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ANOMALOUS DISSIPATION IN A STOCHASTIC INVISCID
DYADIC MODEL

BY DAVID BARBATO, FRANCO FLANDOLI AND FRANCESCO MORANDIN

University of Padova, University of Pisa and University of Parma

A stochastic version of an inviscid dyadic model of turbulence, with mul-
tiplicative noise, is proved to exhibit energy dissipation in spite of the formal
energy conservation. As a consequence, global regular solutions cannot exist.
After some reductions, the main tool is the escape bahavior at infinity of a
certain birth and death process.

1. Introduction. The dyadic model of turbulence has been introduced in,
among others, [15, 16, 27] and [13], as a simplified model of fluid dynamics equa-
tions in order to investigate a number of properties which are out of reach at present
for more realistic models. In this paper we study a suitable random perturbation of
the classical dyadic model under which we are able to prove anomalous dissipation
of energy.

On a complete filtered probability space (�,Ft ,P ), let (Wn)n≥1 be a sequence
of independent Brownian motions. Consider the infinite system of stochastic dif-
ferential equations in Stratonovich form

dXn = (kn−1X
2
n−1 −knXnXn+1) dt +kn−1Xn−1 ◦ dWn−1 −knXn+1 ◦ dWn(1)

for n ≥ 1, with X0(t) = 0. Denote by l2 the Hilbert space of real square summable
sequences x = (xn)n≥1 and set ‖x‖2 = ∑∞

n=1 x2
n . We call energy of X(t) :=

(Xn(t))n≥1 the quantity E (t) := 1
2‖X(t)‖2. Assume for simplicity to have a de-

terministic initial condition

X(0) = x, x = (xn)n≥1 ∈ l2.

The sequence of positive numbers (kn)n≥1 will be specified later on; the most
natural case in analogy with fluid dynamics is kn = λn for some λ > 1.

System (1) is formally energy preserving. By the Stratonovich form of Itô’s
formula (see [19]), we have

1
2 dX2

n = Xn ◦ dXn

= (kn−1X
2
n−1Xn − knX

2
nXn+1) dt

+ kn−1Xn−1Xn ◦ dWn−1 − knXnXn+1 ◦ dWn.
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If we sum formally these identities and use the boundary condition X0(t) = 0, we
readily have 1

2d
∑∞

n=1 X2
n = 0, namely,

E (t) = E (0), P -a.s.

The aim of this paper is to prove rigorously an opposite statement, a property
that we could call anomalous dissipation. We need the notion of energy controlled
solution that will be given in the next section.

THEOREM 1. Assume kn = λn for some λ > 1. Given x ∈ l2, let X(t) be the
unique energy controlled solution of equation (1). Then, for all t > 0,

P
(

E (t) = E (0)
)
< 1

and for all ε > 0 there exist t such that

P
(

E (t) < ε
)
> 0.

Moreover, if E (0) is sufficiently small, then E (t) decays to zero at least exponen-
tially fast both almost surely and in L1.

As a consequence of this theorem, in Section 7 we will also prove that global
regular solutions cannot exist.

The proof of the theorem is built along Sections 3–6 and concluded in Sec-
tion 6.1.

Being inspired by fluid dynamics, the results of Theorem 1 could be interpreted
as a form of turbulent dissipation. Dynamically speaking, it is a dissipation due to
a very fast cascade mechanism; energy moves faster and faster from low to high
wave numbers n and escapes to infinity in finite time.

Results of anomalous dissipation for linear stochastic systems with additive
noise have been proved by [22, 23]. The notion of anomalous dissipation of these
papers is different and based on invariant measures, but conceptually the question
is the same. The dyadic model of the present paper is, to our knowledge, the first
nonlinear stochastic case where anomalous dissipation is proved to occur. More-
over, the proof is entirely different from those of the additive noise linear stochastic
case.

Nonlinear models with anomalous dissipation have been discovered before in
the deterministic case (see [3, 5, 7–9, 15–17, 27]). Our model is a multiplicative
random perturbation of models of these forms. However, let us stress that the proof
given here is totally different from the proofs of the deterministic literature, based
on monotonicity and positivity properties of the deterministic part of system (1).
These properties are lost in the stochastic case.

Theorem 1 remains true when kn ≤ Cnα for some α > 1. However, we make
here the assumption kn = λn in analogy with the deterministic literature on dyadic
models.
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The proof is based on three main ingredients: (i) Girsanov’s transform allows
us to reduce the problem to a linear stochastic equation; (ii) second moments of
components satisfy a closed system, without moments of products; (iii) this closed
system is the forward equation of a birth and death process, the escape of which at
infinity can be understood.

Some issues in this procedure are not trivial. One of them is the equivalence of
laws on infinite time horizon (see Proposition 18). Its proof is nonstandard; more-
over, it is restricted to a range of values of parameters, the generalization being
open. Concerning the idea that square moments could satisfy a closed equation,
related to jump process, we have been inspired by previous works ([1, 10, 11] and
[21]), however, devoted to different models; the link here with the nonlinear model
and the stochasticity is more transparent via Girsanov’s transform.

1.1. The multiplicative noise in Euler’s equations. The noise we introduced
in equation (1), motivated by energy conservation, may appear peculiar from the
physical point of view. Nevertheless, it is the natural choice if we compare the
dyadic model with some other equations of fluid dynamics like Euler’s equations
or diffusions of passive scalars.

Let us give a picture of this analogy in the case of Euler’s equations, which have
the form

∂u

∂t
+ u · ∇u + ∇p = 0, divu = 0

with appropriate initial and boundary conditions (u and p are the velocity and
pressure field, resp.). Let us think of periodic boundary conditions for sake of
simplicity. The Lagrangian motion of particles is given by the equation

dY (t)

dt
= u(t, Y (t)).

A natural way to randomly perturb Euler dynamics (see [24]) is by adding a white
noise to the Lagrangian motion,

dY (t) = u(t, Y (t)) dt + ∑
j

σj (t, Y (t)) dWj(t),

where (Wj (t))t≥0 are independent Brownian motions and σj are given vector
fields. By standard rules of stochastic calculus, applied formally, one can see that
Euler equations take the stochastic form (with a new pressure p̃)

du + [u · ∇u + ∇p̃]dt + ∑
j

σj · ∇u ◦ dWj(t) = 0, divu = 0,(2)

where Stratonovich operation has to be used. Rigorous results and physical argu-
ments in support of this kind of stochastic perturbation of the Lagrangian mo-
tion and the corresponding PDE with multiplicative Stratonovich noise (in the
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viscous case) can be found in [24, 25]. In addition, let us mention the wide lit-
erature on stochastic passive scalar equations (see, e.g., [20]) where multiplicative
Stratonovich noise of the form above is used.

In abstract form, equation (2) takes the form

du + B(u,u)dt + B(◦dW,u),(3)

where W(t) := ∑
j σj (x)Wj (t) and B(u, v) := u · ∇v. Notice that for sufficient

regular u and v the following identity holds 〈B(u, v), v〉 = 0.
In [8] the authors argued that after Fourier or wavelets transforms and certain

simplifications, the deterministic system

dXn

dt
= kn−1X

2
n−1 − knXnXn+1, n ≥ 1,(4)

describes some idealized features of the deterministic equation du
dt

+ B(u,u) = 0.
Equation (4) has the form d

dt
X = B̃(X,X) where

B̃(X,Y )(n) = kn−1Xn−1Yn−1 − knXnYn+1.

Formally we have 〈B̃(X,Y ),Y 〉 = 0. Thanks to 〈B(u,u), u〉 = 0 and 〈B̃(X,X),

X〉 = 0 the perturbation of u and X does not modify the energy balance (at a
formal level).

Standing this idealized discretization B̃(X,Y ) of B(u, v), the natural analog of
equation (3) is

dXn + B̃(X,X)(n) dt + B̃(◦dW,X)(n), n ≥ 1,

which is precisely system (1).

2. Itô’s formulation. For the rigorous formulation of equation (1) and a basic
theorem of existence and uniqueness, we follow [4]. The Itô form of equation (1)
is

dXn = (kn−1X
2
n−1 − knXnXn+1) dt + kn−1Xn−1 dWn−1

(5)
− knXn+1 dWn − 1

2(k2
n + k2

n−1)Xn dt.

Let us define the concept of weak solution for this equation. By a filtered prob-
ability space (�,Ft ,P ) we mean a probability space (�,F∞,P ) and a right-
continuous filtration (Ft )t≥0 such that F∞ is the σ -algebra generated by

⋃
t≥0 Ft .

DEFINITION 2. Given x ∈ l2, a weak solution of equation (1) in l2 is a fil-
tered probability space (�,Ft ,P ), a sequence of independent Brownian motions
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(Wn)n≥1 on (�,Ft ,P ) and an l2-valued stochastic process (Xn)n≥1 on (�,Ft ,P )

with continuous adapted components Xn, such that

Xn(t) = xn +
∫ t

0

(
kn−1X

2
n−1(s) − knXn(s)Xn+1(s)

)
ds

+
∫ t

0
kn−1Xn−1(s) dWn−1(s) −

∫ t

0
knXn+1(s) dWn(s)

−
∫ t

0

1

2
(k2

n + k2
n−1)Xn(s) ds

for each n ≥ 1, with X0 = 0. We denote this solution by

(�,Ft ,P,W,X)

or simply by X.

DEFINITION 3. We call energy controlled solutions the solutions of Defini-
tion 2 which satisfy

P

( ∞∑
n=1

X2
n(t) ≤

∞∑
n=1

x2
n

)
= 1(6)

for all t ≥ 0.

The following simple proposition (proved in [4]) clarifies that a process satisfy-
ing (5) rigorously satisfies also (1).

PROPOSITION 4. If X is a weak solution, for every n ≥ 1 the process
(Xn(t))t≥0 is a continuous semimartingale, hence, the two Stratonovich integrals∫ t

0
kn−1Xn−1(s) ◦ dWn−1(s) −

∫ t

0
knXn+1(s) ◦ dWn(s)

are well defined and equal to∫ t

0
kn−1Xn−1(s) dWn−1(s) − 1

2

∫ t

0
k2
n−1Xn(s) ds

−
∫ t

0
knXn+1(s) dWn(s) − 1

2

∫ t

0
k2
nXn(s) ds.

Hence, X satisfies the Stratonovich equations (1).

The main result proved in [4] is the well posedness in the weak probabilistic
sense in the class of energy controlled solutions.

THEOREM 5. Given (xn) ∈ l2, there exists one and only one energy controlled
solution of equation (1).
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3. Girsanov’s transformation. Formally, let us write equation (5) in the form

dXn = kn−1Xn−1(Xn−1 dt + dWn−1) − knXn+1(Xn dt + dWn)

− 1
2(k2

n + k2
n−1)Xn dt.

The simple idea is that Xn dt + dWn is a Brownian motion with respect to a new
measure Q on (�,F ), simultaneously for every n, hence, the equations become
linear SDEs under Q. We use details about Girsanov’s theorem that can be found
in [26], Chapter VIII, and an infinite dimensional version proved in [6, 12, 18].

Assume that (Xn)n≥1 is an energy controlled solution. Due to the boundedness
of

∑∞
n=1 X2

n(t) [see (6)], the process Yt := −∑∞
n=1

∫ t
0 Xn(s) dWn(s) is well de-

fined, is a martingale and its quadratic variation [Y,Y ]t is
∫ t

0
∑∞

n=1 X2
n(s) ds. For

the same reason, Novikov criterium applies, so N (Y )t := exp(Yt − [Y,Y ]t ) is a
strictly positive martingale. Define the set function Q on

⋃
t≥0 Ft by setting

dQ

dP

∣∣∣∣
Ft

= N (Y )t = exp

(
−

∞∑
n=1

∫ t

0
Xn(s) dWn(s) − 1

2

∫ t

0

∞∑
n=1

X2
n(s) ds

)
(7)

for every t ≥ 0. We also denote by Q its extension to the terminal σ -field F∞. In
general we cannot prove it is absolutely continuous with respect to P , but we shall
see at least a case when this is true. Notice also that Q and P are equivalent on
each Ft , by the strict positivity. Define

Bn(t) = Wn(t) +
∫ t

0
Xn(s) ds.

Under Q, (Bn(t))n≥1,t∈[0,T ] is a sequence of independent Brownian motions.
Since ∫ t

0
kn−1Xn−1(s) dBn−1(s) =

∫ t

0
kn−1Xn−1(s) dWn−1(s)

+
∫ t

0
kn−1Xn−1(s)Xn−1(s) ds

and similarly for
∫ t

0 knXn+1(s) dBn(s), we see that

Xn(t) = Xn(0) +
∫ t

0
kn−1Xn−1(s) dBn−1(s) −

∫ t

0
knXn+1(s) dBn(s)

−
∫ t

0

1

2
(k2

n + k2
n−1)Xn(s) ds.

This is a linear stochastic equation. Girsanov’s transformation has removed the
nonlinearity. Let us collect the previous facts.

THEOREM 6. If (�,Ft ,P,W,X) is an energy controlled solution of the non-
linear equation (1), then it satisfies the linear equation

dXn = kn−1Xn−1 dBn−1 − knXn+1 dBn − 1
2(k2

n + k2
n−1)Xn dt,(8)
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where the processes

Bn(t) = Wn(t) +
∫ t

0
Xn(s) ds

are a sequence of independent Brownian motions on (�,Ft ,Q), Q defined by (7).

One may also check that

dXn = kn−1Xn−1 ◦ dBn−1 − knXn+1 ◦ dBn

so the previous computations could be described at the level of Stratonovich cal-
culus.

4. Closed equation for EQ[X2
n(t)]. Let (�,Ft ,P,W,X) be an energy con-

trolled solution of the nonlinear equation (1) with initial condition x ∈ l2 and let Q

be the measure given by Theorem 6. Denote by EQ the mathematical expectation
on (�,Ft ,Q). We have

1
2 dX2

n = Xn dXn + 1
2 d[Xn]t

= −1
2(k2

n + k2
n−1)X

2
n dt + dMn + 1

2(k2
n−1X

2
n−1 + k2

nX
2
n+1) dt,

1
2 dX4

n = 4X3
n dXn + 12

2 X2
n d[Xn]t

= −1
2(k2

n + k2
n−1)X

4
n dt + dMn + 12

2 X2
n(k

2
n−1X

2
n−1 + k2

nX
2
n+1) dt,

deX2
n = eX2

n dX2
n + 1

2eX2
n d[X2

n,X
2
n],

deXn = eXn dXn + 1
2eXn d[Xn,Xn]

= · · · eXn(k2
n + k2

n−1)Xn dt + dMn + 1
2eXn 1

2(k2
n−1X

2
n−1 + k2

nX
2
n+1) dt,

where

Mn(t) =
∫ t

0
kn−1Xn−1(s)Xn(s) dBn−1(s) −

∫ t

0
knXn(s)Xn+1(s) dBn(s).

Notice that

EQ
∫ T

0
X4

n(t) dt < ∞(9)

for each n ≥ 1. Indeed, for an energy controlled solution, from (6) we have, with
P -probability one,

∞∑
n=1

X4
n(t) ≤ max

n
X2

n(t)

∞∑
n=1

X2
n(t) ≤

( ∞∑
n=1

x2
n

)2

.

But P and Q are equivalent on Ft , hence,

Q

( ∞∑
n=1

X4
n(t) ≤

( ∞∑
n=1

x2
n

)2)
= 1.
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This implies (9).
From (9), Mn(t) is a martingale for each n ≥ 1. Moreover, EQ[∑∞

n=1 X2
n(t)] <

∞ because (Xn)n≥1 is an energy controlled solution [again, as above, condition
(6) is invariant under the change of measure P ↔ Q on Ft ] and thus, in particular,
EQ[X2

n(t)] is finite for each n ≥ 1. From the previous equation we deduce the
following.

PROPOSITION 7. For every energy controlled solution X, EQ[X2
n(t)] is finite

for each n ≥ 1 and satisfies

d

dt
EQ[X2

n] = −(k2
n + k2

n−1)E
Q[X2

n]
+ k2

n−1EQ[X2
n−1] + k2

nEQ[X2
n+1]

for t ≥ 0.

The first remarkable fact of this result is that EQ[X2
n] satisfies a closed equation.

The second one is that this is the forward equation of a continuous-time Markov
chain, as we shall discuss in the next section. See [1, 10] for different examples
with the same structure.

5. Associated birth and death process. In this section we will make thor-
ough use of birth and death processes. We do not suppose that all the readers are
familiar with the field, so we will be more detailed.

Let us set

pn(t) = 1

‖x‖2 EQ[X2
n(t)], p(t) = (pn(t))n≥1, t ≥ 0,

and set also p0(t) ≡ 0. Introduce the positive numbers (λn)n≥1 and (μn)n≥1, de-
fined as

λn = k2
n, μn = k2

n−1.

By Proposition 7, we have⎧⎪⎪⎨⎪⎪⎩
d

dt
pn(t) = −(λn + μn)pn(t) + λn−1pn−1(t) + μn+1pn+1(t), t ≥ 0,

pn(0) = x2
n

‖x‖2 .

(10)

We observe that
∑∞

n=1 pn(t) = 1 when t = 0 and, moreover,

∞∑
n=1

pn(t) ≤ 1(11)

for all t > 0 (since X is an energy controlled solution).
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The system (10) can be conveniently put in matrix form, d
dt

p(t) = p(t)A, where
A is an infinite matrix with null row sums and nonnegative off-diagonal entries.

In the theory of continuous-time Markov chains this is usually referred to as a
q-matrix. Since it has tridiagonal form, all the processes with q-matrix A will be
birth and death processes.

By studying A we will be able to identify exactly one process ξt on some new
probability space (S, S, P) such that pn(t) = P(ξt = n). Since ξ will turn out
to be dishonest (meaning that P -a.s. ξ will escape to infinity in finite time), the
conclusion will be that limt→∞

∑∞
n=1 EQ[X2

n(t)] = 0.

5.1. Minimal process. In general, given a q-matrix A, there can be many pro-
cesses χ with different laws yn(t) = P(χ(t) = n), all satisfying either the forward
y′ = yA or the backward y′ = Ay equations associated with A. Whether the so-
lutions of the two systems are unique depends on some well-studied properties of
the q-matrix.

In the present case, A is stable (no −∞ entries appear in the diagonal) and
conservative (no mass disappears at zero because μ1 = 0). It is well known that
to any stable q-matrix is associated a process, called minimal, whose law satisfies
both systems of equations.

The latter is the naive process that anyone would construct from A, as follows.
Given a probability space (S, S, P), let ξt be a continuous-time Markov chain on
the positive integers, with initial distribution

P(ξ0 = n) = pn(0), n = 1,2, . . . ,

and jump rates given by A entries, that is, the process waits in a state n for an expo-
nential time with rate λn + μn and then jumps at n + 1 or n − 1 with probabilities
πn and 1 − πn, respectively, where

πn := λn

λn + μn

.

Let τ ∈ [0,∞] denote the first time such that in [0, τ ) the process has undergone
infinitely many jumps. We say that the process reaches the boundary at time τ and
we give no special “return” rule if the process reaches the boundary in finite time.
Hence, if for ω ∈ S, τ(ω) < ∞, then ξt (ω) is not defined for t ≥ τ(ω). Notice that,
given s > 0, P(τ > s) = ∑∞

n=1 P(ξs = n) could be less than 1.
If the minimal solution of a q-matrix is honest, it is the unique solution for each

one of the two systems and the q-matrix itself is called regular. As anticipated, the
minimal solution, which is the law of the process described above, is not regular if
the coefficients kn grow too fast (Proposition 8 below), nevertheless it is the unique
solution of the forward equations (Proposition 9 below), while the backward equa-
tions have infinite solutions.
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This uniqueness is very important because it ensures that P(ξt = n) = pn(t) :=
‖x‖−2EQ[X2

n(t)]. If we denote by E the total energy of X,

E (t) := 1

2

∞∑
n=1

X2
n(t)(12)

this means in particular that we can study EQ[E (t)] through P(τ > t),

EQ[E (t)] = 1

2

∞∑
n=1

EQ[X2
n(t)] = E (0)

∞∑
n=1

pn(t) = E (0)P(τ > t),(13)

which will be the aim of Section 5.2.

PROPOSITION 8. The q-matrix A is not regular if and only if
∑

n nk−2
n < ∞.

For the proof we make use of results by Reuter and Anderson, which are ef-
ficiently exposed in the book by the latter [2]. It is, however, not too difficult an
exercise to prove the “if” direction with elementary notions. Truly, Proposition 11
and Lemma 14 below provide such an argument and we refer the reader who wants
some insight to them.

PROOF OF PROPOSITION 8. By Corollary 2.2.5 of [2], in the conservative
case, the minimal solution is honest if and only if the backward equations have a
unique solution.

By Theorem 3.2.2 of [2] the q-matrix of a birth and death process has a unique
solution of the backward equations if and only if the following quantity is infinite:

R =
∞∑

n=1

(
1

λn

+ μn

λnλn−1
+ μnμn−1

λnλn−1λn−2
+ · · · + μn · · ·μ2

λn · · ·λ2λ1

)
.

Since λn = μn+1, we get R = ∑
n nλ−1

n = ∑
n nk−2

n . �

PROPOSITION 9. The forward system of equations (10), together with condi-
tion (11) admits a unique solution.

Here again the proposition can be seen as a simple application of a result from
the book by Anderson, specifically Theorem 3.2.3 of [2].

Uniqueness could also be proved with an analytic approach, based on the
parabolic structure of the equation which is apparent if we remember λn = μn+1
and we rewrite (10) as

d

dt
pn(t) = λn

(
pn+1(t) − pn(t)

) − λn−1
(
pn(t) − pn−1(t)

)
, t ≥ 0.(14)

Nevertheless, we believe it would be interesting to show a completely different and
entirely elementary proof that maybe could also be used when the parabolic nature
is lost and the associated process is no more a simple birth and death.
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PROOF OF PROPOSITION 9. By linearity we can suppose pn(0) = 0, with
condition (11) still holding and −1 ≤ pn(t) ≤ 1.

Suppose by contradiction that (pn)n∈N is a nonzero solution. Without loss of
generality we can suppose p1(t0) = δ > 0 for some t0 > 0 [take the largest n0 such
that pn ≡ 0 for all n < n0, so we have pn0(t0) > 0 for some t0 > 0; then shift and
rename the indexes of the sequence (pn) in such a way that the new p1 is the old
pn0 ]. Define the partial sums

φn(t) :=
n∑

j=1

pj (t).

We notice that a simple computation starting from (14) yields

d

dt
φn = λn(pn+1 − pn).(15)

Then define the times

tn := inf{t |φn(t) ≥ nδ}, n ≥ 1.(16)

We claim that for all n ≥ 1,

tn ≤ tn−1 and pn(tn) ≥ δ

so that the sequence (tn)n≥0 is finite (in fact, decreasing), in contradiction with the
position φn(t) ≤ 1 for all n and for all t .

We shall prove the claim by induction.
For n = 1, by definition t1 ≤ t0 < +∞ and p1(t1) = φ1(t1) ≥ δ.
Let us suppose that the claim holds for n. By the definition of tn, d

dt
φn(tn) ≥ 0.

By (15), this implies pn+1(tn) ≥ pn(tn) ≥ δ and hence

φn+1(tn) = φn(tn) + pn+1(tn) ≥ nδ + δ

thus, tn+1 ≤ tn. This implies that φn(tn+1) ≤ nδ, so that necessarily

pn+1(tn+1) ≥ δ.

The induction and the proof are complete. �

We remark the fact that given the condition
∑∞

n=1 nk−2
n < ∞, the forward

equations have a unique solution while the backward have infinitely many. This
fact might appear a bit disconcerting if one notices that A is symmetric and
hence, forward and backward equations are formally identical. The explanation
is that any proper solution pn(t) of the forward system of equations must be
summable in the sense that

∑
n pn(t) ≤ 1. On the contrary, if {qn(t;k)}n is a solu-

tion of the backward equations with initial condition qn(0;k) = δk,n, it must satisfy∑
k qn(t;k) ≤ 1 for all n.
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5.2. Time of escape. In this section we study the law of τ , the time of escape
to infinity of the minimal process. The main result is Proposition 11, which is
generalized by Lemma 14.

LEMMA 10. Suppose
∑∞

i=1 k−2
i < ∞ and that the minimal process starts

from 1. For n ≥ 1, the number of times the minimal process visits state n is a
geometric r.v. with mean (k2

n + k2
n−1)

∑∞
i=n k−2

i .

PROOF. We follow ideas from Feller [14]. Let pi,j denote the transition prob-
abilities of the discrete time Markov chain embedded in continuous-time minimal
process and let σ (i) = {σ (i)

n }n>i denote the probabilities that the chain starting from
states n larger than i will never get to i. Then σ (i) is the maximal solution of

xn = ∑
j>i

pn,j xj , n > i,(17)

satisfying 0 ≤ xn ≤ 1 for all n. (This solution can be zero.)
If we let xi = 0 for sake of notation, in our case the system (17) reduces to

xn = μn

λn + μn

xn−1 + λn

λn + μn

xn+1, n ≥ i + 1,

yielding

xn+1 − xn = μn

λn

(xn − xn−1), n ≥ i + 1,

and then by induction, for n ≥ i,

xn+1 − xn = xi+1

n∏
j=k+1

μj

λj

= xi+1
k2
i

k2
n

,

xn = xi+1k
2
i

n−1∑
m=i

k−2
m .

By hypothesis the sums are bounded and hence, the maximal solution is obtained
by choosing xi+1 such that limn xn = 1, that is,

σ
(i)
i+1 =

(
k2
i

∞∑
m=i

k−2
m

)−1

,

hence, the chain is transient.
Now suppose that the chain is starting from 1. It will visit i at least once. When

it does, the probability that it is the last visit is pi,i+1σ
(i)
i+1, so by strong Markov

property, the total number of visits to i is a geometric random variable with mean(
pi,i+1σ

(i)
i+1

)−1 = (k2
i + k2

i−1)

∞∑
m=i

k−2
m

as required. �
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PROPOSITION 11. Suppose ν∞ := ∑∞
n=1 nk−2

n < ∞ and that the minimal
process starts from 1. Let Tn be the total time the minimal process spends in the
state n,

Tn := L{t ≥ 0 : ξt = n},
so that the time of escape at infinity is τ = ∑∞

n=0 Tn.
Then for all n ≥ 1, Tn is an exponential r.v. with mean νn := ∑∞

i=n k−2
i and in

particular

EP (τ ) =
∞∑

n=1

νn =
∞∑

n=1

nk−2
n = ν∞.

Moreover, there exists h > 0 such that for all t

e−t/ν1 ≤ P(τ > t) ≤ e−t/ν∞+h.

PROOF. The total time spent in a state n is the sum of many i.i.d. exponential
waiting times of rate k2

n + k2
n−1.

Since the sum of a geometric number of i.i.d. exponential r.v.’s is exponential,
by Lemma 10, Tn is exponential and its mean is as required.

The lower bound comes easily from τ = ∑
n Tn, since

P(τ > t) ≥ P(T1 > t) = e−t/ν1 .

For the upper bound, let H := −∑∞
n=1 νn logνn and let

h := H/ν∞ + logν∞ = −
∞∑

n=1

νn

ν∞
log

νn

ν∞
.

We need to prove that

P(τ > t) ≤ ν∞e(H−t)/ν∞ .

If t is such that ν∞e(H−t)/ν∞ ≥ 1, we are done. Otherwise, define the sequence of
numbers (θn)n≥1 in such a way that for all n,

e−tθn/νn = νne
(H−t)/ν∞ .

The numbers θn are positive since νn ≤ ν∞, moreover,
∞∑

n=1

θn =
∞∑

n=1

[
−1

t
νn logνn − 1

t
(H − t)

νn

ν∞

]
= 1.

Now,

P(τ > t) ≤ P
( ∞⋃

n=1

{Tn > θnt}
)

≤
∞∑

n=1

P(Tn > θnt)

(18)

=
∞∑

n=1

e−tθn/νn = e(H−t)/ν∞
∞∑

n=1

νn
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and the proof is complete. �

REMARK 12. Our argument did not make use of the joint law of the Tn’s
which is unknown. If the r.v.’s Tn were independent, a standard exponential bound
would yield P(τ > t) ≤ e−t/ν1+h′

, so we have the strong feeling that 1/ν∞ is not
a sharp bound for the true rate, which could actually be 1/ν1.

It should also be noted that one cannot get rid of h in the previous statement;
one can prove that d

dt
log P(τ > t)|t=0 = 0.

The following lemma clarifies that either τ = ∞ a.s. or τ belongs to any interval
[a, b] with positive probability.

LEMMA 13. Suppose P(τ > T ) < 1 for some T . Then P(τ > a) > P(τ > b)

whenever a < b and in particular P(τ > t) < 1 for all t > 0.

PROOF. For i ≥ 1 and t ≥ 0, let

qi(t) := P(τ > t |ξ0 = i) =
∞∑

n=1

pi,n(t).

By Chapman–Kolmogorov,

P(τ > t) =
∞∑

m=1

pm(t − s)qm(s) ≤ P(τ > t − s).(19)

Suppose by contradiction that P(τ > a) = P(τ > b), then letting s = b −a, t = b,
we have equality in (19). This implies that qm(s) = 1 for all m so that we get
equality for any choice of t > 0, meaning that P(τ > ·) is periodic as well as
nonincreasing. The only possibility is P(τ > t) = 1 for all t . �

We will need the following lemma, that is, the probability of no explosion is
larger if one starts from 1 than in any other case. This is a well-known fact whose
proof is a standard exercise we do not repeat here.

LEMMA 14. P(τ > t) ≤ P(τ > t |ξ0 = 1).

6. Bounds on the energy. We are finally able to give statements on the decay
of the energy E (t) as t → ∞. First of all we obtain exponential estimates under Q,
both in L1 and pathwise. Then we introduce a smallness condition on E (0) which
is what we need to translate these results under P . The section concludes with the
proof of Theorem 1.
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PROPOSITION 15. Suppose ν∞ := ∑∞
n=1 nk−2

n < ∞. Let X be an energy con-
trolled solution and denote by E (t) := 1

2
∑∞

n=1 X2
n(t) its total energy at time t .

Then

lim
t→∞EQ[E (t)] = 0.

In particular there exists a positive number h such that for all t ≥ 0

EQ[E (t)] ≤ e−t/ν∞+hE (0).(20)

PROOF. By definition

EQ[E (t)] = 1

2

∑
n

EQ[X2
n(t)] = E (0)

∑
n

pn(t),

whence, by Proposition 9,

= E (0)
∑
n

P(ξt = n) = E (0)P(ξt < ∞) = E (0)P(τ > t).

Finally, we apply Lemma 14 and Proposition 11 and we find (20). �

Using Borel–Cantelli arguments, one can deduce from (20) some Q-a.s. state-
ments about the decrease to zero of the energy, at least on given sequences of times
going to infinity. To extend this to all sequences we will need the following lemma.

LEMMA 16. Let X be an energy controlled solution and denote by E (t) :=
1
2

∑∞
n=1 X2

n(t) its total energy at time t . Then for every t ≥ s ≥ 0 we have

Q
(

E (t) ≤ E (s)
) = 1.

PROOF. Let s ≥ 0 be given and set χ = X(s). Consider the linear equation
on [s,∞) with initial condition χ . It is proved in [4] that it has a unique strong
solution Y , with the property

Q

( ∞∑
n=1

Y 2
n (t) ≤

∞∑
n=1

χ2
n

)
= 1

for every t ∈ [s,∞) (the result in [4] is for constant initial conditions, but the ex-
tension to nonanticipative square integrable random initial conditions is straight-
forward). But also X restricted to [s,∞) is a solution of the same equation, hence,
equal to Y , on [s,∞). The previous identity is thus equal to the claim of the lemma.

�

Now we can prove Q-a.s. exponential decay of energy.
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PROPOSITION 17. Under the same hypothesis of Proposition 15, the total
energy of solutions goes to zero at least exponentially fast pathwise under Q,

lim sup
t→∞

1

t
log E (t) ≤ − 1

ν∞
, Q-a.s.

PROOF. Let ε > 0 be given. Set α := 1/ν∞ + ε. We have

Q
(
n−1 log E (n) > α

) ≤ e−αnEQ[E (n)] ≤ Ce−εn,

where, by Proposition 15, C = ehE (0) does not depend on n. Hence, the above
probabilities are summable on n and by Borel–Cantelli lemma there exists a mea-
surable set N with Q(N) = 0 and the following property: for every ω ∈ Nc there
exists n0(ω) such that, for all n ≥ n0(ω), E (n,ω) ≤ e−αn. Taking the supremum
for n < n0(ω), we obtain that there exists a constant C(ω) > 0 such that

E (n,ω) ≤ C(ω)e−αn

for all ω ∈ Nc and n ≥ 0. From Lemma 16, there exists a measurable set Ñ with
Q(Ñ) = 0 such that E (r,ω) ≤ E (�r�,ω) for all ω ∈ Ñc and all rational numbers
r ∈ [0,∞). This implies, for ω ∈ Nc ∩ Ñc,

E (r,ω) ≤ E (�r�,ω) ≤ C(ω)e−α�r� ≤ C′(ω)e−αr

with C′(ω) = C(ω)eα′
, for all r ∈ [0,∞) ∩ Q.

With Q probability one, the function E (t) is lower semicontinuous, being the
supremum in N of the functions

∑N
n=1 X2

n(t) which are continuous. Thus we get

Q
(

E (t) ≤ C′e−αt for every t ≥ 0
) = 1.

Letting ε go to zero on the rationals completes the proof. �

The reader should be aware that this proposition does not automatically hold
under P . Truly, P and Q are equivalent on all Ft , but C′ is F∞-measurable and
not Ft -measurable for any t .

In general, we cannot prove that P and Q are equivalent on F∞, so we cannot
translate such claim into a similar statement on the original nonlinear equation (1).

When E (0) is small enough, however, we can prove the equivalence and hence,
compute exponential upper bounds for E (t), both P -a.s. and in mean value.

PROPOSITION 18. Let X be an energy controlled solution and denote by
E (t) := 1

2
∑∞

n=1 X2
n(t) its total energy at time t . Suppose ν∞ := ∑∞

n=1 nk−2
n < ∞

and ν∞E (0) < 1. Then

EQ[
e

∫ ∞
0 E(t) dt ] < ∞,

so that in particular, P and Q are equivalent on F∞.
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PROOF. By Proposition 15 and the definition of energy controlled solution,
we have

EQ[E (t)] < E (0)e−t/ν∞+h ∀t ≥ 0,

0 ≤ E (t) ≤ E (0), Q-a.s.

Let X := ∫ ∞
0 E (t) dt ≥ 0 and x ≥ 0. Then

xQ(X > x) ≤ EQ[X;X > x] =
∫ ∞

0
EQ[E (t);X > x]dt

≤
∫ ∞

0
min

(
EQ[E (t)]; E (0)Q(X > x)

)
dt

≤ E (0)

∫ ∞
0

min
(
e−t/ν∞+h;Q(X > x)

)
dt

= E (0)

∫ u

0
Q(X > x)dt + E (0)

∫ ∞
u

e−t/ν∞+h dt,

where u is such that e−u/ν∞+h = Q(X > x). Hence,

xQ(X > x) ≤ E (0)Q(X > x)u + E (0)ν∞e−u/ν∞+h = E (0)Q(X > x)(u + ν∞).

If Q(X > x) = 0 for some x > 0, then clearly X is bounded and we are done.
Otherwise we get

u ≥ x

E (0)
− ν∞,

that is

Q(X > x) = e−u/ν∞+h ≤ e−x/(ν∞E(0))+h+1,

yielding

Q(eX > y) ≤ y−1/(ν∞E(0))eh+1

and finally

EQ[eX] =
∫ ∞

0
Q(eX > y)dy ≤ 1 + eh+1

∫ ∞
1

y−1/(ν∞E(0)) dy < ∞,

where we used ν∞E (0) < 1. �

The heuristic behind the proof, which is quite hidden, that is, given that EQ[X]
is bounded, EQ[eX] is maximum if X is spread as much as possible. Since X =∫

E (t) dt and E (t) ∈ [0, E (0)], this is done by choosing E (t,ω) ∈ {0, E (0)}, and in
particular E (t,ω) = E (0)I[0,y(ω)](t).
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COROLLARY 19. Under the same hypothesis of Proposition 18, meaning in
particular that E (0) < 1/ν∞, the energy goes to zero at least exponentially fast
pathwise under P ,

lim sup
t→∞

1

t
log E (t) ≤ − 1

ν∞
, P -a.s.

PROOF. Just a direct consequence of Propositions 17 and 18. �

The same condition on the smallness of E (0) arises when we want to establish
an exponential decay for the mean value of E (t) under P .

PROPOSITION 20. If

EQ[E (t)] ≤ E (0)e−αt+h

then

EP [E (t)] ≤ E (0) exp
(
(1 − 1/p)

[
h + (

pE (0) − α
)
t
])

(21)

for every p > 1. In particular, under the same hypothesis of Proposition 18,

lim sup
t→∞

1

t
log EP [E (t)] ≤ − 1

ν∞
(
1 − √

E (0)ν∞
)2

.(22)

PROOF. The density ft of P with respect to Q on Ft is

ft = exp
(
Mt + 1

2 [M]t ),(23)

where

Mt :=
∞∑

n=1

∫ t

0
Xn(s) dWn(s), [M]t =

∫ t

0

∞∑
n=1

X2
n(s) ds.

From (6) we have

exp(λ[M]t ) ≤ e2λE(0)t(24)

for every λ > 0.
For every p,p′ > 1 with 1

p
+ 1

p′ = 1, from the a.s. condition E (t) ≤ E (0) and
the assumption of the proposition we have

EP [E (t)] = EQ[ft E (t)] ≤ EQ[f p
t ]1/pEQ[E (t)p

′ ]1/p′

≤ EQ[f p
t ]1/pEQ[E (t)E (0)p

′−1]1/p′

≤ E (0)1−1/p′
EQ[f p

t ]1/p E (0)1/p′
e−(α/p′)t+h/p′

= E (0)EQ[f p
t ]1/pe−(α/p′)t+h/p′

.
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From (23) we have

EQ[f p
t ] = EP [f p−1

t ]
= EP

[
exp

(
(p − 1)Mt + (p − 1)

2
[M]t

)]

= EP

[
exp

(
(p − 1)Mt − (p − 1)2

2
[M]t

)
exp

(
(p − 1)p

2
[M]t

)]
and now we use (24) to get

≤ e(p−1)pE(0)tEP [
e(p−1)Mt−((p−1)2/2)[M]t ] = e(p−1)pE(0)t = e(p2/p′)E(0)t

by Girsanov’s theorem. To summarize:

EP [E (t)] ≤ E (0)e(1/p′)pE(0)t e−(α/p′)t+h/p′

which implies the first claim of the proposition.
To prove the last statement, let α = 1/ν∞. Then optimization on p under the

condition E (0)ν∞ < 1 gives that the right-hand side of (21) is minimum when p

is equal to φ(t) =
√

1/ν∞−h/t
E(0)

. [We notice that φ(t) > 1 for t > h
1/ν∞−E(0)

.] With a
simple computation, (21) becomes

EP [E (t)] ≤ E (0) exp
{
−(p − 1)

(
φ2(t)

p
− 1

)
E (0)t

}
.

Letting p = φ(t) > 1, we get

1

t
log EP [E (t)] ≤ 1

t
log E (0) − (

φ(t) − 1
)2E (0), t >

h

1/ν∞ − E (0)
.

Taking the limsup for t → ∞ leads to (22). �

6.1. Proof of Theorem 1. We have ν∞ = ∑∞
n=1 nk−2

n < ∞, so by virtue of
Proposition 8, P(τ > t) < 1 for some t . Then by Lemma 13, P(τ > t) < 1 for all t .
By equation (13) EQ[E (t)] < E (0) and since E (t) ≤ E (0) Q-a.s. we get Q(E (t) =
E (0)) < 1, for all t . Equivalence of P and Q on Ft yields the first statement.

By Proposition 15, Q(E (t) > ε) ≤ Ke−t/ν∞ for some K not depending on t ,
hence, for t large enough, this event has Q- (and hence P -) probability less than 1,
so we proved the second statement.

The third statement is proved in Corollary 19 and Proposition 20.
The proof of Theorem 1 is complete.

7. Lack of regular solutions. As a consequence of our result on the dissipa-
tion of energy we can prove that there exists no regular solution.
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Define the space

V =
{
x ∈ l2 :

∞∑
n=1

k2
nx

2
n < ∞

}

which is an Hilbert space under the norm ‖x‖2
V = ∑∞

n=1 k2
nx

2
n .

PROPOSITION 21. Assume that {X(t); t ∈ [0, T ]} is an energy controlled so-
lution. Then,

P

(∫ T

0
‖X(t)‖2

V dt = ∞
)

> 0.

PROOF. We will actually prove the following statement. Assume that {X(t);
t ∈ [0, T ]} is an energy controlled solution such that

P

(∫ T

0
‖X(t)‖2

V dt < ∞
)

= 1.(25)

Then, for every t ∈ [0, T ], P(E (t) = E (0)) = 1.
Since the latter is in contradiction with Theorem 1, then (25) will be proven to

be false.
Let X be a solution as in the claim. By Itô’s formula,

d

(
N∑

n=1

X2
n

)
= 2

N∑
n=1

(kn−1X
2
n−1Xn − knX

2
nXn+1) dt

−
N∑

n=1

(k2
n + k2

n−1)X
2
n dt +

N∑
n=1

(k2
n−1X

2
n−1 + k2

nX
2
n+1) dt

+ 2
N∑

n=1

(kn−1Xn−1Xn dWn−1 − knXnXn+1 dWn)

= −2kNX2
NXN+1 dt

− k2
NX2

N dt + k2
NX2

N+1 dt

− 2kNXNXN+1 dWN.

Hence,

N∑
n=1

X2
n(t) −

N∑
n=1

x2
n =

∫ t

0
(−2kNX2

NXN+1 + k2
NX2

N+1 − k2
NX2

N)ds

(26)

−
∫ t

0
2kNXNXN+1 dWN(s).
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Notice that |XN+1| ≤ ‖x‖l2 , kN ≥ 1 and kN ≤ kN+1, so that the first integral can
be bounded by

C

∫ t

0
(k2

NX2
N + k2

N+1X
2
N+1 + k2

NX2
N)ds.

Then the a.s. inequality
∫ T

0 ‖X(t)‖2
V dt < ∞ implies that

∫ T
0 k2

NX2
N ds goes to zero

a.s. and in probability.
The latter is true also for the stochastic integral in (26) by continuity in proba-

bility of stochastic integrals; since kNXNXN+1 converges to zero in probability in
L2(0, T ), its stochastic integral converges to zero in probability. This can be easily
proved by applying the following well-known inequality of stochastic integrals.
For every γ, δ > 0,

P

(∣∣∣∣∫ t

0
kNXNXN+1 dWN(s)

∣∣∣∣ > γ

)
≤ P

(∫ t

0
k2
NX2

NX2
N+1 ds > δ

)
+ δ

γ 2 .

Finally, all terms on the RHS of (26) converge to zero in probability. We get

N∑
n=1

X2
n(t)

P−→
N→∞‖x‖2

l2
.

But we know, by P -a.s. monotonicity, that

N∑
n=1

X2
n(t)

P−→
N→∞

∞∑
n=1

X2
n(t).

Hence, the claim is proved and the proposition as well. �

REMARK 22. If one could prove local existence (up to some random time)
of solutions in V with initial conditions in V , the above proposition would show a
blow-up in the V norm. This appears to be a difficult open problem in the stochastic
case, while in the deterministic case, it is well known (see, e.g., [7]).
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