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ON THE ROLE OF ALLEE EFFECT AND MASS MIGRATION IN
SURVIVAL AND EXTINCTION OF A SPECIES1,2

BY DAVIDE BORRELLO

Università degli Studi di Milano Bicocca and CNRS–Université de Rouen

We use interacting particle systems to investigate survival and extinction
of a species with colonies located on each site of Z

d . In each of the four mod-
els studied, an individual in a local population can reproduce, die or migrate
to neighboring sites.

We prove that an increase of the death rate when the local population
density is small (the Allee effect) may be critical for survival, and that the
migration of large flocks of individuals is a possible solution to avoid extinc-
tion when the Allee effect is strong. We use attractiveness and comparison
with oriented percolation, either to prove the extinction of the species, or to
construct nontrivial invariant measures for each model.

1. Introduction. A metapopulation model refers to many small local popula-
tions connected via migrations in a fragmented environment. Each local population
evolves without spatial structure; it can increase or decrease, survive, get extinct or
migrate from its site in different ways; see [14] for more about metapopulations.

The most natural model for the evolution of a single population is the branching
process; see [12]: birth and death rates depend on the number of individuals of the
population, and the growth rate is density dependent.

If the birth rate is always larger than the death rate, if the population survives, it
will increase indefinitely. If the birth rate is smaller than or equal to the death rate,
the population will become extinct almost surely [26]. A more interesting situation
is given by a birth rate larger than the death rate under a particular population
size N , and smaller over that. The real environments observation suggests that
this process is gradual; that is, the growth rate decreases over a population size as
population density increases. In some of our applications we suppose that over a
fixed number of individuals N (the capacity of a site), the growth rate is null.

Many biological phenomena may influence the dynamics of a metapopulation.
Migration is one of the most important strategies that a species adopts to im-

prove its probability of survival (see, e.g., [6, 14, 24]) when the population size is
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large one or more individuals leave the site where they are located to look for new
resources in different sites.

Other biological factors may favor the extinction of a species. One of them, the
Allee effect, consists of an increase in the death rate when the density of individuals
is small. The reason is that at low density many factors (as difficulties in finding
mates) cause a decrease of fecundity and an increase of mortality; see [1, 8, 22,
24].

We simplify the real structure, and we treat 4 metapopulation models from a
mathematical point of view: we start from the easier one by adding a new biologi-
cal phenomenon at each model.

The mathematical models are interacting particle systems on � = XZ
d
, where

X ⊆ N: each particle represents one individual and on each site of Z
d there is a

local population with capacity N (possibly N = ∞), which evolves in different
ways depending on the model. The local populations are connected via migrations
of individuals, that is, jumps of particles from a site to another one.

In Section 2 we introduce the particle system, give the main definitions and
notation and state the attractiveness results, crucial in the sequel for the existence
of critical parameters and nontrivial invariant measures. Theorem 2.1, the main
result of a previous paper ([4], Theorem 2.4, inspired by [13]), gives necessary
and sufficient conditions for attractiveness of a large class of particle systems.
This simplifies many proofs, since, in order to derive either, if two processes are
stochastically ordered, or if a process is attractive, we do not need to construct an
explicit coupling for each model, but we only have to check inequalities involving
the transition rates.

In [19] and [21], the author considers a metapopulation model to investigate the
roles of mass death (i.e., the death of all individuals in a local population) and spa-
tial aggregation in the extinction of a species. In [19] he shows that, in presence of
mass death, animals living in large flocks are more susceptible to extinction than
animals living in small flocks: for this model, mass death can be an alternative to
the Allee effect in raising to the extinction of a species. The new results in [21] in-
volve the role of spatial aggregation, which may be either bad or good for survival
in a model respectively, with or without mass death. For these models the local
population Allee effect was not taken into account. The model introduced, called
a noncatastrophic times model, is the following: for a fixed N < ∞, on each site
of Z

d we may have up to N individuals; hence N is the capacity of sites. The
transitions of the Markov process (ηt )t≥0 are

ηt (x) → ηt (x) + 1 at rate ηt (x)ϕ + λ
∑
y∼x

1{ηt (y)=N} for 0 ≤ ηt (x) < N,

ηt (x) → ηt (x) − 1 at rate 1 for 1 ≤ ηt (x) ≤ N,

where y ∼ x are neighbors. In other words, each individual gives birth to another
one on the same site with rate ϕ and dies with rate 1. An individual on site x
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gives birth to a new individual in a neighboring site with rate λ/N only when the
population at x has reached the maximal size N . There is a critical parameter for
the capacity N of sites:

THEOREM 1.1 ([21], Theorem 2). Assume that d ≥ 2, λ > 0 and ϕ > 0. There
is a critical value Nc(λ,ϕ) such that if N > Nc(λ,ϕ), then starting from any finite
number of individuals, the population has a strictly positive probability of surviv-
ing.

Starting from noncatastrophic times model, we propose 4 models to improve the
understanding of species dynamics. We want to investigate, for the first time in a
model with spatial structure, the role of the Allee effect, the role of mass migration
and their interactions.

In Section 3 we introduce Model I. This will represent our basic model with
neither Allee effect nor mass migration. We begin with a system very similar to
Schinazi’s model: since a further step consists in adding migration of many indi-
viduals, we consider a migration of one individual to a neighboring site instead of
a birth of a new individual. If N = 1, such a difference does not allow survival for
the model with migrations, since no new births are possible, and the process gets
extinct for any λ: this is definitely not the case for the noncatastrophic times model
with N = 1, which is the contact process. If N is large this small difference does
not change the behavior of the model.

This is the basic model, and it must be as easy as possible (births and deaths on
the same site and migrations from one site to another, all for at most one particle
at time). For this reason we do not consider mass death, which is an additional
complex factor.

We take the birth rate larger than the death rate, but we fix a capacity N per site.
A migration of one individual from a site x toward a nearest neighbor one, is al-
lowed only when the population on x reaches N . We prove that in some cases there
is almost sure extinction, and in others the species survives with positive probabil-
ity: the key tool to prove survival is the comparison technique with a supercritical
oriented percolation model; see [11].

In Section 4 we introduce Model II, that points out the key role of the Allee
effect in species dynamics. Schinazi used mass death to prove that it can be con-
sidered an alternative to the Alle effect for extinction of a species. Since both the
Allee effect and mass death improve the probability of extinction, in order to un-
derstand the role of one of them they should be considered separately. Here we
want to show that a strong Allee effect (with neither mass death nor mass migra-
tion) is a key factor for the extinction.

We add the Allee effect to Model I. Different probabilistic tools have al-
ready been used to illustrate the Allee effect, like stochastic differential equations
(see [9]), discrete-time Markov chains (see [2]) or diffusion processes (see [10]),
but none of these models has a spatial structure.
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In Model II each site has a capacity N , but the death rate is larger than the
birth rate for small densities. Migration works exactly as in Model I. Theorem 4.1
states that for all possible capacities, growth and migration rates, there exists an
Allee effect large enough for the species to become extinct. It is proved through
comparison with subcritical percolation.

In Model III, introduced in Section 5, we allow a migration of more than one
individual at a time from one site to the neighboring one in a species affected by
the Allee effect. We prove that mass migration might be the possible strategy of a
species to reduce the Allee effect and improve its survival probability.

When a local population size reaches N , a migration of a number of individual
smaller than a fixed M is possible. In Model II, for an Allee effect large enough,
the species gets extinct. In Model III, if N is large enough there exists M such that
this is no longer true. A migration of large flocks avoids small densities in a new
environment which are bad for survival. Indeed, by comparison arguments with
oriented percolation, even if the Allee effect is the strongest one, if the species
lives and migrates in flocks large enough, survival is possible (Theorem 5.1).

In Section 6 we generalize the previous models: in Model IV, instead of fixing a
capacity N , we consider a slightly more realistic model. In all environments there
is no maximal size, but a kind of self-mechanism of birth control such that the
death rate is larger than the birth rate when there are more than N individuals in
a local population. A migration of one or more individuals is allowed from a site
with more than N individuals toward a site with few individuals. We prove in The-
orem 6.1 that in some cases we can have survival but on each site the population
does not explode even if there is no capacity. Namely, on each site the expected
value of the number of individuals is finite. In other cases the species becomes
extinct.

Note that on each model instead of fixing the death rate equal to 1 and letting
the birth rate vary (the most used approach), we consider the reverse but equivalent
point of view in order to clarify our proofs, presented in Section 7.

2. Background and tools. The mathematical model is an interacting particle
system (ηt )t≥0 on � = XZ

d
, where X = {0,1, . . . ,N} ⊆ N and N denotes the

common size (capacity) of the local populations, if finite. The value ηt (x), x ∈ Z
d ,

is the number of individuals present in site x at time t ≥ 0. We write �N when we
want to stress the dependency on the capacity N .

When X is finite, which is the case of Models I, II and III, we refer to the
construction in [16]; when X is infinite, that is, in Model IV, the state space is non-
compact, and a different construction is needed. The first examples of interacting
particle systems with locally interacting components in noncompact state spaces
have been introduced in [23]. One approach to construct these kinds of models
has been developed in [17], where the construction was detailed for Coupled Ran-
dom Walks, but with small changes it can be generalized to many other processes.
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By using similar ideas, in [7] was stated a general existence theorem for reaction-
diffusion processes, that we are going to apply in Model IV: in order to assure the
existence of the process, some restrictions on the transition rates are required, as
explained in Section 6.

The process admits an invariant measure μ if Pμ(ηt ∈ A) = μ(A) for each
t ≥ 0, A ⊆ �, where Pμ is the law of the process with initial distribution μ. An
invariant measure is trivial if it is concentrated on an absorbing state, when one
exists. The process is ergodic if there is a unique invariant measure to which the
process converges starting from each initial distribution (see [16], Definition 1.9).
For any x, y ∈ Z

d , we write y ∼ x if y is one of the 2d nearest neighbors of site x.
We introduce here a common infinitesimal generator L (we will be more precise

on each model): it is given by

Lf (η) = ∑
x∈Zd

∑
k∈X

{
P k

η(x)

(
f (Sk

xη) − f (η)
) + P −k

η(x)

(
f (S−k

x η(x)) − f (η)
)

(2.1)

+ ∑
y∼x

1

2d
�k

η(x),η(y)

(
f (S−k,k

x,y η) − f (η)
)}

,

where f is a local function, η ∈ �, S−k,k
x,y , Sk

y and S−k
y , where k > 0, are local

operators performing the transformations whenever possible

(S−k,k
x,y η)(z) =

⎧⎪⎨
⎪⎩

η(x) − k, if z = x and η(x) − k ∈ X,η(y) + k ∈ X,

η(y) + k, if z = y and η(x) − k ∈ X,η(y) + k ∈ X,

η(z), otherwise,
(2.2)

(Sk
yη)(z) =

{
η(y) + k, if z = y and η(y) + k ∈ X,

η(z), otherwise,
(2.3)

(S−k
y η)(z) =

{
η(y) − k, if z = y and η(y) − k ∈ X,

η(z), otherwise,
(2.4)

P k· , P −k· are positive functions from X to R, and in our four models k = 0,1
(particles are born and die one at a time).

We assume P 1
0 = 0, that is, the Dirac measure concentrated on the empty con-

figuration δ0 is a trivial invariant measure. The function �k
η(x),η(y) represents the

migration (jump) rate; a jump of more than one particle per time is possible. We
call emigration from x a jump that reduces the number of particles on x and immi-
gration a jump that increases it.

There is a natural definition of partial order on the state space,

∀ξ, η ∈ �, ξ ≤ η ⇔ (∀x ∈ S, ξ(x) ≤ η(x)
)
.(2.5)

A process (ηt )t≥0 with generator L is stochastically larger than a process (ξt )t≥0

with generator L̃ if, given ξ0 ≤ η0, there exists an increasing Markovian coupling
(ξt , ηt )t≥0 on state space � × � such that

P
(ξ0,η0)(ξt ≤ ηt ) = 1,
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for all t ≥ 0, where P
(ξ0,η0) denotes the distribution of (ξt , ηt )t≥0 with initial state

(ξ0, η0). In this case the process (ξt )t≥0 is stochastically smaller than (ηt )t≥0, and
the pair (ξt , ηt )t≥0 is stochastically ordered; see [4], Section 2. If L = L̃, and there
is stochastic order between two processes with ordered initial configurations, then
the process is attractive; see [16], Definition II.2.2.

Necessary and sufficient conditions for stochastic order and attractiveness in a
general class of particle systems including the models defined by generator (2.1)
have been derived by [4], Theorem 2.4, which generalizes [13], Theorem 2.21.
Since (2.1) involves neither births nor deaths depending on neighboring sites, this
theorem can be restated as follows:

THEOREM 2.1 ([4], Theorem 2.4). Given K ∈ N, j := {ji}1≤i≤K , m :=
{mi}1≤i≤K , h := {hi}1≤i≤K , three nondecreasing K-uples in N, and α,β, γ, δ in X

such that α ≤ γ , β ≤ δ, we define

Ia := IK
a (j,m) =

K⋃
i=1

{k ∈ X :mi ≥ k > δ − β + ji},(2.6)

Ib := IK
b (j,m) =

K⋃
i=1

{k ∈ X :γ − α + mi ≥ k > ji},(2.7)

Ic := IK
c (h,m) =

K⋃
i=1

{k ∈ X :mi ≥ k > γ − α + hi},(2.8)

Id := IK
d (h,m) =

K⋃
i=1

{k ∈ X : δ − β + mi ≥ k > hi}.(2.9)

A particle system (ηt )t≥0 with transition rates {�k
a,b,P

k
b ,P −k

a }{a,b,k∈X} is stochas-
tically larger than a particle system (ξt )t≥0 with transition rates {�̃k

a,b, P̃
k
b ,

P̃ −k
a }{a,b,k∈X} if and only if∑

k∈X : k>δ−β+j1

P̃ k
β + ∑

k∈Ia

�̃k
α,β ≤ ∑

l∈X : l>j1

P l
δ + ∑

l∈Ib

�l
γ,δ,(2.10)

∑
k∈X : k>h1

P̃ −k
α + ∑

k∈Id

�̃k
α,β ≥ ∑

l∈X : l>γ−α+h1

P −l
γ + ∑

l∈Ic

�l
γ,δ(2.11)

for all choices of K , h, j, m, α ≤ γ and β ≤ δ.

REMARK 2.2. It is not possible that an infinite value for K , Ia , Ib, Ic, Id

results in the same rate inequality: therefore one restricts to take K smaller than
the maximal change (birth, death or migration) of particles involved in a transition;
see [4], Remark 2.5.
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REMARK 2.3. To prove Theorem 2.1, following the approach of [13], we first
show that conditions (2.10)–(2.11) are necessary. Then we construct a Markovian
coupling which turns out to be increasing under (2.10)–(2.11); see [4], Section 3.
Hence if conditions (2.10)–(2.11) are not satisfied it is not possible to find a cou-
pling that preserves the order between the two processes.

By taking two processes with the same transition rates, Theorem 2.1 states nec-
essary and sufficient conditions for attractiveness. We use attractiveness of a pro-
cess to construct a nontrivial invariant measure starting from an initial configura-
tion η0 ∈ �N , where

�N := {η ∈ � :η(x) = N for all x ∈ Z
d}.(2.12)

REMARK 2.4 ([4], Proposition 2.7). For processes with births, deaths and
jumps of at most one particle per site, conditions (2.10) and (2.11) reduce to

P̃ 1
β + �̃1

α,β ≤ P 1
δ + �1

γ,δ if β = δ and γ ≥ α,(2.13)

P̃ 1
β ≤ P 1

δ if β = δ and γ = α,(2.14)

P̃ −1
α + �̃1

α,β ≥ P −1
γ + �1

γ,δ if γ = α and δ ≥ β,(2.15)

P̃ −1
α ≥ P −1

γ if γ = α and δ = β.(2.16)

REMARK 2.5. By [4], Corollary 3.28, the sufficient condition still holds if we
consider systems with more general transition rates �k

η(x),η(y)(x, y) and P k
η(x)(x),

not translation invariant. In this case there is stochastic order if conditions (2.10)–
(2.11) [resp., (2.13)–(2.16) if N = 1] are satisfied for each pair of sites (x, y) and
configurations η ≤ ξ with η(x) = α, η(y) = β , ξ(x) = γ , ξ(y) = δ.

Remark 2.5 will be used in some steps of the further proofs (for Theorems 3.2
and 4.1), where in order to make a comparison with oriented percolation, we will
introduce systems with different transition rates in different space regions, so that
they do not satisfy the hypothesis of Theorem 2.1.

DEFINITION 2.6. For a process (ηt )t≥0 there is survival of the species if

P(|ηt | ≥ 1 for all t ≥ 0) > 0,(2.17)

where |ηt | denotes the number of individuals at time t , and |η0| is finite. Otherwise
the species becomes extinct. If the process starts from an infinite η0 we say that the
species becomes extinct if the process converges to δ0. The convergence to δ0 is
intended that for any finite S ⊂ Z

d , the probability that there exists t0 such that for
all t > t0, ηt (x) = 0 for all x ∈ S tends to 1.



CRITICAL PARAMETERS FOR METAPOPULATION MODELS 677

3. Model I: The basic model. We introduce Model I. We choose to fix a
birth rate equal to 1 and to associate two parameters to death and migration rates.
Given φ and λ positive real numbers, transitions are, for all x ∈ S, y ∈ S, y ∼ x

[we follow the notation in (2.1)]

ηt (x) → ηt (x) + 1 at rate P 1
ηt (x) = ηt (x)1{ηt (x)<N},

ηt (x) → ηt (x) − 1 at rate P −1
ηt (x) = φηt (x),

(3.1)
(ηt (x), ηt (y)) → (

ηt (x) − 1, ηt (y) + 1
)

at rate
1

2d
�1

ηt (x),ηt (y) = λ

2d
1{ηt (x)=N,ηt (y)<N}.

The model has the following monotonicity properties:

PROPOSITION 3.1. Let (ξt )t≥0, (ηt )t≥0 be two processes with respective pa-
rameters (φ1, λ,N) and (φ2, λ,N) such that φ1 ≤ φ2. Then (ξt )t≥0 is stochasti-
cally larger than (ηt )t≥0, and (ηt )t≥0 is an attractive process.

The key for attractiveness, which is a consequence of the stochastic ordering
when φ1 = φ2, is that there are births, deaths and migrations of at most one particle
per time and the migration rate from ηt (x) to ηt (y) is nondecreasing in ηt (x) and
nonincreasing in ηt (y).

COROLLARY 3.2. Given (η
ξ
t )t≥0 such that η

ξ
0 = ξ , then

P(|ηξ
t | ≥ 1 for all t ≥ 0)

is nonincreasing in φ for each ξ ∈ �.

REMARK 3.3. There is no stochastic order between systems with different
values of N or λ. Indeed, in these cases, the conditions of Theorem 2.1 are not
satisfied.

The first result corresponds to Theorem 1.1 for the noncatastrophic times model,
and it is proved in a similar way.

THEOREM 3.1. Suppose d ≥ 2, λ > 0 and φ < 1. There exists a critical value
Nc(λ,φ) such that if N > Nc(λ,φ), then starting from η0 ∈ � such that |η0| ≥ 1,
the process has a positive probability of survival. Moreover if η0 ∈ �N the process
converges to a nontrivial invariant measure with positive probability.

PROOF. We skip the proof, since the result is a corollary of Theorem 5.1. We
can get an easier proof that the process has a positive probability of surviving by
slightly modifying [21], proof of Theorem 2. The differences are that we consider
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a migration instead of a birth from x to y ∼ x, and the migration rate from x to y

is nonincreasing in ηt (y). Such changes are not relevant for the proof. �

As we can expect, aggregation is good for Model I, as in noncatastrophic times
model.

REMARK 3.4. If N = 1 the process dies out, since each individual can only
migrate or die.

This suggests that an increase of N is good for the survival of the species. How-
ever, by Remark 3.3, there is no monotonicity property with respect to N .

If we fix the capacity N , we prove that there is a phase transition also with
respect to the death rate φ.

THEOREM 3.2. For all λ > 0, 1 < N < ∞, there exists φc(λ,N) < 1 such
that, if φ < φc(λ,N) the process starting from η0 with 1 ≤ |η0| < ∞ has a positive
probability of survival and if φ > φc(λ,N), the process dies out. Moreover, for
η0 ∈ �N if φ < φc(λ,N), the process converges to a nontrivial invariant measure
with positive probability.

We prove it in three steps in Section 7.1.2. First [Step (i)] we find φ1
c (λ,N)

small enough to have survival: by Proposition 3.1 the process survives for each φ

smaller than φ1
c (λ,N). Then [Step (ii)] we prove that the process dies out for all

λ,N by taking φ ≥ 1 if it starts from a finite initial configuration and by taking
φ > 1 if it starts from η0 ∈ �N . Finally in Step (iii) we use Corollary 3.2 to obtain
the existence of a critical parameter φc(λ,N).

Figure 1 sketches the phase diagram in the (λ,φ) plane. The model admits a
phase transition with respect to the death rate φ for each N ≥ 2, while the same

FIG. 1. Phase diagram of Model I for a fixed N > 1 and finite initial configuration: by Theorem 3.2
there exists a critical curve φc(λ,N) which converges to 0 as λ goes to zero; it is always smaller
than 1. We conjecture that φc(λ,N) is monotone and as λ goes to infinity converges to a value φN

depending on the capacity N of the model which is strictly smaller than 1 for each N < ∞.
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process without migrations dies out almost surely. The effect of a migration is to
move an individual from a site in state N , where there is no possibility to give birth,
to a site with less than N individuals, where it may reproduce itself. Therefore even
if there is no monotonicity with respect to λ (cf. Remark 3.3), this suggests that an
increase of λ is good for survival. Contact interactions and migrations work in a
similar way, but small differences are present. From a mathematical point of view
an increase of the migration rate does not favor ergodicity.

4. Model II: The Allee effect. We translate the Allee effect into mathematical
terms for a metapopulation model. As in Model I, we fix a capacity N for all sites,
but we assume the death rate larger than (or equal to) the birth rate when the density
is small. Namely, fix a positive integer NA ≤ N and positive real numbers φ, λ and
φA ≥ 1; the transitions are, for all x ∈ S, y ∈ S, x ∼ y, referring to the notation
in (2.1)

ηt (x) → ηt (x) + 1 at rate P 1
ηt (x) = ηt (x)1{ηt (x)≤N−1},

ηt (x) → ηt (x) − 1

(4.1) at rate P −1
ηt (x) = ηt (x)

(
φA1{ηt (x)≤NA} + φ1{NA<ηt (x)}

)
,

(ηt (x), ηt (y)) → (
ηt (x) − 1, ηt (y) + 1

)
at rate

1

2d
�1

ηt (x),ηt (y) = λ

2d
1{ηt (x)=N,ηt (y)<N}.

We assume φA ≥ 1 and φA ≥ φ; in other words if ηt (x) ≤ NA, then the death
rate φAηt (x) is larger than (or equal to) the birth rate ηt (x) because of the Allee
effect. If ηt (x) > NA, the most interesting situation is given by a death rate φηt (x)

smaller than or equal to the birth rate ηt (x), that is, φ ≤ 1. If either φ ≥ 1 and η0
is finite or φ > 1 and η0 ∈ �N the species gets extinct as proved in Theorem 3.2.
If NA = 0 (no Allee effect) or NA = N (death rate always larger than birth rate),
there is only one death rate, and we are back to Model I.

Since only births, deaths and migrations of at most one particle are allowed, and
the migration rate from ηt (x) to ηt (y) is nondecreasing in ηt (x) and nonincreasing
in ηt (y), attractiveness conditions are satisfied. One proves in a similar way that
Proposition 3.1 still holds for Model II either with respect to φA or φ, namely:

PROPOSITION 4.1. Let (ξt )t≥0 and (ηt )t≥0 be two Model II-type processes
with respective parameters (φ1, φA,1, λ,N,NA) and (φ2, φA,2, λ,N,NA) such
that φ1 ≤ φ2 and φA,1 ≤ φA,2. Then (ξt )t≥0 is stochastically larger than (ηt )t≥0,
and (ηt )t≥0 is attractive.

Corresponding Corollary 3.2 holds in a similar way.
We prove that the Allee effect changes the behavior of the system: for any pos-

sible capacity N and migration rates there exists an Allee effect large enough for
the species to become extinct.
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THEOREM 4.1. Assume φA ≥ 1, and let φc(λ,N) be the critical parameter
introduced in Theorem 3.2. Then for all λ > 0, 0 < N < ∞, 0 < NA ≤ N :

(i) if φ < φc(λ,N), there exists a value φA
c (φ,λ,N,NA) such that if φA >

φA
c (φ,λ,N,NA), the species becomes extinct for any initial configuration η0 ∈

�N , and if φA < φA
c (φ,λ,N,NA) the species has a positive probability of sur-

vival;
(ii) if φc(λ,N) < φ (≤ φA), the species becomes extinct for any initial config-

uration η0 ∈ �N .

This corresponds to the biological idea that random fluctuations, which are
present on each local population, plus the Allee effect doom even a very large
population.

The phase diagram of Model II depends on φA. Proposition 4.1 is not enough to
construct a detailed phase diagram, but it gives some information in this direction.
Since for any φ and λ there exists φA large enough for the species to become
extinct, one can choose φA large enough to reduce the survival region in the (λ,φ)

plane of Figure 1 for such fixed φA.
In order to model the Allee effect, we require φA ≥ 1 and φ ≤ 1. Note that

from a biological point of view we just need φA > φ, but if either φA > φ > 1 or
1 > φA > φ, by monotonicity arguments we can work as in Model I.

From a mathematical point of view, it would be interesting to investigate a
model where φ and φA play symmetric roles, that is, φA ≤ 1 and φ ≥ 1. For
fixed N , NA and λ we prove that there is no φA such that there is survival for
all φ and no φ, such that there is extinction for all φA.

THEOREM 4.2. For all 1 < NA < N , λ > 0:

(i) for each φ > 1 there exists a value φA
c (λ,NA,N,φ) such that, if φA <

φA
c (λ,NA,N,φ), the process survives for any initial configuration η0 such that

|η0| ≥ 1 with positive probability;
(ii) for each φA < 1 there exists a value φc(λ,NA,N,φA) such that, if φ >

φc(λ,NA,N,φA), the process dies out for any initial configuration η0 ∈ �N .

5. Model III: Mass migration as Allee effect solution. We have already ob-
served in Model I that a migration of a single individual is good in absence of
the Allee effect. The model without migrations dies out, but if we add a possible
migration of one individual there is a positive probability of survival. In Model II,
anyhow, a single individual migration may not be enough: even in the supercritical
region of φ in Model I there exists an Allee effect strong enough for the species to
become extinct.

Which strategy may a species adopt to reduce the Allee effect?
We show that, at least in theory, migrations of large flocks of individuals improve

the probability of survival for any Allee effect. A migration of many individuals in
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a new environment improves the probability of a successful colonization avoiding
a small density in that new environment which is influenced by the Allee effect.

We introduce positive parameters φA, φ, NA, N such that 0 ≤ NA ≤ N , φA > 1,
φ > 0 and we take birth and death transitions as in Model II, but more general
migration rates: given M ∈ N, 0 < M ≤ N , y ∼ x the transitions are

ηt (x) → ηt (x) + 1 at rate P 1
ηt (x) = ηt (x)1{ηt (x)≤N−1},

ηt (x) → ηt (x) − 1

(5.1) at rate P −1
ηt (x) = ηt (x)

(
φA1{ηt (x)≤NA} + φ1{NA<ηt (x)}

)
,

(ηt (x), ηt (y)) → (
ηt (x) − k, ηt (y) + k

)
at rate

1

2d
�k

ηt (x),ηt (y) = λ

2d
1{ηt (x)−k≥N−M,ηt (y)+k≤N}

for 1 ≤ k ≤ M . In other words if k ∈ {1,2, . . . ,M} individuals try to migrate
from x to y, but if ηt (y) + k > N , the migration does not happen. Notice that
if ηt (x) < N − M the migration rate is null: individuals try to migrate only when
there are more than N − M individuals on a site. From a biological point of view,
this means that when there are few individuals, resources are enough for all and
there are no reasons to migrate. When ηt (x) ≥ N −M there is a positive probability
of migration and the number of individuals that may migrate is increasing with the
population size. If ηt (x) = N −M +1 we allow a migration of at most 1 individual
from x to a nearest neighbor site; when ηt (x) = N − M + 2 we allow a migration
of either 1 or 2 individuals with rate λ and so on. If ηt (x) = N = (N − M) + M

we allow a migration of 1,2, . . . to the largest flock of M individuals, where each
migration occurs with rate λ.

First of all we notice monotonicity properties.

PROPOSITION 5.1. Let (ξt )t≥0 and (ηt )t≥0 be two Model III-type processes
with respective parameters (φ1, φA,1, λ,N,NA) and (φ2, φA,2, λ,N,NA) such
that φ1 ≤ φ2 and φA,1 ≤ φA,2. Then (ξt )t≥0 is stochastically larger than (ηt )t≥0,
and (ηt )t≥0 is attractive.

Corresponding Corollary 3.2 holds in a similar way.
In Model II we showed that a strong Allee effect dooms even a very large popu-

lation with a large migration rate. The strategy that the species may adopt to reduce
the Allee effect is to increase the number of individuals which migrate: we prove
that we can take a population size N and a maximal migration flock size M large
enough for the species to survive for any Allee effect.

THEOREM 5.1. Let d ≥ 2. For all λ > 0, NA ≥ 0:
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(i) if φ < 1 there exists Nc(φ,λ,NA) such that for each N > Nc(φ,λ,NA),
there exists M(NA) so that the process starting from η0 with |η0| ≥ 1 has a pos-
itive probability of survival for each φA < ∞. Moreover if η0 ∈ �N the process
converges to a nontrivial invariant measure for each φA < ∞;

(ii) if φ ≥ 1, the process becomes extinct for all N , λ, φA > 1, M and for any
finite initial configuration. If η0 ∈ �N is not finite the process becomes extinct if
φ > 1.

REMARK 5.2. The proof of (i) (see Section 7) states that in order to have
survival we can take M(NA) = NA + 1. If NA = 0, this gives M(NA) = NA +
1 = 1; only a migration of one individual is possible and the process reduces to a
Model I-type process: therefore Theorem 3.1 is a particular case of Theorem 5.1.

Notice that Nc(φ,λ,NA) does not depend on φA. This means that even if the
Allee effect is the strongest one, if the species lives and migrates in flocks large
enough, survival is possible.

Since there are many parameters the phase diagram is not easy to construct;
nevertheless Proposition 5.1 suggests that one can choose N and M large enough
to extend the survival region in the (λ,φ)-plane for fixed φA, N and M .

6. Model IV: Ecological equilibrium. Real natural environments do not have
any a priori bound on the population size, but there is a kind of self-regulating
mechanism that does not allow an “explosion” of the number of individuals per
site. Ecological equilibrium has been introduced in [3] for restrained branching
random walks (on a connected, nonoriented graph X with bounded geometry) with
transition rates

η(x) → η(x) + 1 at rate
∑
y

η(y)p(y, x)c(η(x)),

η(x) → η(x) − 1 at rate η(x),

where c : N → R
+ is a nonincreasing function and P = (p(x, y))x,y∈X is a

stochastic matrix such that p(x, y) > 0 only if x ∼ y. The idea is that some restric-
tions on branching random walks birth rates, given by the nonincreasing function
c(·) of the number of individuals, provide survival within nonexploding popula-
tions. In particular, one interesting consequence of [3], Proposition 1.1, is that one
can find a function c such that the process survives but lim supt→∞ E

η0(ηt (x)) <

∞ uniformly for any bounded η0 ∈ � and x ∈ X.
We show that a similar mechanism leads to a similar conclusion on different

systems. Instead of taking births on neighboring sites as in [3], we consider a non-
increasing birth rate in the same local population, but we add migrations when
the number of individuals is larger than a fixed value N . This means that the re-
striction on birth rate does not change the migration rate: this is not the case for
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the restrained branching random walk, where births in a new site (which play the
same role as migrations in Model IV) depend on the local population density.

We suppose that in our environment there is no maximal population size as in
previous models, and the birth rate is always positive. We also assume that, when
the population size is larger than N , the death rate increases faster than the birth
rate, hence the growth rate is negative.

In order to simplify notation and proofs, we work on a modification of Model I.
Namely, given positive real values φ, φ̃, we take the following transitions, for each
x ∈ S, y ∈ S, x ∼ y:

ηt (x) → ηt (x) + 1 at rate P 1
ηt (x) = ηt (x),

ηt (x) → ηt (x) − 1

(6.1) at rate P −1
ηt (x) = ηt (x)

(
φ1{ηt (x)≤N} + φ̃1{N<ηt (x)}

)
,

(ηt (x), ηt (y)) → (
ηt (x) − 1, ηt (y) + 1

)
at rate

1

2d
�1

ηt (x),ηt (y) = λ

2d
1{ηt (x)≥N,ηt (y)<N}.

This means that when the population size ηt (x) is larger than N , and the death
rate φ̃ηt (x) is larger than the birth rate ηt (x). A migration is allowed from a site
with more than N individuals to a site with less than N individuals. Since we
are working without any a priori bound, we refer to construction techniques in
noncompact cases, and we restrict the state space to �̃ ⊆ � (see [7], Chapter 13),
where

�̃ :=
{
η ∈ � :

∑
x∈Zd

η(x)α(x) < ∞
}
,

and (α(x))x∈Zd is a positive sequence such that
∑

x∈Zd α(x) < ∞. Sufficient con-
ditions for existence and uniqueness of the process given in [7], Chapter 13, are
satisfied:

LEMMA 6.1. There exists a unique Markov process with state space �̃, gen-
erator (2.1) and rates (6.1).

Since births, deaths and migrations involve only one particle and the migration
rate is nondecreasing in ηt (x) and nonincreasing in ηt (y) the process is attractive
as in Model I, and a monotonicity property (see Proposition 3.2) holds in φ and
in φ̃ for each initial configuration η0 ∈ �̃. We prove that in some cases the process
survives but does not explode; that is, it does not die out, and the expected value
on each site is finite.

THEOREM 6.1. Let η0 ∈ �n for some n ∈ N (so that η0 ∈ �̃). For all λ > 0,
φ̃ > 1:
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(i) for each 1 < N < ∞ there exists a critical value φc(λ,N, φ̃) > 0 such
that if φ < φc(λ,N, φ̃), the process has a positive probability of survival, and
if φ > φc(λ,N, φ̃) the process dies out;

(ii) for each φ < 1 there exists a value Nc(λ,φ, φ̃) > 0, such that if N >

Nc(λ,φ, φ̃), the process has a positive probability of survival.
If the process survives, there exists Cn < ∞ so that limt→∞ E(ηt (x)) ≤ Cn for

each x ∈ Z
d .

Note that the constant Cn depends on the initial configuration. Since the migra-
tion rate does not depend on the local population density, we are not able to find
such a constant C independent of the initial configuration, which was the case for
the model treated in [3].

REMARK 6.2. In a similar way one can consider a Model III-type process
without any a priori bound by adding a death rate φ̃ηt (x) when the number of
individuals in a local population is larger than N . By comparison arguments, even
if a strong Allee effect is present, a mass migration of large flocks of individuals
leads to the survival of the species, but the local populations do not explode.

7. Proofs. We first recall a classical result involving random walks on a finite
interval. Let r1, r2 ∈ N and (Xt)t≥0 be a discrete time random walk on {r1, r1 + 1,

. . . , r2 = r1 + n} such that

i → i + 1 with probability p, i ∈ {r1, . . . , r2 − 1},
i → i − 1 with probability q, i ∈ {r1 + 1, . . . , r2}.

We interpret this random walk as a game which ends when Xt reaches either r1
or r2, that we call respectively the ruin of the first and the second players.

LEMMA 7.1 (Ruin Problem Formula, [18], (4.4), Section I.4). Let Pr2(j)

[resp., Pr1(j)] be the probability that the random walk starting at j ∈ {r1 + 1,

. . . , r2 − 1} reaches state r2 before state r1 (resp., state r1 before r2). Then

1 − Pr1(j) = Pr2(j) = 1 − (q/p)j−r1

1 − (q/p)n
.

7.1. Model I.

7.1.1. Proof of Proposition 3.1. We prove that if η0 ≤ ξ0, then ηt ≤ ξt for each
t > 0 a.s. This is an application of Theorem 2.1; since there is a change of at most
one particle per time, we check conditions in Remark 2.4. The transition rates
are given by (3.1), with φ = φ2 for the process (ηt )t≥0 and φ = φ1 for (ξt )t≥0.
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Conditions (2.13) and (2.14) are the following: given η ≤ ξ , if η(y) = ξ(y) and
η(x) ≤ ξ(x)

η(y)1{η(y)≤N−1} + λ1{η(x)=N,η(y)<N} ≤ ξ(y)1{ξ(y)≤N−1} + λ1{ξ(x)=N,ξ(y)<N},
η(y)1{η(y)≤N−1} ≤ ξ(y)1{ξ(y)≤N−1}.

Since η ≤ ξ and η(x) = N imply ξ(x) = N , and since 1{η(x)=N,η(y)<N} ≤
1{ξ(x)=N,ξ(y)<N} if η(y) = ξ(y), the conditions are satisfied.

Conditions (2.15) and (2.16) are the following: if η(x) = ξ(x) and η(y) ≤ ξ(y),

φ2η(x)1{η(x)≤N−1} + λ1{η(x)=N,η(y)<N}
≥ φ1ξ(x)1{ξ(x)≤N−1} + λ1{ξ(x)=N,ξ(y)<N},

φ2η(x)1{η(x)≤N−1} ≥ φ1ξ(x)1{ξ(x)≤N−1},

which hold since φ2 ≥ φ1 and 1{η(x)=N,η(y)<N} ≥ 1{ξ(x)=N,ξ(y)<N}, because
η(x) = ξ(x).

7.1.2. Proof of Theorem 3.2. We prove it in three steps. In Step (i) we find
φ1

c (λ,N) small enough to have survival; in Step (ii) we prove that the process dies
out for all λ,N by taking φ ≥ 1 if it starts from a finite initial configuration and by
taking φ > 1 it it starts from η0 ∈ �N , and in Step (iii) we get the existence of a
critical parameter by monotonicity.

(i) We follow the idea in [20] by using the comparison technique with oriented
percolation (introduced in [5]) explained in [11]. Here and in the subsequent proofs
we think of the process as being generated by the graphical representation; see [11]
for such a construction. Suppose d = 2. The proof in higher dimension is similar,
but the notation is more complicated. Denote by⎧⎪⎨

⎪⎩
e1 = (1,0), N = {(m,n) ∈ Z

2 :m + n is even},
B = (−4L,4L)2 × [0, T ], Bm,n = (2mLe1, nT ) + B,

I = [−L,L]2, Im = 2mLe1 + I,

(7.1)

where L and T are integers to be chosen later. In other words Bm,n is the cube
that we get by applying a translation of (2mLe1, nT ) to B and Im the square we
get by applying a translation of 2mLe1 to I . Roughly speaking, the idea consists
of constructing boxes large enough so that with large probability the species sur-
vives inside a box, and then to compare this evolution with an oriented percolation
model.

Let (ηt )t≥0 be the process defined by generator (2.1) with rates (3.1). We con-
sider a modification η

m,n
t of ηt : the process (η

m,n
t )t≥0 is constructed through the

graphical representation of ηt in Bm,n, but ηt (x) = 0 for all x /∈ Bm,n and t ≥ 0. Let
mx,y with y ∼ x be the Poisson process with rate λ/(2d) associated to a migration
from x to y. A migration from x belongs to the graphical construction in Bm,n if
x ∈ Bm,n: therefore an immigration to Bm,n from a site y /∈ Bm,n cannot happen
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for η
m,n
t , but we still consider the arrows of emigrations from Bm,n. Their effect is

the death of one individual on the boundary of Bm,n. If η0(x) = η
m,n
0 (x) = 1{y}(x)

for some y ∈ Bm,n, ηt ≥ η
m,n
t by Remark 2.4 since if x /∈ Bm,n, then η

m,n
t (x) = 0;

otherwise conditions in Remark 2.4 are satisfied for each pair of sites (x, y); see
also Remark 2.5.

We say that (m,n) is wet if η
m,n
t starting at time nT with at least one individual

in Im is such that there is at least one individual in Im−1 and one individual in Im+1
at time (n + 1)T . Otherwise the site is dry. The event Gm,n := {(m,n) is wet} is
measurable with respect to the graphical construction in Bm,n: we prove that we
can choose L and T such that the probability of a site (m,n) to be wet can be made
arbitrarily close to 1 if φ is small enough. By translation invariance it is enough
to show it for (0,0). We call η

0,0
t := ξt , we fix L > 0 and we prove that for each

ε > 0 there exists T and φ such that

P
(
(0,0) is wet

) ≥ 1 − ε,(7.2)

that is, that if there exists one individual in a site (i, j) ∈ I0 =: I , there is at least
one individual both in I1 and I−1 with large probability.

In order to prove it for φ small enough, we begin by showing that it holds for a
process with φ = 0 inside B: let P̃(ξt ∈ ·) denote the law of such a process. This
means that each individual in box B survives forever.

We choose a preferential path (i, j), (i + 1, j), . . . , (L, j), (L+ 1, j): we prove
that there exists T large enough so that the abscissas of the rightmost and leftmost
particles are respectively larger than L and smaller than −L with probability larger
than 1 − ε, since this is one possibility for the site (0,0) to be wet.

A similar idea works for the leftmost particle. We conclude that if φ = 0 for all
ε > 0, λ > 0, 1 < N < ∞ there exists T = LT such that

P̃
(
(0,0) is wet

)
> 1 − ε/2.(7.3)

Now we prove (7.2) for φ small enough. Let AL = AL(φ,N) be the time of the
first death on the finite box (−4L,4L)2. If AL > T := LT , for each ε > 0 we can
take φ > 0 small enough for

P
(
(0,0) is wet

) ≥ P
(
(0,0) is wet|AL > T

)
P(AL > T )

≥ P̃
(
(0,0) is wet

)
e−φN(8L)2T ≥ 1 − ε.

Hence for all ε > 0, L > 0, λ > 0, 1 < N < ∞ there exists T and φ1
c (λ,N) > 0

such that if φ ≤ φ1
c (λ,N), then (7.2) holds.

By comparing the process with an oriented percolation process, the existence of
an infinite path of wet sites corresponds to the existence of individuals at all times,
and for ε small enough percolation occurs; see [11]. By monotonicity (Proposi-
tion 3.1), the process survives for any φ ≤ φ1

c (λ,N).
(ii) Let ξt be a continuous-time Galton–Watson process without spatial structure

starting from |η0| ≤ ξ0 individuals. We couple the total number of particles of the
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two processes. Each individual in both processes breeds at rate 1 (except for ηt

when the full carrying capacity of the site is reached) and dies at rate φ. Since
we are interested in the total number of particles, migrations do not count in this
coupling. Therefore |ηt | ≤ ξt for all t ≥ 0. If ξ0 is finite and φ ≥ 1, then the Galton–
Watson process becomes extinct; this implies that ηt dies out for any φ ≥ 1.

Assume now that η0 ∈ �N ; we prove that the process becomes extinct when
φ > 1. By translation invariance, for each t > 0,

d

dt
E(ηt (x)) = E(Lηt (x))

= E

(
ηt (x)1{ηt (x)≤N−1} − φηt (x) + ∑

y∼x

1{ηt (y)=N,ηt (x)<N}λ/(2d)

− ∑
y∼x

1{ηt (x)=N,ηt (y)<N}λ/(2d)

)

= E
(
ηt (x)1{ηt (x)≤N−1} − φηt (x)

) ≤ (1 − φ)E(ηt (x)),

and by Gronwall’s lemma the process converges to 0 uniformly with respect to x.
By Corollary 3.2 the process dies out for each φ > 1.

(iii) The claim follows by Steps (i), (ii) and Corollary 3.2. Starting from η0 ∈
�N , the existence of the upper invariant measure follows from attractiveness, and
it is nontrivial by Step (i).

7.2. Model II.

7.2.1. Proof of Theorem 4.1. (ii) Since φA ≥ φ, Model I is stochastically
larger than Model II. If φ > φc(λ,N), both of them die out by Theorem 3.2.

(i) Assume φ < φc(λ,N) (≤ 1 by Theorem 3.2). We follow the idea in [25],
Theorem 4.4, and we compare the system with a subcritical percolation process.
We prove (i) when d = 2 in order to simplify the notation (the same proof works for
all d ≥ 1). Let (ηt )t≥0 be a process with generator (2.1), rates (4.1) and η0 ∈ �N .
We define⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A = [−2L,2L]2 × [0,2T ]; B = [−L,L]2 × [T ,2T ],
Cb = {(x, y, t) ∈ A : t = 0},
Cs = {(x, y, t) ∈ A : |x| = 2L or |y| = 2L},
C = Cb ∪ Cs = {(x, y, t) ∈ A : |x| = 2L or |y| = 2L or t = 0},

(7.4)

where T is a time to be fixed later.
In other words C is part of the boundary of the space–time region A, which

contains the smaller region B. We construct a percolation process on N = Z
2 ×Z+

starting from (ηt )t≥0. We consider for each (m,n, k) ∈ N a modification η
m,n,k
t

of ηt : the process (η
m,n,k
t )t≥0 is constructed through the graphical representation
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of ηt in A +(mL,nL, kT ), but η
m,n,k
t (x) = N for all x ∈ (mL,nL)+(−2L,2L)2,

t ≤ kT and x /∈ (mL,nL) + (−2L,2L)2 for all t ≥ 0. Therefore an emigration
from A + (mL,nL, kT ) cannot happen and an immigration from a site y on the
boundary of (mL,nL) + [−2L,2L]2 after kT is always possible with rate λ. By
Remarks 2.4 and 2.5, ηt ≤ η

m,n,k
t for all m, n, k and t ≥ 0, since if x /∈ (mL,nL)+

(−2L,2L)2, then η
m,n
t (x) = N , otherwise conditions in Remark 2.4 are satisfied

for each pair of sites (x, y).
We say that a site (m,n, k) ∈ N is wet if there are no individuals for the process

η
m,n,k
t in B + (mL,nL, kT ). A site is dry if it is not wet.

We show, through a series of lemmas, that the probability of a site to be wet is
as large as we want by taking φA large. By translation invariance we prove it for
(0,0,0), and we denote η

0,0,0
t := ξt . Let 0 < φA < ∞. First of all we prove that

there exists a time S at which with large probability there is at most 1 individual
per site on (−2L,2L)2 (Lemma 7.3). After S, there exists a time T such that there
are no individuals in (−2L,2L)2 with large probability (Lemma 7.4). Therefore
with large probability the only possibility of having one individual in B is that an
emigration from the boundary after time T reaches [−L,L]2 before 2T : the last
step consists in proving that such an event has small probability.

We first introduce an auxiliary process whose transitions are not translation in-
variant:

LEMMA 7.2. Let (ξ t )t≥0 be a process with only birth and death rates: if x ∈
(−2L,2L)2

P
1
l (x) = 1{l≤N−1}(l + λ); P

−1
l (x) = l

(
φA1{l≤NA} + φ1{NA<l}

)
(7.5)

and ξ t (x) = N for all x /∈ (−2L,2L)2, t ≥ 0. Then (ξ t )t≥0 is stochastically larger
than (ξt )t≥0.

PROOF. Both ξt and ξ t are equal to N for each t ≥ 0 outside (−2L,2L)2. By
Remark 2.5, we check the conditions in Remark 2.4 for each pair of sites (x, y)

with either x or y in (−2L,2L)2. If x ∈ (−2L,2L)2, (ξ t (x))t≥0 is a birth and
death process whose birth rate is the original one plus the largest immigration rate
on ξt (x), and whose death rate is the original one plus the smallest emigration rate
on ξt (x), which is null. For each η ∈ �,

P 1
η(y) + �1

η(x),η(y) ≤ 1{η(y)≤N−1}
(
η(y) + λ

) = P
1
η(y),

P −1
η(x) + �1

η(x),η(y) ≥ 1{η(x)≤NA}φAη(x) + 1{NA<η(x)}φη(x) = P
−1
η(x);

then all conditions are satisfied. �

LEMMA 7.3. For all ε > 0, L there exists S > 0 and φA such that

P(GL(S)) > 1 − ε/6,(7.6)

where GL(S) = {ξS(x) ≤ 1 for each x ∈ (−2L,2L)2}.
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PROOF. We prove (7.6) for (ξ t )t≥0 with law P(ξ t ∈ ·). By monotonicity
(Lemma 7.2) it will be true for (ξt )t≥0. For all ε > 0 and L we take S large enough
so that the number of visits HS

x to 0 of ξ t (x) before S satisfies

P(HS
x = 0) ≤ ε

18(4L)2 .(7.7)

If there is at least one visit, we consider
K∑

k=1

P
(
ξS(x) > 1|HS

x = k
)
P(HS

x = k)

(7.8)

+
∞∑

k=K+1

P
(
ξS(x) > 1|HS

x = k
)
P(HS

x = k).

By taking K large enough the second sum (in which there are more than K hits
to 0) is as small as we want. There are at least two individuals in a site after the ith
visit to 0 only if the exponential clock Bi ∼ Exp(1 + λ) [birth rate if ξ t (x) = 1]
rings before the one of Di ∼ Exp(φA) [death rate if ξ t (x) = 1]. Therefore for all
ε > 0, L and K we can take φA large enough for the first sum in (7.8) to be smaller
than

K∑
k=1

P(∃i ∈ {1,2, . . . , k} :Bi < Di) ≤ K2 1 + λ

1 + λ + φA

≤ ε

18(4L)2 .(7.9)

By (7.7) and (7.9) for all ε > 0, L there exists S and φA large enough for

P((GL(S))c) ≤ (4L)2 sup
x∈(−2L,2L)2

P
(
ξS(x) > 1

) ≤ ε/6,(7.10)

and the claim follows. �

LEMMA 7.4. For all L, ε > 0 there exists S and φA such that

P
(
GL(S + S)

) ≥ 1 − ε/3,

where GL(S + S) = {ξS+S(x) = 0 for each x ∈ (−2L,2L)2}, and S is given by
Lemma 7.3.

PROOF. If GL(S) holds, we take S small so that there are neither births nor
immigrations from the boundary Cs between S and S and φA large so that all
individuals in (−2L,2L)2 die before S with large probability. Namely, given D ∼
Exp(φA) and B ∼ Exp((1 +λ)(4L− 1)2), for all ε > 0, L there exists S small and
φA(S) large enough for

P
(
GL(S + S)|GL(S)

) ≥ P(D < S)(4L−1)2
P(S < B)

≥ (
1 − exp(−φAS)

)(4L−1)2
exp

(−(1 + λ)(4L − 1)2S
)

≥ 1 − ε/6.
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If T = S + S, given by the two previous lemmas,

P((GL(T ))c) ≤ ε/6 + ε/6 = ε/3,(7.11)

and the claim follows. �

Therefore ξT (x) = 0 for each x ∈ (−2L,2L)2 with large probability. Since
P 1

0 = 0, the only way to get an individual in [−L,L]2 between times T = S + S,
given by the two previous lemmas, and 2T is that a migration from y ∈ CT = {y =
(y1, y2) ∈ A : |y1| = 2L or |y2| = 2L} gives birth to a chain of individuals which
reaches [−L,L]2 in a time smaller than T . Suppose that ξt (y) = N for all y ∈ CT

and t ∈ [T ,2T ]. By monotonicity it will be true for any smaller configuration. We
fix K̃ large so that the number of emigrations ET,CT

from CT to (−2L,2L)2 from
time T to 2T is larger than K̃ with probability smaller than ε/3.

After one migration, with probability smaller than (1 + λ)/(φA + 1 + λ) there
is a new birth or a new immigration at x before the death of the individual. If the
number of such migrations is smaller than K̃ , by taking φA large enough

P
(
(0,0,0) is dry | GL(T ),ET,CT

≤ K̃
) ≤ K̃(1 + λ)

φA + 1 + λ
< ε/3.(7.12)

By (7.11) and (7.12) we get

P
(
(0,0,0) is dry

)
< P

(
(0,0,0) is dry | GL(T )

) + ε/3

= P
(
(0,0,0) is dry | GL(T ),ET,CT

> K̃
)
P(ET,CT

> K̃)
(7.13)

+ P
(
(0,0,0) is dry | GL(T ),ET,CT

≤ K̃
)
P(ET,CT

≤ K̃)

+ ε/3 < ε/3 + ε/3 + ε/3 = ε.

Now we construct a dependent percolation model such that the probability of a
site to be wet is as large as we want. For all (m,n, k) and (x, y, z) in N such that
k ≤ z and the intersection between (mL,nL, kT )+ A and (xL,yL, zT )+ A is not
empty we draw an oriented edge. Notice that the probability of a site (m,n, k) to be
wet depends only on the existence of a path of individuals within (mL,nL, kT ) +
A; since each block intersects only a finite number of other blocks, there exists K

such that all sets of sites in N with distance larger than K are independently wet.
Here the distance is the minimal number of edges (without orientation) connecting
two sites. Therefore this is a dependent percolation model with finite range of
interactions.

By monotonicity, the probability of having an individual in metapopulation
model (ηt )t≥0 in (mL,nL, kT )+ B is smaller than the probability of the existence
of a path of dry sites in the percolation model with endpoint (m,n, k) starting from
(y, z,0) for some (y, z) ∈ Z

2. By working as in [25], proof of Theorem 4.4, for any
given site x ∈ S there exists a random time Tx a.s. finite after which there will never
be any individual. Let A be a finite subset of Z

d and TA := max{Tx, x ∈ A}. By
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monotonicity, TA may be chosen uniformly in the initial configuration η0. Given
η0 ∈ �N , let ν be the invariant measure limt→∞ δη0T (t) [where T (t) is the semi-
group of the process], which exists by attractiveness. For each finite set A ⊂ Z

d

ν
(
ξ ∈ � : ξ(x) > 0 for some x ∈ A

) = 0.

Since ν gives null probability to each set of configurations with at least one indi-
vidual, it concentrates on the empty configuration; that is, ν ∼ δ0, and ergodicity
follows.

7.2.2. Proof of Theorem 4.2. (i) We work as in proof of Theorem 3.2 with the
same notation: we suppose d = 2, we use (7.1) in order to make a comparison with
an oriented percolation model and we define for each (m,n) a modification η

m,n
t

of the process in the same way. A site (m,n) ∈ Z
2 is wet if η

m,n
t starting at time

nT with at least one individual in Im is such that there is at least one individual in
Im−1 and one individual in Im+1 at time (n + 1)T . By translation invariance we
work on ξt := η

0,0
t . We will prove the analog of (7.2).

We start with one individual at x = (i, j) ∈ I , and we choose a preferential path
(i, j), (i + 1, j), . . . , (L, j), (L + 1, j): if there exists T such that the abscissas of
the rightmost and leftmost particles of ξt are respectively larger than L and smaller
than −L at T , then site (0,0) is wet. We begin by working with φA = 0 and call
P̃(ξt ∈ ·) the law of the process in this case.

We fix L > 0. We wait until in (i, j) we have a stack of NA individuals: since
Ã = {NA,NA + 1, . . . ,N} is an absorbing set (because φA = 0), after a finite time
the local population size reaches N and migrates to (i + 1, j). Then we wait for
another migration from (i +1, j) to (i +2, j), and so on, so that in a finite time we
reach (L + 1, j). We work in the same way for the leftmost particle. We conclude
that if φA = 0 for all ε1 > 0, λ > 0, 1 < N < ∞ there exists Tε1 such that ξT (x) ≥
NA for each x ∈ [−2L,2L]2 with probability larger than 1 − ε1: hence

P̃
(
(0,0) is wet

) ≥ 1 − ε1.(7.14)

Suppose φA > 0. For each ε > 0 there exists ε1 and Tε1 large so that (7.14) holds
and φA small so that the probability of a death before Tε1 is as small as we want.
Therefore

P
(
(0,0) is wet

) ≥ 1 − ε.

We conclude that for all L, ε > 0 and (m,n) ∈ N the event Gm,n = {(m,n) is wet},
which is measurable with respect to the graphical construction in Bm,n, satisfies
P(Gm,n) > 1 − ε by taking T large and φA small. By comparison arguments with
oriented percolation we get the result.

(ii) The idea is that even for φA small, there exists φ large so that the probability
that the population size reaches N and then one individual migrates is small. One
can prove the result by repeating the steps we did to prove Theorem 4.1.
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7.3. Model III.

7.3.1. Proof of Proposition 5.1. We check the sufficient conditions for
stochastic order from Theorem 2.1. We call {P ··,·,�··,·} the rates of (ξt )t≥0 and
{P̃ ··,·, �̃··,·} the ones of (ηt )t≥0. They are given by

P −1
α =

{
αφA,1, if α ≤ NA,

αφ1, if α > NA,
P̃ −1

α =
{

αφA,2, if α ≤ NA,

αφ2, if α > NA,

P 1
β = P̃ 1

β = β if β < N,

�k
α,β = �̃k

α,β = λ if α − k ≥ N − M and β + k ≤ N.

Let α ≤ γ , β ≤ δ. We evaluate the terms in condition (2.10). The birth rates give∑
k∈X : k>δ−β+j1

P̃ k
β = 1{1>δ−β+j1}P̃ 1

β = β1{β=δ<N,j1=0},

∑
l∈X : l>j1

P l
δ = 1{1>j1}P 1

δ = δ1{j1=0,δ<N},

thus ∑
k∈X : k>δ−β+j1

P̃ k
β ≤ ∑

l∈X : l>j1

P l
δ .(7.15)

The death rates give∑
l∈X : l>γ−α+h1

P −l
γ = 1{1>γ−α+h1}P −1

γ

= γ1{γ=α,h1=0}
(
φA,11{γ≤NA} + φ11{NA<γ }

)
,∑

k∈X : k>h1

P̃ −k
α = 1{1>h1}P̃ −1

α = α1{h1=0}
(
φA,21{α≤NA} + φ21{NA<α}

)
,

thus ∑
k∈X : k>h1

P̃ −k
α ≥ ∑

l∈X : l>γ−α+h1

P −l
γ .(7.16)

Now we consider the migration rates∑
k∈Ia

�̃k
α,β = ∑

k∈Ia

λ1{k≤(α−N+M)∧(N−β)},

∑
l∈Ib

�l
γ,δ = ∑

l∈Ib

λ1{l≤(γ−N+M)∧(N−δ)}.
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By (2.6)–(2.9), setting l = k − δ + β ,

∑
k∈Ia

λ1{k≤(α−N+M)∧(N−β)}

= λ

∣∣∣∣∣
K⋃

i=1

{mi − δ + β ≥ l > ji} ∩ {0 ≤ l ≤ (α − N + M − δ + β) ∧ (N − δ)}
∣∣∣∣∣

≤ λ

∣∣∣∣∣
K⋃

i=1

{γ − α + mi ≥ l > ji} ∩ {0 ≤ l ≤ (γ − N + M) ∧ (N − δ)}
∣∣∣∣∣

= ∑
l∈Ib

λ1{l≤(γ−N+M)∧(N−δ)}

since δ ≥ β and γ ≥ α. Therefore∑
k∈Ia

�̃k
α,β ≤ ∑

l∈Ib

�l
γ,δ.(7.17)

In a similar way we note that

∑
k∈Id

�̃k
α,β = ∑

k∈Id

λ1{k≤(α−N+M)∧(N−β)},

∑
l∈Ic

�l
γ,δ = ∑

l∈Ic

λ1{l≤(γ−N+M)∧(N−δ)};

then, by setting k = l − γ + α, the sum
∑

l∈Ic
λ1{l≤(γ−N+M)∧(N−δ)} is equal to

λ

∣∣∣∣∣
K⋃

i=1

{mi − γ + α ≥ k > hi} ∩ {0 ≤ k ≤ (α − N + M) ∧ (N − δ − γ + α)}
∣∣∣∣∣

≤ λ

∣∣∣∣∣
K⋃

i=1

{δ − β + mi ≥ k > hi} ∩ {0 ≤ k ≤ (α − N + M) ∧ (N − β)}
∣∣∣∣∣

= ∑
k∈Id

λ1{k≤(α−N+M)∧(N−β)}

since N − δ − γ + α ≤ N − β . Hence∑
k∈Id

�̃k
α,β ≥ ∑

l∈Ic

�l
γ,δ.(7.18)

We get condition (2.10) by using (7.15) and (7.17) and condition (2.11) from (7.16)
and (7.18).
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7.3.2. Proof of Theorem 5.1. We follow the idea in [21], proof of Theorem 2.
We assume d = 2. If d ≥ 2 the proof works in a similar way. We take N , M

such that N − M > NA. We fix x ∈ Z
d , and we start from an initial configuration

η0(x) = N −M and η0(z) = 0 for each z �= x. We prove that starting from η0, after
a finite time there is a migration of the largest flock of M (NA < M < N − NA)
individuals into a site y ∼ x which will give birth to N −M individuals in the new
site with large probability.

For each x ∈ Z
2 we consider a modification (ηx

t )t≥0 constructed through the
graphical representation in Ix := [x −1, x +1]2 such that ηx

t (z) = 0 for each z /∈ Ix

and t ≥ 0: we take into account births, deaths and emigrations from x, births and
deaths on each y ∼ x, but we replace migrations of k individuals from y ∼ x to x

by the death of k individuals on y. For y ∼ x, let

Ex,y := {There exists T < ∞ such that ηx
T (y) = N − M|

ηx
0(x) = N − M,ηx

0(z) = 0,∀z ∼ x}.
Note that ηt ≥ ηx

t [it follows by construction from the graphical representation,
since ηx is built from η; alternatively one can check conditions (2.10)–(2.11) by
Remark 2.5]. In particular before T the process ηx

t (x) behaves as ηt (x) with-
out immigration, and ηx

t (y) behaves as ηt (y). Therefore if Ex,y occurs, ηT (y) ≥
N − M .

To make a comparison with an oriented percolation model, we follow [15]: be-
tween any two nearest neighbor sites x, y in Z

2 we draw a directed edge from x

to y, denoted by [x, y〉: we say that one edge is open if Ex,y happens. This defines
a locally dependent random graph since Ex,y depends only on the graphical rep-
resentation in Ix . The probability of the directed edge [x, y〉 to be open is the same
for all edges [x, y〉 and Ex,y and Ez,t are independently open if x �= z.

We prove that for each ε > 0 there exists N large enough for P(Ex,y is open) ≥
1 − ε.

By translation invariance we suppose x = 0. We prove that the following events
happen with large probability: first of all, starting from N −M , the number of visits
to N −M +1 of η0

t (x) := ξt before visiting NA is at least N3 (Lemma 7.5); if there
are at least N3 visits to N − M + 1, there are at least N2 visits to N (Lemma 7.6)
before reaching NA; if there are at least N2 visits to N , there are at least N1/2 mass
migrations of M > NA individuals to a fixed site y ∼ 0 (Lemma 7.7); finally one
of these mass migrations gives birth to N − M individuals on y before reaching
NA with large probability.

(I) First of all we prove that the number of visits R
ξ
N,M to N − M + 1 before

reaching NA of the process (ξt )t≥0 starting at N −M is large with large probability.

LEMMA 7.5.

lim
N→∞ P(R

ξ
N,M ≥ N3) = 1.(7.19)
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PROOF. We construct a process (ζt )t≥0 with state space A := {NA,NA + 1,

. . . ,N − M + 1} by coupling with ξt in the following way:

• if NA ≤ ξt ≤ N − M + 1, then ζt = ξt ;
• if ξt ≥ N − M , then ζt = N − M + 1;

and NA is an absorbing state for (ζt )t≥0. Each time that ζt hits N −M +1 (an event
which can happen only from below, i.e., if ζt moves from N − M to N − M + 1),
so does ξt . Therefore we count the number of visits R

ζ
N,M to N − M + 1 of the

process ζt starting at N − M + 1. Note that ξt comes back to state N − M after
visiting N − M + 1 at an a.s. finite time TM which satisfies

P(TM > t) ≤ e−λt(7.20)

for each N , since if a mass migration of ξt − (N − M) particles occurs then ξt

comes back to N − M with rate λ. The skeleton of the process (ζt )t≥0 moves
as a discrete time random walk on A which comes back to N − M after visiting
N −M +1 with probability one, probability of birth p = 1/(1+φ) and probability
of death 1 − p. We prove that

lim
N→∞ P(R

ζ
N,M ≥ N3) = 1.(7.21)

The probability that, starting at N − M , ζt returns to N − M + 1 before visiting
NA is given by Lemma 7.1 with r1 = NA, r2 = N −M + 1, j = N −M , q/p = φ.
Since after visiting N −M +1 the walk returns to N −M , by the Markov property
[PN−M+1(N − M) is the notation in Lemma 7.1],

P(R
ζ
N,M ≥ N3) = (

PN−M+1(N − M)
)N3 ≥ (1 − φN−M−NA)N

3

≥ exp(−CN3φN−M−NA)

so that (7.21) [and then (7.19)] follows since φ < 1. �

(II) Let R
ξ
N be the number of visits of (ξt )t≥0 to N before visiting NA starting

at N − M .

LEMMA 7.6.

lim
N→∞ P(R

ξ
N ≥ N2) = 1.(7.22)

PROOF. By (7.19)

P(R
ξ
N < N2) = P(R

ξ
N < N2|Rξ

N,M ≥ N3) + o(1),(7.23)
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where limN→∞ o(1) = 0. We define a family of i.i.d. random variables
{Xi}i=1,...,N3 such that Xi = 1 if ξt reaches N before N − M at the ith visit to
N − M + 1, 0 otherwise. One possibility for Xi to be one is the birth of N indi-
viduals without any death or mass migrations. Such an event has probability larger
than

pN :=
(

1

1 + φ + λM/N

)M

≥
(

1

1 + φ + λM

)M

=: p

which does not depend on N . Therefore if Y is a binomial random variable with
parameters p and N3, then P(

∑N3

i=1 Xi < N2) ≤ P(Y < N2), which converges to
zero as N goes to infinity by the central limit theorem. �

(III) Step (II) states that for each ε > 0 we are able to take N large enough
so that with probability larger than 1 − ε the process ξt reaches N at least N2

times. We prove that in this case, for a fixed y ∼ 0, with large probability there is
a migration EN = EN(0, y) of M individuals from 0 to y at least N1/2 times.

LEMMA 7.7.

lim
N→∞ P(EN ≥ N1/2) = 1.

PROOF. Notice that when ξt visits N there is a migration of M individuals
from 0 onto site y with rate λ/(2d): if this is not the case, either a death at x or a
different migration (i.e., less than M individuals onto y or a migration onto z ∼ x,
z �= y) occurs with rate smaller than Nφ + λM(2d − 1)/(2d) + (M − 1)λ/(2d).
Thus the probability of a migration to y of M particles is larger than λ/(2d(λM +
Nφ)).

The rest of the proof is identical to Step 2 of [21], proof of Theorem 2:
the key point is that conditioning on {Rξ

N ≥ N2}, EN is larger than a bino-
mial random variable VN with parameters N2 and λ/(2d(λM + Nφ)), such that
(VN − E(VN))/(N1/2+a) converges to 0 in probability for all a > 0. The claim
follows by taking a ∈ (0,1/2). �

(IV) We show that given at least N1/2 emigrations from 0 to y of M > NA

particles, at least one of these flocks of individuals generates at least N − M + 1
individuals on y before reaching size NA. Every time there is a migration of M

individuals to y, since M = M(NA) > NA, the process (η0
t (y))t≥0 is a birth and

death chain with transitions

η0
t (y) → η0

t (y) + 1 at rate η0
t (y)1{NA<η0

t (y)≤N−M+1},

η0
t (y) → η0

t (y) − 1 at rate η0
t (y)φ1{NA<η0

t (y)≤N−M+1}.
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Take the same chain on {NA, . . . ,∞}. Since φ < 1, the chain is transient; therefore
there is a positive probability q(φ) that starting at M > NA the chain will go on
to infinity. The claim follows as in Step 3 of [21], proof of Theorem 2, since N1/2

visits are enough for the probability to reach N − M + 1 at least one time to
approach 1.

We conclude that for each ε > 0 there exists N and Tx,y large such that Ex,y

occurs in a finite time Tx,y with probability larger than 1 − ε.
(V) Finally we conclude the comparison with the oriented percolation model

on Z
2. We say that percolation occurs if there exists an infinite path of directed

open edges {(x0 = 0, x1) = e1, (x1, x2) = e2, . . . , ek, . . .}, that is, such that Exi,xi+1

occurs for i = 0,1, . . . . Suppose η0
0(0) = N − M . If e1 is open, then η0

t (0)

reaches N , migrates to x1 and gives birth to N −M individuals on x1 before dying
out. Then also e2 is open, therefore starting from η

x1
t (x1) = N − M , it reaches N ,

migrates to x2 and gives birth to N − M individuals on x2 before dying out, and
so on: this is also true for the process ηt ≥ ηx

t for each x; therefore, the existence
of an infinite path in the percolation model implies the existence of an infinite path
of individuals.

We begin with one individual at x ∈ Z
d . For each φA < ∞, with positive prob-

ability η0
t (0) reaches N − M before 0 in a finite time, and we can start our con-

struction.
In order to prove that the existence of an infinite path in percolation model has

positive probability if P(Ex,y) is large enough, one can follow [15], Theorem 3.2,
and compare the process to a a site percolation model. Here we need d ≥ 2; oth-
erwise the construction does not work. The idea consists of making a comparison
with an oriented site percolation model on the square lattice with both edges from
a site open with a given probability π , which can be taken as large as we want by
taking N large. Since for such a model percolation occurs if π is large enough,
[15], there is survival with positive probability.

If η0 ∈ �N , then the upper invariant measure ν̄, which exists by attractiveness,
is not concentrated on the Dirac measure δ0, and the claim follows.

(ii) The proof is similar to that of Theorem 3.2 [Step (ii)], so we skip it.

7.4. Model IV.

7.4.1. Proof of Lemma 6.1. The process is a particular case of the reaction-
diffusion process introduced in [7], Section 13.2: by following the same notation,
the reaction part of the formal generator (2.1) is

Lrf (η) = ∑
x∈Zd

∑
k �=0

qx

(
η(x), η(x) + k

)[f (Sk
xη) − f (η)]
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with qx(η(x), η(x) + k) = η(x)1{k=1} + φη(x)1{k=−1}. The diffusion part is

Ldf (η) = ∑
x∈Zd

∑
y∼x

λ

2d
1{η(x)≥N,η(y)<N}[f (S−1,1

x,y η) − f (η)]

≤ ∑
x∈Zd

∑
y∼x

λ

2d
1{η(x)≥N}[f (S−1,1

x,y η) − f (η)]

=: ∑
x,y∈Zd

p(x, y)λcx(η(x))[f (S−1,1
x,y η) − f (η)],

where p(x, y) = 1{y∼x}(2d)−1 and cx(η(x)) = 1{η(x)≥N}.
Since the maximal number of particles involved in a transition is finite, and

the birth and death rates grow linearly, the hypotheses of [7], Theorems 13.17
and 13.19, are satisfied; hence existence and uniqueness of this process follow.

7.4.2. Proof of Theorem 6.1. (i) First of all we prove that there is stochastic
order between Model I and Model IV . We consider the Model I as a process
constructed on � = Z

Z
d

with birth rates null if the number of particles in a site is
larger or equal to N .

LEMMA 7.8. Let ξt = ξt (φ
′, λ′) be a process defined by (2.1) with rates given

by (3.1), that is, a Model I-type process. Let ηt = ηt (φ, φ̃, λ) be a Model IV-type
process. If φ = φ′, λ = λ′ and ξ0(x) ≤ N for each x ∈ Z

d , then (ηt )t≥0 is stochas-
tically larger than (ξt )t≥0.

PROOF. Let (P̃ ··,·, �̃··,·) and (P ··,·,�··,·) be respectively the transition rates of
(ξt )t≥0 and (ηt )t≥0. Note that an increase of particles in a site x with ξt (x) = N is
not possible; therefore ξt (x) ≤ N for each x ∈ Z

d and t ≥ 0.
We check conditions in Remark 2.4. Given ξ(x) ≤ η(x), ξ(y) = η(y),

P̃ 1
ξ(y) + �̃1

ξ(x),ξ(y) = ξ(y)1{ξ(y)≤N−1} + λ1{ξ(x)=N,ξ(y)<N}
≤ η(y) + λ1{η(x)≥N,η(y)<N}
= P 1

η(y) + �1
η(x),η(y),

P̃ 1
ξ(y) = ξ(y)1{ξ(y)≤N−1} ≤ η(y) = P 1

η(y),

and conditions (2.13)–(2.14) are satisfied.
If ξ(x) = η(x) [which is possible only if η(x) ≤ N ], ξ(y) ≤ η(y),

P̃ −1
ξ(x) + �̃1

ξ(x),ξ(y) = φξ(x) + λ1{ξ(x)=N,ξ(y)<N} ≥ φη(x) + λ1{η(x)≥N,η(y)<N}

= P −1
η(x) + �1

η(x),η(y),

P̃ −1
ξ(x) = φξ(x) ≥ φη(x) = P −1

η(x),



CRITICAL PARAMETERS FOR METAPOPULATION MODELS 699

so that conditions (2.15)–(2.16) hold. �

Therefore by Theorem 3.2 there exists φc(λ,N) such that if φ < φc(λ,N) there
is a positive probability of survival for Model I, and hence for Model IV. By taking
φ > 1 one proves as in Model I [Step (ii) in proof of Theorem 3.2], that the process
dies out: the existence of the critical parameter φc follows from monotonicity with
respect to φ.

(ii) We skip this step, since as in Step (i), stochastic order and Theorem 5.1
induce survival of the process.

We prove that even if the process survives, the expected value on each site is
finite. Let ηN

0 (x) ≥ N for each x ∈ Z
d , and let (ηN

t )t≥0 be a process with N im-
mortal particles per site, that is, with transition rates

ηN
t (x) → ηN

t (x) + 1 at rate ηN
t (x),

ηN
t (x) → ηN(x) − 1 at rate φ̃ηN

t (x)1{ηN
t (x)>N}.

We define ζt (x) := ηN
t (x) − N for each x ∈ Z

d , the birth and death process on N

with birth rate N + ζt (x) and death rate φ̃(N + ζt (x))1{ζt (x)>0}. Thus

d

dt
E(ζt (x)) = E

(
ζt (x) + N

) − φ̃E
(
ζt (x) + N

)
1{ζt (x)>0} ≤ N − (φ̃ − 1)E(ζt (x))

which implies

E(ζt (x)) ≤ E(ζ0(x)) + N/(φ̃ − 1).

Therefore if ζ0(x) ≤ n, there exists c = c(n,N, φ̃) such that E(ζt (x)) ≤ c for each
t ≥ 0 and x. The claim follows by taking C = c + N .
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