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BIASED RANDOM-TO-TOP SHUFFLING

BY JOHAN JONASSON1

Chalmers University of Technology

Recently Wilson [Ann. Appl. Probab. 14 (2004) 274–325] introduced an
important new technique for lower bounding the mixing time of a Markov
chain. In this paper we extend Wilson’s technique to find lower bounds of
the correct order for card shuffling Markov chains where at each time step
a random card is picked and put at the top of the deck. Two classes of such
shuffles are addressed, one where the probability that a given card is picked at
a given time step depends on its identity, the so-called move-to-front scheme,
and one where it depends on its position.

For the move-to-front scheme, a test function that is a combination of sev-
eral different eigenvectors of the transition matrix is used. A general method
for finding and using such a test function, under a natural negative depen-
dence condition, is introduced. It is shown that the correct order of the mixing
time is given by the biased coupon collector’s problem corresponding to the
move-to-front scheme at hand.

For the second class, a version of Wilson’s technique for complex-valued
eigenvalues/eigenvectors is used. Such variants were presented in [Random
Walks and Geometry (2004) 515–532] and [Electron. Comm. Probab. 8
(2003) 77–85]. Here we present another such variant which seems to be the
most natural one for this particular class of problems. To find the eigenvalues
for the general case of the second class of problems is difficult, so we restrict
attention to two special cases. In the first case the card that is moved to the top
is picked uniformly at random from the bottom k = k(n) = o(n) cards, and
we find the lower bound (n3/(4π2k(k − 1))) logn. Via a coupling, an upper
bound exceeding this by only a factor 4 is found. This generalizes Wilson’s
[Electron. Comm. Probab. 8 (2003) 77–85] result on the Rudvalis shuffle and
Goel’s [Ann. Appl. Probab. 16 (2006) 30–55] result on top-to-bottom shuf-
fles. In the second case the card moved to the top is, with probability 1/2,
the bottom card and with probability 1/2, the card at position n − k. Here
the lower bound is again of order (n3/k2) logn, but in this case this does not
seem to be tight unless k = O(1). What the correct order of mixing is in this
case is an open question. We show that when k = n/2, it is at least �(n2).

1. Introduction. How many steps does a Markov chain need to get close to
stationarity? This question has attracted a great amount of interest during the last
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few decades, partly because computer development has supplied the possibility of
powerful MCMC simulation techniques.

Much interest has been focused on card shuffling chains, that is, chains whose
state space is the symmetric group, Sn. During the 1980s and early 1990s a lot
of progress was made and good upper and lower bounds, and often cutoffs, were
found for a great variety of different card shuffling techniques. Among these, the
Bayer–Diaconis 3

2 log2 n cutoff for the riffle shuffle (see [2]) is the most celebrated
result. In the mid-90s the subject fell into a relative silence as the available tech-
niques did not suffice to solve the remaining unsolved problems.

However, quite recently the subject was revitalized by Wilson’s [12] introduc-
tion of a powerful new technique to lower bound the mixing time. The idea is to
find an easily expressed (right) eigenvector of the transition matrix, correspond-
ing to an eigenvalue close to 1, and use this eigenvector to construct a test func-
tion. In [12] Wilson established essentially tight (i.e., tight up to a constant) lower
bounds for neighbor-transposing shuffling and also for so-called lozenge tilings.
A variant of Wilson’s technique for complex-valued eigenvalues/eigenvectors was
used by Mossel, Peres and Sinclair [8] to establish a tight lower bound for the
cyclic-to-random shuffle. Wilson himself used another such variant to establish
the �(n3 logn) mixing time for the Rudvalis shuffle. (This result was generalized
by Goel [4] who considered random-to-bottom shuffling in general.) Jonasson [6]
developed a version of Wilson’s technique where the test function is only needed to
be constructed from something sufficiently close to an eigenvector, thereby being
able to establish the �(n2 logn) mixing time for the overhand shuffle.

In the present paper this development is continued. We consider random-to-top
shuffles, that is, card shuffling chains where every transition is such that some card
is moved from its present position to the top of the deck without affecting the
relative positions of the other cards. The shuffles will be biased, that is, such that
the card taken to the top is in general not chosen uniformly at random from all the
cards. We consider two classes of biased random-to-top shuffles:

(1) Each card, k, is once and for all given a probability pk and the card taken
to the top is chosen according to these probabilities, regardless of the present order
of the deck.

(2) Same as (1), except that the probability pk is assigned to position k in the
deck.

The case described by (1) is often referred to as the move-to-front scheme. It will
always be assumed (without loss of generality) that all the pk’s are positive. The
move-to-front scheme clearly describes an irreducible aperiodic Markov chain, so
it converges to its stationary distribution whose nature is such that the probability
of having card cj in position j , j ∈ [n], equals

pc1 · pc2

1 − pc1

· pc3

1 − pc1 − pc2

· · · · · pcn

1 − ∑n−1
j=1 pcj

;
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see, for example, [9]. To the best of my knowledge, convergence rates for the
move-to-front scheme have only been studied for the case where all the pk’s are
equal; the ordinary random-to-top shuffle for which one has a cutoff at n logn

shuffles; see [1]. Rodrigues [9] studied a variant of the move-to-front scheme
where the identities of the cards moved to top at different shuffles are dependent.
For the ordinary top-to-random shuffle, the mixing time is given by the classical
coupon-collector’s problem. In Section 3 we show that the corresponding biased
coupon-collector’s problem in the general case gives the correct answer up to a
constant factor. Our lower bounds are established via an extension of Wilson’s
technique where several different eigenvalues/eigenvectors are used to construct
the test function.

Case (2) with pn−1 = pn = 1/2 is known as the Rudvalis shuffle. Therefore,
we refer to case (2) from now on as generalized Rudvalis (or GR) shuffles. The
special case when, for some k ≤ n, the card moved to the top is chosen uniformly
among the bottom k = k(n) cards is, in the terminology of Goel [4], referred to
as the bottom-to-top shuffle. When k = O(1), it is known that the mixing time
is of order n3 logn; for the Rudvalis shuffle, see [5] and [11] and for the general
case, see [4]. Goel also estimated the mixing time for other values of k: When
k = �(n), it is shown that k is at least of order n logn and at most of order n2 logn

and that when k is sufficiently close to n, the correct order is n logn. In Section 4,
which is devoted to GR shuffles, we improve the previous results on the bottom-
to-top shuffles. For k = o(n), we find that the correct order of the mixing time
is (n3/k2) logn and find upper and lower bounds that only differ by a factor 4.
In the case k = �(n) it is shown that the mixing time is �(n logn). The upper
bounds are found via coupling and to estimate the coupling time, we use the trick
of imagining the top of the deck as shifting cyclically one step down the deck
for every time step. Then if a card is only observed at times it is touched, its
motion is described by a random walk whose step size has mean 0 and variance
of order k2. This can then be used together with the nature of the coupling to
conclude the time to get a particular card matched is roughly bounded by n times
the time taken for a random walk of this type started at n/2 to exit the interval
[0, n]. The lower bounds are found using a version of Wilson’s technique designed
to handle complex-valued eigenvalues/eigenvectors. Wilson [11] and Saloff-Coste
[10] designed other such variants. They also pointed out that if one tries to apply
Wilson’s original lemma in complex-valued cases without further thought, one
often ends up with results that are much too weak to be of interest. Our version is
the perhaps most straightforward adaption of Wilson’s technique to the complex-
valued case and it does not need the chain under study to be lifted to a larger state
space. It works well for the present applications and we believe that it is fairly
generally applicable, but it would, for example, not solve all problems in [11].

The lower bound technique, in principle, works for GR shuffles in general. How-
ever, in practice, it is very difficult to find the eigenvalues, even for the motion of
a single card, but in the simplest cases. In addition to the bottom-to-top shuffle,
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we also carry out the calculations for the cases pn−k = pn = 1/2 for different k’s
and find a lower bound which is almost identical to the one for the bottom-to-top
shuffle with the same k. However, unlike the bottom-to-top case, this lower bound
does not seem to be of the correct order in this case, unless k = O(1). We show
that when k = n/2, the mixing time is at least �(n2). In fact, single-card motion
takes �(n2) steps to mix, so this is an example of a situation where the second
eigenvalue for single-card motion does not capture the correct order of the mixing
time, not even for the single-card chain itself. Unfortunately we have not been able
to produce any good upper bound, and it is a wide open question what the order of
mixing really is.

The next section gives the necessary preliminaries.

2. Preliminaries.

2.1. Basic definitions. The most common way to measure the distance be-
tween two probability measures µ and ν on a finite set S is by the total variation
norm given by

‖µ − ν‖ := 1
2

∑
s∈S

|µ(s) − ν(s)| = max
A⊆S

(
µ(A) − ν(A)

)
.

If {Xt }∞t=0 is an aperiodic irreducible Markov chain on state space S and with
stationary distribution π , started from a fixed state s, then its mixing time, τmix, is
defined via

τ(s) := min
{
t :‖P(Xt ∈ ·) − π‖ ≤ 1

4

}
and

τmix := max
s

τ (s).

The mixing time is often expressed in terms of some measure of the size of the
state space. When doing so one implicitly considers a sequence of Markov chains
{Xn

t }, n = 1,2,3, . . . , on state spaces Sn and with stationary distributions πn,
where the state spaces are such that |Sn| ↑ ∞ in some natural way. In our case
Sn = Sn, the symmetric group on n cards, and the mixing time is expressed in
relation to the number of cards, n, as n → ∞. The sequence of Markov chains is
said to have a cutoff at τmix := τn

mix if, for every a > 0,

lim
n→∞

∥∥P (
Xn

(1+a)τmix
∈ ·) − πn

∥∥ = 0

and

lim
n→∞

∥∥P (
Xn

(1−a)τmix
∈ ·) − πn

∥∥ = 1.
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2.2. Coupling. A common technique to find upper bounds on the mixing time
is coupling: Suppose {Xt } is the Markov chain under study, started from a fixed
state s maximizing τ(s), and that {Yt } is a chain with the same transition rule,
but started from stationarity. Suppose also that the updates of the two chains have
been set up, or coupled, in such a way that as soon as Xt0 = Yt0 for some t0, then
Xt = Yt for all t ≥ t0. Put

T := min{t :Xt = Yt }.
Then T is called the coupling time and the coupling inequality (see, e.g., [7], Sec-
tion I.2) states that, for all t ,

‖P(Xt ∈ ·) − π‖ ≤ P(T > t).

The coupling inequality follows from the definition of total variation norm and the
simple observation that, on the event {T ≤ t}, Xt and Yt are the same.

2.3. Wilson’s technique. Here we state and prove a basic version of Wilson’s
technique that will later develop in a few different ways. Let {Xt }∞t=0 be an ir-
reducible aperiodic Markov chain on state space S and with stationary distribu-
tion π , starting from a fixed state s0. Let � :S → C and γ ∈ (0,1/2) be such that,
for every s ∈ S,

E[�(Xt+1)|Xt = s] = (1 − γ )�(Xt),

that is, 1 − γ is an eigenvalue for the transition matrix of the chain and � is a
corresponding eigenvector. Let R be a number such that

R ≥ max
s∈S

E[|�(Xt+1) − �(Xt)|2|Xt = s].

THEOREM 2.1. Fix a > 0 and let

T := log |�(s0)| − (1/2) log 4R/(γ a)

− log(1 − γ )
.

Then ‖P(Xt ∈ ·) − π‖ ≥ 1 − a for all t ≤ T .

PROOF. By induction, E�(Xt) = (1 − γ )t�(s0). Therefore, E�(X∞) = 0,
with X∞ denoting a state chosen from the stationary distribution. Put �� =
�(Xt+1) − �(Xt). We have that

E[|�(Xt+1)|2|Xt ] = E[|�(Xt+1) + ��|2|Xt ]
= (1 − 2γ )|�(Xt)|2 + E[|��|2|Xt ]
≤ (1 − 2γ )|�(Xt)|2 + R.

By induction using that γ ≤ 1/2,

E|�(Xt)|2 ≤ (1 − 2γ )t |�(s0)|2 + R

2γ
.
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Thus, again using that γ ≤ 1/2,

Var�(Xt) = E|�(Xt)|2 − |E�(Xt)|2

= (
(1 − 2γ )t − (1 − γ )2t )|�(s0)|2 + R

2γ
≤ R

2γ
.

By Chebyshev’s inequality,

P

(
|�(Xt) − E�(Xt)| ≥

√
R

γa

)
≤ a

2

and, on letting t → ∞,

P

(
|�(X∞)| ≥

√
R

γa

)
≤ a

2
.

Thus, if t is such that |E�(Xt)| ≥ 2
√

R/(γ a), we have ‖P(Xt ∈ ·) − π‖ ≥ 1 − a.
This, however, is the case precisely when t ≤ T . �

3. The move-to-front scheme. Recall the move-to-front scheme. A deck
of n cards is shuffled by the following rule: To each card k, k ∈ [n], we attach once
and for all a probability pk . We assume without loss of generality that pk > 0 for
every k and that p1 ≥ p2 ≥ · · · ≥ pn. We will also for technical reasons work under
the mild condition that pk ≤ 1/3 for every k. At each time step a card is chosen
according to these probabilities and then moved to the top of the deck without al-
tering the relative positions among the other cards. Let {Xt }∞t=0 denote the Markov
chain on the symmetric group Sn defined in this way, started from a permutation
X0 = s0 maximizing the time taken to reach stationarity.

3.1. Upper bound. To find an upper bound on the mixing time, we use cou-
pling. For this we need another deck {Yt } started from stationarity to be updated
according to the same transition rule. The coupling is given by the following sim-
ple rule: At each time step let the same card be moved to the top for the two
decks. Let T = min{t :Xt = Yt } be the coupling time. Considering only one of the
decks, a moment’s thought reveals that at the first time that all but one card has
at least once been picked to the top, the order of the cards no longer depends on
their starting positions, but can be read off completely from in what order they
have been moved to the top. More precisely, the later a card has been picked, the
higher up in the deck it is, with the still untouched card at the very bottom of the
deck. Now considering again both decks, this means that at this time the two decks
must agree. Therefore, the problem can be solved by solving the biased coupon
collector’s problem naturally appearing from the different card probabilities:

P(T ≥ t) ≤ P(at least two cards not touched by time t) ≤
n−1∑
k=1

(1 − pk)
t .
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Thus, putting

τu := min

{
t :

n−1∑
k=1

(1 − pk)
t ≤ 1

4

}
,

the coupling inequality tells us that τmix ≤ τu. Our next task is to prove that τu is,
up to a constant, the correct mixing time.

3.2. Lower bound. Because of the fact that different cards are picked with dif-
ferent probabilities, it is difficult to find eigenvectors for single eigenvalues that,
evaluated at Xt , are sufficiently concentrated around their mean to provide a good
enough test function for sharp lower bounds. We shall circumvent this problem by
combining eigenvectors corresponding to several different eigenvalues. For a gen-
eral treatment of the idea, we assume that the setting is the same as in Section 2.3,
but that (1 − γj ,�j ), j = 1, . . . ,m, are possibly different eigenvalue/eigenvector
pairs for the transition matrix. For simplicity, assume that the �j ’s are scaled in
such a way that, for all j , maxs∈S E[|��j |2|Xt = s] ≤ γj . [The scaling does not
in any way affect the lower bound that comes out in the end, what matters is the re-
lation between the variance of �j(Xt) and �j(s0).] Assume also that, for every j ,
k and t ,

Cov
(
�j(Xt),�k(Xt)

) ≤ 0.

The test function we shall use is the following:

�(Xt) = �t(Xt) :=
m∑

j=1

aj�j (Xt),

where the aj = aj (t), j ∈ [m], form a unit vector, that is,
∑m

j=1 a2
j = 1. The pre-

cise choice of the aj ’s should be made in such a way that the lower bound achieved
is optimized. Reasoning as in the proof of Theorem 2.1, Var�j(Xt) ≤ 1/2.
Thus, by the negative covariance assumption, Var�(Xt) ≤ 1/2 and by letting
t → ∞, Var�(X∞) ≤ 1/2. Note also that E�(Xt) = ∑m

j=1 aj (1 − γj )
t�j (s0)

and E�(X∞) = 0. Continuing along the lines of the proof of Theorem 2.1 now
reveals that ‖P(Xt ∈ ·) − π‖ ≥ 1/3 as long as t is such that |E�(Xt)| ≥ √

6, that
is, if |∑m

j=1 aj (1 − γj )
t�j (s0)| ≥

√
6 for an optimal choice of the aj ’s.

Let us now move back to the move-to-front scheme. Let the deck start with card
n in position 1, card n − 1 in position 2, . . . , card 1 in position n and denote this
state as before by s0. Assume for simplicity that n is even. For every odd j ∈ [n],
define

�j(Xt) =




pj

pj + pj+1
, if Xt(j + 1) ≤ Xt(j),

− pj+1

pj + pj+1
, if Xt(j) < Xt(j + 1).
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In words, �j is assigned the positive value when card j + 1 is above card j in
the deck and the negative value when the opposite situation occurs. Then �j is
an eigenvector for the eigenvalue 1 − γj , where γj := pj + pj+1. We have that
E[|��j |2|Xt ] ≤ pj ≤ γj so the general situation just described applies if it can
be shown that the �j ’s are negatively correlated. However, the simplicity of the
situation allows for a direct calculation of the covariance of �j(Xt) and �k(Xt),
j 
= k:

E[�j(Xt)�k(Xt)] = (1 − γj − γk)
t pj

γj

pk

γk

and

E[�j(Xt)] = (1 − γj )
t pj

γj

,

so

Cov
(
�j(Xt),�k(Xt)

) = (
(1 − γj − γk)

t − (1 − γj )
t (1 − γk)

t )pjpk

γjγk

≤ 0.

Since �j(s0) = pj/γj ≥ 1/2, it follows from above that the variation distance
from stationarity is at least 1/3 when t is such that

∑
j : j odd aj (1 − γj )

t ≥ 2
√

6.
In order to make this bound on t as good as possible, we pick the aj ’s so that
the left-hand side is maximized, that is, aj = (1 − γj )

t/(
∑

k : k odd(1 − γk)
2t )1/2.

Doing so we get that variation distance is at least 1/3 for t such that∑
j : j odd

(1 − γj )
2t ≥ 24.

In order to put this in relation to τu above, recall that all pj ’s are assumed not
to exceed 1/3. Therefore, (1 − γj )

2t ≥ (1 − 2pj )
2t ≥ (1 − pj )

6t . Note also that∑
j : j odd(1 − pj )

6t ≥ 1
2

∑n−1
j=1(1 − pj )

6t . Therefore, variation distance is at least
1/3 as long as

n−1∑
j=1

(1 − pj )
6t ≥ 48.

Put τ0 for the largest t for which this inequality holds. Now in case τ0 <

log(3/4)/ log(1 − pn−1), then (1 − pn−1)
τ0 > 3/4. In this case τ0 is not a good

lower bound and a better one is given by the trivial one τ1 := max{t : (1−pn−1)
t >

3/4}. (Trivial because the probability at stationarity of having card n − 1 above
card pn is at least 1/2 and it is less than 1/4 at time τ1.) However, since∑n−1

j=1(1 − pj )
6(τ1+1) < 48 and (1 − pj )

τ1+1 ≤ 3/4 for all j ≤ n − 1,

n−1∑
j=1

(1 − pj )
25(τ1+1) ≤ 48 · (3

4

)19
< 1

4 .
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Hence, τu ≤ 25(τ1 + 1) and so the biased coupon collector’s problem yields the
correct mixing time up to a factor of 25. Assume now that (1 − pn−1)

τ0 ≤ 3/4 so
that (1 − pj )

τ0+1 < 3/4 for all j . Then

(1 − pj )
25(τ0+1) <

(3
4

)19
(1 − pj )

6(τ0+1) < 1
184(1 − pj )

6(τ0+1)

and so
n−1∑
j=1

(1 − pj )
25(τ0+1) < 1

184

n−1∑
j=1

(1 − pj )
6(τ0+1) ≤ 1

4 .

Thus, τu ≤ 25(τ0 + 1). The following theorem summarizes the results of this sec-
tion.

THEOREM 3.1. Consider the move-to-front scheme with card probabilities
pj , j ∈ [n], with pj ≤ 1/3 for every j . Put

τu := min

{
t :

n−1∑
j=1

(1 − pj )
t ≤ 1

4

}
.

Then

1
25τu − 1 ≤ τmix ≤ τu.

EXAMPLES. (a) The ordinary random-to-top shuffle. Here pj = 1/n for
every j . We get τu = (1 + o(1))n logn and 1

25n logn ≤ τmix ≤ n logn. Of course,
it is well known that n logn is a cutoff in this case.

(b) Put

pj =




2

n + 1
, 1 ≤ j ≤ n

2
,

2

n(n + 1)
,

n

2
+ 1 ≤ j ≤ n.

Here τu = (1 + o(1))1
2n2 logn, so the correct order of the mixing time is n2 logn.

(c) Let pj = j−1/(
∑n

k=1 k−1). Then with t = cn(logn)2, it is readily seen that

n−1∑
j=1

(1 − pj )
t =

{
�(1), when c < 1,

o(1), when c > 1.

Therefore, τu = (1 + o(1))n(logn)2 and the order of the mixing time is n(logn)2.
(d) Put pj = 2(n + 1 − j)/(n(n + 1)). With t = cn2,

n−1∑
j=1

(1 − pj )
t ≤

n−1∑
j=1

e−2cj ≤ e−2c

1 − e−2c
≤ 1

4



BIASED RANDOM-TO-TOP SHUFFLING 1043

if, say, c ≥ 1. Therefore, n2 is the correct order of the mixing time. This is thus a
case where the time taken to reach stationarity depends almost entirely on the time
taken to find the few most unprobable cards.

4. Generalized Rudvalis shuffles.

4.1. Lower bounds. The eigenvalues for the GR shuffles that are at least rea-
sonably accessible are those for the motion of a single card. These typically turn
out to be complex. Now taking a closer look at the proof of Theorem 2.1 reveals
that there is nothing in it that technically prevents λ := 1 − γ from being complex-
valued. However, the typical situation is such that γ is of much larger order than
1 − |λ|, but it is the latter that indicates the correct mixing time. Therefore, one
would like a variant of Theorem 2.1, where one in effect works with 1 − |λ| rather
than γ . Wilson [11] developed such a method in order to take care of the original
Rudvalis shuffle and some variants of it. One ingredient in his method is to extend
the Markov chain to a larger state space by incorporating time into it. In our case
such an extension seems unnecessary and the following variant is the most natural
way to attack the problems at hand:

Let the setting be as in Theorem 2.1, with the exception that the eigenvalue is
now (1 − γ )eiθ for some γ ∈ (0,1/2] and some θ ∈ [0, π] and R is such that

R ≥ max
s∈S

E[|e−iθ�(Xt+1) − �(Xt)|2|Xt = s].

THEOREM 4.1. Assume the setting above, pick a > 0 and let T be as in The-
orem 2.1. Then for t ≤ T ,

|P(Xt ∈ ·) − π‖ ≥ 1 − a.

PROOF. As in the proof of Theorem 2.1, E�(Xt) = (1 − γ )teitθ�(s0) and
E�(X∞) = 0. Put, for t = 0,1,2,3, . . . ,

�t (Xt) = e−itθ�(Xt).

Then for every t , E�t(Xt) = (1 − γ )t�(s0) and E�t(X∞) = 0 and

R ≥ max
s∈S

E[|�t+1(Xt+1) − �t(Xt)|2|Xt = s].
Now completely mimic the proof of Theorem 2.1 with �t(Xt) playing the rôle of
�(Xt). Doing so yields the desired result. �

Recall that in the general GR shuffle setting, the card moved to the top is chosen
from position k with probability pk , k ∈ [n]. This entails that the motion of a single
card, c, is in itself a Markov chain: Given that c is in position k at time t , then at
time t + 1, c is in position 1 with probability p1, in position k with probability
mk := ∑

j<k pj and in position k + 1 with probability Mk := ∑
j>k pj . Putting λ
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for an eigenvalue of this chain and x for a corresponding eigenvector, these must
satisfy the equations

λxk = pkx1 + mkxk + Mkxk+1,

k = 1,2, . . . , n. Unfortunately this system of equations is very difficult to solve in
general, so from now on we focus on some special cases. However, even so the
exact eigenvalues cannot be expressed on closed form and we will consequently
only be able to produce expressions that are very close to the eigenvalue. When
arguing that a given expression is indeed close to an eigenvalue, the following
lemma is very useful. The lemma should be more or less well known, but we have
not been able to find any specific reference, so a proof is supplied.

LEMMA 4.2. Let D be the closed unit disc in the complex plane. Assume that
f : D → C is analytic, f (0) = 0 and |f ′(z)| ≥ 1 for every z in D. Then there exists
a point z0 ∈ D such that f (z0) = 1.

PROOF. Let V := f (D) and let u be the leftmost point of the positive real axis
that intersects the boundary of V ; formally,

u := inf{a ∈ [0,∞) :a /∈ V }.
We want to prove that f −1[0, u] contains a smooth path from 0 to ∂D. The set
f −1[0, u] may not be connected, but put ρ for the component of f −1[0, u] that
contains the origin. We claim that ρ is a path of the desired type. By the assumption
on f ′, the set ρ can be covered by open balls on which the restriction of f is an
open bijective map with analytic inverse. Since ρ is compact, this cover can be
taken to be finite; put U1,U2, . . . ,Un for the covering balls. Since f |Uj

has a well-
defined analytic inverse, ρ ∩ Uj is a smooth path segment for every j . Putting the
Uj ’s together shows that ρ is a smooth path and since ρ is closed, it contains its
endpoints. Finally, to prove that the endpoint, w 
= 0, of ρ is on ∂D, assume for
contradiction that w ∈ D

0. Then w is the center of an open ball, O , contained in
D

0 on which f has analytic inverse. Since f (O) ⊆ V 0, f (O) is crossed by [0, u]
and, hence, O is crossed by a segment of ρ, contradicting that w is the endpoint.

Next we claim that f |ρ is a bijection onto [0, u]: If this was not the case, then
by continuity, for some j , f |ρ∩Uj

would not be bijective. (We may regard f |ρ as a
continuous real-valued function defined on a closed interval of R.) This contradicts
to the bijectivity of f |Uj

.
Thus, ρ can be parameterized the natural way, that is, by letting ρ(s) = f −1(s),

s ∈ [0, u]. For an arbitrary z ∈ ρ, write z = ρ(s), s ∈ [0, u], and get, by Cauchy’s
theorem,

s = f (z) =
∫
ρ[0,s]

f ′(w)dw =
∫ s

0
f ′(ρ(v))ρ′(v) dv.
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Hence, f ′(ρ(v))ρ′(v) = 1 for almost every v. Whence, by hypothesis,

u =
∫ u

0
|f ′(ρ(v))||ρ′(v)|dv ≥

∫ u

0
|ρ′(v)|dv.

However, the right-hand side is the length of ρ and since ρ goes from the origin to
the boundary of D, its length is at least 1. Thus, u ≥ 1, that is, f (D) contains 1, as
desired. �

A slight strengthening of the proof of Lemma 4.2 proves that, in fact, f (D) ⊇ D:
Replace the positive real axis [0,∞) with any ray eiθ [0,∞), θ ∈ [0,2π) and re-
define u as u := inf{a ∈ [0,∞) :aeiθ /∈ V }. Then, repeating the proof with only a
small adjustment for the eiθ -factor again gives u ≥ 1. Since θ was arbitrary, we
have shown the following:

THEOREM 4.3. Let f : D → C be analytic with f (0) = 0 and |f ′(z)| ≥ 1 for
every z ∈ C. Then f (D) ⊇ D.

The way in which Lemma 4.2 will be used is the following: Suppose that for
some z0 we have that f (z0) = δ. Suppose also that |f ′(z)| ≥ M for all z within
distance δ/M of z0. Then by Lemma 4.2 applied to the map z → 1−f (z0 +δ/M),
f has a zero within distance δ/M of z0.

4.1.1. The bottom-to-top shuffle. Recall that now the card taken to the top of
the deck is chosen uniformly among the bottom k cards. As above, put λ and x for
an eigenvalue and a corresponding eigenvector for single-card motion and assume
without loss of generality that x1 = 1. Then the above system of equations for
(λ,x) becomes

λ = x2,

λx2 = x3,

λx3 = x4,

...

λxn−k = xn−k+1,

λxn−k+1 = 1

k
+ k − 1

k
xn−k+2,

λxn−k+2 = 1

k
+ 1

k
xn−k+2 + k − 2

k
xn−k+3,

λxn−k+3 = 1

k
+ 2

k
xn−k+3 + k − 3

k
xn−k+4,

...
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λxn−1 = 1

k
+ k − 2

k
xn−1 + 1

k
xn,

λxn = 1

k
+ k − 1

k
xn.

Working backward, we get from the last equation that

xn = 1

kλ − (k − 1)
.

The second to last equation gives

xn−1 = 1/k + (1/k)xn

λ − (k − 2)/k
= 1

kλ − (k − 1)
= xn

or λ = (k − 2)/k. Unless λ = (k − 2)/k, the third to last equation now tells us that

xn−2 = 1/k + (2/k)xn−1

λ − (k − 3)/k
= 1

kλ − (k − 1)
= xn

or λ = (k − 3)/k. By induction,

xn = xn−1 = · · · = xn−k+1 = 1

kλ − (k − 1)

or λ ∈ {0,1/k,2/k, . . . , (k − 2)/k}. By the first n − k equations, x1 = 1, x2 = λ,
x3 = λ2, . . . , xn−k+1 = λn−k . Unless λ ∈ {0,1/k,2/k, . . . , (k − 2)/k}, the two ex-
pressions for xn−k+1 must be equal. This gives the following characteristic equa-
tion for λ:

g(λ) := λn−k+1 − k − 1

k
λn−k − 1

k
= 0.

Now assume that k = o(n). Then no eigenvalue less than 1 − 2/k will provide
a good lower bound so we can focus on λ’s solving the characteristic equation.
So how do we find solutions to this equation? It is fairly easy to guess that there
may be a solution close to λ = eiw , where w = 2π/n, so let us first simply put
λ = (1 − γ )eiw , insert this into the equation and make an approximate calculation
of what γ then should be. We have, if γ is assumed to be very small,

g(λ) ≈ (1 − nγ )e−i(k−1)w − k − 1

k
(1 − nγ )e−ikw − 1

k
.

The imaginary part of this is very small. The real part is approximately

(1 − nγ )

(
1 − (k − 1)2

2
w2

)
− k − 1

k
(1 − nγ )

(
1 − k2w2

2

)
− 1

k

≈ −1

k
nγ +

(
k(k − 1)

2
− (k − 1)2

2

)
w2.
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To make the last expression vanish, we must put

γ =
(

k

2

)
w2

n
.

We thus guess that g(λ) has a zero very close to λ0 := (1 − (k
2

)
w2/n)eiw . We now

need to prove that this is indeed the case. To make things a bit easier to handle,
transform the characteristic equation by putting z = λe−iw , thereby getting

f (z) := zn−k+1 − k − 1

k
e−iwzn−k − 1

k
ei(k−1)w = 0,

for which we want to prove there is a root very close to z0 := 1 − (k
2

)
w2/n. More

precisely, we will use Lemma 4.2 to show that the distance from z0 to the nearest
root is O(k3n−4) = o(k2w2/n). Whence, there is a root of the form 1 − (1 +
o(1))

(k
2

)
w2/n. First we calculate f ′:

f ′(z) = zn−k−1
(
(n − k + 1)z − (n − k)(k − 1)

k
e−iw

)
.

Next we evaluate f ′(z) for an arbitrary point z such that |z − z0| <
(k
2

)
w2/(2n).

Such a point can be written as 1 − c
(k
2

)
w2/n, where |c| ∈ (1/2,3/2). We have

f ′(z) = (
1 − o(1)

)(
(n − k + 1)

(
1 − c

(
k

2

)
w2

n

)

− (n − k)(k − 1)

k

(
1 − O(n−2)

) + i
(−w + O(n−3)

))

= (
1 − o(1)

)(k(n − k + 1) − (n − k)(k − 1)

k
− O(k2n−2) + O(n−1)

+ i

(
(n − k)(k − 1)

k
w + O(n−2)

))

= (
1 + o(1)

)(n

k
+ i

2π(k − 1)

k

)
.

Thus, f ′(z) = (1 + o(1))n/k for all z within distance
(k
2

)
w2/(2n) of z0. If it can

now be shown that f (z0) = O(k2n−3), it will follow from Lemma 4.2 that f has
a zero within distance O(k3n−4) of z0, as desired. However,

f (z0) = zn−k+1
0 − k − 1

k
e−iwzn−k

0 − 1

k
ei(k−1)w

= 1 − n − k + 1

n

(
k

2

)
w2 − k − 1

k

(
1 − n − k

n

(
k

2

)
w2

)(
1 − w2

2
− iw

)

− 1

k

(
1 − (k − 1)2w2

2
+ i(k − 1)w

)
+ O(k2n−3)
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= (k − 1)(n − k) − k(n − k + 1)

nk

(
k

2

)
w2

+ (k − 1)w2

2k
+ (k − 1)2w2

2k
+ O(k2n−3)

and some algebraic manipulation reveals that all terms but the O(k2n−3)-term at
the end cancel.

We have thus established for the bottom-to-top shuffle an eigenvalue of the form

λ = (1 − γ )eiθ , where γ = (1 + o(1))2π2k(k−1)

n3 and θ = (1 + o(1))2π
n

and a cor-
responding eigenvector given by

x = [1, λ, λ2, . . . , λn−k, λn−k, . . . , λn−k]T .

Now let Z
j
t denote the position of card j at time t , put m = �n/2�,

�j(Xt) = x
Z

j
t

and

�(Xt) =
m∑

j=1

�j(Xt).

By linearity of expectation and what we just showed, E[�(Xt+1)|Xt ] = λ�(Xt).
To apply Theorem 4.1 with � as test function, we need to check maxs∈S E[|e−iθ ×
�(Xt+1) − �(Xt)|2|Xt = s]. However, deterministically, all the n − k top cards
move one step down the deck at each shuffle, and for such a card, j , on position r ,

|e−iθ�j (Xt+1) − �j(Xt)| = |e−iθλr+1 − λr | ≤ γ = O(k2n−3).

For the card that is moved to the top, �j changes from λn−k to 1, a change of
order O(kn−1). Finally, for k − 1 of the cards at the bottom of the deck, their
corresponding �j ’s stay put at λn−k , so for these cards,

|e−iθ�j (Xt+1) − �j(Xt)| = (
1 + o(1)

)|1 − eiw| = O(n−1).

Using the triangle inequality,

|e−iθ�(Xt+1) − �(Xt)| ≤ mO(k2n−3) + O(kn−1) + kO(n−1) = O(kn−1)

and, consequently,

max
s∈S

E[|e−iθ�(Xt+1) − �(Xt)|2|Xt = s] = O(k2n−2).

We may thus apply Theorem 4.1 with R = O(k2n−2). Observing that �(s0) =
O(n) if we start with the cards in order (this is why we use only half the cards
when defining �), and putting a = 1/2, we then get the following lower bound
when k = o(n):

T = (
1 + o(1)

) n3

2π2k(k − 1)

(
log�(s0) − 1

2
log

8R

γ

)
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= (
1 + o(1)

) n3

2π2k(k − 1)

(
logn − 1

2
log

k2n−2

k2n−3

)

= (
1 + o(1)

) n3

4π2k(k − 1)
logn.

Now what about the case k = �(n)? In this case it is fairly easy to find a lower
bound of order n logn, just as one would expect from the k = o(n) lower bound
just given. This can be done either by using the 1 − 2/k eigenvalue and the cor-
responding eigenvector in Theorem 4.1 or by softer probabilistic reasoning as for
the (inverse) random-to-top shuffle; after εn logn steps card, n will still be very
close to the bottom of the deck. However, an intriguing fact about these shuffles is
that when k is really large, for example, k > 2n/3, then the second eigenvalue for
the single card chain is farther away from 1 than for the case k = n. This seems to
suggest that the bottom-to-top shuffle with, say, k = 0.9n, could in fact be faster
then the random-to-top shuffle. Unfortunately we have not been able to find any
good evidence about whether this is indeed the case or not, and it would be quite
interesting to know the answer to this problem.

In summary, we have found the following result:

THEOREM 4.4. A lower bound on the mixing time for the bottom-to-top shuf-
fle where the card taken to the top at a given shuffle is chosen among the bottom
k = o(n) cards is given by

(
1 + o(1)

) n3

4π2k(k − 1)
logn.

When k = �(n), the mixing time is �(n logn).

Note that taking k = 2 in Theorem 4.4 recovers the previously known
1

8π2 n3 logn lower bound for the Rudvalis shuffle.

4.1.2. GR shuffles with pn−k = pn = 1/2. To avoid parity problems, we must
assume that k is odd. Using the same notation as for the bottom-to-top shuffle
above, the equations for the eigenvalue/eigenvector pairs now become

x1 = 1,

λxj = xj+1, j = 1,2, . . . , n − k − 1,

λxn−k = 1
2 + 1

2xn−k+1,

λxj = 1
2xj + 1

2xj+1, j = n − k + 1, n − k + 2, . . . , n − 1,

λxn = 1
2 + 1

2xn.
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Solving forward using all but the last equation, we get

x1 = 1, x2 = λ, . . . , xn−k = λn−k−1,

xn−k+1 = 2λn−k − 1,

xn−k+2 = (2λ − 1)(2λn−k − 1), . . . , xn = (2λ − 1)k−1(2λn−k − 1).

Invoking the last equation, we also have xn = 1/(2λ−1) and since the two expres-
sions for xn must agree, we get the characteristic equation

g(λ) := (2λ − 1)k(2λn−k − 1) − 1 = 0.

Again we make separate treatments of the cases k = o(n) and k = �(n), beginning
with the former.

When k = o(n), we suspect that a useful eigenvalue can be found quite close
to 1. Therefore, 2λ− 1 ≈ λ2, so it is a good idea to start with the equation one gets
by making this replacement:

f (λ) := λn+k − 1
2λ2k − 1

2 = 0.

Putting µ := λk and n = ck, we get

µc+1 − 1
2µ2 − 1

2 = 0.

Since c = �(1), this equation resembles the characteristic equation for the bottom-
to-top shuffle. It has a solution very close to

µ = µ0 :=
(

1 − 2π2

c3

)
ei2π/c

and so a zero of f (λ) can be found very close to

λ = λ0 :=
(

1 − k2w2

2n

)
eiw.

Let us check how close to a solution λ0 is:

f (λ0) =
(

1 − k2w2

2n

)n+k

eikw − 1

2

(
1 − k2w2

2n

)2k

e2ikw − 1

2

=
(

1 − (n + k)k2w2

2n
+ O(k4n−4)

)(
1 − k2w2

2
+ ikw + O(k3n−3)

)

− 1

2

(
1 + O(k3n−3)

)(
1 − 2k2w2 + 2ikw + O(k3n−3)

) − 1

2

= −n + k

2n
k2w2 − 1

2
k2w2 + k2w2 + O(k3n−3) = O(k3n−3).

Since

f ′(λ) = (n + k)λn+k−1 − kλ2k−1 = (
1 + o(1)

)
n
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in a large enough surrounding of λ0, Lemma 4.2 implies that f has a zero in a
point λ1 at distance O(k3n−4) from λ0. Next we check how far off λ1 is from
being a zero of g. Compare λ2

1 and 2λ1 − 1:

2λ1 − 1 − λ2
1 = 2λ0 − 1 − λ2

0 + O(k3n−5)

= 2
(

1 − k2w2

2n

)(
1 − w2

2
+ iw + O(n−3)

)
− 1

−
(

1 − k2w2

n
+ O(k4n−6)

)(
1 − 2w2 + 2iw + O(n−3)

)
+ O(k3n−5)

= w2 + o(n−2).

Thus,

(2λ1 − 1)k = λ2k
1 + kw2 + o(kn−2).

Therefore, since λ1 is a zero of f ,

1 + g(λ1) = (
λ2k

1 + kw2 + o(kn−2)
)
(2λn−k

1 − 1)

= 1 + 2f (λ1) + (
1 + o(1)

)(
kw2 + o(kn−2)

)
= 1 + kw2 + o(kn−2),

so g(λ1) = (1 + o(1))kw2. However, g′(λ) = (1 + o(1))2n in a sufficiently large
surrounding of λ1 to allow us to appeal to Lemma 4.2 for the conclusion that
g has a zero in a point λ2 at distance (1 + o(1))kw2/(2n) from λ1. By the triangle
inequality,

|λ2 − λ0| = (
1 + o(1)

)kw2

2n
+ O(k3n−4)

and so λ2, the eigenvalue we set out looking for, can be written as

λ = (1 − γ )e−iθ ,

where

(
1 + o(1)

)2π2k(k − 1)

n3 ≤ γ ≤ (
1 + o(1)

)2π2k(k + 1)

n3

and θ = (1 + o(1))2π
n

.
Next we apply Theorem 4.1 with the eigenvalue and corresponding eigenvector,

x, we have just found. For card j , put �j(Xt) = x
Z

j
t
, m = �n/2� and

�(Xt) =
m∑

j=1

�j(Xt).
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To bound � := |e−iθ�(Xt+1) − �(Xt)|, observe that the top n − k cards, just
as for the bottom-to-top shuffle, deterministically move one step down the deck.
Thus, each of them contribute (1 + o(1))γ = O(k2n−3) to �, so by the triangle
inequality, they cannot together contribute more than O(k2n−2). Of the k cards
between position n − k and position n, k − 1 cards will move one step up the deck
or stay put and will thereby individually contribute O(n−1) and together at most
O(kn−1) to �. Finally, one card will move from position one of the bottom k

positions to the top, thereby contributing O(kn−1) to �. Summing up, we get that
� is bounded by O(kn−1) and Theorem 4.1 may be applied with R = O(k2n−2).
Putting a = 1/2 and noting that �(s0) = O(n) if s0 has the cards in order, we get
almost the same lower bound that we got for the bottom-to-top shuffles:

THEOREM 4.5. Consider the GR shuffle where pn−k = pn = 1/2 and k is
odd. If k = o(n), then a lower bound on the mixing time is given by

(
1 + o(1)

) n3

4π2k(k + 1)
logn.

Again note that we retrieve the previously known lower bound for the Rudvalis
shuffle, this time by putting k = 1.

The case k = �(n) is again a little more difficult since it is harder to tell in
general as exactly as for the case k = o(n) where the second eigenvalue is to be
found. However, it is fairly easy to show that there is an eigenvalue for which one
has γ = �(n−1) and θ = O(n−1) and that there are no other nontrivial eigenvalues
with γ of lower order than this. Applying Theorem 4.1 with the corresponding
eigenvector then gives a lower bound of �(n logn), as expected from the lower
bound for k = o(n). With some care, one can come up with more explicit bounds
if k is specified, for example, when k = n/2, the same methods as those used above
yield an eigenvalue (1 − γ )eiθ , where γ = (1 + o(1))

log 2
n

and θ = (1 + o(1))3
4w.

Applying Theorem 4.1 then gives the lower bound

T = (
1 + o(1)

) 1

2 log 2
n logn.

However, this is, at least not in general, the correct order of the mixing. To show
this, let us give the case k = n/2 some extra consideration: Let Zt be the position
of a specific card at time t (counting 0, . . . , n − 1 for the positions rather than
1, . . . , n). Put

Ut := Zt + (Zt − k)+ − t modk

and Vt = Ut − Ut−1 modk. Then E[Vt |Xt−1] = 0 and Var(Vt |Xt−1) is 1 when
Ut−1 > k and 0 when Ut−1 ≤ k. Thus,

VarUt = E
[
E[U2

t |Xt−1]] = E
[
U2

t−1 + E[V 2
t |Xt−1]] ≤ VarUt−1 + 1,



BIASED RANDOM-TO-TOP SHUFFLING 1053

so by induction, VarUt ≤ t . However, then, by Chebyshev’s inequality,

P(|U10−6n2 − U0 − 10−6n2| ≥ 0.01n) ≤ 0.01,

while at stationarity a deviation like this would have a probability of more than 0.9.
We have shown the following:

THEOREM 4.6. Suppose that n is even. Then the mixing time of the GR shuffle
with pn = pn/2 = 1/2 is �(n2).

The proof of Theorem 4.6 can be made to work when k = cn for any rational
constant c and then gives a lower bound of order n2. However, we have not been
able to turn this �(n2) lower bound for single cards into an �(n2 logn) bound for
the whole deck, mainly because of the strong dependence between the motions of
different cards. When c is irrational, things are more unclear; it is not hard to see
that in this case the mixing time for single cards is in fact �(n logn), but it seems
hard to imagine that the whole deck would mix much faster for irrational values
of c.

What the true order of mixing is for pn = pn−k = 1/2 seems to be a wide open
question. One natural guess is that the mixing time is �(n3 logn) for all k and
either a proof or a counterexample to this would be very interesting.

4.2. Upper bounds. As already pointed out, we will only be able to provide
a good upper bound for the bottom-to-top shuffle. Thus, we are again considering
the situation where at each time step the card moved to the top of the deck is
chosen uniformly at random from the k bottom cards. As usual, denote the state
of the deck at time t by Xt , and let X0 be any fixed state. (Since the bottom-to-
top shuffle describes a simple random walk on Sn, the stationary distribution is
uniform and the particular starting state does not affect the convergence rate.) For
each t = 0,1,2,3, . . . , let the mapping βt :Sn → Sn be given by

βt(σ ) = (n − 1 n − 2 . . .1 0)t ◦ σ

(where the positions of the permutations are for convenience now denoted
0,1,2, . . . , n − 1). Put Yt = βt(Xt). In words, Yt is Xt with position k + t (mod-
ulo n) regarded as position k, k = 0,1, . . . , n − 1. Clearly,

‖P(Yt ∈ ·) − π‖ = ‖P(Xt ∈ ·) − π‖,
so we may, and will, work with Yt instead of Xt itself. The process {Yt } describes
the (time-inhomogenous) Markov chain one gets by at time t , making a random-
to-bottom shuffle modulo n on the subset of positions At := {n − k + 1 − t, n −
k + 2 − t, . . . , n − t} modulo n. (The set At corresponds to the bottom k positions
for {Xt }.)

We will couple another process {Y ′
t } with the same updating mechanism, but

started from stationarity, with {Yt }. The coupling rule is the following: For all
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cards, c, such that Yt (c) ∈ At and Y ′
t (c) ∈ At , move c to position n − t in Y ′

t if
and only if it is moved also in Yt . If the card moved in Yt is not in an At -position
in Y ′

t , then pick for Y ′
t a card chosen uniformly from those cards that are in an

At -position in Y ′
t but not in Yt . Clearly, {Y ′

t } has the correct updating distribution
and the coupling has the following important properties:

• A card c in {Yt } cannot pass its copy in {Y ′
t } unless Yt (c) and Y ′

t (c) are both
in At .

• Once a card c has been in an At -position in Yt and Y ′
t simultaneously, it will be

matched as soon as it leaves At . This is because the only way a card can leave
At is by being picked as the card moved to the bottom of At and by the nature
of the coupling, this happens simultaneously for the two decks.

Consequently, let T0(c) be the first time that card c has been in At simultane-
ously for the two decks:

T0(c) := min{t :Yt (c) ∈ At and Y ′
t (c) ∈ At }

and let T0 = maxc T0(c). Then at time T0 all cards outside AT0 must be matched.
However, then, by the nature of the shuffle and the coupling, all cards will be
matched as soon as all cards in AT0 have left At . Putting T for the first time this
has happened, the coupling inequality tells us that

‖P(Yt ∈ ·) − π‖ ≤ P(T > t),

so for the rest of this section, we focus on estimating T . By the standard coupon
collector’s problem, for any a > 0, P(T − T0 > (1 + a)k log k) = o(1) unless k =
O(1), in which case P(T − T0 > fn) = o(1) as soon as fn = �(1). Now what
about T0?

Consider the motion of a single card c in {Yt }. Denote the time interval between
two successive occasions when c leaves At , by a cycle for c. A moment’s thought
reveals that during a cycle c moves k − G steps down the deck (modulo n), where
G is a random variable with geometric distribution with parameter 1/k. Thus,
putting τj = τj (c) for the j th time, j = 1,2,3, . . . , that c leaves At , the process
{Yτj

(c)}∞j=1 describes a random walk on Zn with step size distribution k − G.
Keeping track of how c crosses the top/bottom border of the deck, we get a ran-
dom walk on Z with step size distribution k − G; in particular, the step size mean
is 0 and the step size variance is k2(1 − 1/k) = k(k − 1). Now considering c’s
motion in {Y ′

t } gives a corresponding sequence {τ ′
j } of stopping times and a cor-

responding random walk with the same properties. Let J = min{j : τ ′
j > T0(c)}.

Then if Y0(c) > Y ′
0(c),

τ1 < τ ′
1 < τ2 < τ ′

2 < · · · < τJ = τ ′
J < τJ+1 = τ ′

J+1 < · · ·
or

τ1 < τ ′
1 < τ2 < τ ′

2 < · · · < τ ′
J−1 = τJ < τ ′

J = τJ+1 < · · · ,
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depending on if T0(c) coincides with c entering At in Y ′
t or Yt . If Y0(c) < Y ′

0(c),
then these relations with the primed and nonprimed quantities interchanged hold.
In the sequel we assume that Y0(c) > Y ′

0(c); the other case is treated analogously.
Put Sj = Yτj

(c) − Y ′
τ ′
j
(c). Then {Sj } for the first J − 1 steps behaves like the

difference between two independent random walks on Zn. Thus, {Sj } itself for the
first J − 1 steps describes a symmetric random walk on Z with step size variance
2k(k −1). To make this exact, define a third deck {Y ′′

t } such that Y ′′
t coincides with

Y ′
t for t < T0(c), but let Y ′′

t evolve independently of Yt from time T0(c) and on.
Associate in analogy with the above with Y ′′

t the stopping times τ ′′
j and put Uj =

Yτj
(c) − Y ′′

τ ′′
j
(c). Then {Uj } describes a random walk, started from somewhere

between 0 and n, that for all time is the difference between two random walks of
the kind encountered above, and Uj coincides with Sj for the first J − 1 steps.
The process {Uj } also has the property that if it, after j steps, has at least once
passed the origin or vertex n, then j ≥ J ; this follows from the above properties
of the coupling. Thus, T0(c) is bounded by the first time Uj passes outside the
interval [0, n].

Let us now bound the probability that {Uj } has not passed outside [0, n] in, say,
j0 steps. This probability is maximized when U0 = n/2, so let us assume that this
is the case. Put

Wj := 1√
2k(k − 1)

(
Uj − n

2

)
,

so that W0 = 0, {Wj } has step size variance 1 and Uj passes outside [1, n − 1]
when Wj passes outside[

− n

23/2
√

k(k − 1)
,

n

23/2
√

k(k − 1)

]
.

From here we must treat the cases k = o(n) and k = �(n) separately. Assume first
that k = o(n). Let

M := n

23/2
√

k(k − 1)
.

By Donsker’s theorem (since M → ∞) (see, e.g., [3], Section 7.6){
1

M
WM2s

}
s∈[0,∞)

D→ {Bs}s∈[0,∞)

as n → ∞, where {Bs} stands for standard Brownian motion. Thus,

P

(
∀ s ≤ s0 :

∣∣∣∣ 1

M
WM2s

∣∣∣∣ < 1
)

= (
1 + o(1)

)
P(∀ s ≤ s0 : |Bs | < 1)

≤ (
1 + o(1)

) 4

π
e−π2s0/8,



1056 J. JONASSON

where the last bound can be found, for example, in [3], Section 7.8. With
s0 = (1 + o(1))(8/π2) logn, the right-hand side is o(n−1). Translating this back
to {Uj } tells us that the probability that Uj has not passed outside [0, n] after
(1 + o(1))(8/π2)M2 logn steps is o(n−1). Thus, with

j0 := (
1 + o(1)

) n2

π2k(k − 1)
logn,

we have

P(J > j0) = o(n−1).

Now how long does it take before c has gone through j0 cycles? This time, say,
T1, can be written as

T1 = η +
j0∑

j=1

ξj ,

where η is the time taken until c leaves At for the first time, and the ξj ’s are the
j0 independent cycle times. Since η represents the time taken for a partial cycle,
η is stochastically dominated by a random variable ξ0 with the same distribution
as ξ1, . . . , ξj0 and so T1 is dominated by T2 := ∑j0

j=0 ξj . The ξj ’s have distribution
n − k + G, where G is geometric with parameter 1/k. Hence, ET2 = n(j0 + 1)

and we want to bound P(T2 ≥ (1 + a)n(j0 + 1)) for an arbitrary small a > 0.
However, this probability coincides with the probability that B < j0, where B is
binomial with parameters (an + k)(j0 + 1), and 1/k. Since j0 = �(logn) and
k = o(n), it follows from standard Chernoff bounds that

P
(
T2 > (1 + a)nj0

) = o(n−1).

Thus, P(τ ′
j0

> (1 + a)nj0) = o(n−1) and since it was shown above that P(J >

j0) = o(n−1) and since T0(c) < τ ′
J , we get that

P
(
T0(c) > (1 + a)nj0

) = o(n−1).

Summing over the cards,

P
(
T0 > (1 + a)nj0

) = o(1).

Finally, since k = o(n), k log k is of smaller order than nj0 [or when k = O(1),
then fn is of smaller order than nj0], and so

P
(
T > (1 + a)nj0

) = o(1).

We have thus arrived at the following upper bound on the mixing time:

τmix ≤ (
1 + o(1)

) n3

π2k(k − 1)
logn.

In the case k = �(n), the above approach does not work exactly as it stands for
two reasons:
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• Since n and k are of the same order, the Brownian motion approximation does
not work.

• The k logk term for T − T0 is of the same order as nj0.

However, it is easy to modify the arguments slightly to give an upper bound of the
type Cn logn for some constant C. A more detailed analysis would also give an
estimate for C, but since these estimates appear to be well above what one would
guess are the correct figures (e.g., when k is close to n, an estimate of C lands well
above 1), we omit that here.

The following theorem summarizes our results on the bottom-to-top shuffle:

THEOREM 4.7. Let τmix be the mixing time for the bottom-to-top shuffle where
the card taken to the top at each shuffle is chosen among the bottom k cards. Then
if k = o(n),

(
1 + o(1)

) n3

4π2k(k − 1)
logn < τmix <

(
1 + o(1)

) n3

π2k(k − 1)
logn.

If k = �(n), then τmix = �(n logn).
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