
The Annals of Applied Probability
2012, Vol. 22, No. 3, 1167–1214
DOI: 10.1214/11-AAP792
© Institute of Mathematical Statistics, 2012

EFFICIENT MONTE CARLO FOR HIGH EXCURSIONS OF
GAUSSIAN RANDOM FIELDS

BY ROBERT J. ADLER1, JOSE H. BLANCHET2 AND JINGCHEN LIU3

Technion, Columbia Uninversity and Columbia Uninversity

Our focus is on the design and analysis of efficient Monte Carlo methods
for computing tail probabilities for the suprema of Gaussian random fields,
along with conditional expectations of functionals of the fields given the ex-
istence of excursions above high levels, b. Naïve Monte Carlo takes an ex-
ponential, in b, computational cost to estimate these probabilities and condi-
tional expectations for a prescribed relative accuracy. In contrast, our Monte
Carlo procedures achieve, at worst, polynomial complexity in b, assuming
only that the mean and covariance functions are Hölder continuous. We also
explain how to fine tune the construction of our procedures in the presence of
additional regularity, such as homogeneity and smoothness, in order to further
improve the efficiency.

1. Introduction. This paper centers on the design and analysis of efficient
Monte Carlo techniques for computing probabilities and conditional expectations
related to high excursions of Gaussian random fields. More specifically, suppose
that f :T × � → R is a continuous Gaussian random field over a d-dimensional
compact set T ⊂ R

d . (Additional regularity conditions on T will be imposed be-
low, as needed.)

Our focus is on tail probabilities of the form

w(b) = P

(
max
t∈T

f (t) > b
)

(1.1)

and on conditional expectations

E

[
�(f )

∣∣max
t∈T

f (t) > b
]

(1.2)

as b → ∞, where � is a functional of the field, which, for concreteness we take to
be positive and bounded.
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While much of the paper will concentrate on estimating the exceedance proba-
bility (1.1), it is important to note that our methods, based on importance sampling,
are broadly applicable to the efficient evaluation of conditional expectations of the
form (1.2). Indeed, as we shall explain at the end of Section 4, our approach to ef-
ficient importance sampling is based on a procedure which mimics the conditional
distribution of f , given that maxT f (t) > b. Moreover, once an efficient (in a pre-
cise mathematical sense described in Section 2) importance sampling procedure is
in place, it follows under mild regularity conditions on � that an efficient estimator
for (1.2) is immediately obtained by exploiting an efficient estimator for (1.1).

The need for an efficient estimator of ω(b) should be reasonably clear. Suppose
one could simulate

f ∗ � sup
t∈T

f (t)

exactly (i.e., without bias) via naïve Monte Carlo. Such an approach would
typically require a number of replications of f ∗ which would be exponen-
tial in b2 to obtain an accurate estimate (in relative terms). Indeed, since in
great generality (see [20]) w(b) = exp(−cb2 + o(b2)) as b → ∞ for some
c ∈ (0,∞), it follows that the average of n i.i.d. Bernoulli trials each with suc-
cess parameter w(b) estimates w(b) with a relative mean squared error equal to
n−1/2(1 − w(b))1/2/w(b)1/2. To control the size of the error therefore requires4

n = �(w(b)−1), which is typically prohibitively large. In addition, there is also a
problem in that typically f ∗ cannot be simulated exactly and that some discretiza-
tion of f is required.

Our goal is to introduce and analyze simulation estimators that can be applied to
a general class of Gaussian fields and that can be shown to require at most a poly-
nomial number of function evaluations in b to obtain estimates with a prescribed
relative error. The model of computation that we use to count function evaluations
and the precise definition of an algorithm with polynomial complexity is given
in Section 2. Our proposed estimators are, in particular, asymptotically optimal.
(This property, which is a popular notion in the context of rare-event simulation
(cf. [7, 13]) essentially requires that the second moments of estimators decay at
the same exponential rate as the square of the first moments.) The polynomial
complexity of our estimators requires to assume no more than that the underlying
Gaussian field is Hölder continuous; see Theorem 3.1 in Section 3. Therefore, our
methods provide means for efficiently computing probabilities and expectations
associated with high excursions of Gaussian random fields in wide generality.

4Given h and g positive, we shall use the familiar asymptotic notation h(x) = O(g(x)) if there
is c < ∞ such that h(x) ≤ cg(x) for all x large enough; h(x) = �(g(x)) if h(x) ≥ cg(x) if x is
sufficiently large and h(x) = o(g(x)) as x → ∞ if h(x)/g(x) → 0 as x → ∞; and h(x) = �(g(x))

if h(x) = O(g(x)) and h(x) = �(g(x)).
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In the presence of enough smoothness, we shall also show how to design esti-
mators that can be shown to be strongly efficient, in the sense that their associated
coefficient of variation remains uniformly bounded as b → ∞. Moreover, the as-
sociated path generation of the conditional field (given a high excursion) can, basi-
cally, be carried out with the same computational complexity as the unconditional
sampling procedure (uniformly in b). This is Theorem 3.3 in Section 3.

High excursions of Gaussian random fields appear in wide number of applica-
tions, including, but not limited to:

• Physical oceanography: Here the random field can be water pressure or surface
temperature. See [4] for many examples.

• Cosmology: This includes the analysis of COBE and WMAP microwave data
on a sphere or galactic density data; for example, [9, 25, 26].

• Quantum chaos: Here random planar waves replace deterministic (but unobtain-
able) solutions of Schrodinger equations; for example, the recent review [15].

• Brain mapping: This application is the most developed and very widely used.
For example, the paper by Friston et al. [17] that introduced random field
methodology to the brain imaging community has, at the time of writing, over
4,500 (Google) citations.

Many of these applications deal with twice differentiable, constant variance ran-
dom fields, or random fields that have been normalized to have constant variance,
the reason being that they require estimates of the tail probabilities (1.1) and these
are only really well known in the smooth, constant (unit) variance case. In partic-
ular, it is known that, with enough smoothness assumptions,

lim inf
b→∞ −b−2 log

∣∣∣P (sup
t∈T

f (t) ≥ b
)

− E
(
χ
({t ∈ T :f (t) ≥ b}))∣∣∣

(1.3)

≥ 1

2
+ 1

2σ 2
c

,

where χ(A) is the Euler characteristic of the set A, and the term σ 2
c is related to a

geometric quantity known as the critical radius of T and depends on the covariance
structure of f ; see [5, 27] for details. Since both the probability and the expectation
in (1.3) are typically O(b� exp(−b2/2)) for some � ≥ 0 and large b, a more user
friendly (albeit not quite as correct) way to write (1.3) is

P
(
sup
t∈T

f (t) ≥ b
)

≈ E
(
χ
({t ∈ T :f (t) ≥ b}))× (1 + O(e−cb2

)
)

(1.4)

for some c.
The expectation in (1.3) and (1.4) has an explicit form that is readily computed

for Gaussian and Gaussian-related random fields of constant variance (see [5, 6]
for details), although if T is geometrically complicated or the covariance of f

highly nonstationary there can be terms in the expectation that can only be eval-
uated numerically or estimated statistically; for example, [2, 28]. Nevertheless,
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when available, (1.3) provides excellent approximations and simulation studies
have shown that the approximations are numerically useful for quite moderate b,
of the order of 2 standard deviations.

However, as we have already noted, (1.3) holds only for constant variance fields,
which also need to be twice differentiable. In the case of less smooth f , other
classes of results occur, in which the expansions are less reliable and, in addition,
typically involve the unknown Pickands’ constants; cf. [8, 24].

These are some of the reasons why, despite a well developed theory, Monte
Carlo techniques still have a significant role to play in understanding the behavior
of Gaussian random fields at high levels. The estimators proposed in this paper
basically reduce the rare event calculations associated to high excursions in Gaus-
sian random fields to calculations that are roughly comparable to the evaluation
of expectations or integrals in which no rare event is involved. In other words, the
computational complexity required to implement the estimators discussed here is
similar in some sense to the complexity required to evaluate a given integral in fi-
nite dimension or an expectation where no tail parameter is involved. To the best of
our knowledge these types of reductions have not been studied in the development
of numerical methods for high excursions of random fields. This feature distin-
guishes the present work from the application of other numerical techniques that
are generic (such as quasi-Monte Carlo and other numerical integration routines)
and that in particular might be also applicable to the setting of Gaussian fields.

Contrary to our methods, which are designed to have provably good perfor-
mance uniformly over the level of excursion, a generic numerical approximation
procedure, such as quasi-Monte Carlo, will typically require an exponential in-
crease in the number of function evaluations in order to maintain a prescribed
level of relative accuracy. This phenomenon is unrelated to the setting of Gaussian
random fields. In particular, it can be easily seen to happen even when evaluating
a one-dimensional integral with a small integrand. On the other hand, we believe
that our estimators can, in practice, be easily combined with quasi-Monte Carlo
or other numerical integration methods. The rigorous analysis of such hybrid ap-
proaches, although of great interest, requires an extensive treatment and will be
pursued in the future. As an aside, we note that quasi-Monte Carlo techniques
have been used in the excursion analysis of Gaussian random fields in [8].

The remainder of the paper is organized as follows. In Section 2 we introduce
the basic notions of polynomial algorithmic complexity, which are borrowed from
the general theory of computation. Section 3 discusses the main results in light of
the complexity considerations of Section 2. Section 4 provides a brief introduction
to importance sampling, a simulation technique that we shall use heavily in the
design of our algorithms. The analysis of finite fields, which is given in Section 5,
is helpful to develop the basic intuition behind our procedures for the general case.
Section 6 provides the construction and analysis of a polynomial time algorithm for
high excursion probabilities of Hölder continuous fields. Finally, in Section 7, we
add additional smoothness assumptions along with stationarity and explain how to
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fine tune the construction of our procedures in order to further improve efficiency
in these cases.

2. Basic notions of computational complexity. In this section we shall dis-
cuss some general notions of efficiency and computational complexity related to
the approximation of the probability of the rare events {Bb :b ≥ b0}, for which
P(Bb) → 0 as b → ∞. In essence, efficiency means that computational complex-
ity is, in some sense, controllable, uniformly in b. A notion that is popular in the
efficiency analysis of Monte Carlo methods for rare events is weak efficiency (also
known as asymptotic optimality) which requires that the coefficient of variation of
a given estimator, Lb of P(Bb), to be dominated by 1/P (Bb)

ε for any ε > 0. More
formally, we have:

DEFINITION 2.1. A family of estimators {Lb :b ≥ b0} is said to be polynomi-
ally efficient for estimating P(Bb) if E(Lb) = P(Bb), and there exists a q ∈ (0,∞)

for which

sup
b≥b0

Var(Lb)

[P(Bb)]2|logP(Bb)|q < ∞.(2.1)

Moreover, if (2.1) holds with q = 0, then the family is said to be strongly efficient.

Below we often refer to Lb as a strongly (polynomially) efficient estimator, by
which we mean that the family {Lb :b > 0} is strongly (polynomially) efficient. In

order to understand the nature of this definition let {L(j)
b ,1 ≤ j ≤ n} be a collection

of i.i.d. copies of Lb. The averaged estimator

L̂n(b) = 1

n

n∑
j=1

L
(j)
b

has a relative mean squared error equal to [Var(Lb)]1/2/[n1/2P(Bb)]. A simple
consequence of Chebyshev’s inequality is that

P
(|L̂n(b)/P (Bb) − 1| ≥ ε

)≤ Var(Lb)

ε2nP [(Bb)]2 .

Thus, if Lb is polynomially efficient, and we wish to compute P(Bb) with at most
ε relative error and at least 1 − δ confidence, it suffices to simulate

n = �(ε−2δ−1|logP(Bb)|q)
i.i.d. replications of Lb. In fact, in the presence of polynomial efficiency, the bound
n = �(ε−2δ−1|logP(Bb)|q) can be boosted to n = �(ε−2 log(δ−1)|logP(Bb)|q)
using the so-called median trick; see [23].

Naturally, the cost per replication must also be considered in the analysis, and
we shall do so, but the idea is that evaluating P(Bb) via crude Monte Carlo would
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require, given ε and δ, n = �(1/P (Bb)) replications. Thus a polynomially effi-
ciently estimator makes the evaluation of P(Bb) exponentially faster relative to
crude Monte Carlo, at least in terms of the number of replications.

Note that a direct application of deterministic algorithms (such as quasi-Monte
Carlo or quadrature integration rules) might improve (under appropriate smooth-
ness assumptions) the computational complexity relative to Monte Carlo, although
only by a polynomial rate (i.e., the absolute error decreases to zero at rate n−p for
p > 1/2, where n is the number of function evaluations and p depends on the
dimension of the function that one is integrating; see, e.g., [7]). We believe that
the procedures that we develop in this paper can guide the construction of efficient
deterministic algorithms with small relative error and with complexity that scales
at a polynomial rate in |logP (Bb)|. This is an interesting research topic that we
plan to explore in the future.

An issue that we shall face in designing our Monte Carlo procedure is that,
due to the fact that f will have to be discretized, the corresponding estimator L̃b

will not be unbiased. In turn, in order to control the relative bias with an effort
that is comparable to the bound on the number of replications discussed in the
preceding paragraph, one must verify that the relative bias can be reduced to an
amount less than ε with probability at least 1 − δ at a computational cost of the
form O(ε−q0 |logP(Bb)|q1). If L̃b(ε) can be generated with O(ε−q0 |logP (Bb)|q1)

cost, and satisfying |P(Bb) − EL̃b(ε)| ≤ εP (Bb), and if

sup
b>0

Var(L̃b(ε))

P (Bb)2|logP(Bb)|q < ∞

for some q ∈ (0,∞), then L̂′
n(b, ε) =∑n

j=1 L̃
(j)
b (ε)/n, where the L̃

(j)
b (ε)’s are

i.i.d. copies of L̃b(ε), satisfies

P
(|L̂′

n(b, ε)/P (Bb) − 1| ≥ 2ε
)≤ Var(L̃b(ε))

ε2 × n × P(Bb)2 .

Consequently, taking n = �(ε−2δ−1|logP (Bb)|q) suffices to give an estimator
with at most ε relative error and 1 − δ confidence, and the total computational cost
is �(ε−2−q0δ−1|logP(Bb)|q+q1).

We shall measure computational cost in terms of function evaluations such as
a single addition, a multiplication, a comparison, the generation of a single uni-
form random variable on T , the generation of a single standard Gaussian random
variable and the evaluation of �(x) for fixed x ≥ 0, where

�(x) = 1 − �(x) = 1√
2π

∫ x

−∞
e−s2/2 ds.

All of these function evaluations are assumed to cost at most a fixed amount c
of computer time. Moreover, we shall also assume that first- and second-order
moment characteristics of the field, such as μ(t) = Ef (t) and C(s, t) = Cov(f (t),
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f (s)) can be computed in at most c units of computer time for each s, t ∈ T . We
note that similar models of computation are often used in the complexity theory of
continuous problems; see [29].

The previous discussion motivates the next definition which has its roots in the
general theory of computation in both continuous and discrete settings [22, 29].
In particular, completely analogous notions in the setting of complexity theory of
continuous problems lead to the notion of “tractability” of a computational prob-
lem [31].

DEFINITION 2.2. A Monte Carlo procedure is said to be a fully polyno-
mial randomized approximation scheme (FPRAS) for estimating P(Bb) if, for
some q, q1, q2 ∈ [0,∞), it outputs an averaged estimator that is guaranteed to
have at most ε > 0 relative error with confidence at least 1 − δ ∈ (0,1) in
�(ε−q1δ−q2 |logP (Bb)|q) function evaluations.

The terminology adopted, namely FPRAS, is borrowed from the complexity
theory of randomized algorithms for counting [22]. Many counting problems can
be expressed as rare event estimation problems. In such cases it typically occurs
that the previous definition (expressed in terms of a rare event probability) coin-
cides precisely with the standard counting definition of a FPRAS (in which there is
no reference to any rare event to estimate). This connection is noted, for instance,
in [11]. Our terminology is motivated precisely by this connection.

By letting Bb = {f ∗ > b}, the goal in this paper is to design a class of fully poly-
nomial randomized approximation schemes that are applicable to a general class
of Gaussian random fields. In turn, since our Monte Carlo estimators will be based
on importance sampling, it turns out that we shall also be able to straightforwardly
construct FPRASs to estimate quantities such as E[�(f )|supt∈T f (t) > b] for a
suitable class of functionals � for which �(f ) can be computed with an error of
at most ε with a cost that is polynomial as function of ε−1. We shall discuss this
observation in Section 4, which deals with properties of importance sampling.

3. Main results. In order to state and discuss our main results we need some
notation. For each s, t ∈ T define

μ(t) = E(f (t)), C(s, t) = Cov(f (s), f (t)),

σ 2(t) = C(t, t) > 0, r(s, t) = C(s, t)

σ (s)σ (t)
.

Moreover, given x ∈ R
d and β > 0 we write |x| =∑d

j=1|xj |, where xj is the j th
component of x. We shall assume that, for each fixed s, t ∈ T , both μ(t) and C(s, t)

can be evaluated in at most c units of computing time.
Our first result shows that under modest continuity conditions on μ, σ and r it

is possible to construct an explicit FPRAS for w(b) under the following regularity
conditions:
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(A1) the field f is almost surely continuous on T ;
(A2) for some δ > 0 and |s − t | < δ, the mean and variance functions satisfies

|σ(t) − σ(s)| + |μ(t) − μ(s)| ≤ κH |s − t |β;
(A3) for some δ > 0 and |s − s′| < δ, |t − t ′| < δ the correlation function of f

satisfies

|r(t, s) − r(t ′, s′)| ≤ κH [|t − t ′|β + |s − s′|β];
(A4) 0 ∈ T . There exist κ0 and ωd such that, for any t ∈ T and ε small enough,

m
(
B(t, ε) ∩ T

)≥ κ0ε
dωd,

where m is the Lebesgue measure, B(t, ε) = {s : |t − s| ≤ ε} and ωd = m(B(0,1)).

The assumption is that 0 ∈ T is of no real consequence and is adopted only for
notational convenience.

THEOREM 3.1. Suppose that f :T → R is a Gaussian random field satisfying
conditions (A1)–(A4) above. Then, algorithm 6.1 provides a FPRAS for w(b).

The polynomial rate of the intrinsic complexity bound inherent in this result is
discussed in Section 6, along with similar rates in results to follow. The condi-
tions of the previous theorem are weak and hold for virtually all applied settings
involving continuous Gaussian fields on compact sets.

Not surprisingly, the complexity bounds of our algorithms can be improved
upon under additional assumptions on f . For example, in the case of finite fields
(i.e., when T is finite) with a nonsingular covariance matrix, we can show that the
complexity of the algorithm is actually bounded as b ↗ ∞. We summarize this in
the next result, whose proof, which is given in Section 5, is useful for understand-
ing the main ideas behind the general procedure.

THEOREM 3.2. Suppose that T is a finite set, and f has a nonsingular co-
variance matrix over T × T . Then Algorithm 5.3 provides a FPRAS with q = 0.

As we indicated above, the strategy behind the discrete case provides the basis
for the general case. In the general situation, the underlying idea is to discretize the
field with an appropriate sampling (discretization) rule that depends on the level
b and the continuity characteristics of the field. The number of sampling points
grows as b increases, and the complexity of the algorithm is controlled by finding
a good sampling rule. There is a trade-off between the number of points sampled,
which has a direct impact on the complexity of the algorithm, and the fidelity
of the discrete approximation to the continuous field. Naturally, in the presence
of enough smoothness and regularity, more information can be obtained with the
same sample size. This point is illustrated in the next result, Theorem 3.3, which
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considers smooth, homogeneous fields. Note that in addition to controlling the
error induced by discretizing the field, the variance is strongly controlled and the
discretization rule is optimal, in a sense explained in Section 7. For Theorem 3.3
we require the following additional regularity conditions:

(B1) f is homogeneous and almost surely twice continuously differentiable;
(B2) 0 ∈ T ⊂ R

d is a d-dimensional convex set with nonempty interior. Denot-
ing its boundary by ∂T , assume that ∂T is a (d −1)-dimensional manifold without
boundary. For any t ∈ T , assume that there exists κ0 > 0 such that

m
(
B(t, ε) ∩ T

)≥ κ0ε
d

for any ε < 1, where m is Lebesgue measure.

THEOREM 3.3. Let f satisfy conditions (B1) and (B2). Then Algorithm 7.3
provides a FPRAS. Moreover, the underlying estimator is strongly efficient and
there exists a discretization scheme for f which is optimal in the sense of Theo-
rem 7.4.

The results stated in Theorem 3.3 are stronger than those in Theorem 3.1. This
is because conditions (B1) and (B2) are much stronger than conditions (A1)–(A4).
The structure present in Theorem 3.3 allows us to carry out a more refined com-
plexity analysis. Using smoothness and homogeneity, the conditional distribution
of the random field given a high excursion can be described quite precisely in an
asymptotic sense using its derivatives. In our analysis we take advantage of such a
conditional description, which is not available for Hölder continuous fields. On the
other hand, it might be possible that the algorithms developed for Theorem 3.1, or
closely related variations, are in fact strongly efficient for certain Hölder continu-
ous fields. We leave this more refined analysis to future study.

4. Importance sampling. Importance sampling is based on the basic identity,
for fixed measurable B ,

P(B) =
∫

1(ω ∈ B)dP (ω) =
∫

1(ω ∈ B)
dP

dQ
(ω)dQ(ω),(4.1)

where we assume that the probability measure Q is such that Q(· ∩ B) is abso-
lutely continuous with respect to the measure P(· ∩ B). If we use EQ to denote
expectation under Q, then (4.1) trivially yields that the random variable

L(ω) = 1(ω ∈ B)
dP

dQ
(ω)

is an unbiased estimator for P(B) > 0 under the measure Q, or, symbolically,
EQL = P(B).

An averaged importance sampling estimator based on the measure Q, which
is often referred as an importance sampling distribution or a change-of-measure,
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is obtained by simulating n i.i.d. copies L(1), . . . ,L(n) of L under Q and com-
puting the empirical average L̂n = (L(1) + · · · + L(n))/n. A central issue is that
of selecting Q in order to minimize the variance of L̂n. It is easy to verify that
if Q∗(·) = P(·|B) = P(· ∩ B)/P (B), then the corresponding estimator has zero
variance. However, Q∗ is clearly a change of measure that is of no practical value,
since P(B)—the quantity that we are attempting to evaluate in the first place—is
unknown. Nevertheless, when constructing a good importance sampling distribu-
tion for a family of sets {Bb :b ≥ b0} for which 0 < P(Bb) → 0 as b → ∞, it is
often useful to analyze the asymptotic behavior of Q∗ as P(Bb) → 0 in order to
guide the construction of a good Q.

We now describe briefly how an efficient importance sampling estimator for
P(Bb) can also be used to estimate a large class of conditional expectations
given Bb. Suppose that a single replication of the corresponding importance sam-
pling estimator,

Lb
�= 1(ω ∈ Bb)dP/dQ

can be generated in O(log|P(Bb)|q0) function evaluations, for some q0 > 0, and
that

Var(Lb) = O([P(Bb)]2 log|P(Bb)|q0).

These assumptions imply that by taking the average of i.i.d. replications of Lb we
obtain a FPRAS.

Fix β ∈ (0,∞), and let X (β, q) be the class of random variables X satisfying
0 ≤ X ≤ β with

E[X|Bb] = �[1/ log(P (Bb))
q].(4.2)

Then, by noting that

EQ(XLb)

EQ(Lb)
= E[X|Bb] = E[X;Bb]

P(Bb)
,(4.3)

it follows easily that a FPRAS can be obtained by constructing the natural esti-
mator for E[X|Bb]; that is, the ratio of the corresponding averaged importance
sampling estimators suggested by the ratio in the left of (4.3). Of course, when
X is difficult to simulate exactly, one must assume the bias E[X;Bb] can be re-
duced in polynomial time. The estimator is naturally biased, but the discussion on
FPRAS on biased estimators given in Section 2 can be directly applied.

In the context of Gaussian random fields, we have that Bb = {f ∗ > b}, and
one is very often interested in random variables X of the form X = �(f ), where
� :C(T ) → R, and C(T ) denotes the space of continuous functions on T . Endow-
ing C(T ) with the uniform topology, consider functions � that are nonnegative and
bounded by a positive constant. An archetypical example is given by the volume of
(conditioned) high-level excursion sets with β = m(T ) is known to satisfy (4.2).
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However, there are many other examples of X (β, q) with β = m(T ) which satisfy
(4.2) for a suitable q , depending on the regularity properties of the field. In fact, if
the mean and covariance properties of f are Hölder continuous, then, using simi-
lar techniques as those given in the arguments of Section 6, it is not difficult to see
that q can be estimated.

In case that �(f ) is not bounded, the analysis is usually case-by-case. In partic-
ular, we need to investigate

EQ(�2(f )L2
b) = E(�2(f )Lb|Bb)P (Bb).

We provide a brief calculation for the case of the conditional overshoot, that is,
�(f ) = f ∗ − b and Bb = {f ∗ > b}. We admit the change of measure defined later
in (6.5). Then, given {f ∗ > b}, �2(f ) and Lb are negatively correlated (the higher
the overshoot is, the larger the excursion set is), and we can obtain that

EQ(�2(f )L2
b) ≤ E(�2(f )|Bb)E(Lb).

Conditional on the occurrence of {f ∗ > b}, b�(f ) asymptotically follows an expo-
nential distribution. Therefore, E(�2(f )|Bb) = (1 + o(1))E2(�(f )|Bb). Together
with the FPRAS of Lb in computing P(Bb), �(f )Lb is an FPRAS to compute the
conditional overshoot. The corresponding numerical examples are given in Sec-
tion 8. Two key steps involve the analyses of the conditional correlation of �2(f )

and Lb and the conditional distribution of �(f ) given Bb.
Thus, we have that a FPRAS based importance sampling algorithm for w(b)

would typically also yield a polynomial time algorithm for functional characteris-
tics of the conditional field given high level excursions. Since this is a very impor-
tant and novel application, we devote the remainder of this paper to the develop-
ment of efficient importance sampling algorithms for w(b).

5. The basic strategy: Finite fields. In this section we develop our main ideas
in the setting in which T is a finite set of the form T = {t1, . . . , tM}. To empha-
size the discrete nature of our algorithms in this section, we write Xi = f (ti) for
1, . . . ,M and set X = (X1, . . . ,XM). This section is mainly of an expository na-
ture, since much of it has already appeared in [3]. Nevertheless, it is included here
as a useful guide to the intuition behind the algorithms for the continuous case.

We have already noted that in order to design an efficient importance sampling
estimator for w(b) = P(max1≤i≤M Xi > b) it is useful to study the asymptotic
conditional distribution of X, given that max1≤i≤M Xi > b. Thus, we begin with
some basic large deviation results.

PROPOSITION 5.1. For any set of random variables X1, . . . ,XM ,

max
1≤i≤M

P(Xi > b) ≤ P
(

max
1≤i≤M

Xi > b
)

≤
M∑

j=1

P(Xj > b).
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Moreover, if the Xj are mean zero, Gaussian, and the correlation between Xi and
Xj is strictly less than 1, then

P(Xi > b,Xj > b) = o
(
max[P(Xi > b),P (Xj > b)]).

Thus, if the associated covariance matrix of X is nonsingular,

w(b) = (1 + o(1)
) M∑
j=1

P(Xj > b).

PROOF. The lower bound in the first display is trivial, and the upper bound
follows by the union bound. The second display follows easily by working with
the joint density of a bivariate Gaussian distribution (e.g., [10, 21]) and the third
claim is a direct consequence of the inclusion–exclusion principle. �

As noted above, Q∗ corresponds to the conditional distribution of X given
that X∗ � max1≤i≤M Xi > b. It follows from Proposition 5.1 that, conditional on
X∗ > b, the probability that two or more Xj exceed b is negligible. Moreover, it
also follows that

P(Xi = X∗|X∗ > b) = (1 + o(1)
) P(Xi > b)∑M

j=1 P(Xj > b)
.

The following corollary now follows as an easy consequence of these observations.

COROLLARY 5.2.

dTV(Q∗, Q) → 0

as b → ∞, where dTV denotes the total variation norm, and Q is defined, for Borel
B ⊂ R

M , as

Q(X ∈ B) =
M∑
i=1

p(i, b)P [X ∈ B|Xi > b],

where

p(i, b) = P(Xi > b)∑M
j=1 P(Xj > b)

.

PROOF. Pick an arbitrary Borel B . Then we have that

Q∗(X ∈ B) = P [X ∈ B,max1≤i≤M Xi > b]
w(b)

≤
M∑
i=1

P [X ∈ B,Xi > b]
w(b)

=
M∑
i=1

P [X ∈ B|Xi > b] p(i, b)

(1 + o(1))
.
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The above, which follows from the union bound and the last part of Proposition 5.1
combined with the definition of Q, yields that for each ε > 0 there exists b0 (inde-
pendent of B) such that, for all b ≥ b0,

Q∗(X ∈ B) ≤ Q(X ∈ B)/(1 − ε).

The lower bound follows similarly, using the inclusion–exclusion principle and the
second part of Proposition 5.1. �

Corollary 5.2 provides support for choosing Q as an importance sampling dis-
tribution. Of course, we still have to verify that the corresponding algorithm is a
FPRAS. The importance sampling estimator induced by Q takes the form

Lb = dP

dQ
=
∑M

j=1 P(Xj > b)∑M
j=1 1(Xj > b)

.(5.1)

Note that under Q we have that X∗ > b almost surely, so the denominator in the
expression for Lb is at least 1. Therefore, we have that

EQL2
b ≤
(

M∑
j=1

P(Xj > b)

)2

,

and by virtue of Proposition 5.1 we conclude (using VarQ to denote the variance
under Q) that

VarQ(Lb)

P (X∗ > b)2 → 0

as b → ∞. In particular, it follows that Lb is strongly efficient.
Our proposed algorithm can now be summarized as follows.

ALGORITHM 5.3. There are two steps in the algorithm:
STEP (1). Simulate n i.i.d. copies X(1), . . . ,X(n) of X from the distribution Q.
STEP (2). Compute and output

L̂n = 1

n

n∑
i=1

L
(i)
b ,

where L
(i)
b =∑M

j=1 P(X
(i)
j > b)/

∑M
j=1 1(X

(i)
j > b).

Since the generation of Li under Q takes O(M3) function evaluations we con-
clude, based on the analysis given in Section 2, that Algorithm 5.3 is a FPRAS
with q = 0. This implies Theorem 3.2, as promised.
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6. A FPRAS for Hölder continuous Gaussian fields. In this section we shall
describe the algorithm and the analysis behind Theorem 3.1. Throughout the sec-
tion, unless stated otherwise, we assume conditions (A1)–(A4) of Section 3.

There are two issues related to the complexity analysis. First, since f is assumed
continuous, the entire field cannot be generated in a (discrete) computer, and so the
algorithm used in the discrete case needs adaptation. Once this is done, we need to
carry out an appropriate variance analysis.

Developing an estimator directly applicable to the continuous field will be car-
ried out in Section 6.1. This construction will not only be useful when studying
the performance of a suitable discretization, but will also help to explain some of
the features of our discrete construction. Then, in Section 6.2, we introduce a dis-
cretization approach and study the bias caused by the discretization. In addition,
we provide bounds on the variance of this discrete importance sampling estimator.

6.1. A continuous estimator. We start with a change of measure motivated by
the discrete case in Section 5. A natural approach is to consider an importance
sampling strategy analogous to that of Algorithm 5.3. The continuous adaptation
involves first sampling τb according to the probability measure

P(τb ∈ ·) = E[m(Ab ∩ ·)]
E[m(Ab)] ,(6.1)

where Ab = {t ∈ T :f (t) > b}. The idea of introducing τb in the continuous setting
is not necessarily to locate the point at which the maximum is achieved, as was the
situation in the discrete case. Rather, τb will be used to find a random point which
has a reasonable probability of being in the excursion set Ab. (This probability will
tend to be higher if f is nonhomogenous.) This relaxation will prove useful in the
analysis of the algorithm. Note that τb, with the distribution indicated in (6.1), has
a density function (with respect to Lebesgue measure) given by

hb(t) = P(f (t) > b)

E[m(Ab)] ,

and that we also can write

E[m(Ab)] = E

∫
T

1
(
f (t) > b

)
dt =

∫
T

P
(
f (t) > b

)
dt = m(T )P

(
f (U) > b

)
,

where U is uniformly distributed over T .
Once τb is generated, the natural continuous adaptation corresponding to the

strategy described by Algorithm 5.3 proceeds by sampling f conditional on
f (τb) > b. Note that if we use Q̄ to denote the change-of-measure induced by
such a continuous sampling strategy, then the corresponding importance sampling
estimator takes the form

L̄b = dP

dQ̄
= E[m(Ab)]

m(Ab)
.
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The second moment of the estimator then satisfies

EQ̄[(L̄b)
2] = E(L̄b;Ab �= ∅)

(6.2)
= E[m(Ab)]P(f ∗ > b)E[m(Ab)

−1|Ab �= ∅].
Unfortunately, it is easy to construct examples for which EQ̄[(L̄b)

2] is infinite.
For instance, consider a homogeneous and twice differentiable random field with
zero mean and unit variance living on T = [0,1]d . Using the Slepian model, dis-
cussed in Section 7, it follows that the asymptotic distribution of the overshoot
given {f ∗ > b} satisfies

b(f ∗ − b) → S,

weakly as b → ∞ where S is an exponential random variable. Consequently, the
distribution of m(Ab) given m(Ab) > 0 satisfies

m(Ab) → κb−dSd/2

for some constant κ . Therefore, the second moment in (6.2) is infinity as long as
d ≥ 2. This example suggests that the construction of the change of measure needs
to be modified slightly.

Extreme value theory considerations similar to those explained in the previ-
ous paragraph give that the overshoot of f over a given level b will be of order
�(1/b). Thus, in order to keep τb reasonably close to the excursion set, we shall
also consider the possibility of an undershoot of size �(1/b) right at τb. As we
shall see, this relaxation will allow us to prevent the variance in (6.2) becoming
infinite. Thus, instead of (6.1), we shall consider τb−a/b with density

hb−a/b(t) = P(f (t) > b − a/b)

E[m(Ab−a/b)](6.3)

for some a > 0. To ease on later notation, write

γa,b � b − a/b, τγa,b
= τb−a/b.

Let Q′ be the change of measure induced by sampling f as follows. Given τγa,b
,

sample f (τγa,b
) conditional on f (τγa,b

) > γa,b. In turn, the rest of f follows
its conditional distribution (under the nominal, or original, measure) given the
observed value f (τγa,b

). We then have that the corresponding Radon–Nikodym
derivative is

dP

dQ′ = E[m(Aγa,b
)]

m(Aγa,b
)

,(6.4)

and the importance sampling estimator L′
b is

L′
b = dP

dQ′ 1(Ab �= ∅) = E[m(Aγa,b
)]

m(Aγa,b
)

1
(
m(Ab) > 0

)
.(6.5)
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Note that we have used the continuity of the field in order to write {m(Ab) > 0} =
{Ab �= ∅} almost surely. The motivation behind this choice lies in the fact that
since m(Aγa,b

) > m(Ab) > 0, the denominator may now be big enough to control
the second moment of the estimator. In particular, we consider the homogeneous
and twice differentiable field mentioned previously. Given m(Ab) > 0, m(Aγa,b

)

is asymptotically lower bounded by κad/2b−d . As we shall see, introducing the
undershoot of size a/b will be very useful in the technical development both in the
remainder of this section and in Section 7. In addition, its introduction also pro-
vides insight into the appropriate form of the estimator needed when discretizing
the field.

6.2. Algorithm and analysis. We still need to face the problem of generating
f in a computer. Thus we now concentrate on a suitable discretization scheme,
still having in mind the change of measure leading to (6.4). Since our interest is to
ultimately design algorithms that are efficient for estimating expectations such as
E[�(f )|f ∗ > b], where � may be a functional of the whole field, we shall use a
global discretization scheme.

Consider U = (U1, . . . ,UM) where Ui are i.i.d. uniform random variables tak-
ing values in T and independent of the field f . Set TM = {U1, . . . ,UM} and Xi =
Xi(Ui) = f (Ui) for 1 ≤ i ≤ M . Then X = (X1, . . . ,Xm) (conditional on U ) is a
multivariate Gaussian random vector with conditional means μ(Ui)

�= E(Xi |Ui)

and covariances C(Ui,Uj )
�= Cov(Xi,Xj |Ui,Uj ). Our strategy is to approximate

w(b) by

wM(γa,b) = P
(

max
t∈TM

f (t) > γa,b

)
= E
[
P
(

max
1≤i≤M

Xi > γa,b

∣∣U)].
Given the development in Section 5, it might not be surprising that if we can ensure
that M = M(ε,b) is polynomial in 1/ε and b, then we shall be in a good position
to develop a FPRAS. The idea is to apply an importance sampling strategy similar
to that we considered in the construction of L′

b of (6.5), but this time it will be
conditional on U . In view of our earlier discussions, we propose sampling from
Q′′ defined via

Q′′(X ∈ B|U) =
M∑
i=1

pU(i)P [X ∈ B|Xi > γa,b,U ],

where

pU(i) = P(Xi > γa,b|U)∑M
j=1 P(Xj > γa,b|U)

.

We then obtain the (conditional) importance sampling estimator

Lb(U) =
∑M

i=1 P(Xi > γa,b|U)∑M
i=1 1(Xi > γa,b)

1
(

M
max
i=1

Xi > γa,b

)
.(6.6)
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Note that the event {maxM
i=1 Xi > γa,b} occurs with probability 1 under Q′′. There-

fore, the indicator I (maxM
i=1 Xi > γa,b) will be omitted when it does not cause

confusion. It is clear that

wM(γa,b) = EQ′′ [Lb(U)].
Suppose for the moment that M , a and the number of replications n have been

chosen. Our future analysis will, in particular, guide the selection of these param-
eters. Then the procedure is summarized by the next algorithm.

ALGORITHM 6.1. The algorithm has three steps:
STEP (1). Simulate U(1), . . . ,U(n) which are n i.i.d. copies of the vector U =

(U1, . . . ,UM) described above.
STEP (2). Conditional on each U(i), for i = 1, . . . , n, generate L

(i)
b (U(i)) as

described by (6.6) by considering the distribution of X(i)(U(i)) = (X
(i)
1 (U

(i)
1 ), . . . ,

X
(i)
M (U

(i)
M )). Generate the X(i)(U(i)) independently so that at the end we obtain that

the L
(i)
b (U(i)) are n i.i.d. copies of Lb(U).

STEP (3). Output

L̂n

(
U(1), . . . ,U(n))= 1

n

n∑
i=1

L
(i)
b

(
U(i)).

6.3. Running time of Algorithm 6.1: Bias and variance control. The remainder
of this section is devoted to the analysis of the running time of the Algorithm 6.1.
The first step lies in estimating the bias and second moment of Lb(U) under the
change of measure induced by the sampling strategy of the algorithm, which we
denote by Q′′. We start with a simple bound for the second moment.

PROPOSITION 6.2. There exists a finite λ0, depending on μT = maxt∈T |μ(t)|
and σ 2

T = maxt∈T σ 2(t), for which

EQ′′ [Lb(U)2] ≤ λ0M
2P
(
max
t∈T

f (t) > b
)2

.

PROOF. Observe that

EQ′′ [Lb(U)2]

≤ E

((
M∑
i=1

P(Xi > γa,b|Ui)

)2)

≤ E

((
M∑
i=1

sup
t∈T

P
(
f (Ui) > γa,b|Ui = t

))2)
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= M2 max
t∈T

P
(
f (t) > γa,b

)2
≤ λ0M

2 max
t∈T

P
(
f (t) > b

)2
≤ λ0M

2P
(
max
t∈T

f (t) > b
)2

,

which completes the proof. �

Next we obtain a preliminary estimate of the bias.

PROPOSITION 6.3. For each M ≥ 1 we have

|w(b) − wM(γa,b)| ≤ E
[
exp
(−Mm(Aγa,b

)/m(T )
);Ab ∩ T �= ∅

]
+ P
(
max
t∈T

f (t) > γa,b,max
t∈T

f (t) ≤ b
)
.

PROOF. Note that

|w(b) − wM(γa,b)| ≤ P
(

max
t∈TM

f (t) ≤ γa,b,max
t∈T

f (t) > b
)

+ P
(

max
t∈TM

f (t) > γa,b,max
t∈T

f (t) ≤ b
)
.

The second term is easily bounded by

P
(

max
t∈TM

f (t) > γa,b,max
t∈T

f (t) ≤ b
)

≤ P
(
max
t∈T

f (t) > γa,b,max
t∈T

f (t) ≤ b
)
.

The first term can be bounded as follows:

P
(

max
t∈TM

f (t) ≤ γa,b,max
t∈T

f (t) > b
)

≤ E
[(

P [f (Ui) ≤ γa,b|f ])M1(Ab ∩ T �= ∅)
]

≤ E
[(

1 − m(Aγa,b
)/m(T )

)M;Ab ∩ T �= ∅
]

≤ E
[
exp
(−Mm(Aγa,b

)/m(T )
);Ab ∩ T �= ∅

]
.

This completes the proof. �

The previous proposition shows that controlling the relative bias of Lb(U) re-
quires finding bounds for

E
[
exp
(−Mm(Aγa,b

)/m(T )
);Ab ∩ T �= ∅

]
(6.7)

and

P
(
max
t∈T

f (t) > γa,b,max
t∈T

f (t) ≤ b
)
,(6.8)
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and so we develop these. To bound (6.7) we take advantage of the importance
sampling strategy based on Q′ introduced earlier in (6.4). Write

E
[
exp
(−Mm(Aγa,b

)/m(T )
);m(Ab) > 0

]
(6.9)

= EQ′
(exp(−Mm(Aγa,b

)/m(T ))

m(Aγa,b
)

;m(Ab) > 0
)
Em(Aγa,b

).

Furthermore, note that for each α > 0 we have

EQ′
(exp(−Mm(Aγa,b

)/m(T ))

m(Aγa,b
)

;m(Ab) > 0
)

≤ α−1 exp
(−Mα/m(T )

)
(6.10)

+ EQ′
(exp(−Mm(Aγa,b

)/m(T ))

m(Aγa,b
)

;m(Aγa,b
) ≤ α;m(Ab) > 0

)
.

The next result, whose proof is given in Section 6.4, gives a bound for the above
expectation.

PROPOSITION 6.4. Let β be as in conditions (A2) and (A3). For any v > 0,
there exist constants κ,λ2 ∈ (0,∞) [independent of a ∈ (0,1) and b, but depen-
dent on v] such that if we select

α−1 ≥ κd/β(b/a)(2+v)2d/β,

and define W such that P(W > x) = exp(−xβ/d) for x ≥ 0, then

EQ′
(exp(−Mm(Aγa,b

)/m(T ))

m(Aγa,b
)

;m(Aγa,b
) ≤ α;m(Ab) > 0

)
(6.11)

≤ EW 2 m(T )

λ
2d/β
2 M

(
b

a

)4d/β

.

The following result gives us a useful upper bound on (6.8). The proof is given
in Section 6.5.

PROPOSITION 6.5. Assume that conditions (A2) and (A3) are in force. For
any v > 0, let ρ = 2d/β + dv + 1, where d is the dimension of T . There exist
constants b0, λ ∈ (0,∞) [independent of a but depending on μT = maxt∈T |μ(t)|,
σ 2

T = maxt∈T σ 2(t), v, the Hölder parameters β and κH ] so that for all b ≥ b0 ≥ 1
we have

P
(
max
t∈T

f (t) ≤ b + a/b
∣∣max

t∈T
f (t) > b

)
≤ λabρ.(6.12)
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Consequently,

P
(
max
t∈T

f (t) > γa,b,max
t∈T

f (t) ≤ b
)

= P
(
max
t∈T

f (t) ≤ b
∣∣max

t∈T
f (t) > γa,b

)
P
(
max
t∈T

f (t) > γa,b

)
≤ λabρP

(
max
t∈T

f (t) > γa,b

)
.

Moreover,

P
(
max
t∈T

f (t) > γa,b

)
(1 − λabρ) ≤ P

(
max
t∈T

f (t) > b
)
.

Propositions 6.4 and 6.5 allow us to prove Theorem 3.1, which is rephrased in
the form of the following theorem, which contains the detailed rate of complexity
and so the main result of this section.

THEOREM 6.6. Suppose f is a Gaussian random field satisfying conditions
(A1)–(A4) in Section 3. Given any v > 0, put a = ε/(4λbρ) (where λ and ρ as in
Proposition 6.5), and α−1 = κd/β(b/a)(2+v)d/β . Then, there exist c, ε0 > 0 such
that for all ε ≤ ε0,

|w(b) − wM(γa,b)| ≤ w(b)ε,(6.13)

if M = �cε−1(b/a)(4+4v)d/β�. Consequently, by our discussion in Section 2 and
the bound on the second moment given in Proposition 6.2, it follows that Algo-
rithm 6.1 provides a FPRAS with running time O((M)3 × (M)2 × ε−2δ−1).

PROOF. Combining (6.3), (6.9) and (6.10) with Propositions 6.3–6.5 we have
that

|w(b) − wM(γa,b)|
≤ α−1 exp

(−Mα/m(T )
)
E[m(Aγa,b

)]

+ E[W 2] m(T )

λ
2d/β
2 M

(
b

a

)4d/β

E[m(Aγa,b
)] +
(

λabρ

1 − λabρ

)
w(b).

Furthermore, there exists a constant K ∈ (0,∞) such that

Em(Aγa,b
) ≤ K max

t∈T
P
(
f (t) > b

)
m(T ) ≤ Kw(b)m(T ).

Therefore, we have that

|w(b) − wM(γa,b)|
w(b)

≤ α−1Km(T ) exp
(−Mα/m(T )

)
+ E[W 2]K m(T )2

λ
2d/β
2 M

(
b

a

)4d/β

+
(

λabρ

1 − λabρ

)
.
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Moreover, since a = ε/(4λbρ), we obtain that, for ε ≤ 1/2,

|w(b) − wM(γa,b)|
w(b)

≤ α−1Km(T ) exp
(−Mα/m(T )

)
+ [EW 2]K m(T )2

λ
2d/β
2 M

(
b

a

)4d/β

+ ε/2.

From the selection of α,M and θ it follows easily that the first two terms on the
right-hand side of the previous display can be made less than ε/2 for all ε ≤ ε0 by
taking ε0 sufficiently small.

The complexity count given in the theorem now corresponds to the following
estimates. The factor O((M)3) represents the cost of a Cholesky factorization re-
quired to generate a single replication of a finite field of dimension M . In addition,
the second part of Proposition 6.2 gives us that O(M2ε−2δ−1) replications are
required to control the relative variance of the estimator. �

We now proceed to prove Propositions 6.4 and 6.5.

6.4. Proof of Proposition 6.4. We concentrate on the analysis of the left-hand
side of (6.11). An important observation is that conditional on the random variable
τγa,b

with distribution

Q′(τγa,b
∈ ·) = E[m(Aγa,b

∩ ·)]
E[m(Aγa,b

)]
and, given f (τγa,b

), the rest of the field, namely (f (t) : t ∈ T \ {τγa,b
}) is another

Gaussian field with a computable mean and covariance structure. The second term
in (6.10) indicates that we must estimate the probability that m(Aγa,b

) takes small
values under Q′. For this purpose, we shall develop an upper bound for

P
(
m(Aγa,b

) < y−1,m(Ab) > 0|f (t) = γa,b + z/γa,b

)
(6.14)

for y large enough. Our arguments proceeds in two steps. For the first, in order
to study (6.14), we shall estimate the conditional mean covariance of {f (s) : s ∈
T }, given that f (t) = γa,b + z/γa,b. Then, we use the fact that the conditional
field is also Gaussian and take advantage of general results from the theory of
Gaussian random fields to obtain a bound for (6.14). For this purpose we recall
some useful results from the theory of Gaussian random fields. The first result is
due to Dudley [16].

THEOREM 6.7. Let U be a compact subset of R
n, and let {f0(t) : t ∈ U } be a

mean zero, continuous Gaussian random field. Define the canonical metric d on U
as

d(s, t) =
√

E[f0(t) − f0(s)]2
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and put diam(U ) = sups,t∈U d(s, t), which is assumed to be finite. Then there exists
a finite universal constant κ > 0 such that

E
[
max
t∈U

f0(t)
]
≤ κ

∫ diam(U )/2

0
[log(N (ε))]1/2 dε,

where the entropy N (ε) is the smallest number of d-balls of radius ε whose union
covers U .

The second general result that we shall need is the so-called B–TIS (Borel–
Tsirelson–Ibragimov–Sudakov) inequality [5, 12, 14].

THEOREM 6.8. Under the setting described in Theorem 6.7,

P
(
max
t∈U

f0(t) − E
[
max
t∈U

f0(t)
]
≥ b
)

≤ exp
(−b2/(2σ 2

U )
)
,

where

σ 2
U = max

t∈U
E[f 2

0 (t)].

We can now proceed with the main proof. We shall assume from now on that
τγa,b

= 0, since, as will be obvious from what follows, all estimates hold uniformly
over τγa,b

∈ T . This is a consequence of the uniform Hölder assumptions (A2)
and (A3). Define a new process f̃(

f̃ (t) : t ∈ T
) L= (f (t) : t ∈ T |f (0) = γa,b + z/γa,b

)
.

Note that we can always write f̃ (t) = μ̃(t)+g(t), where g is a mean zero Gaussian
random field on T . We have that

μ̃(t) = Ef̃ (t) = μ(t) + σ(0)−2C(0, t)
(
γa,b + z/γa,b − μ(0)

)
,

and that the covariance function of f̃ is given by

Cg(s, t) = Cov(g(s), g(t)) = C(s, t) − σ(0)−2C(0, s)C(0, t).

The following lemma describes the behavior of μ̃(t) and Cg(t, s).

LEMMA 6.9. Assume that |s| and |t | small enough. Then the following three
conclusions hold:

(i) There exist constants λ0 and λ1 > 0 such that

|μ̃(t) − (γa,b + z/γa,b)| ≤ λ0|t |β + λ1|t |β(γa,b + z/γa,b),

and for all z ∈ (0,1) and γa,b large enough,

|μ̃(s) − μ̃(t)| ≤ κHγa,b|s − t |β.
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(ii)
Cg(s, t) ≤ 2κHσ(t)σ (s){|t |β + |s|β + |t − s|β}.

(iii)
Dg(s, t) =

√
E
([g(t) − g(s)]2

)≤ λ
1/2
1 |t − s|β/2.

PROOF. All three consequences follow from simple algebraic manipulations.
The details are omitted. �

PROPOSITION 6.10. For any v > 0, there exist κ and λ2, such that for all

t ∈ T , y−β/d ≤ a2+v

κb(2+v) , a sufficiently small, and z > 0,

P
(
m(Aγa,b

)−1 > y,m(Ab) > 0|f (t) = γa,b + z/γa,b

)≤ exp(−λ2a
2yβ/d/b2).

PROOF. For notational simplicity, and without loss of generality, we assume
that t = 0. First consider the case that z ≥ 1. Then there exist c1, c2 such that for
all c2y

−β/d < b−2−v and z > 1,

P
(
m(Aγa,b

∩ T )−1 > y,m(Ab) > 0
∣∣f (0) = γa,b + z/γa,b

)
≤ P
(

inf
|t |<c1y

−1/d
f (t) ≤ γa,b

∣∣f (0) = γa,b + z/γa,b

)
= P
(

inf
|t |<c1y

−1/d
μ̃(t) + g(t) ≤ γa,b

)
≤ P

(
inf

|t |<c1y
−1/d

g(t) ≤ − 1

2γa,b

)
.

Now apply (iii) from Lemma 6.9, from which it follows that N (ε) ≤ c3m(T )/ε2d/β

for some constant c3. By Theorem 6.7, E(sup|t |<c1y
−1/d f (t)) = O(y−β/(2d) logy).

By Theorem 6.8, for some constant c4,

P
(
m(Aγa,b

∩ T )−1 > y,m(Ab) > 0|f (0) = γa,b + z/γa,b

)
≤ P

(
inf

|t |<c1y
−1/d

g(t) ≤ − 1

2γa,b

)

≤ exp
(
− 1

c4γ
2
a,by

−β/d

)
for c2y

−β/d < b−2−v and z > 1.
Now consider the case z ∈ (0,1). Let t∗ be the global maximum of f (t). Then,

P
(
m(Aγa,b

∩ T )−1 > y,m(Ab) > 0|f (0) = γa,b + z/γa,b

)
≤ P
(

inf
|t−t∗|<c1y

−1/d
f (t) < γa,b, f (t∗) > b

∣∣f (0) = γa,b + z/γa,b

)
≤ P
(

sup
|s−t |<c1y

−1/d

|f (s) − f (t)| > a/b
∣∣f (0) = γa,b + z/γa,b

)
.
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Consider the new field ξ(s, t) = g(s) − g(t) with parameter space T × T . Note
that √

Var(ξ(s, t)) = Dg(s, t) ≤ λ1|s − t |β/2.

Via basic algebra, it is not hard to show that the entropy of ξ(s, t) is bounded by
Nξ (ε) ≤ c3m(T × T )/ε2d/β . In addition, from (i) of Lemma 6.9, we have

|μ̃(s) − μ̃(t)| ≤ κHγa,b|s − t |β.

Similarly, for some κ > 0 and all y−β/d ≤ 1
κ
(a
b
)2+v , a < 1, there exists c5 such

that

P
(
m(Aγa,b

∩ T )−1 > y,m(Ab) > 0|f (0) = γa,b + z/γa,b

)
≤ P
(

sup
|s−t |<c1y

−1/d

|f (s) − f (t)| > a/b
∣∣f (0) = γa,b + z/γa,b

)

= P

(
sup

|s−t |<c1y
−1/d

|ξ(s, t)| > a

2b

)

≤ exp
(
− a2

c5b2y−β/d

)
.

Combining the two cases z > 1 and z ∈ (0,1) and choosing c5 large enough we
have

P
(
m(Aγa,b

∩ T )−1 > y,m(Ab) > 0|f (0) = γa,b + z/γa,b

)
≤ exp

(
− a2

c5b2y−β/d

)
for a small enough and y−β/d ≤ 1

κ
(a
b
)2+v . Renaming the constants completes the

proof. �

The final ingredient needed for the proof of Proposition 6.4 is the following
lemma involving stochastic domination. The proof follows an elementary argu-
ment and is therefore omitted.

LEMMA 6.11. Let v1 and v2 be finite measures on R and define ηj (x) =∫∞
x vj (ds). Suppose that η1(x) ≥ η2(x) for each x ≥ x0. Let (h(x) :x ≥ x0) be a

nondecreasing, positive and bounded function. Then,∫ ∞
x0

h(s)v1(dx) ≥
∫ ∞
x0

h(s)v2(ds).
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PROOF OF PROPOSITION 6.4. Note that

EQ′
(exp(−Mm(Aγa,b

)/m(T ))

m(Aγa,b
)

;m(Aγa,b
) ∈ (0, α);m(Ab) > 0

)

=
∫
T

∫ ∞
z=0

E

(exp(−Mm(Aγa,b
)/m(T ))

m(Aγa,b
)

;

m(Aγa,b
) ∈ (0, α);m(Ab) > 0

∣∣∣f (t) = γa,b + z

γa,b

)
× P(τγa,b

∈ dt)P
(
γa,b[f (t) − γa,b] ∈ dz|f (t) > γa,b

)
≤ sup

z>0,t∈T

E

(exp(−Mm(Aγa,b
)/m(T ))

m(Aγa,b
)

;

m(Aγa,b
) ∈ (0, α);m(Ab) > 0

∣∣∣f (t) = γa,b + z

γa,b

)
.

Now define Y(b/a) = (b/a)2d/βλ
−d/β
2 W with λ2 as chosen in Proposition 6.10

and W with distribution given by P(W > x) = exp(−xβ/d). By Lemma 6.11,

sup
t∈T

E

(exp(−Mm(Aγa,b
)/m(T ))

m(Aγa,b
)

;

m(Aγa,b
) ∈ (0, α);m(Ab) > 0

∣∣∣f (t) = γa,b + z

γa,b

)
≤ E
[
Y(b/a) exp

(−MY(b/a)−1/m(T )
);Y(b/a) > α−1].

Now let Z be exponentially distributed with mean 1 and independent of Y(b/a).
Then we have (using the definition of the tail distribution of Z and Chebyshev’s
inequality)

exp
(−MY(b/a)−1/m(T )

)= P
(
Z > MY(b/a)−1/m(T )|Y(b/a)

)
≤ m(T )Y (b/a)

M
.

Therefore,

E
[
exp
(−MY(b/a)−1/m(T )

)
Y(b/a);Y(b/a) ≥ α−1]

≤ m(T )

M
E[Y(b/a)2;Y(b/a) ≥ α−1]

≤ m(T )

Mλ
2d/β
2

(
b

a

)4d/β

E(W 2),

which completes the proof. �
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6.5. Proof of Proposition 6.5. We start with the following result of Tsirelson
[30].

THEOREM 6.12. Let f be a continuous separable Gaussian process on a
compact (in the canonical metric) domain T . Suppose that Var(f ) = σ is continu-
ous and that σ(t) > 0 for t ∈ T . Moreover, assume that μ = Ef is also continuous
and μ(t) ≥ 0 for all t ∈ T . Define

σ 2
T

�= max
t∈T

Var(f (t))

and set F(x) = P {maxt∈T f (t) ≤ x}. Then, F is continuously differentiable on R.
Furthermore, let y be such that F(y) > 1/2, and define y∗ by

F(y) = �(y∗).

Then, for all x > y,

F ′(x) ≤ �

(
xy∗
y

)(
xy∗
y

(1 + 2α) + 1
)
(1 + α),

where

α = y2

x(x − y)y2∗
.

We can now prove the following lemma.

LEMMA 6.13. There exists a constant A ∈ (0,∞) independent of a and b ≥ 0
such that

P
(
sup
t∈T

f (t) ≤ b + a/b
∣∣ sup
t∈T

f (t) > b
)

≤ aA
P(supt∈T f (t) ≥ b − 1/b)

P (supt∈T f (t) ≥ b)
.(6.15)

PROOF. By subtracting inft∈T μ(t) > −∞ and redefining the level b to be
b − inft∈T μ(t) we may simply assume that Ef (t) ≥ 0 so that we can apply The-
orem 6.12. Adopting the notation of Theorem 6.12, first we pick b0 large enough
so that F(b0) > 1/2 and assume that b ≥ b0 + 1. Now, let y = b − 1/b and
F(y) = �(y∗). Note that there exists δ0 ∈ (0,∞) such that δ0b ≤ y∗ ≤ δ−1

0 b for
all b ≥ b0. This follows easily from the fact that

log P

{
sup
t∈T

f (t) > x
}

∼ log sup
t∈T

P{f (t) > x} ∼ − x2

2σ 2
T

.

On the other hand, by Theorem 6.12 F is continuously differentiable, and so

P
{
sup
t∈T

f (t) < b + a/b
∣∣ sup
t∈T

f (t) > b
}

=
∫ b+a/b
b F ′(x) dx

P {supt∈T f (t) > b} .(6.16)
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Moreover,

F ′(x) ≤
(

1 − �

(
xy∗
y

))(
xy∗
y

(
1 + 2α(x)

)+ 1
)

y∗
y

(
1 + α(x)

)
≤ (1 − �(y∗)

)(xy∗
y

(
1 + 2α(x)

)+ 1
)

y∗
y

(
1 + α(x)

)
= P
(
max
t∈T

f (t) > b − 1/b
)(xy∗

y

(
1 + 2α(x)

)+ 1
)

y∗
y

(
1 + α(x)

)
.

Therefore,∫ b+a/b

b
F ′(x) dx

≤ P
(
sup
t∈T

f (t) > b − 1/b
)∫ b+a/b

b

(
xy∗
y

(
1 + 2α(x)

)+ 1
)

y∗
y

(
1 + α(x)

)
dx.

Recalling that α(x) = y2/[x(x − y)y2∗], we can use the fact that y∗ ≥ δ0b to con-
clude that if x ∈ [b, b + a/b], then α(x) ≤ δ−2

0 , and therefore∫ b+a/b

b

(
xy∗
y

(
1 + 2α(x)

)+ 1
)

y∗
y

(
1 + α(x)

)
dx ≤ 4δ−8

0 a.

We thus obtain that∫ b+a/b
b F ′(x) dx

P {supt∈T f (t) > b} ≤ 4aδ−8
0

P {supt∈T f (t) > b − 1/b}
P {supt∈T f (t) > b}(6.17)

for any b ≥ b0. This inequality, together with the fact that F is continuously dif-
ferentiable on (−∞,∞), yields the proof of the lemma for b ≥ 0. �

The previous result translates a question that involves the conditional distri-
bution of maxt∈T f (t) near b into a question involving the tail distribution of
maxt∈T f (t). The next result then provides a bound on this tail distribution.

LEMMA 6.14. For each v > 0 there exists a constant C(v) ∈ (0,∞) (possibly
depending on v > 0 but otherwise independent of b) so that such that

P
(
max
t∈T

f (t) > b
)

≤ C(v)b2d/β+dv+1 max
t∈T

P
(
f (t) > b

)
for all b ≥ 1.

PROOF. The proof of this result follows along the same lines of Theorem 2.6.2
in [6]. Consider an open cover of T =⋃M

i=1 Ti(θ), where Ti(θ) = {s : |s − ti | < θ}.
We choose ti carefully such that N(θ) = O(θ−d) for θ arbitrarily small. Write
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f (t) = g(t) + μ(t), where g(t) is a centered Gaussian random field and note,
using (A2) and (A3), that

P
(

max
t∈Ti(θ)

f (t) > b
)

≤ P
(

max
t∈Ti(θ)

g(t) > b − μ(ti) − κHθβ
)
.

Now we wish to apply the Borel–TIS inequality (Theorem 6.8) with U = Ti(θ),
f0 = g, d(s, t) = E1/2([g(t)−g(s)]2), which, as a consequence of (A2) and (A3),
is bounded above by C0|t − s|β/2 for some C0 ∈ (0,∞). Thus, applying Theo-
rem 6.7, we have that E maxt∈Ti(θ) g(t) ≤ C1θ

β/2 log(1/θ) for some C1 ∈ (0,∞).
Consequently, the Borel–TIS inequality yields that there exists C2(v) ∈ (0,∞)

such that for all b sufficiently large and θ sufficiently small we have

P
(

max
t∈Ti(θ)

g(t) > b−μ(ti)−κHθβ
)

≤ C2(v) exp
(
−(b − μ(ti) − C1θ

β/(2+βv))2

2σ 2
Ti

)
,

where σTi
= maxt∈Ti(θ) σ (t). Now select v > 0 small enough, and set θβ/(2+βv) =

b−1. Straightforward calculations yield that

P
(

max
t∈Ti(θ)

f (t) > b
)

≤ P
(

max
t∈Ti(θ)

g(t) > b − μ(ti) − κHθβ
)

≤ C3(v) max
t∈Ti(θ)

exp
(
−(b − μ(t))2

2σ(t)2

)
for some C3(v) ∈ (0,∞). Now, recall the well-known inequality (valid for x > 0)
that

φ(x)

(
1

x
− 1

x3

)
≤ 1 − �(x) ≤ φ(x)

x
,

where φ = �′ is the standard Gaussian density. Using this inequality it follows that
C4(v) ∈ (0,∞) can be chosen so that

max
t∈Ti(θ)

exp
(
−(b − μ(t))2

2σ(t)2

)
≤ C4(v)b max

t∈Ti

P
(
f (t) > b

)
for all b ≥ 1. We then conclude that there exists C(v) ∈ (0,∞) such that

P
(
max
t∈T

f (t) > b
)

≤ N(θ)C4(v)b max
t∈T

P
(
f (t) > b

)
≤ Cθ−db max

t∈T
P
(
f (t) > b

)
= Cb2d/β+dv+1 max

t∈T
P
(
f (t) > b

)
giving the result. �

We can now complete the proof of Proposition 6.5.
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PROOF OF PROPOSITION 6.5. The result is a straightforward corollary of the
previous two lemmas. By (6.15) in Lemmas 6.13 and 6.14 there exists λ ∈ (0,∞)

for which

P
(
max
t∈T

f (t) ≤ b + a/b
∣∣max

t∈T
f (t) > b

)
≤ aA

P(maxt∈T f (t) ≥ b − 1/b)

P (maxt∈T f (t) ≥ b)

≤ aCAb2d/β+dv+1 maxt∈T P (f (t) > b − 1/b)

P (maxt∈T f (t) ≥ b)

≤ aCAb2d/β+dv+1 maxt∈T P (f (t) > b − 1/b)

maxt∈T P (f (t) > b)

≤ aλb2d/β+dv+1.

The last two inequalities follow from the obvious bound

P
(
max
t∈T

f (t) ≥ b
)

≥ max
t∈T

P
(
f (t) > b

)
and standard properties of the Gaussian distribution. This yields (6.12), from which
the remainder of the proposition follows. �

7. Fine tuning: Twice differentiable homogeneous fields. In the preceding
section we constructed a polynomial time algorithm based on a randomized dis-
cretization scheme. Our goal in this section is to illustrate how to take advantage
of additional information to further improve the running time and the efficiency of
the algorithm. In order to illustrate our techniques we shall perform a more refined
analysis in the setting of smooth and homogeneous fields and shall establish op-
timality of the algorithm in a precise sense, to described below. Our assumptions
throughout this section are (B1) and (B2) of Section 3.

Let C(s − t) = Cov(f (s), f (t)) be the covariance function of f , which we as-
sume also has mean zero. Note that it is an immediate consequence of homogeneity
and differentiability that ∂iC(0) = ∂3

ijkC(0) = 0.
We shall need the following definition.

DEFINITION 7.1. We call T̃ = {t1, . . . , tM} ⊂ T a θ -regular discretization of
T if, and only if,

min
i �=j

|ti − tj | ≥ θ, sup
t∈T

min
i

|ti − t | ≤ 2θ.

Regularity ensures that points in the grid T̃ are well separated. Intuitively, since
f is smooth, having tight clusters of points translates to a waste of computing re-
sources, as a result of sampling highly correlated values of f . Also, note that every
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region containing a ball of radius 2θ has at least one representative in T̃ . There-
fore, T̃ covers the domain T in an economical way. One technical convenience
of θ -regularity is that for subsets A ⊆ T that have positive Lebesgue measure (in
particular ellipsoids)

lim
M→∞

#(A ∩ T̃ )

M
= m(A)

m(T )
,

where here and throughout the remainder of the section #(A) denotes the cardinal-
ity of the set A.

Let T̃ = {t1, . . . , tM} be a θ -regular discretization of T , and consider

X = (X1, . . . ,XM)T
�= (f (t1), . . . , f (tM))T .

We shall concentrate on estimating wM(b) = P(max1≤i≤M Xi > b). The next re-
sult (which we prove in Section 7.1) shows that if θ = ε/b, then the relative bias is
O(

√
ε).

PROPOSITION 7.2. Suppose f is a Gaussian random field satisfying condi-
tions (B1) and (B2). There exist c0, c1, b0 and ε0 such that, for any finite ε/b-
regular discretization T̃ of T ,

P
(
sup
t∈T̃

f (t) < b
∣∣ sup
t∈T

f (t) > b
)

≤ c0
√

ε and #(T̃ ) ≤ c1m(T )ε−dbd(7.1)

for all ε ∈ (0, ε0] and b > b0.

Note that the bound on the bias obtained for twice differentiable fields is much
sharper than that of the general Hölder continuous fields given by (6.13) in The-
orem 6.6. This is partly because the conditional distribution of the random field
around local maxima is harder to describe in the Hölder continuous than in the
case of twice differentiable fields. In addition to the sharper description of the
bias, we shall also soon show in Theorem 7.4 that our choice of discretization is
optimal in a cetain sense. Finally, we point out that the bound of

√
ε in the first

term of (7.1) is not optimal. In fact, there seems to be some room of improvement,
and we believe that a more careful analysis might yield a bound of the form c0ε

2.
We shall estimate wM(b) by using a slight variation of Algorithm 5.3. In partic-

ular, since the Xi’s are now identically distributed, we redefine Q to be

Q(X ∈ B) =
M∑
i=1

1

M
P [X ∈ B|Xi > b − 1/b].(7.2)

Our estimator then takes the form

L̃b = M × P(X1 > b − 1/b)∑M
j=1 1(Xj > b − 1/b)

1
(

max
1≤i≤M

Xi > b
)
.(7.3)

Clearly, we have that EQ(Lb) = wM(b). (The reason for subtracting the factor of
1/b was explained in Section 6.1.)
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ALGORITHM 7.3. Given a number of replications n and an ε/b-regular dis-
cretization T̃ the algorithm is as follows:

STEP (1). Sample X(1), . . . ,X(n) i.i.d. copies of X with distribution Q given by
(7.2).

STEP (2). Compute and output

L̂n = 1

n

n∑
i=1

L̃
(i)
b ,

where

L̃
(i)
b = M × P(X1 > b − 1/b)∑M

j=1 1(X
(i)
j > b − 1/b)

1
(

max
1≤i≤M

X
(i)
j > b

)
.

Theorem 7.5 later guides the selection of n in order to achieve a prescribed
relative error. In particular, our analysis, together with considerations from Sec-
tion 2, implies that choosing n = O(ε−2δ−1) suffices to achieve ε relative error
with probability at least 1 − δ.

Algorithm 7.3 improves on Algorithm 6.1 for Hölder continuous fields in two
important ways. The first aspect is that it is possible to obtain information on the
size of the relative bias of the estimator. In Proposition 7.2, we saw that in order
to overcome bias due to discretization, it suffices to take a discretization of size
M = #(T̃ ) = �(bd). That this selection is also asymptotically optimal, in the sense
described in the next result, will be proven in Section 7.1.

THEOREM 7.4. Suppose f is a Gaussian random field satisfying conditions
(B1) and (B2). If θ ∈ (0,1), then, as b → ∞,

sup
#(T̃ )≤bθd

P
(
sup
t∈T̃

f (t) > b
∣∣ sup
t∈T

f (t) > b
)

→ 0.

This result implies that the relative bias goes to 100% as b → ∞ if one chooses
a discretization scheme of size O(bθd) with θ ∈ (0,1). Consequently, d is the
smallest power of b that achieves any given bounded relative bias, and so the sug-
gestion above of choosing M = O(bd) points for the discretization is, in this sense,
optimal.

The second aspect of improvement involves the variance. In the case of Hölder
continuous fields, the ratio of the second moment of the estimator and w(b)2 was
shown to be bounded by a quantity that is of order O(M2). In contrast, in the
context of smooth and homogeneous fields considered here, the next result shows
that this ratio is bounded uniformly for b > b0 and M = #(T̃ ) ≥ cbd . That is, the
variance remains strongly controlled.
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THEOREM 7.5. Suppose f is a Gaussian random field satisfying conditions
(B1) and (B2). Then there exist constants c, b0 and ε0 such that for any ε/b-regular
discretization T̃ of T we have

sup
b>b0,ε∈[0,ε0]

EQL̃2
b

P 2(supt∈T f (t) > b)
≤ sup

b>b0,ε∈[0,ε0]
EQL̃2

b

P 2(supt∈T̃ f (t) > b)
≤ c

for some c ∈ (0,∞).

The proof of this result is given in Section 7.2. The fact that the number of
replications remains bounded in b is a consequence of the strong control on the
variance.

Finally, we note that the proof of Theorem 3.3 follows as a direct corollary
of Theorem 7.5 together with Proposition 7.2 and our discussion in Section 2.
Assuming that placing each point in T̃ takes no more than c units of computer time,
the total complexity is, according to the discussion in Section 2, O(nM3 + M) =
O(ε−2δ−1M3 + M). The contribution of the term M3 = O(ε−6db3d) comes from
the complexity of applying Cholesky factorization, and the term M = O(ε−2dbd)

corresponds to the complexity of placing T̃ .

REMARK 7.6. Condition (B2) imposes a convexity assumption on the bound-
ary of T . This assumption, although convenient in the development of the proofs
of Theorems 7.4 and 7.5, is not necessary. The results can be generalized, at the
expense of increasing the length and the burden in the technical development, to
the case in which T is a d-dimensional manifold satisfying the so-called Whitney
conditions [5].

The remainder of this section is devoted to the proof of Proposition 7.2, Theo-
rems 7.4 and 7.5.

7.1. Bias control: Proofs of Proposition 7.2 and Theorem 7.4. We start with
some useful lemmas, for all of which we assume that Conditions (B1) and (B2) are
satisfied. We shall also assume that the global maximum of f over T is achieved,
with probability one, at a single point in T . Additional conditions under which this
will happen can be found in [5] and require little more than the nondegeneracy
of the joint distribution of f and its first- and second-order derivatives. Of these
lemmas, Lemma 7.7, the proof of which we defer to Section 7.3, is central to much
of what follows. However, before we state it we take a moment to describe Palm
measures, which may not be familiar to all readers.

7.1.1. Palm distributions and conditioning. It is well known that one needs
to be careful treating the distributions of stochastic processes at random times.
For a simple example, in the current setting, consider the behavior of a smooth
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stationary Gaussian process f on R along with its derivative f ′. If t ∈ R is a fixed
point, u > 0, and we are given that f (0) = 0 and f (t) = u, then the conditional
distribution of f ′(t) is still Gaussian, with parameters determined by the trivariate
distribution of (f (0), f (t), f ′(t)). However, if we are given that f (0) = 0, and that
t > 0 is the first positive time that f (t) = u, then t is an upcrossing of the level u

by f , and so f ′(t) must be positive. Thus it cannot be Gaussian. The difference
between the two cases lies in the fact that in the first case t is deterministic, while
in the second it is random.

We shall require something similar, conditioning on the behavior of our (Gaus-
sian) random fields in the neighborhood of local maxima. Since local maxima are
random points, given their positions the distribution of the field is no longer sta-
tionary nor, once again, even Gaussian. We often shall assume for that a local
maximum is at the origin. This, however, amounts to saying that the point-process
induced by the set of local maxima is Palm stationary (as opposed to space station-
ary) and therefore we must then use the associated Palm distribution; the precise
conditional distribution of the field given the value of the local maximum at the
origin is given in Lemma 7.11. The precise distribution is given in Lemma 7.11.

The theory behind this goes by the name of horizontal–vertical window condi-
tioning and the resulting conditional distributions are known as Palm distributions.
Standard treatments are given, for example, in [1, 6, 18, 19, 21]. To differentiate
between regular and Palm conditioning, we shall denote the latter by ‖P .

We can now set up two important lemmas which tell us about the behavior
of f in the neighborhood of local and global maxima. Proofs are deferred until
Section 7.3. First, we provide some notation.

Let L be the (random) set of local maxima of f . That is, for each s in the interior
of T , s ∈ L if and only if

∇f (s) = 0 and ∇2f (s) ∈ N ,(7.4)

where N is the set of negative definite matrices, and ∇2f (s) is the Hessian matrix
of f at s. For s ∈ ∂T , similar constraints apply and are described in the proof of
Lemma 7.7. Then we have:

LEMMA 7.7. Let L be the set of local maxima of f . For any a0 > 0, there
exists c∗, δ∗, b0 and δ0 (which depend on the choice of a0), such that for any
s ∈ L, a ∈ (0, a0), δ ∈ (0, δ0), b > b0, z > b + a/b

P
(

min
|t−s|<δab−1

f (t) < b
∥∥

P f (s) = z
)

≤ c∗ exp
(
−δ∗

δ2

)
.(7.5)

LEMMA 7.8. Let t∗ be the point in T at which the global maximum of f

is attained. Then, with the same choice of constants as in Lemma 7.7, for any
a ∈ (0, a0), δ ∈ (0, δ0) and b > b0,

P
(

min
|t−t∗|<δab−1

f (t) < b
∥∥

P f (t∗) > b + a/b
)

≤ 2c∗ exp
(
−δ∗

δ2

)
.



1200 R. J. ADLER, J. H. BLANCHET AND J. LIU

7.1.2. Back to the proofs. The following lemma gives a bound on the density
of supt∈T f (t), which will be used to control the size of overshoot beyond level b.

LEMMA 7.9. Let pf ∗(x) be the density function of supt∈T f (t). Then there
exists a constant cf ∗ and b0 such that

pf ∗(x) ≤ cf ∗xd+1P
(
f (0) > x

)
for all x > b0.

PROOF. Recalling (1.3), let the continuous function pE(x), x ∈ R, be defined
by the relationship

E
(
χ
({t ∈ T :f (t) ≥ b}))= ∫ ∞

b
pE(x) dx,

where the left-hand side is the expected value of the Euler–Poincaré characteristic
of Ab. Then, according to Theorem 8.10 in [8], there exists c and δ such that

|pE(x) − pf ∗(x)| < cP
(
f (0) > (1 + δ)x

)
for all x > 0. In addition, thanks to the result of [5] which provides

∫∞
b pE(x) dx

in closed form, there exists c0 such that, for all x > 1,

pE(x) < c0x
d+1P

(
f (0) > x

)
.

Hence, there exists cf ∗ such that

pf ∗(x) ≤ c0x
d+1P

(
f (0) > x

)+ cP
(
f (0) > (1 + δ)x

)≤ cf ∗xd+1P
(
f (0) > x

)
for all x > 1. �

The last ingredients required to provide the proof of Proposition 7.2 and The-
orem 7.4 are stated in the following result, adapted from Lemma 6.1 and Theo-
rem 7.2 in [24] to the twice differentiable case.

THEOREM 7.10. There exists a constant H (depending on the covariance
function C), such that

P
(
sup
t∈T

f (t) > b
)

= (1 + o(1)
)
Hm(T )bdP

(
f (0) > b

)
(7.6)

as b → ∞.
Similarly, choose δ small enough so that [0, δ]d ⊂ T , and let �0 = [0, b−1]d .

Then there exists a constant H1 such that

P
(

sup
t∈�0

f (t) > b
)

= (1 + o(1)
)
H1P

(
f (0) > b

)
(7.7)

as b → ∞.
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We now are ready to provide the proof of Proposition 7.2 and Theorem 7.4.

PROOF OF PROPOSITION 7.2. The fact that there exists c1 such that

#(T̃ ) ≤ c1m(T )ε−dbd

is immediate from assumption (B2). Therefore, we proceed to provide a bound for
the relative bias. Note first that elementary conditional probability manipulations
yield that, for any ε > 0,

P
(
sup
t∈T̃

f (t) < b
∣∣ sup
t∈T

f (t) > b
)

≤ P
(
sup
t∈T

f (t) < b + 2
√

ε/b
∣∣ sup
t∈T

f (t) > b
)

+ P
(
sup
t∈T̃

f (t) < b
∣∣ sup
t∈T

f (t) > b + 2
√

ε/b
)
.

By (7.6) and Lemma 7.9, there exists c2 such that, for large enough b, the first term
above can bounded by

P
(
sup
t∈T

f (t) < b + 2
√

ε/b
∣∣ sup
t∈T

f (t) > b
)

≤ c2
√

ε.

Now take ε < ε0 < δ2
0 where δ0 is as in Lemmas 7.7 and 7.8. Then, applying (7.5),

the second term can be bounded by

P
(
sup
t∈T̃

f (t) < b
∣∣ sup
t∈T

f (t) > b + 2
√

ε/b
)

≤ P
(

sup
|t−t∗|<2εb−1

f (t) < b
∣∣ sup
t∈T

f (t) > b + 2
√

ε
)

≤ 2c∗ exp(−δ∗ε−1).

Hence, there exists a c0 such that

P
(
sup
t∈T̃

f (t) < b
∣∣ sup
t∈T

f (t) > b
)

≤ c2
√

ε + 2c∗e−δ∗/ε ≤ c0
√

ε

for all ε ∈ (0, ε0). �

PROOF OF THEOREM 7.4. We write θ = 1 − 3δ ∈ (0,1). First note that, by
(7.6),

P
(
sup
T

f (t) > b + b2δ−1∣∣ sup
T

f (t) > b
)

→ 0

as b → ∞. Let t∗ be the position of the global maximum of f in T . According
to the exact Slepian model in Section 7.3 and an argument similar to the proof of
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Lemmas 7.7 and 7.8

P
(

sup
|t−t∗|>b2δ−1

f (t) > b
∣∣b < f (t∗) ≤ b + b2δ−1

)
→ 0(7.8)

as b → ∞. Consequently,

P
(

sup
|t−t∗|>b2δ−1

f (t) > b
∣∣ sup

T

f (t) > b
)

→ 0.

Let

B(T̃ , b2δ−1) =⋃
t∈T̃

B(t, b2δ−1).

We have

P
(
sup
T̃

f (t) > b
∣∣ sup

T

f (t) > b
)

≤ P
(

sup
|t−t∗|>b2δ−1

f (t) > b
∣∣ sup

T

f (t) > b
)

+ P
(
sup
T̃

f (t) > b, sup
|t−t∗|>b2δ−1

f (t) ≤ b
∣∣ sup

T

f (t) > b
)

≤ o(1) + P
(
t∗ ∈ B(T̃ , b2δ−1)

∣∣ sup
T

f (t) > b
)

≤ o(1) + P
(

sup
B(T̃ ,b2δ−1)

f (t) > b
∣∣ sup

T

f (t) > b
)
.

Since #(T̃ ) ≤ b(1−3δ)d , we can find a finite set T ′ = {t ′1, . . . , t ′l } ⊂ T and let
�k = t ′k + [0, b−1] such that l = O(b(1−δ)d) and B(T̃ , b2δ−1) ⊂ ⋃l

k=1 �k . The
choice of l only depends on #(T̃ ), not the particular distribution of T̃ . Therefore,
applying (7.7),

sup
#(T̃ ≤bθd )

P
(

sup
B(T̃ ,b2δ−1)

f (t) > b
)

≤ O
(
b(1−δ)d)P (f (0) > b

)
.

This, together with (7.6), yields

sup
#(T̃ ≤bθd )

P
(

sup
B(T̃ ,b2δ−1)

f (t) > b
∣∣ sup

T

f (t) > b
)

≤ O(b−δd) = o(1)

for b ≥ b0, which clearly implies the statement of the result. �

7.2. Variance control: Proof of Theorem 7.5. We proceed directly to the proof
of Theorem 7.5.
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PROOF OF THEOREM 7.5. Note that

EQL̃2
b

P 2(supt∈T f (t) > b)

= E(L̃b)

P 2(supt∈T f (t) > b)

= E(M × P(X1 > b − 1/b)/
∑n

j=1 1(Xj > b − 1/b);maxj Xj > b)

P 2(supt∈T f (t) > b)

=
(
E

(
M × P(X1 > b − 1/b)∑n

j=1 1(Xj > b − 1/b)
;max

j
Xj > b, sup

t∈T

f (t) > b

))

×
(
P 2
(
sup
t∈T

f (t) > b
))−1

=
(
E

(
MP(X1 > b − 1/b)1(maxj Xj > b)∑n

j=1 1(Xj > b − 1/b)

∣∣∣ sup
t∈T

f (t) > b

))

×
(
P
(
sup
t∈T

f (t) > b
))−1

= E

(
M1(maxj Xj > b)∑n
j=1 1(Xj > b − 1/b)

∣∣∣ sup
t∈T

f (t) > b

)

× P(X1 > b − 1/b)

P (supt∈T f (t) > b)
.

The remainder of the proof involves showing that the last conditional expectation
here is of order O(bd). This, together with (7.6), will yield the result. Note that for
any A(b, ε) such that A(b, ε) = �(M) uniformly over b and ε, we can write

E

(
M × 1(maxj Xj > b)∑M

j=1 1(Xj > b − 1/b)

∣∣∣ sup
t∈T

f (t) > b

)

≤ E

(
M × 1(

∑M
j=1 1(Xj > b − 1/b) ≥ M/A(b, ε))∑M

j=1 1(Xj > b − 1/b)

∣∣∣ sup
t∈T

f (t) > b

)
(7.9)

+ E

(
M × 1(1 ≤∑M

j=1 1(Xj > b − 1/b) < M/A(b, ε))∑M
j=1 1(Xj > b − 1/b)

∣∣∣
sup
t∈T

f (t) > b

)
.
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We shall select A(b, ε) appropriately in order to bound the expectations above. By
Lemma 7.8, for any 4ε ≤ δ ≤ δ0, there exist constants c′ and c′′ ∈ (0,∞), such that

c∗ exp
(
−δ∗

δ2

)
≥ P
(

min|t−t∗|≤δ/b
f (t) < b − 1/b

∣∣ sup
t∈T

f (t) > b
)

≥ P

(
M∑

j=1

1(Xj > b − 1/b) ≤ c′δd/εd
∣∣ sup
t∈T

f (t) > b

)
(7.10)

≥ P

(
M∑M

j=1 1(Xj > b − 1/b)
≥ bdc′′

δd

∣∣∣ sup
t∈T

f (t) > b

)
.

The first inequality is an application of Lemma 7.8. The second inequality is due
to the fact that for any ball B of radius 4ε or larger, #(T̃ ∩ B) ≥ c′dε−d for
some c′ > 0. Inequality (7.10) implies that for all x such that bdc′′/δd

0 < x <

bdc′′/[4dεd ], there exists δ∗∗ > 0 such that

P

(
M∑M

j=1 1(Xj > b − 1/b)bd
≥ x
∣∣ sup
t∈T

f (t) > b

)
≤ c∗ exp(−δ∗∗x2/d).

Now let A(b, ε) = bdc′′/(4dεd) and observe that by the second result in (7.1) we
have A(b, ε) = �(M) and, moreover, that there exists c3 such that the first term
on the right-hand side of (7.9) is bounded by

E

(
M × 1(

∑M
j=1 1(Xj > b − 1/b) ≥ M/A(b, ε))∑M

j=1 1(Xj > b − 1/b)

∣∣∣ sup
T

f (t) > b

)
(7.11)

≤ c3b
d.

Now we turn to the second term on the right-hand side of (7.9). We use the fact
that M/A(b, ε) ≤ c′′′ ∈ (0,∞) (uniformly as b → ∞ and ε → 0). There exist c4
and c5 such that, for ε ≤ δ0/c4,

E

(
M1(1 ≤∑M

j=1 1(Xj > b − 1/b) < M/A(b, ε))∑M
j=1 1(Xj > b − 1/b)

∣∣∣ sup
T

f (t) > b

)

≤ MP

(
n∑

j=1

1
(
Xj > b − 1

b

)
< c′′′∣∣ sup

T

f (t) > b

)
(7.12)

≤ MP
(

min|t−t∗|≤c4ε/b
f (t) < b − 1/b

∣∣ sup
T

f (t) > b
)

≤ c1m(T )bdε−d exp
(
− δ∗

c2
4ε

2

)
≤ c5b

d.

The second inequality holds from the fact that if
∑M

j=1 1(Xj > b − 1
b
) is less

than c′′′, then the minimum of f in a ball around the local maximum and of radius
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c4ε/b must be less than b − 1/b. Otherwise, there are more than c′′′ elements of T̃

inside such a ball. The last inequality is due to Lemma 7.8 and Theorem 7.2.
Putting (7.11) and (7.12) together we obtain, for all ε/b-regular discretizations

with ε < ε0 = min(1/4,1/c4)δ0,

EQL̃2
b

P (supt∈T f (t) > b)
≤ E

(
M1(maxj Xj > b)∑M
j=1 1(Xj > b − 1/b)

∣∣∣ sup
t∈T

f (t) > b

)

× P(X1 > b − 1/b)

P (supt∈T f (t) > b)

≤ (c3 + c5)
bdP (X1 > b − 1/b)

P (supt∈T f (t) > b)
.

Applying now (7.6) and Proposition 7.2, we have that

P
(
sup
t∈T

f (t) > b
)

<
P(supt∈T̃ f (t) > b)

1 − c0
√

ε
,

and we have

sup
b>b0,ε∈[0,ε0]

EQL̃2
b

P (supt∈T̃ f (t) > b)
< ∞

as required. �

7.3. Remaining proofs. We start with the proof of Lemma 7.7. Without loss of
generality, we assume that the random field of that result has mean zero and unit
variance. However, before getting into the details of the proof of Lemma 7.7, we
need a few additional lemmas, for which we adopt the following notation: Let Ci

and Cij be the first- and second-order derivatives of C, and define the vectors

μ1(t) = (−C1(t), . . . ,−Cd(t)),

μ2(t) = vech
(
(Cij (t), i = 1, . . . , d, j = i, . . . , d)

)
.

Let f ′(0) and f ′′(0) be the gradient and vector of second-order derivatives of f

at 0, where f ′′(0) is arranged in the same order as μ2(0). Furthermore, let μ02 =
μ�

20 be a vector of second-order spectral moments and μ22 a matrix of fourth-order
spectral moments. The vectors μ02 and μ22 are arranged so that⎛⎝ 1 0 μ02

0 � 0
μ20 0 μ22

⎞⎠
is the covariance matrix of (f (0), f ′(0), f ′′(0)), where � = (−Cij (0)). It then
follows that

μ2·0 = μ22 − μ20μ02
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be the conditional variance of f ′′(0) given f (0). The following lemma, given
in [6], provides a stochastic representation of the f given that it has a local maxima
at level u at the origin. We emphasize that, as described above, the conditioning
here is in the sense of Palm distributions. The resultant conditional, or “model”
process (7.13) is generally called a Slepian process.

LEMMA 7.11. Given that f has a local maximum with height u at zero (an
interior point of T ), the conditional field is equal in distribution to

fu(t) � uC(t) − Wuβ
�(t) + g(t).(7.13)

g(t) is a centered Gaussian random field with covariance function

γ (s, t) = C(s − t) − (C(s),μ2(s))

(
1 μ02

μ20 μ22

)−1 (
C(t)

μ�
2 (t)

)
− μ1(s)�

−1μ�
1 (t),

and Wu is a d(d+1)
2 random vector independent of g(t) with density function

ψu(w) ∝ ∣∣det
(
r∗(w) − u�

)∣∣ exp
(−1

2w�μ−1
2·0w
)
1
(
r∗(w) − u� ∈ N

)
,(7.14)

where r∗(w) is a d × d symmetric matrix whose upper triangular elements consist
of the components of w. The set of negative definite matrices is denoted by N .
Finally, β(t) is defined by

(α(t), β(t)) = (C(t),μ2(t))

(
1 μ02

μ20 μ22

)−1
.

The following two technical lemmas, which we shall prove after completing the
proof of Lemma 7.7, provide bounds for the last two terms of (7.13).

LEMMA 7.12. Using the notation in (7.13), there exist δ0, ε1, c1 and b0 such
that, for any u > b > b0 and δ ∈ (0, δ0),

P

(
sup

|t |≤δa/b

|Wuβ
�(t)| > a

4b

)
≤ c1 exp

(
−ε1b

2

δ4

)
.

LEMMA 7.13. There exist c, δ̃ and δ0 such that, for any δ ∈ (0, δ0),

P

(
max|t |≤δa/b

|g(t)| > a

4b

)
≤ c exp

(
− δ̃

δ2

)
.

PROOF OF LEMMA 7.7. Using the notation of Lemma 7.11, given any s ∈ L
for which f (s) = b, we have that the corresponding conditional distribution of s

is that of fb(· − s). Consequently, it suffices to show that

P
(

min|t |≤δa/b
fb(t) < b − a/b

)
≤ c∗ exp

(
−δ∗

δ2

)
.
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We consider first the case for which the local maximum is in the interior of T .
Then, by the Slepian model (7.13),

fb(t) = bC(t) − Wbβ
�(t) + g(t).

We study the three terms of the Slepian model individually. Since

C(t) = 1 − t��t + o(|t |2),
there exists a ε0 such that

bC(t) ≥ b − a

4b

for all |t | < ε0
√

a/b. According to Lemmas 7.12 and 7.13, for δ < min(ε0/
√

a0,
δ0),

P
(

min|t |≤δa/b
fu(t) < b − a/b

)
≤ P

(
max|t |<δa/b

|g(t)| > a

4b

)
+ P

(
sup

|t |≤δa/b

|Wbβ
�(t)| > a

4b

)

≤ c exp
(

δ̃

δ2

)
+ c1 exp

(
−ε1b

2

δ4

)
≤ c∗ exp

(
−δ∗

δ2

)
for some c∗ and δ∗.

Now consider the case for which the local maximum is in the (d − 1)-
dimensional boundary of T . Due to convexity of T we can assume, without loss
of generality, that the tangent space of ∂T is generated by ∂/∂t2, . . . , ∂/∂td , the
local maximum is located at the origin and T is a subset of the positive half-plane
t1 ≥ 0. That these arguments to not involve a loss of generality follows from the
arguments on pages 192–291 of [5], which rely on the assumed stationarity of f

(for translations) and the fact that rotations, while changing the distributions, will
not affect the probabilities that we are currently computing.

For the origin, positioned as just described, to be a local maximum it is neces-
sary and sufficient that the gradient of f restricted to ∂T is the zero vector, the
Hessian matrix restricted to ∂T is negative definite and ∂1f (0) ≤ 0. Applying a
version of Lemma 7.11 for this case, conditional on f (0) = u and 0 being a local
maximum, the field is equal in distribution to

uC(t) − W̃uβ
�(t) + μ1(t)�

−1(Z,0, . . . ,0)T + g(t),(7.15)

where Z ≤ 0 corresponds to ∂1f (0) and it follows a truncated (conditional
on the negative axis) Gaussian random variable with mean zero and a vari-
ance parameter which is computed as the conditional variance of ∂1f (0) given
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(∂2f (0), . . . , ∂df (0)). The vector W̃u is a (d(d + 1)/2)-dimensional random vec-
tor with density function

ψ̄u(w) ∝ ∣∣det
(
r∗(w) − u�̄

)∣∣ exp
(−1

2w�μ−1
2·0w
)
1(w̄∗ − u�̄ ∈ N ),

where �̄ is the second spectral moment of f restricted to ∂T , and r∗(w) is the
(d − 1) × (d − 1) symmetric matrix whose upper triangular elements consist of
the components of w. In the representation (7.15) the vectors W̃u and Z are inde-
pendent. As in the proof of Lemma 7.12, one can show that a similar bound holds,
albeit with with different constants. Thus, since μ1(t) = O(t), there exist c′′ and
δ′′ such that the third term in (7.15) can be bounded by

P
[

max|t |≤δa/b
|μ1(t)�

−1(Z,0, . . . ,0)T | ≥ a/(4b)
]
≤ c′′ exp

(
−δ′′

δ2

)
.

Consequently, we can also find c∗ and δ∗ such that the conclusion holds, and we
are done. �

PROOF OF LEMMA 7.8. Recall that t∗ is the unique global maximum of f

in T . Writing Palm probabilities as a ratio of expectations, as explained in Sec-
tion 7.1.1, and using the fact that t∗ ∈ L, we immediately have

P
(

min
|t−t∗|<δab−1

f (t) < b
∥∥

P f (t∗) > (b + a/b)
)

(7.16)

≤ E(#{s ∈ L : min|t−s|<δab−1 f (t) < b,f (s) > b + a/b})
E(#{s ∈ L :f (s) > (b + a/b), s = t∗}) .

Writing

Nb = #{s ∈ L :f (s) > (b + a/b)},
it is standard fare that, for the random fields of the kind we are treating,

E(Nb) = (1 + o(1)
)
P(Nb = 1)

for large b; for example, Chapter 6 of [1] or Chapter 5 of [6].
Therefore, for b large enough,

E(#{s ∈ L :f (s) > (b + a/b)})
E(#{s ∈ L :f (s) > (b + a/b), s = t∗}) < 2.

Substituting this into (7.16) yields, for any s ∈ L,

P
(

min
|t−t∗|<δab−1

f (t) < b
∥∥

P f (t∗) > b + a/b
)

≤ 2P
(

min
|t−s|<δab−1

f (t) < b
∥∥

P f (s) > b + a/b
)

≤ 2c∗ exp(−δ∗/δ2),
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where the second inequality follows from (7.5), and we are done. �

We complete the paper with the proofs of Lemmas 7.12 and 7.13.

PROOF OF LEMMA 7.12. It suffices to prove the lemma for the case a = 1.
Since

fu(0) = u = u − Wuβ
�(0) + g(0),

and Wu and g are independent, β(0) = 0. Furthermore, since C′(t) = O(t) and
μ′

2(t) = O(t), there exists a c0 such that |β(t)| ≤ c0|t |2. In addition, Wu has den-
sity function proportional to

ψu(w) ∝ ∣∣det
(
r∗(w) − u�

)∣∣ exp
(−1

2w�μ−1
2·0w
)
1(w∗ − u� ∈ N ).

Note that det(r∗(w) − u�) is expressible as a polynomial in w and u, and there
exists some ε0 and c such that∣∣∣∣det(r∗(w) − u�)

det(−u�)

∣∣∣∣≤ c,

if |w| ≤ ε0u. Hence, there exist ε2, c2 > 0, such that

ψu(w) ≤ ψ̃(w) := c2 exp
(−1

2ε2w
�μ−1

2·0w
)

for all u ≥ 1. The right-hand side here is proportional to a multivariate Gaussian
density. Thus,

P(|Wu| > x) =
∫
|w|>x

ψu(w)dw ≤
∫
|w|>x

ψ̃u(w)dw = c3P(|W̃ | > x),

where W̃ is a multivariate Gaussian random variable with density function propor-
tional to ψ̃ . Therefore, by choosing ε1 and c1 appropriately, we have

P

(
sup

|t |≤δ/b

|Wuβ
�| > 1

4b

)
≤ P

(
|Wu| > b

c2
0δ

2

)
≤ c1 exp

(
−ε1b

2

δ4

)
for all u ≥ b. �

PROOF OF LEMMA 7.13. Once again, it suffices to prove the lemma for the
case a = 1. Since

fb(0) = b = b − Wbβ
�(0) + g(0),

the covariance function (γ (s, t) : s, t ∈ T ) of the centered field g satisfies γ (0,0) =
0. It is also easy to check that

∂sγ (s, t) = O(|s| + |t |), ∂tγ (s, t) = O(|s| + |t |).
Consequently, there exists a constant cγ ∈ (0,∞) for which

γ (s, t) ≤ cγ (|s|2 + |t |2), γ (s, s) ≤ cγ |s|2.
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We need to control the tail probability of sup|t |≤δ/b |g(t)|. For this it is useful to
introduce the following scaling. Define

gδ(t) = b

δ
g

(
δt

b

)
.

Then sup|t |≤δ/b g(t) ≥ 1
4b

if and only if sup|t |≤1 gδ(t) ≥ 1
4δ

. Let

σδ(s, t) = E(gδ(s), gδ(t)).

Then,

sup
s∈R

σδ(s, s) ≤ cγ .

Because γ (s, t) is at least twice differentiable, applying a Taylor expansion we
easily see that the canonical metric dg corresponding to gδ(s) (cf. Theorem 6.7)
can be bounded as follows:

d2
g(s, t) = E

(
gδ(s) − gδ(t)

)2
= b2

δ2

[
γ

(
δs

b
,
δs

b

)
+ γ

(
δt

b
,
δt

b

)
− 2γ

(
δs

b
,
δt

b

)]
≤ c|s − t |2

for some constant c ∈ (0,∞). Therefore, the entropy of gδ , evaluated at δ̃, is
bounded by Kδ̃−d for any δ̃ > 0 and with an appropriate choice of K > 0. There-
fore, for all δ < δ0,

P

(
sup

|t |≤δ/b

|g(t)| ≥ 1

4b

)
= P

(
sup
|t |≤1

gδ(t) ≥ 1

4δ

)
≤ cdδ−d−η exp

(
− 1

16cγ δ2

)
for some constant cd and η > 0. The last inequality is a direct application of The-
orem 4.1.1 of [5]. The conclusion of the lemma follows immediately by choosing
c̃ and δ̃ appropriately. �

8. Numerical examples. In this section, we provide four examples which in-
dicate how well the techniques we have suggested actually work in practice.

The fist treats a random field for which the tail probability is in a closed form.
This is simply to confirm that the estimates yielded from the algorithm are reason-
able.

EXAMPLE 8.1. Let f (t) = X cos t + Y sin t and T = [0,3/4] where X and
Y are i.i.d. standard Gaussian. We compute P(supT f (t) > b). This probability is
known in closed form (cf. [5]) and is given by

P
(

sup
0≤t≤3/4

f (t) > b
)

= 1 − �(b) + 3

8π
e−b2/2.(8.1)

Table 1 shows the (remarkably accurate) simulation results.
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TABLE 1
Simulation results for the cosine process. All results are based on 103 independent simulations. The

“True value” is computed using (8.1) The computation time for each estimate is less than one
second. The lattice size is 3b

b True value Est. Std. er.

3 3.12E–03 3.13E–03 8.43E–05
5 8.8E–07 8.6E–07 2.27E–08

10 3.83E–23 3.81E–23 8.88E–25

The remaining examples treat more interesting random fields for which T is a
two-dimensional square.

EXAMPLE 8.2. Consider the smooth homogenous random field on T =
[0,1]2 with mean zero and covariance function

C(t) = e−|t |2 .
Table 2 shows the simulation results of the excursion probabilities P(supT f (t) >

b) and expected overshoots E(supT f (t)−b|supT f (t) > b). The results are based
on 1,000 independent simulations by setting the tuning parameter a = 1. The size
of discretization and CPU time are also reported.

EXAMPLE 8.3. Consider the continuous, but nondifferentiable, and nonho-
mogenous random field on T = [0,1]2 with

μ(t) = 0.1t1 + 0.1t2C(s, t) = e−|t−s|2 .
Table 3 shows the simulation results of excursion probabilities P(supT f (t) > b)

and expected overshoots E(supT f (t) − b|supT f (t) > b). The simulation setting
is the same as that in Example 8.2.

EXAMPLE 8.4. Consider the smooth random field living on T = [0,1]2 with

μ(t) = 0.1t1 + 0.1t2C(t) = e−|t |/4.

TABLE 2
Simulation results in Example 8.2

P(supT f (t) > b) E(supT f (t) − b|supT f (t) > b)

b Est. St. d. Est. St. d. Lattice size CPU time

3 1.1E–02 3.8E–04 0.30 1.5E–02 10 by 10 6 sec
4 3.3E–04 1.2E–05 0.25 1.3E–02 15 by 15 53 sec
5 4.3E–06 1.6E–07 0.19 1.0E–02 15 by 15 45 sec



1212 R. J. ADLER, J. H. BLANCHET AND J. LIU

TABLE 3
Simulation results for Example 8.3

P(supT f (t) > b) E(supT f (t) − b|supT f (t) > b)

b Est. St. d. Est. St. d. Lattice size CPU time

3 1.4E–02 5.0E–04 0.32 1.6E–02 10 by 10 6 sec
4 5.3E–04 1.9E–05 0.25 1.3E–02 15 by 15 40 sec
5 7.2E–06 2.6E–07 0.20 9.8E–03 15 by 15 56 sec

Table 4 shows simulation results for the excursion probabilities P(supT f (t) >

b) and the expected overshoots E(supT f (t) − b|supT f (t) > b). The simulation
setting is the same as that in Example 8.2.

Although we have given rigorous results regarding descretization parameters,
in practice we choose the lattice size sufficiently large so that the bias was in-
consequential in comparison to the estimated standard deviation. We achieved this
by increasing the lattice size until the change of the estimate was small enough
relative to the estimated standard deviation.

Note that, for all the examples, the relative error does not increase as the level
increases and the exceedance probability tends to zero as long as the lattice size
also increases. This is in line with the theoretical results of the paper.

Another empirical finding is that the computational burden increases substan-
tially with lattice size, although the algorithm has been proven to be of polynomial
complexity. This complexity is mainly from the Cholesky decomposition of large
covariance matrices. While this is a problem common to all discrete simulation
algorithms for random fields, we nevertheless plan to look at this efficiency issue
in future work.

Acknowledgment. We are grateful to a referee and an Associate Editor for
helpful comments and suggestions.

TABLE 4
Simulation results for Example 8.4

P(supT f (t) > b) E(supT f (t) − b|supT f (t) > b)

b Est. St. d. Est. St. d. Lattice size CPU time

3 1.5E–02 5.8E–04 0.33 1.5E–02 15 by 15 58 sec
4 6.4E–04 3.1E–05 0.25 1.4E–02 15 by 15 44 sec
5 1.3E–05 6.9E–07 0.21 1.3E–02 25 by 25 600 sec
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