ1(θ) = − log I (θ ∈ [ψ,∞)) and χ2(θ) = − log I (θ ∈
(−∞,ψ]). Then

lim inf
1

n
log
(
F (n)

τ [na,∞)
)≥ −g∗◦(a) a.s.-Pν

for all a < �(g∗), where:

(i) g = f � or
(ii) g = f � + χ2 when (13.1) holds, or

(iii) g = f � + χ1 when (13.2) holds, or
(iv) g = f � + χ1 + χ2 when both (13.1) and (13.2) hold.

PROOF. Case (i) is given by Proposition 6.1. Let C = DK−1,K . Case (iv) is
considered; the other two are similar. Assume f �(θ) < ∞ for some θ < ψ and
that ψ < ∞; otherwise this is equivalent to cases (ii) or (iii). Then

g∗(a) = sup
θ∈C

{θa − f �(a)} = sup
θ∈C

{θa − f �(a)}.

Let

γ = inf{γ ′ :γ ′ ∈ ∂f �(θ), θ ∈ C}
and let γ be the supremum over the same set: both are finite. Calculations like
those in Lemma 7.5 show that

g∗(a) =
⎧⎪⎨⎪⎩

ψa − f �(ψ), a ∈ (−∞, γ ],
f ∗◦(a), a ∈ (γ , γ ),

ψa − f �(ψ), a ∈ [γ ,∞).
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The number to the right of nc in generation n exceeds Nn = Z
(n−1)
υ [na,∞)

independent copies of Zτ [n(c − a),∞) under Pυ . Let the expectation of the latter
be ẽn. Here a < c, since n(c − a) must go to infinity, but otherwise a may be
chosen freely. When f ∗◦(a) < 0, Lemma 6.5 and (13.1) give

lim inf
n

1

n
log E

[
Z(n)

τ [nc,∞)|F (n−1)]≥ lim inf
n

1

n
(logNn + log ẽn)

≥ −(f ∗◦(a) + ψ(c − a)
)

and so, maximizing over the available a,

lim inf
n

1

n
log E

[
Z(n)

τ [nc,∞)|F (n−1)]≥ sup
f ∗◦(a)<0,a<c

{ψa − f ∗◦(a)} − ψc.

Since f ∗◦ is closed, increasing and infinite when positive, {f ∗◦(a) < 0, a < c} may
be replaced by {a ≤ c}. Then using Lemmas 7.4 and 7.5

lim inf
n

1

n
log E

[
Z(n)

τ [nc,∞)|F (n−1)]≥ {f �(ψ) − ψc, for c ≥ γ ,
−f ∗◦(c), for c < γ ,

when this is strictly positive. Similarly, but with a > c, so that n(c − a) goes to
minus infinity,

lim inf
n

1

n
log E

[
Z(n)

τ [nc,∞)|F (n−1)]≥ lim inf
n

1

n
(logNn + log ẽn)

≥ −(f ∗◦(a) + ψ(c − a)
)

provided the latter is strictly positive. Then, maximizing over a > c,

lim inf
n

1

n
log E

[
Z(n)

σ [nc,∞)|F (n−1)]≥ {f �(ψ) − ψc, for c ≤ γ ,
−f ∗◦(c), for c > γ ,

again, provided the latter is strictly positive.
Combining these,

lim inf
n

1

n
log E

[
Z(n)

σ [nc,∞)|F (n−1)]≥ −g∗(c),

when this is strictly positive. Then conditional Borel–Cantelli and continuity of g∗◦
complete the proof. �

PROOF OF THEOREM 13.1. First apply Lemma 9.1 to determine which of the
four possibilities in Lemma 13.2 is relevant. Now use Lemma 13.2 to show

lim inf
1

n
log
(
F (n)

τ [na,∞)
)≥ −g∗◦

K−1(a) a.s.-Pν,

and then use Theorem 6.2 to complete the proof. �
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