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ONE-DIMENSIONAL LINEAR RECURSIONS WITH
MARKOV-DEPENDENT COEFFICIENTS

BY ALEXANDER ROITERSHTEIN

University of British Columbia

For a class of stationary Markov-dependent sequences (An,Bn) ∈ R2,

we consider the random linear recursion Sn = An + BnSn−1, n ∈ Z, and
show that the distribution tail of its stationary solution has a power law decay.

1. Introduction and statement of results. Consider the stochastic difference
equation

Sn = An + BnSn−1, n ∈ N, Sn ∈ R,(1.1)

with real-valued random coefficients An and Bn.

If the sequence of random pairs (An,Bn)n∈Z is stationary and ergodic,
E(log |B0|) < 0, and E(log |A0|+) < ∞, where x+ = max(0, x), then for any
initial random value S0, the limit law of Sn is the same as that of the random vari-
able R = A0 +∑∞

n=1 A−n

∏n−1
i=0 B−i , and it is the unique initial distribution under

which (Sn)n≥0 is stationary (cf. [6]). Letting ξn = A−n and ρn = B−n for n ∈ Z,

we get

R = ξ0 +
∞∑

n=1

ξn

n−1∏
i=0

ρi.(1.2)

The stochastic difference equation (1.1) has been studied by many authors and has
a remarkable variety of applications (see, e.g., [8, 20, 23] for an extensive account).
The distribution tail of the random variable R is the topic of, for example, [9–
12, 14], all assuming that (ρn, ξn)n∈Z is an i.i.d. sequence, and of [7], where it is
assumed that (ρn)n∈Z is a finite Markov chain.

We study here the asymptotic behavior of the distribution tail of R in the case
that the sequence (ζn)n∈Z = (ξn, ρn)n∈Z is an “observable part” of a Markov-
modulated process. By Markov-modulated process we mean the following:

DEFINITION 1.1. Let (S,T ) be a measurable space and let (xn)n∈Z be a sta-
tionary Markov chain with transition kernel H(x, ·) defined on it.

Received September 2004; revised October 2006.
AMS 2000 subject classifications. Primary 60K15; secondary 60K20.
Key words and phrases. Random linear recursions, stochastic difference equations, tail asymp-

totic, Markov random walks, Markov renewal theory.

572

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051606000000844
http://www.imstat.org
http://www.ams.org/msc/


LINEAR RECURSIONS WITH MARKOVIAN COEFFICIENTS 573

A Markov-modulated process (MMP) associated with (xn)n∈Z is a stationary
Markov chain (xn, ζn)n∈Z defined on a product space (S × ϒ,T ⊗ �), whose
transitions depend only on the position of (xn). That is, for any n ∈ Z,A ∈ T ,
B ∈ �,

P
(
xn ∈ A,ζn ∈ B|σ ((xi, ζi) : i < n

))= ∫
A

H(x, dy)G(x, y,B)|x=xn−1,

where G(x, y, ·) = P(ζ1 ∈ ·|x0 = x, x1 = y) is a kernel on (S × S × �).

For MMP (xn, ζn)n∈Z, where ζn = (ξn, ρn), satisfying Assumption 1.2 below
we show that for some κ > 0, the limits limt→∞ tκP (R > t) and limt→∞ tκP (R <

−t) exist and are not both zero. Under our assumption, the parameter κ is deter-
mined by

�(κ) = 0, where �(β) = lim
n→∞

1

n
logE

(
n−1∏
i=0

|ρi |β
)
.(1.3)

This extends both the one-dimensional version of a result of Kesten which is valid
for i.i.d. variables (ξn, ρn)n∈Z (cf. [14], Theorem 5, see also an alternative ap-
proach developed by Goldie in [9]) as well as the recent result of de Saporta [7]
where it is assumed that (ρn)n∈Z is a finite irreducible and aperiodic Markov chain
independent of the process (ξn)n∈Z which is an i.i.d. sequence.

In the joint paper with Eddy Mayer–Wolf and Ofer Zeitouni [16], in the context
of an application to random walks in random environments, we treated the partic-
ular case where P(ξ0 = 1, ρ0 > 0) = 1 and (ρn)n∈Z is a point-wise transformation
of a stationary Markov chain (xn)n∈Z which is either finite-state and irreducible
(possibly periodic) or such that some power of its transition kernel is dominated
from above and below by a probability measure (and thus is aperiodic).

The general case is more involved and requires additional arguments to deal
with it. We consider here the following Markov-modulated model where the co-
efficients (ξn, ρn)n∈Z of the linear recursion (1.1) are not necessarily positive, the
underlying Markov chain (xn)n∈Z is defined in a general state space and may be
periodic, and the sequences (ξn)n∈Z and (ρn)n∈Z are not assumed to be indepen-
dent.

Let B denote the Borel σ -algebra of R.

ASSUMPTION 1.2. There is a stationary Markov chain (xn)n∈Z on a measur-
able space (S,T ) with transition kernel H(x, ·) such that (xn, ζn)n∈Z, where

ζn = (ξn, ρn), n ∈ Z,

is a MMP on (S × R2,T × B⊗2) and:

(A1) The σ -field T is countably generated.
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(A2) The kernel H(x, ·) is irreducible, that is, there exists a σ -finite measure ϕ

on (S,T ) such that for all x ∈ S,
∑∞

n=1 Hn(x,A) > 0 whenever ϕ(A) > 0.

(A3) There exist a probability measure µ on (S,T ), a number m1 ∈ N, and a
measurable density kernel h(x, y) :S2 → [0,∞) such that

Hm1(x,A) =
∫
A

h(x, y)µ(dy),

and the family of functions {h(x, ·) :S → [0,∞)}x∈S is uniformly integrable with
respect to the measure µ.

(A4) P(|ξ0| < cξ ) = 1 for some cξ > 0.

(A5) P(c−1
ρ < |ρ0| < cρ) = 1 for some cρ > 1.

(A6) Let �(β) = lim supn→∞ 1
n

logE(
∏n−1

i=0 |ρi |β1). Then there exist constants
β1 > 0 and β2 > 0 such that �(β1) ≥ 0 and �(β2) < 0.

(A7) There do not exist a constant α > 0 and a measurable function β :S ×
{−1,1} → [0, α) such that

P
(
log |ρ1| ∈ β(x0, η) − β

(
x1, η · sign(ρ1)

)+ α · Z
)= 1,

for η ∈ {−1,1}.

REMARK 1.3. The assumption that the sequence (xn, ζn)n∈Z is stationary
is explicit in Definition 1.1 of Markov-modulated processes. It turns out (see
Lemma 2.1 below) that under assumptions (A1)–(A3), the Markov chain (xn)n∈Z

has a unique stationary distribution. This distribution induces a (unique) station-
ary probability measure for the sequence (Markov chain) (xn, ζn)n∈Z, which we
denote by P. The expectation according to the stationary measure P is denoted
by E.

Note that condition (A6) implies by Jensen’s inequality that E(log |ρ0|) < 0.

Thus, by a theorem of Brandt [6], the series in (1.2) converges absolutely, P -a.s. It
will be shown later (see Lemma 2.3 below) that the both lim sup’s in (A6) is in fact
a limit, and thus this condition guarantees, by convexity, the existence of a unique
κ in (1.3).

Assumption (A7) ensures that log |ρn| is nonarithmetic (in the sense of the fol-
lowing definition) relative to both the underlying process (xn)n∈Z as well as to the
auxiliary chain (x̂n)n∈Z introduced in Section 4.

DEFINITION 1.4 ([2, 22]). Let (xn, qn)n∈Z be a MMP. The process (qn)n∈Z is
said to be nonarithmetic relative to the Markov chain (xn)n∈Z if there do not exist
a constant α > 0 and a measurable function β :S → [0, α) such that

P
(
q0 ∈ β(x−1) − β(x0) + α · Z

)= 1.
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We will next state our results for the coefficients (ξn, ρn)n∈Z satisfying Assump-
tion 1.2. We will denote

P −
x (·) = P(·|x−1 = x) and E−

x (·) = E(·|x−1 = x),(1.4)

and keep the notation Px(·) and Ex(·) for P(·|x0 = x) and E(·|x0 = x), respec-
tively.

The case of positive coefficients (ξn, ρn)n∈Z is qualitatively different from
and technically simpler than the general one [e.g., it turns out that in this case
limt→∞ tκP (R > t) is always positive], and it will be convenient to treat it sepa-
rately.

THEOREM 1.5. Let Assumption 1.2 hold and denote by π the stationary dis-
tribution of the Markov chain (xn)n∈Z.

If P(ξ0 > 0, ρ0 > 0) = 1 then for π -almost every x ∈ S, the following limit
exists and is strictly positive:

K(x) = lim
t→∞ tκP −

x (R > t),

where the parameter κ is given by (1.3) and the random variable R is defined
in (1.2).

An application of Theorem 1.5 and estimates (1.7), (1.8) to random walks in
random environments can be found in [16]. The main step of the proof follows
Goldie’s argument (cf. [9], Theorem 2.3) closely and relies on the application of
a version (due to Alsmeyer, cf. [2]) of the Markov renewal theorem due to Kesten
(cf. [15], see also [4, 22] and references to related articles in [15]).

For coefficients (ξn, ρn)n∈Z with arbitrary signs we have:

THEOREM 1.6. Let Assumption 1.2 hold and denote by π the stationary dis-
tribution of the Markov chain (xn)n∈Z.

Then, with κ given by (1.3) and R defined in (1.2),

(a) For π -almost every x ∈ S, the following limits exist:

K1(x) = lim
t→∞ tκPx(R > t) and K−1(x) = lim

t→∞ tκPx(R < −t).(1.5)

(b) π(K1(x) + K−1(x) > 0) ∈ {0,1}.
(c) If Condition G (see Definition 1.7 below) is satisfied then it holds that

π(K1(x) = K−1(x)) = 1. Moreover, if Condition G is not satisfied then either
π(K1(x) > 0 and K−1(x) > 0) ∈ {0,1} or there exists a (possibly trivial) partition
of S into two disjoint measurable sets A and B such that π -a.s., K1(x) > 0 and
K−1(x) = 0 for x ∈ A whereas K1(x) = 0 and K−1(x) > 0 for x ∈ B.
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DEFINITION 1.7. We say that Condition G holds if there does not exist a
(possibly trivial) partition of S into two disjoint measurable sets A1 and A−1 such
that for i ∈ {−1,1},

P (x0 ∈ Ai, x1 ∈ A−i , ρ1 > 0) = P(x0 ∈ Ai, x1 ∈ Ai,ρ1 < 0) = 0.

Condition G is a generalization of the condition of l-irreducibility introduced
in [7]. Note that this condition is not satisfied if P(ρ0 > 0) (take A1 = S and
A−1 = ∅). Proposition 4.1 shows that Condition G is equivalent to the assertion
that the Markov chain x̂n = (xn, γn), where γn = sign(ρ0 · · ·ρn−1), is irreducible
under Assumption 1.2.

The proof of Theorem 1.6 is basically by applying a Markovian adaptation of the
implicit renewal theory of Goldie [9] (see Section 3) to the Markov chain x̂n and
the random walk Vn =∑n−1

i=0 log |ρi |. The Markov chain x̂n carries the necessary
information about the sign of the products of ρi and at the same time, as we shall
see in Section 4, inherits all essential properties of the Markov chain xn.

In order to show that K1(x) + K−1(x) > 0 in Theorem 1.6, we need an extra
nondegeneracy assumption which guarantees that the random variable R is not a
deterministic function of the initial state x−1. Again following [9] and using the
renewal theory developed in [2], we complement Theorem 1.6 by the following
necessary and sufficient condition for R to be nondegenerate under P −

x and for the
limit to be positive. This condition is a natural generalization of the criterion that
appears in the case where the random variables (ξn, ρn) are i.i.d. (cf. [14] and [9]).
Note that the condition is trivially satisfied under the assumptions of [7] [because
(ξn)n∈Z is assumed to be independent of (xn)n∈Z].

THEOREM 1.8. Let Assumption 1.2 hold and denote by π the stationary dis-
tribution of the Markov chain (xn)n∈Z. Then:

(a) π(K1(x) + K−1(x) > 0) = 0 if and only if there exists a measurable func-
tion � :S → R such that

P
(
ξ0 + �(x0)ρ0 = �(x−1)

)= 1.(1.6)

(b) There exists a constant C1 > 0 such that for π -almost every x ∈ S,

tκP −
x (|R| > t) ≤ C1 ∀t > 0.(1.7)

In particular, limt→∞ tκP (R > t) = E(K1(x−1)), limt→∞ tκP (R < −t) =
E(K−1(x−1)), and the limits are finite.

(c) If (1.6) does not hold for any measurable function � :S → R, then there
exist positive constants C2 and tc such that for π -almost every x ∈ S,

tκP −
x (|R| > t) ≥ C2 ∀t > tc.(1.8)

In particular, limt→∞ tκP (R > t) and limt→∞ tκP (R < −t) are not both zero.
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REMARK 1.9. Throughout this paper we work with the probability measures
P −

x (·) = P(·|x−1 = x) defined in (1.4) rather than with Px(·) = P(·|x0 = x). Since

Px(R > t) = E

(
P −

x

(
R >

t − a

b

)∣∣∣ξ0 = a,ρ0 = b

)
,

the bounded convergence theorem and part (b) of Theorem 1.6 show that all our
results hold also for the usual conditional measure Px.

However, treating the linear recursion (1.1) in the setup of Markov-modulated
processes, it is not so natural to work with the conditional probabilities Px. In order
to elucidate this point, let us consider the following two examples:

(i) The random variable R is conditionally independent of the “past,” that is,
of σ((ξn, ρn)n<0), given x−1 but not given x0.

(ii) Let τ > 0 be a finite random time such that xτ is distributed according
to a probability measure ψ, and define Pψ(·) := ∫S Px(·)ψ(dx) and Rτ = ξτ +∑∞

n=τ+1 ξn

∏n−1
i=τ ρi. Then in general, since the distribution of xτ−1 and hence that

of (ξτ , ρτ ) are unknown,

P(Rτ ∈ ·) �= Pψ(R ∈ ·).
On the other hand, P(Rτ+1 ∈ ·) = P −

ψ (R ∈ ·) for P −
ψ (·) := ∫S P −

x (·)ψ(dx).

The rest of the paper is organized as follows. Section 2, divided into three sub-
sections, is mostly devoted to the properties of the Markov chain (xn)n∈Z and of the
random walk Vn =∑n−1

i=0 log |ρi |. Section 2.1 is devoted to the basic properties of
the underlying Markov chain (xn)n∈Z. In Section 2.2 we state a Perron–Frobenius
type theorem (Proposition 2.4) which plays an important role in the subsequent
proofs and in particular implies the existence and uniqueness of κ in (1.3) (see
Lemma 2.3). The proof of Proposition 2.4 is deferred to the Appendix. Section 2.3
is devoted to the Markov renewal theory which is then used in Section 5, where it
is applied to the Markov chain x̂n = (xn, γn) and the random walk Vn. Section 3
contains a reduction of Theorems 1.5 and 1.6 to a renewal theorem which is an
adaptation of a particular case of Goldie’s implicit renewal theorem (cf. [9]). Sec-
tion 4 is devoted to study of the auxiliary Markov chain x̂n. The main goal here
is to show that the renewal theorem obtained in Section 3 can be applied to the
couple (x̂n,Vn). The proofs of the main results (Theorems 1.5, 1.6 and 1.8) are
then completed in Section 5.

2. Background and preliminaries. Similarly to the i.i.d. case (cf. [9]
and [14]), the asymptotic behavior of the tail of R under Assumption 1.2 is de-
termined by the properties of Vn =∑n−1

i=0 log |ρi | and in particular is closely re-
lated to the renewal theory for this random walk. This section is devoted to the
properties of the Markov chain (xn)n∈Z and of the associated random walk with
Markov-dependent increments. The aim here is to provide for future use some
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technical tools, namely the regeneration times Ni defined in Section 2.1 by the
Athreya–Ney–Nummelin procedure, a Perron–Frobenius theorem for positive ker-
nels stated in Section 2.2, and the Markov renewal theory recalled in Section 2.3.

2.1. Some properties of the underlying Markov chain (xn)n∈Z. First, let us
note that assumption (A3) implies that the transition kernel H is quasi-compact.
Recall that a transition probability kernel H(x, ·) on a measurable space (S,T ) is
called quasi-compact if there exist constants ε ∈ (0,1), δ ∈ (0,1), m1 ∈ N, and a
probability measure µ such that Hm1(x,A) < ε whenever µ(A) < δ, or alterna-
tively, Hm1(x,A) > 1 − ε whenever µ(A) > 1 − δ. If a quasi-compact kernel H is
the transition kernel of a Markov chain (xn)n∈Z, then the chain is also called quasi-
compact. The condition on transition kernels used in this definition was introduced
by Doeblin (see, e.g., [24] for a historical account).

In the following lemma we summarize some properties of quasi-compact chains
which will be useful in the sequel (see Theorem 3.7 in [21], Chapter 6, Section 3
for the first three assertions, Proposition 5.4.6 and Theorem 16.0.2 in [17] for the
fourth, and Propositions 3.5, 3.6 in [21], Chapter 3, Section 3 for the last one).

LEMMA 2.1. Let (xn)n∈Z be an irreducible quasi-compact Markov chain de-
fined on a measurable space (S,T ). Then, there exist a number d ∈ N [the period
of (xn)n∈Z,] a sequence of d disjoint measurable sets (S1,S2, . . . ,Sd) (a d-cycle),
and probability measures π and ψ on (S,T ) such that:

(i) The following holds for all i = 1, . . . , d, and x ∈ Si : H(x,Sc
j ) = 0 for

j = i + 1 (modd).

(ii) π is the unique stationary distribution of (xn), π(Si ) > 0 for i = 1, . . . , d,

and π(S0) = 1, where S0 =⋃d
i=1 Si .

(iii) (xn)n∈Z is Harris recurrent chain when restricted to the states of the set S0.

That is, P(xn ∈ A i.o. forn ≥ 0|x0 = x) = 1, for all x ∈ S0 and measurable A ⊆ S0
with π(A) > 0.

(iv) ψ(S1) = 1, and there exist constants r ∈ (0,1) and m ∈ N such that

Hm(x,A) > rψ(A) ∀x ∈ S1,A ∈ T .(2.1)

(v) The process (xn)n∈Z is ergodic under its stationary distribution.

The minorization condition (2.1) with some recurrent set S1 is equivalent to the
Harris recurrence (see, e.g., [18]). The particular form of the set S1 in (iv) as cyclic
element is particularly advantageous and is due to the Doeblin condition.

We will next define a sequence of regeneration times {Ni}i≥0 for the Markov
chain (xn)n∈Z restricted to (S0,T0), where T0 = {A ∈ T :A ⊆ S0}. Let the set S1
and the number m be the same as in (2.1), and let N0 be the first hitting time of the
set S1:

N0 = inf{n ≥ −1 :xn ∈ S1}.(2.2)
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Note that N0 ≤ d − 1 and N0 is a deterministic function of x−1 on the set S0.

The randomized stopping times Ni, i ≥ 1, can be defined in an enlarged (if
needed) probability space by the following procedure (see [3, 5, 18]). Given a state
xN0 ∈ S1, generate xN0+m as follows: with probability r distribute xN0+m over S0
according to ψ and with probability 1 − r according to 1/(1 − r) ·�(x0, ·), where
the substochastic kernel �(x, ·) is defined by

Hm(x,A) = �(x,A) + r1S1(x)ψ(A), x ∈ S0,A ∈ T0.(2.3)

Then, (unless m = 1) sample the segment (xN0+1, xN0+2, . . . , xN0+m−1) accord-
ing to the (xn)n∈Z chain’s conditional distribution, given xN0 and xN0+m. Generate
xN0+2m and xN0+m+1, xN0+m+2, . . . , xN0+2m−1 in a similar way, and so on. Let
{nj }j≥1 be the successful times when the move of the chain (xN0+mn)n≥0 is ac-
cording to ψ, and set Nj = N0 + mnj , j ≥ 1. Note that Nj is not the j th visit
to S1.

By construction, the blocks (xN
i
+1, xN

i
+2, . . . , xNi+1) are one-dependent and

for i ≥ 1 they are identically distributed (xN
i
, i ≥ 1, are independent and distrib-

uted according to the measure ψ). It follows from the construction that the random
times Ni+1 − Ni are i.i.d. for i ≥ 0, and that there exist constants ϑ ∈ N, δ > 0,

such that

P −
x (N1 ≤ ϑ) > δ ∀x ∈ S0.(2.4)

We summarize the properties of the random times Ni in the following lemma.

LEMMA 2.2. Let (xn)n∈Z be an irreducible quasi-compact Markov chain with
state space S, and let the set S0 be as in Lemma 2.1.

Then there exists a strictly increasing sequence (Ni)i≥0 of random times such
that:

(i) (Ni+1 − Ni)i≥0 are i.i.d.

(ii) The blocks (x
(0)
Ni+1, . . . , x

(0)
Ni+1

) are one-dependent for i ≥ 0 and identically

distributed for i ≥ 1, where (x
(0)
n )n∈Z is the Markov chain induced by (xn)n∈Z on

(S0,T0).

(iii) N0 ≤ d − 1,∀x ∈ S0, where d is the period of (xn)n∈Z.

(iv) There exist constants ϑ ∈ N and δ > 0 such that (2.4) is satisfied.

Throughout the rest of the paper we shall be concerned with the measurable
space (S0,T0), where T0 = {A ∈ T :A ⊆ S0}, rather than with (S,T ). Without
loss of generality we may and shall assume that

P −
x

(|ξ0| < cξ and |ρ0| ∈ (cρ,−1 , cρ)
)= 1 ∀x ∈ S0.(2.5)

Otherwise we can restrict our attention to the Markov chain induced by (xn)n∈Z on
the set of full measure π where the equality in (2.5) does hold. Clearly, Assump-
tion 1.2 and Lemma 2.1 remain true for this Markov chain.
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2.2. A Perron–Frobenius theorem for positive bounded kernels. The aim of
this subsection is to state a Perron–Frobenius theorem for positive kernels (Propo-
sition 2.4 below). Proposition 2.4 is an essential part of the subsequent proofs
where it is applied to kernels of the form K(x,A) = E−

x (
∏n

i=0 |ρi |β;xn ∈ A) and
�̂(x,A) = E−

x (1{n<N1}
∏n

i=0 |ρi |β;xn ∈ A), where the random time N1 is defined
in Section 2.1. The proof of Proposition 2.4 is deferred to Appendix A.

One immediate consequence of this proposition is the following lemma which
proves the existence and uniqueness of the parameter κ in (1.3).

LEMMA 2.3. Let Assumption 1.2 hold and let the set S0 be as defined in
Lemma 2.1. Then,

(a) For any β > 0 and every x ∈ S0, the following limit exists and does not
depend on x:

�(β) = lim
n→∞

1

n
logE−

x

(
n−1∏
i=0

|ρi |β
)
.(2.6)

Moreover, for some constants cβ ≥ 1 that depend on β only,

c−1
β en�(β) ≤ E−

x

(
n−1∏
i=0

|ρi |β
)

≤ cβen�(β) ∀x ∈ S0, n ∈ N.(2.7)

(b) There exists a unique κ > 0 such that �(κ) = 0, �(β)(β − κ) ≥ 0 for all
β > 0.

We next proceed with Proposition 2.4, from which the lemma is derived at the
end of this subsection.

A function K :S0 × T0 → (0,∞) is a positive bounded kernel, or simply
kernel, if the following three conditions hold: (i) K(·,A) is a measurable func-
tion on S0 for all A ∈ T0, (ii) K(x, ·) is a finite positive measure on T0 for all
x ∈ S0, (iii) supx∈S0

K(x,S0) < ∞. Let Bb be the Banach space of bounded
measurable real-valued functions on the measurable space (S0,T0) with the norm
‖f ‖ = supx∈S0

|f (x)|. Any positive bounded kernel K(x,A) defines a bounded
linear operator on Bb by setting Kf (x) = ∫S0

K(x, dy)f (y). We denote by r
K

the
spectral radius of the operator corresponding to the kernel K, that is

r
K

= lim
n→∞

n
√‖Kn1‖ = lim

n→∞
n
√‖Kn‖,

where 1(x) ≡ 1.

The following proposition generalizes Lemma 2.6 in [16] allowing us to deal
with a more general class of underlying Markov chains (xn)n∈Z.

PROPOSITION 2.4. Let K(x, ·) be a positive bounded kernel on (S0,T0) and
s(x, y) :S2

0 → R be a measurable function such that s(x, y) ∈ (c−1
1 , c1) for some

c1 > 1 and all (x, y) ∈ S2
0 . Assume that there exists a set S1 ∈ T0 such that:
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(i) For some constants d ∈ N,p > 0,

d∑
i=1

Ki(x,S1) ≥ p ∀x ∈ S0.

(ii) For some constant m ∈ N and probability measure ψ concentrated on S1,

Km(x,Sc
1) = 0 ∀x ∈ S1,

where Sc
1 is the complement set of S1, and

Km(x,A) ≥
∫
A

s(x, y)ψ(dy) ∀x ∈ S1,A ∈ T0.(2.8)

Further, assume that:
(iii) There are a probability measure µ on (S0,T0) and a constant m1 ∈ N such

that for all ε > 0 there exists δ = δ(ε) > 0 such that

µ(A) < δ implies sup
x∈S0

Km1(x,A) < ε.(2.9)

[This condition entails K(x, ·) 
 µ for all x ∈ S0.]
Let T1 = {A ∈ T0 :A ⊆ S1} and let a kernel �̂(x,A) on (S1,T1) be such that

Km(x,A) = �̂(x,A) + r

∫
A

s(x, y)ψ(dy) ∀x ∈ S1,A ∈ T1,

for some r ∈ (0,1).

Then:

(a) There exists a function f ∈ Bb such that infx f (x) > 0 and Kf = r
K
f.

(b) There exists a function g ∈ Bb such that infx g(x) > 0 and �̂g = r�̂g.

(c) r�̂ ∈ (0, rm
K

).

The proof of the proposition is included in Appendix A.

PROOF OF LEMMA 2.3. Let Q(x,y,B) = P(ρ−n ∈ B|xn−1 = x, xn = y),

and for any β ≥ 0 define the kernel Hβ(x, ·) on (S0,T0) by

Hβ(x, dy) = H(x, dy)

∫
R

Q(x,y, dz)|z|β.(2.10)

Then for any β ≥ 0,

E−
x

(
n−1∏
i=0

|ρi |β
)

= Hn
β 1(x) ∀x ∈ S0.(2.11)

The kernels Hβ,β ≥ 0, satisfy the conditions of Proposition 2.4. It follows from
(A.2) with K = Hβ that for some constant cβ ≥ 1 which depends on β only,

c−1
β rn

β ≤ E−
x

(
n−1∏
i=0

|ρi |β
)

≤ cβrn
β ∀x ∈ S0, n ∈ N,(2.12)
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where rβ = rHβ . This yields assertion (a) of the lemma. The claim of its part (b)
follows then from the convexity of the function �(β) which takes by assump-
tion (A6) both positive and negative values. �

2.3. Markov renewal theory. The proofs of our results rely on the use of the
following version of the Markov renewal theorem which is due to Alsmeyer [2].
Recall Definition 1.1 of Markov-modulated processes and Definition 1.4 of nonar-
ithmetic processes. Let B denote the Borel σ -algebra of R and let (S0,T0) be a
measurable space such that T is countably generated.

THEOREM 2.5. ([2], Theorem 1) Let (xn)n∈Z be a Harris recurrent Markov
chain on (S0,T0) with stationary distribution π and let (xn, qn)n∈Z be an asso-
ciated with it MMP on (S0 × R,T0 × B) such that µ0 := E(qn) > 0 and the
process qn is nonarithmetic relative to (xn)n∈Z. Further, let Vn =∑n−1

i=0 qi and
let g :S0 × R → R be any measurable function satisfying

for π-a.e. z ∈ S0, g(z, ·) is Lebesgue-a.e. continuous,(2.13)

and ∫
S0

∑
n∈Z

sup
nδ≤t<(n+1)δ

|g(z, t)|π(dz) < ∞ for some δ > 0.(2.14)

Then,

lim
t→∞E−

z

( ∞∑
n=0

g(xn−1, t − Vn)

)
= 1

µ0

∫
S0

∫
R

g(u, v) dv π(du),(2.15)

for π -almost every z ∈ S0.

Under the assumptions of Theorem 2.5, let σ−1 = −1,V−1 = 0, and for n ≥ 0,

let σn = inf{i > σn−1 :Vi > Vσn−1} be the ladder indexes of the random walk Vn.

Set Ṽn = Vσn. Further, for n ≥ 0 let x̃n = xσn−1 and q̃n = Ṽn − Ṽn−1 (q̃0 =∑σ0−1
i=0 qi and q̃n =∑σn−1

i=σn−1
qn for n ≥ 1). Denote by π1 the unique stationary

measure of the Markov chain (x̃n)n≥0 (existing by [2], Theorem 2) and by H1 the
transition kernel of (x̃n, q̃n)n≥0.

For t > 0, set υ(t) = inf{n ≥ 0 :Vn > t}, Z(t) = xυ(t)−1, and W(t) = Vυ(t) − t.

Note that v(t) is a member of the sequence (σn)n≥0.

COROLLARY 2.6 ([2], Corollary 2). Let (xn,Vn)n≥0 be as in Theorem 2.5.
Then, with µ1 := ∫S0

E−
x (q̃0)π1(dx),

lim
t→∞E−

z (g(Z(t),W(t)))

= 1

µ1

∫
S0

∫
S0×(0,∞)

∫
[0,s)

g(v,w)dw H1(u, dv × ds)π1(du),
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holds for π1-a.e. z ∈ S0 and for every measurable function g :S0 × [0,∞) → R

such that the function b(z, y) := E−
z (g(x̃0, q̃0 − y)1{q̃0>y}) satisfies (2.13)

and (2.14).

Theorem 2.5 will be applied in Section 5 to the underlying Markov chain
(xn)n∈Z restricted to the space (S0,T0) defined in Section 2.1 and to the random
walk Vn =∑n−1

i=0 log |ρi |. In order to enable the application of the renewal theorem,
we use a standard change of measure argument (involving a similarity transform
of the transition kernel H ) which defines a new stationary measure P̃ for the MMP
(xn, ζn)n∈Z under which the Markov random walk Vn =∑n−1

i=0 log |ρi | has positive
drift, that is, the expectation Ẽ(log |ρ0|) with respect to P̃ is strictly positive.

We next proceed with the construction of the measure P̃ . Observe that in virtue
of Lemma 2.3, rκ = 1, where rκ is the spectral radius of the kernel Hκ on (S0,T0)

defined in (2.10). Therefore, by Proposition 2.4, there exists a positive measurable
function h(x) :S0 → R bounded away from zero and infinity such that

h(x) =
∫
S0

Hκ(x, dy)h(y).(2.16)

Let ζn = (ξn, ρn), n ∈ Z,

H̃ (x, dy) := 1

h(x)
Hκ(x, dy)h(y),(2.17)

and let P̃ be the stationary law of the Markov chain (xn, ζn)n∈Z on S × R2 with
transition kernel

P̃
(
y0 ∈ A × B|σ(yi : i < 0)

)= ∫
A

H̃ (x, dz)G(x, z,B)|x=x−1,

where A ∈ T0,B ∈ B⊗2 and G(x, z, ·) = P(ζn ∈ ·|xn−1 = x, xn = z). That is, the
law of (ζn)n∈Z = (ξn, ρn)n∈Z conditioned upon (xn)n∈Z is the same under P and
P̃ , whereas the chain (xn)n∈Z has transition kernels H and H̃ , respectively. We
will denote by Ẽ the expectation with respect to P̃ and will use the notation

P̃ −
x (·) := P̃ (·|x−1 = x) and P̃x(·) := P̃ (·|x0 = x),(2.18)

and, correspondingly, Ẽ−
x (·) := Ẽ(·|x−1 = x) and Ẽx(·) := Ẽ(·|x0 = x).

Let

ch := sup
x,y∈S0

h(x)/h(y).(2.19)

Since ch ∈ (0,∞) and c−1
h H(x,A) ≤ H̃ (x,A) ≤ chH(x,A), we have:

• Conditions (A1)–(A3) of Assumption 1.2 hold for the kernel H̃ .

• The Markov chain (xn)n∈Z on (S0,T0) with the kernel H̃ is Harris recurrent and
the minorization condition (2.1) holds in the following form:

H̃m(x,A) > rc−1
h ψ(A) ∀x ∈ S1,A ∈ T .(2.20)
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• The invariant measure πh of the kernel H̃ is equivalent to π (this follows, for
example, from [18], Proposition 2.4).

• Assumptions (A7) and (2.5) hold for the sequence (ξn, ρn)n∈Z under the mea-
sure P̃ .

LEMMA 2.7. Let Assumption 1.2 hold. Then Ẽ(log |ρ0|) > 0.

PROOF. Let V0 = 0 and

Vn =
n−1∑
i=0

log |ρi |, n ∈ N.(2.21)

With ch defined in (2.19) we obtain for any x ∈ S0 and γ > 0,

P̃ −
x (eVn ≤ e−γ n1/4

) = 1

h(x)
E−

x

(
eκVnh(xn−1); eVn ≤ e−γ n1/4)

(2.22)
≤ chE

−
x (eκVn; eVn ≤ e−γ n1/4

) ≤ che
−κγ n1/4

.

Thus, limn→∞ P̃ −
x (Vn ≤ −γ n1/4) = 0, implying by the ergodic theorem that

Ẽ(log |ρ0|) ≥ 0.

It remains to show that Ẽ(log |ρ0|) = 0 is impossible. For any x ∈ S0, δ > 0,

and β ∈ (0, κ) we get, using Chebyshev’s inequality,

P̃ −
x (|Vn| ≤ δn) = 1

h(x)
E−

x

(
eκVnh(xn−1);Vn ∈ [−δn, δn])

≤ che
κδnP −

x (Vn ≥ −δn) ≤ che
(κ+β)δnE−

x

(
n−1∏
i=0

|ρi |β
)
.

It follows from Lemma 2.3 that for all δ > 0 small enough and some suitable
constants A,b > 0 that depend on δ,

sup
x∈S0

P̃ −
x (|Vn| ≤ δn) ≤ Ae−bn.(2.23)

Therefore, the ergodic theorem implies that Ẽ(log |ρ0|) > 0. �

3. Reduction to a renewal theorem. The main goal of this section is to prove
the following Proposition 3.1 which reduces the limit problem for the tail of the
random variable R to a renewal theorem [namely, to the checking that (3.3) be-
low indeed holds a.s.]. Furthermore, some useful estimates are obtained here and
collected in Lemma 3.2.

Let �0 = 1 and for n ≥ 1,

�n =
n−1∏
i=0

ρi.(3.1)
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That is �n = γn−1e
Vn where Vn is defined in (2.21) and

γn := sign(�n+1), n ≥ −1.(3.2)

PROPOSITION 3.1. Let Assumption 1.2 hold. Further, let the set S0 and the
measure π be as in Lemma 2.1 and assume that for some η ∈ {−1,1} the following
limit exists for π -almost every z ∈ S0:

K̃η(z) := lim
t→∞ Ẽ−

z

( ∞∑
i=0

gηγi−1(xi−1, t − Vi)

)
,(3.3)

where the expectation is taken according to the measure P̃ −
z defined in (2.18) and

the nonnegative functions gγ :S0 × R → [0,∞) are defined for γ ∈ {−1,1} by

gγ (x, t) = e−t

h(x)

∫ et

0
vκ [P −

x (γR > v) − P −
x

(
γ (R − ξ0) > v

)]
dv.(3.4)

Then, for π -almost every z ∈ S0, limt→∞ tκP −
z (ηR > t) = h(z)K̃η(z).

We note that certain particular cases of this proposition are the basis for the
proofs in [7] and in [16]. All these results are adaptations to various Markovian
situations of a particular case of the “implicit renewal” theorem of Goldie (cf.
Theorem 2.3 in [9]). For the sake of completeness, a proof of the proposition is
provided at the end of this section.

We begin by proving the following technical lemma:

LEMMA 3.2. Let Assumption 1.2 hold. Then the following assertions hold
true:

(a) There exists constants Mg > 0 and εg > 0 such that for π -almost every
x ∈ S0,

|gη(x, t)| ≤ Mge
−εg |t |,(3.5)

for any t ∈ R and η ∈ {−1,1}.
In particular, for any δ > 0 there exists a constant M(δ) > 0 such that∑

n∈Z

sup
nδ≤t<(n+1)δ

{
max

η∈{−1,1} |gη(x, t)|
}

≤ M(δ)(3.6)

for π -almost every x ∈ S0.

(b) For any δ > 0 there exists a constant Mu = Mu(δ) > 0 such that

∞∑
i=0

sup
z∈S0

P̃ −
z (Vi ∈ [−δ, δ]) ≤ Mu.
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(c) There exists a constant Mr > 0 such that, for π -almost every z ∈ S0,

∞∑
i=0

Ẽ−
z

(
max

η∈{−1,1} |gη(xi−1, t − Vi)|
)

≤ Mr ∀t ∈ R.(3.7)

PROOF. (a) First, assume that t > 0. Let

c̃h = max
x∈S0

1/h(x).(3.8)

For any ε ∈ (0,1), we get from (3.4):

|gη(x, t)| ≤ c̃he
−t
∫ et

0
vκ
∣∣P −

x (ηR > v) − P −
x

(
η(R − ξ0) > v

)∣∣dv

≤ c̃he
−εt
∫ et

0
vκ+ε−1∣∣P −

x (ηR > v) − P −
x

(
η(R − ξ0) > v

)∣∣dv(3.9)

≤ c̃hκ
−1e−εtE−

x

(|[(ηR)+]κ+ε − [(ηR − ηξ0)
+]κ+ε|),

where the last inequality follows from [9], Lemma 9.4.
To bound the right-hand side in (3.9) we will exploit an argument similar to the

proof of [9], Theorem 4.1. We have,

|gη(x, t)| ≤ c̃hκ
−1e−εt [I1(x) + I2(x) + I3(x) + I4(x)],

where

I1(x) := E−
x

(
1ηξ0<ηR≤0(ηR − ηξ0)

κ+ε),
I2(x) := E−

x

(
10<ηR≤ηξ0(ηR)κ+ε),

I3(x) := E−
x

(
1ηR>0,ηξ0<0[(ηR − ηξ0)

κ+ε − (ηR)κ+ε]),
I4(x) := E−

x

(
10≤ηξ0<ηR[(ηR)κ+ε − (ηR − ηξ0)

κ+ε]).
It follows from (2.5) that the sum I1(x) + I2(x) is bounded by cκ+ε

ξ . It remains
therefore to bound I3(x) and I4(x). For this purpose we will use the following
inequalities valid for any γ > 0 and A > 0,B > 0 (this is exactly (9.26) and (9.27)
in [9]):

(A + B)γ ≤ 2γ (Aγ + Bγ )

and

(A + B)γ − Aγ ≤
{

Bγ , if 0 ≤ γ ≤ 1,
γB(A + B)γ−1, if γ > 1.

We obtain that I3(x) + I4(x) ≤ aε, where

aε :=
{

cκ+ε
ξ , if κ + ε ≤ 1,

(κ + ε)cξ 2κ+ε−1Ex(|R|κ+ε−1 + cκ+ε−1
ξ ), if κ + ε > 1.
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By Lemma 2.3 and the ellipticity condition (2.5), for any δ > 0 small enough, there
exists a constant Lδ > 0 independent of x such that

E−
x (|R|κ−δ) ≤ Lδ ∀x ∈ S0.(3.10)

This yields (3.5) for all t > 0 and appropriate constants Mg,εg > 0 that do not
depend on t.

Further, (3.4) implies that |gη(x,0)| ≤ c̃h, where the constant c̃h is defined
in (3.8), and that for t < 0 and any ε ∈ (0, κ),

|gη(x, t)| ≤ c̃he
−t
∫ et

0
vκ
∣∣P −

x (ηR > v) − P −
x

(
η(R − ξ0) > v

)∣∣dv

≤ c̃he
εt
∫ et

0
vκ−ε−1∣∣P −

x (ηR > v) − P −
x

(
η(R − ξ0) > v

)∣∣dv

≤ c̃hκ
−1eεtE−

x

(|[(ηR)+]κ−ε − [(ηR − ηξ0)
+]κ−ε|),

where the last inequality follows, similarly to (3.9), from [9], Lemma 9.4. Thus,
for t < 0,

|gη(x, t)| ≤ c̃hκ
−1e−ε|t |E−

x

(|R|κ−ε + (|R| + cξ )
κ−ε).

This completes the proof in view of (3.10).
(b) Follows from (2.23), since P̃ −

x (Vi ∈ [−δ, δ]) ≤ P̃ −
x (Vi ∈ [−iδ, iδ]) for any

x ∈ S0 and i ∈ N.

(c) Fix any δ > 0 and denote for t ∈ R and n ∈ Z, I t
n,δ = [t + nδ, t + (n + 1)δ).

Then, it follows from the previous parts of the lemma that
∞∑
i=0

Ẽ−
z

(|gη(xi−1, t − Vi)|)

=
∞∑
i=0

∫
S0

∫
R

|gη(x, t − s)|P̃ −
z (xi−1 ∈ dx,Vi ∈ ds)

≤∑
n∈Z

sup
x∈S0,s∈I t

n,δ

|gη(x, t − s)|
∞∑
i=0

sup
z∈S0

P̃ −
z (Vi ∈ t − I s

n,δ)

≤ M(δ)

∞∑
i=0

sup
z∈S0

P̃ −
z (Vi ∈ [−δ, δ]) ≤ M(δ) · Mu,

where the last but one inequality follows from (3.6) and from the fact that
supz∈S0

∑∞
i=0 P̃ −

z (Vi ∈ t − I s
n,δ) ≤ supz∈S0

∑∞
i=0 P̃ −

z (Vi ∈ [−δ, δ]) (cf. [2],
Lemma A.2). �

PROOF OF PROPOSITION 3.1. Let U0 = R, and for n ≥ 1,

Rn =
n−1∑
i=0

ξi�i, Un = (R − Rn)/�n,(3.11)
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where �n are defined in (3.1). Recall that �n = γn−1e
Vn. Following Goldie [9],

we write for any numbers n ∈ N, t ∈ R, η ∈ {−1,1} and any z ∈ S0,

P −
z (ηR > et ) =

n−1∑
i=0

[P −
z (ηγi−1e

ViUi > et ) − P −
z (ηγie

Vi+1Ui+1 > et)]

+ P −
z (η�nUn > et ),

where the random variable Ui is defined in (3.11).
For n ≥ −1 let x̂n = (xn, γn) and � = S × {−1,1} × R. To shorten the no-

tation, we denote
∑

γ∈{−1,1}
∫
S

∫
R F(γ, x,u)µ(γi−1 = γ, xi ∈ dx,Vi ∈ du) by∫

� F(γ, x,u)µ(x̂i ∈ (dx, γ ),Vi ∈ du) for a measurable function F and a prob-
ability measure µ on �. We have, using the identity Ui = ξi + ρiUi+1,

P −
z (ηγi−1e

ViUi > et ) − Pz(ηγie
Vi+1Ui+1 > et)

=
∫
�

P
(
ηγUi > et−u|x̂i−1 = (x, γ ),Vi = u

)
P −

z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)
−
∫
�

P
(
ηγρiUi+1 > et−u|x̂i−1 = (x, γ ),Vi = u

)
× P −

z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)
=
∫
�

e−κ(t−u)fηγ (x, t − u)P −
z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)
,

where we denote

fγ (x, t) = eκt [P −
x (γR > et ) − P −

x

(
γ (R − ξ0) > et )] for γ ∈ {−1,1}.

Thus, letting δn(z, η, t) = eκtP −
z (ηγn−1e

VnUn > et ) we obtain

řz(η, t) := eκtP −
z (ηR > et )

=
∞∑
i=0

∫
�

fηγ (x, t − u)eκuP −
z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)+ δn(z, η, t)

=
n−1∑
i=0

∫
�

fηγ (x, t − u)
h(z)

h(x)
P̃ −

z

(
xi−1 ∈ (dx, γ ),Vi ∈ du

)+ δn(z, η, t).

We have P(limn→∞ δn(z, η, t) = 0) = 1 for any fixed t > 0, η ∈ {−1,1}, and
z ∈ S0, because P -a.s., �nUn → 0 as n goes to infinity. Therefore P -a.s.,

rz(η, t) =
∞∑
i=0

∫
�

fηγ (x, t − u)
h(z)

h(x)
P̃ −

z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)
.

We will use the following Tauberian lemma:
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LEMMA 3.3 ([9], Lemma 9.3). Let R be a random variable such that for
some constants κ > 0 and K ≥ 0, limt→∞ t−1 ∫ t

0 uκP (R > u)du = K. Then
limt→∞ tκP (R > t) = K.

It follows from Lemma 3.3 that in order to prove that for some η ∈ {−1,1}, the
limit limt→∞ tκP (ηR > t) exists and is strictly positive, it suffices to show that
for π-a.s. every z ∈ S0, there exists

lim
t→∞ řz(η, t) ∈ (0,∞),(3.12)

where the smoothing transform q̌ is defined for a measurable function q : R → R

bounded on (−∞, t] for all t by q̌(t) := ∫ t−∞ e−(t−u)q(u) du.

For γ ∈ {−1,1} let

gγ (x, t) := 1

h(x)

∫ t

−∞
e−(t−u)fγ (x,u) du

= 1

h(x)

∫ t

−∞
e−(t−u)eκu[P −

x (γR > eu) − P −
x

(
γ (R − ξ0) > eu)]du

= e−t

h(x)

∫ et

0
vκ [P −

x (γR > v) − P −
x

(
γ (R − ξ0) > v

)]
dv.

Then, using (3.7) and the Fubini theorem, we obtain for any z ∈ S0,

řz(η, t) =
∫ t

−∞
e−(t−w)rz(η,w)dw

=
∫ t

−∞
e−(t−w)

∞∑
i=0

∫
�
fηγ (x,w − u)

h(z)

h(x)
P̃ −

z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)
dw

=
∞∑
i=0

∫
�

gηγ (x, t − u)h(z)P̃ −
z

(
x̂i−1 ∈ (dx, γ ),Vi ∈ du

)

= h(z)Ẽ−
z

( ∞∑
i=0

gηγi−1(xi−1, t − Vi)

)
.

This completes the proof of Proposition 3.1. �

4. The auxiliary Markov chain x̂n = (xn, γn). To deal with the case where
P(ρ0 < 0) > 0 we introduce the Markov chain x̂n = (xn, γn), n ≥ −1, where the
random variables γn are defined in (3.2). It will turn out (cf. Proposition 4.1) that
the space S0 ×{−1,1} can be partitioned into at most two measurable subsets such
that the restriction of x̂n to either one of them satisfies Assumption 1.2. Therefore,
the Markov renewal theorem (Theorem 2.5) can be applied to the irreducible com-
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ponents of the MMP (x̂n, log |ρn|). This fact is the key to the proof (given in the
next section) that the limit in (3.3) exists π -a.s. and has the properties stated in
Theorem 1.6.

Let Ĥ be the transition kernel of x̂n on the product space S := S0 × {−1,1},
and let π̂ be the probability measure on S defined by π̂(A × η) = 1/2π(A) for
any η ∈ {−1,1} and A ∈ T0. It is easy to see that π̂ is a stationary distribution of
the Markov chain x̂n.

PROPOSITION 4.1. Let Assumption 1.2 hold and suppose in addition that
P(ρ0 < 0) > 0. Then, there exist two disjoint measurable subsets S1 and S−1
of S such that:

(i) Either π̂ (S1) = π̂(S−1) = 1/2, or S1 = ∅ and S−1 = S.

(ii) Ĥ (x̂,Sn) = 1 for every x̂ ∈ Sn, n = −1,1.

(iii) S1 = ∅ if and only if Condition G is satisfied.
(iv) (A1)–(A3) of Assumption 1.2 hold for the Markov chain (x̂n)n≥−1 re-

stricted to either S1 (provided that it is not the empty set) or S−1.

PROOF. (i)–(ii) Say that for x̂ ∈ S,A ∈ T0, γ ∈ {−1,1},

x̂ �� A × {γ } if
∞∑

n=1

Ĥ n(x̂,A × {γ }) = 0,

and x̂ � A × {γ } otherwise.
Since the Markov chain (xn)n∈Z is π -irreducible, for any x̂ ∈ S and A ∈ T0 such

that π(A) > 0 either x̂ � A × {1} or x̂ � A × {−1}. For x̂ ∈ S and η ∈ {−1,1} let:

�η(x̂) = {A ∈ T0 :π(A) > 0 and x̂ �� A × {η}},
and set �(x̂) = �1(x̂) ∪ �−1(x̂). Note that �1(x̂) ∩ �−1(x̂) = ∅.

Roughly speaking, the set S1 is defined below as an element of �(x∗) of max-
imal π̂ -measure for some x∗ ∈ S, and S−1 as its complement in S.

To be precise, let

ςη(x̂) = sup{π(A) :A ∈ �η(x̂)}, η ∈ {−1,1}, x̂ ∈ S,

and ς(x̂) = ς−1(x̂) + ς1(x̂). If ς(x̂) = 0 for every x̂ ∈ S, set S1 = ∅ and
S−1 = S. Conclusions (i)–(ii) follow trivially in this case, in particular the chain
(xn, γn) is π̂ -irreducible.

Assume now that ς(x∗) > 0 for some x∗ ∈ S. We will next construct two
sets Aη, η ∈ {−1,1}, such that Aη ∈ �η(x

∗) and π(Aη) = ςη(x
∗). We will then

show that ς(x∗) = π(A1) + π(A−1) = 1 and will define (up to a π̂ -null set)
S1 := (A−1 × {−1}) ∪ (A1 × {1}).

For η ∈ {−1,1}, let Aη,n ∈ �η(x
∗), n ∈ N, be a sequence of [empty if

ςη(x
∗) = 0] sets in �η(x

∗) such that π(Aη,n) > ςη(x
∗) − 1/n for any n ∈ N,

and define Aη =⋃∞
n=1 Aη,n. Since the collections of sets �η(x

∗) are closed with
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respect to countable unions, Aη ∈ �η(x
∗) and π(A1) + π(A−1) = ς(x∗). Put

A0 = A−1 ∪ A1, B0 = S0 − A0, and set

S̃1 = (A−1 × {−1}) ∪ (A1 × {1}),
S̃−1 = (A−1 × {1}) ∪ (A1 × {−1}) ∪ (B0 × {1}) ∪ (B0 × {−1}).

Thus, S̃−1 is the complement of S̃1 in the set S = S0 × {−1,1}. Since Aη ∈
�η(x

∗) is the maximal set such that x∗ �� Aη × {η}, it follows immediately that
x∗ �� A × {η} and x∗ � A × {−η} for any π -positive A ⊂ Aη.

We will now show, using the irreducibility of the Markov chain (xn)n∈Z, that

π̂ (N−1 ∪ N1) = 0 where Nη := {x̂ ∈ S̃−1 : x̂ � Aη × {η}}.(4.1)

Note that (4.1) yields π(B0) = 0 because for all x ∈ S0 either (x,1) ∈ Nη or
(x,−1) ∈ Nη, η ∈ {−1,1}.

To see that (4.1) is true, observe that Nη = ⋃m∈N{x̂ : Ĥm(x̂,Aη × {η}) > 0}
are measurable sets, and π̂(Nη) > 0 implies that there exist m ∈ N, N0 ∈ T0, and
γ ∈ {−1,1} such that

Ĥm(x∗,N0 × {γ }) > 0 and (x, γ ) � Aη × {η} ∀x ∈ N0.(4.2)

But (4.2) yields
∞∑

n=0

Ĥm+n(x∗,Aη × {η})

≥
∞∑

n=0

∫
N0

Ĥm(x∗, dy × {γ })Ĥ n((y, γ ),Aη × {η})> 0,

which is impossible since x∗ �� Aη × {η} by our construction.
Finally, we observe that (4.1) implies that

π̂ (�N−1 ∪ �N1) = 0 where �Nη := {x̂ ∈ S̃1 : x̂ � Aη × {−η}}.(4.3)

Indeed, if (x, γ ) ∈ �Nη then (x,−γ ) ∈ Nη and hence π̂(�Nη) = π̂(Nη) = 0 for η ∈
{−1,1}.

To complete the proof, we set

S1 = (A−1 × {−1}) ∪ (A1 × {1}) − �N−1 ∪ �N1,

and

S−1 = (A−1 × {1}) ∪ (A1 × {−1}) − N−1 ∪ N1.

Since π(B0) = 0, (4.1) and (4.3) imply that π̂ (S1) = π̂ (S−1) = 1/2 [recall that
π(A1 ∩ A−1) = 0] and that conclusion (ii) of the proposition holds as well.

(iii) The claim is immediate from the definition of the sets A1 and A−1.

(iv) Let µ̂ be the probability measure on S defined by µ̂(A × η) = 1/2µ(A),

where µ(·) is given by assumption (A3). Since Ĥm1((x, γ ),A × {η}) ≤
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Hm1(x,A), it follows from (A3) that there exists a measurable density kernel
ĥ(x̂, ŷ) :S2 → [0,∞) such that or any x̂ ∈ S, η{−1,1},A ∈ T0,

Ĥm1(x̂,A × {η}) =
∫
A×{η}

ĥ(x̂, ŷ)µ̂(dŷ),(4.4)

and the family of functions {ĥ(x̂, ·) :S → [0,∞)}x̂∈S is uniformly integrable with
respect to the measure µ̂. Thus assumptions (A1) and (A3) hold for the Markov
chain (xn, γn)n≥−1. Moreover, the Markov chain (xn, γn)n≥−1, when restricted
to either S1 or S−1, is clearly π̂ -irreducible which in combination with (4.4)
shows (iv). �

5. Distribution tail of R. In this section we complete the proof of Theo-
rems 1.5, 1.6 and 1.8.

5.1. Proofs of Theorems 1.5 and 1.6 for P(ρ0 > 0) = 1. In view of Proposi-
tion 3.1, the following lemma completes the proof of Theorem 1.5 and of Theo-
rem 1.6 in the case where P(ρ0 > 0) = 1.

LEMMA 5.1. Let Assumption 1.2 hold and suppose that P(ρ0 > 0) = 1. Then
the following assertions hold true for η ∈ {−1,1}:

(a) The limit in (3.3) exists for π -a.e. z ∈ S0 and does not depend on z.

(b) If in addition P(ξ0 > 0) = 1, then the limit is π -a.s. strictly positive.
(c) π(Kη(x) > 0) ∈ {0,1}.

PROOF. (a) In view of Lemma 2.7, estimate (3.6), and the properties of the
measure P̃ listed right before the statement of Lemma 2.7, we can apply Theo-
rem 2.5 to the restriction of the underlying Markov chain (xn)n∈Z on (S0,T0) with
transition kernel H̃ , the associated with it random walk Vn =∑n−1

i=0 log |ρi |, and
the functions gη defined in (3.4). It follows from (2.15) that the limit in (3.3) is
πh-a.s. (and thus also π -a.s.) equal to

K̃η = 1

ã

∫
S0

∫
R

gη(x, t)πh(dx) dt,(5.1)

where ã = Ẽ(logρ0).

(b) It follows from Proposition 3.1 and (5.1) that for πh-almost every z ∈ S0
(compare with the formula (4.3) in [9]),

lim
t→∞ tκP −

z (R > t)

= h(z)K̃1(z)

= h(z)

ã

∫
S0

∫
R

g1(x, t)πh(dx) dt(5.2)
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= h(z)

ã

∫
S

1

h(x)

∫
R

e−t
∫ et

0
vκ [P −

x (R > v)

− P −
x (R − ξ0 > v)]dv dt πh(dx)

= h(z)

ã

∫
S

1

h(x)

∫ ∞
0

vκ−1[P −
x (R > v) − P −

x (R − ξ0 > v)]dv πh(dx)

= h(z)

ãκ

∫
S

1

h(x)
E−

x [Rκ − (R − ξ0)
κ ]πh(dx) > 0,

where the last but one equality is obtained by change of the order of the integration
between dt and dv while the last one follows from [9], Lemma 9.4. Since πh is
equivalent to π and P(R > R − ξ0 > 0) = 1, this completes the proof of the claim.

(c) The claim follows from Proposition 3.1 and the fact that the limit K̃1 in (3.3)
does not depend on z. �

5.2. Proof of Theorem 1.6 for P(ρ0 < 0) > 0. (a) Just as in the case P(ρ0 >

0), it follows from Theorem 2.5, applied separately to the irreducible compo-
nents of the Markov chain (x̂n)n≥−1, the random walk Vn, and the function
gηγn(xn−1, t − Vn) defined in (3.4), that the limits in (3.3) and hence in (1.5) exist
for π -almost every x ∈ S0.

(b)–(c) We shall continue to use the notation introduced in Section 4. Similarly
to (2.10), define the kernel Ĥβ(x, ·) on S by

Ĥβ(x̂, dŷ) = Ĥ (x̂, dŷ)E(|ρ0|β |x̂−1 = x̂, x̂0 = ŷ),

and the function ĥ :S → (0,∞) by the following rule:

ĥ(x̂) = h(x) for x = (x, γ ),

where h :S0 → R is defined in (2.16).
For any x̂ = (x, γ ) ∈ S,∫

S
Ĥκ(x̂, dŷ)ĥ(ŷ) = E−

x (|ρ0|κh(x0)) =
∫
S0

Hκ(x, dy)h(y) = ĥ(x̂).

Consequently, setting π̂h(A × η) = 1/2πh(A) for A ∈ T0 and η ∈ {−1,1}, we
have: ∫

S

(∫
A×η

1

ĥ(x̂)
Ĥκ(x̂, dŷ)ĥ(ŷ)

)
π̂h(dx̂)

=
∫
S0

1

2h(x)
E−

x

(|ρ0|κh(x0);x0 ∈ A
)
πh(dx)

= 1

2

∫
S0

Hκ(x,A)πh(dx) = 1

2
πh(A) = π̂h(A × η).
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We will use these facts to write down formulas similar to (5.2) for the limits K1(x)

and K−1(x) in (1.5). Claims (b) and (c) of Theorem 1.6 are immediate conse-
quences of these formulas.

First, assume that S1 = ∅. That is, by part (iii) of Proposition 4.1, Condition G
is satisfied. We get from Proposition 3.1 and (2.15) that for π -almost every z ∈ S0
and η ∈ {−1,1} (compare with (4.4) in [9]):

Kη(z) = 1

2ã

[∫
S0

∫
R

g1(x, t)πh(dx) dt +
∫
S0

∫
R

g−1(x, t)πh(dx) dt

]

= 1

2ãκ

∫
S0

1

h(x)
E−

x (|R|κ − |R − ξ0|κ)πh(dx),

where ã = Ẽ(log |ρ0|).
Assume now that S1 �= ∅, that is, Condition G is not satisfied. We get from

Proposition 3.1 and (2.15) that π -a.s., if (z,1) ∈ Sγ (i.e. z ∈ Aγ ), then

Kη(z) = 1

2ã

[∫
A1

∫
R

gηγ (x, t)πh(dx) dt +
∫
A−1

∫
R

g−ηγ (x, t)πh(dx) dt

]
.

This completes the proof of Theorem 1.6.

5.3. Proof of part (a) of Theorem 1.8. The “if” part of the claim is trivial.
Indeed, if (1.6) holds for a measurable function � :S0 → R, then substituting ξn =
�(xn−1) − ρn�(xn) into the formula for Rn in (3.11) yields

Rn = �(x−1) − �(xn−1)

n−1∏
i=0

ρi.

The Markov chain induced by (xn)n∈Z on (S0,T0) is Harris recurrent by
Lemma 2.3 and hence P −

x (|�(xn−1)| < M i.o.) = 1 for some M > 0. Since,
P -a.s., Rn converges to R and

∏n−1
i=0 ρi converges to zero, we obtain that with

probability one R = �(x−1). Hence for π -almost every x ∈ S, P −
x (|R| > t) = 0

for all t large enough.
Assume now that limt→∞ tκP −

x (|R| > t) = 0 for π -almost every x ∈ S. Our
aim is to show that (1.6) holds for some measurable function � :S → R. First, we
will prove the following extension of Grincevičius’ symmetrization inequality (cf.
[13], see also [9], Proposition 4.2 and [7], Lemma 4). It will be shown in the sequel
that if the right-hand side of (5.4) is a.s. zero, then (1.6) holds with the measurable
function �(x) defined in (5.3).

LEMMA 5.2. Let yn = (xn, ξn, ρn)n∈Z be a MMP associated with Markov
chains (xn)n∈Z, (ξn, ρn) ∈ R2, and let R be the random variable defined in (1.2).
Further, for any x ∈ S, let

�(x) = inf
{
a ∈ R :P −

x (R ≤ a) > 1
2

}
.(5.3)
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Then, for any t > 0 and z ∈ S,

P −
z (|R| ≥ t) ≥ 1

2P −
z

(|Rn + �(xn−1)�n| > t for some n ≥ 0
)
,(5.4)

where the random variables �n and Rn are defined in (3.1) and (3.11), respec-
tively.

PROOF. By its definition, �(x) is a median of the random variable R under the
measure P −

x , that is P −
x (R ≥ �(x)) ≥ 1/2 and P −

x (R ≤ �(x)) ≥ 1/2. Moreover,
�(x) is a measurable function of x.

Fix now any t > 0 and let τ1 = inf{n > 0 :Rn + �(xn−1)�n > t}. Since �(x) is
a median of the distribution P −

x (R ∈ ·), it follows from the definition (3.11) of the
random variables Rn and the Markov property that

P −
z (R ≥ t) ≥

∞∑
n=0

∫
S
P −

z (τ1 = n;xn−1 ∈ dx,�n > 0)P −
x

(
R ≥ �(x)

)

+
∞∑

n=0

∫
S
P −

z (τ1 = n;xn−1 ∈ dx,�n < 0)P −
x

(
R ≤ �(x)

)
≥ 1

2P −
z (τ1 < ∞).

Replacing the sequence ξn by the sequence −ξn and consequently R by −R, we
obtain [note that we can replace �(xn) by −�(xn) because the latter is a median
of −R]:

P −
z (−R ≥ t) ≥ 1

2P −
z (τ2 < ∞),

where τ2 := inf{n > 0 :−Rn − �(xn−1)�n > t}. Combining together these two
inequalities, we get (5.4). �

We will apply this lemma to the Markov chain y∗
n = (x∗

n,Q∗
n,M

∗
n)n∈Z, defined

below by a “geometric sampling,” rather than to yn = (xn, ξn, ρn)n∈Z. The sta-
tionary sequence (x∗

n)n≥−1 [it is expanded then into the double-sided sequence
(x∗

n)n∈Z] is a random subsequence of (xn)n≥−1 that forms a Markov chain which
inherits the properties of (xn)n∈Z and in addition is strongly aperiodic, that is,
Lemma 2.1 holds for this chain with d = m = 1.

Let (ηn)n≥0 be a sequence of i.i.d. variables independent of (xn, ξn, ρn)n∈Z (de-
fined in a probability space enlarged if needed) such that P(η0 = 1) = 1/2 and
P(η0 = 0) = 1/2, and define �−1 = −1, �n = inf{i > �n−1 :ηi = 1}, n ≥ 0. Fur-
ther, for n ≥ −1 let,

x∗
n = x�n,

Q∗
n+1 = ξ�n+1 + ξ�n+2ρ�n+1 + · · · + ξ�n+1ρ�n+1ρ�n+2 · · ·��n+1+1,(5.5)

M∗
n+1 = ρ�n+1ρ�n+2 · · ·ρ�n+1 .



596 A. ROITERSHTEIN

The transition kernel of the Markov chain (x∗
n)n≥−1 is given by

H ∗(x, ·) =
∞∑

n=1

(1
2

)n
Hn(x, ·).(5.6)

Hence, (x∗
n)n≥−1 is Harris recurrent on S0 and its stationary distribution is π.

Moreover, the sequence (y∗
n)n≥0 = (x∗

n,Q∗
n,M

∗
n)n≥0 is a stationary Markov chain

whose transitions depend only on the position of x∗
n and

R = Q∗
0 +

∞∑
n=1

Q∗
n

n−1∏
i=0

M∗
i .(5.7)

Expand (y∗
n)n≥0 into a double-sided stationary sequence (y∗

n)n∈Z.

The following corollary to Lemma 5.2 is immediate in view of (5.7).

COROLLARY 5.3. Let Assumption 1.2 hold. Then, for any t > 0 and z ∈ S,

P −
z (|R| ≥ t) ≥ 1

2P −
z

(|R∗
n + �(x∗

n−1)�
∗
n| > t for some n ≥ 0

)
,(5.8)

where �∗
n :=∏n−1

i=0 M∗
i and R∗

n :=∑n−1
i=0 Q∗

i �
∗
i .

Our aim now is to show that the right-hand side of (5.8) is bounded away from
zero for π -almost every z ∈ S. The main advantage of using the “geometrically
sampled” MMP (x∗

n,Q∗
n,M

∗
n)n∈Z is that studying its one-step transitions one can

obtain some information concerning all possible transitions of the original MMP
(xn, ξn, ρn)n∈Z. We will use this when passing from (5.14) to (5.15) below.

At some stage of the proof, we shall apply Corollary 2.6 to the Markov chain
(x∗

n)n∈Z and the random walk V ∗
n =∑n−1

i=0 log |M∗
i | considered under the measure

P̃ introduced in Section 2.3. Let hβ :S0 → (0,∞) be the eigenfunction of the
operator Hβ in the space Bb corresponding to the kernel defined in (2.10). This
eigenfunction exists and is bounded away from zero by Proposition 2.4, and it
corresponds to the eigenvalue rβ which coincides with the spectral radius rHβ of
the operator. Let

H ∗
β (x, dy) =

∞∑
n=1

(1
2

)n
Hn

β (x, ·).(5.9)

Then, similarly to (2.11), E−
x (
∏n

i=1 |M∗
i |β) = H ∗n

β 1(x) for any β ≥ 0 and x ∈ S0.

Transition kernel H̃ ∗ of x∗
n under P̃ is given by

H̃ ∗(x, dy) =
∞∑

n=1

(
1

2

)n

H̃ n = 1

h(x)
H ∗

κ (x, dy)h(y),(5.10)

where as before h(x) = hκ(x). It follows from (5.9) that, as long as rβ < 2,

H ∗
βhβ(x) = rβ

2 − rβ
hβ(x),
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and thus, as in Proposition 2.4, r∗
β := rβ

2−rβ
is the spectral radius of the operator

H ∗
β in Bb. In particular, r∗

κ = 1. Note also that the invariant distribution of H̃ ∗
coincides with the invariant distribution πh of H̃ .

To enable in the use of Corollary 2.6 we need the following two lemmas which
ensure that its conditions are satisfied. First, the same proof as that of Lemma 2.7
yields:

LEMMA 5.4. Let Assumption 1.2 hold. Then, Ẽ(log |M∗
1 |) > 0.

In addition, we have:

LEMMA 5.5. Let Assumption 1.2 hold. Then, the process log |M∗
n | is nonar-

ithmetic relative to the Markov chain (x∗
n)n∈Z with transition kernel H̃ ∗ defined

in (5.10) (in the sense of Definition 1.4).

PROOF. Since the process log |ρi | is nonarithmetic relative to the Markov
chain (xn)n∈Z with kernel H̃ , the claim follows from Lemma A.6 in [2], which
deals with the nonarithmetic condition relative to the “sampled” Markov chain
(x∗

n)n∈Z.

�

We are now in position to complete the proof of part (a) of Theorem 1.8.

LEMMA 5.6. Let Assumption 1.2 hold and suppose in addition that
limt→∞ tκP −

x (|R| > t) = 0 for π -almost every x ∈ S. Then, (1.6) holds with the
function �(x) defined in (5.3).

PROOF. For n ∈ Z, let αn = R∗
n + �(x∗

n−1)�
∗
n and write αn = αn−1 + βn,

where

βn = Q∗
n−1�

∗
n−1 + �(x∗

n−1)�
∗
n − �(x∗

n−2)�
∗
n−1

= �∗
n−1
(
Q∗

n−1 + �(x∗
n−1)M

∗
n−1 − �(x∗

n−2)
)
.

Set

δn := Q∗
n + �(x∗

n)M∗
n − �(x∗

n−1).(5.11)

Thus, αn = αn−1 + βn = αn−1 + �∗
n−1δn−1, and hence for any ε > 0 (cf. [9],

page 157):

P −
z (|αn| > t for some n ≥ 0) ≥ P −

z (|βn| > 2t for some n ≥ 0)

≥ P −
z (|�∗

n| > 2t/ε and |δn| > ε for some n ≥ 1).

Indeed, |βn| > 2t implies that either |αn−1| > t or, if not, |αn| ≥ |βn| − |αn−1| >

2t − t = t.
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Fix a number ε > 0 and let υ(t) = inf{n ≥ 1 : |�∗
n| > 2t/ε}. Then, setting

V ∗
n := log |�∗

n| =
n−1∑
i=0

log |M∗
i |,(5.12)

we obtain from (5.8) and the Markov property that for any z ∈ S0,

tκP −
z (|R| ≥ t)

≥ tκ

2

∫
S0

P −
z

(
x∗
υ(t)−1 ∈ dx, |δυ(t)| > ε,υ(t) < ∞)

= tκ

2
E−

z

(
P −

x∗
υ(t)−1

(|δ0| > ε);υ(t) < ∞)
= 1

2

(
ε

2

)κ

h(z)Ẽ−
z

(
e
−κ(V ∗

υ(t)−log(2t/ε))
P −

x∗
υ(t)−1

(|δ0| > ε)/h
(
x∗
υ(t)−1

))
,

where the expectation Ẽ−
z is according to the measure P̃ −

z defined in Section 2.3.
Thus, in virtue of part (b) of Theorem 1.6 it suffices to prove that under As-

sumption 1.2,

either
(i) for some ε > 0 and probability measure π̂ absolutely continuous with re-

spect to π, either the following limit exists and is strictly positive:

lim
t→∞ Ẽ−

π̂

(
e
−κ(V ∗

υ(t)−log(2t/ε))
P −

x∗
υ(t)−1

(|δ0| > ε)
)
,(5.13)

where Ẽ−
π̂

(·) := ∫S0
Ẽ−

z (·)π̂(dz),

or, if not,
(ii) then, (1.6) holds with the function �(x) defined in (5.3).

To bound the limit in (5.13) away from zero we will apply Corollary 2.6 to the
Markov chain (x∗

n)n∈Z on (S0,T0) introduced in (5.5) and governed by the kernel
H̃ ∗ defined in (5.10), the random walk V ∗

n defined in (5.12), and the function

g(x, t) = e−κtP −
x (|δ0| > ε).

Let σ−1 = −1, V ∗−1 = 0, and for n ≥ 0, σn = inf{i > σn−1 :V ∗
i > V ∗

σn−1
}. Fur-

ther, let π̂ be the stationary distribution of the Markov chain x̂n := x∗
σn

under P̃

(which exists and is unique by [2], Theorem 4). The measure π̂ is an irreducible
measure of the Markov chain (x∗

n)n∈Z with transition kernel H̃ ∗ and hence is
absolutely continuous with respect to its stationary distribution, which in turn is
equivalent to the stationary distribution π of (x∗

n)n∈Z with transition kernel H ∗.
To apply Corollary 2.6 to the Markov chain (x∗

n)n∈Z with kernel H̃ ∗ and the
random walk V ∗

n , we need to check conditions (2.13) and (2.14) for the function

b(x, y) = Ẽ−
x

(
e−κ(V̂0−y)1{V̂0>y}P

−
x̂0

(|δ0| > ε)
)
,
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where V̂n := V ∗
σn

.

Condition (2.13) follows from the following estimate valid for any δ > 0:

|b(x, y + δ) − b(x, y)| ≤ Ẽ−
x

(∣∣eκδ1{V̂0>y+δ} − 1{V̂0>y}
∣∣)

= (eκδ − 1)P̃ −
x (V̂0 > y + δ) + P̃ −

x (y ≤ V̂0 < y + δ).

As to condition (2.14), we have:

b(x, y) ≤
{

eκy, if y < 0,
Ẽ−

x

(
1{V̂0>y}

)= P̃ −
x (V̂0 > y), if y ≥ 0.

Hence, ∫
S0

∑
n∈Z

sup
n≤y<n+1

|b(x, y)|π̂(dy)

≤
∞∑

n=0

e−κn +
∫
S0

∞∑
n=0

P̃ −
x (V̂0 > n)π̂(dx) < ∞,

because by part (iv) of [2], Theorem 2,∫
S0

∞∑
n=0

P̃ −
x (V̂0 > n)π̂(dx) ≤

∫
S0

Ẽ−
x (V̂0)π̂(dx) < ∞.

(Part (iv) of [2], Theorem 2 implies that the constant µ1 in the statement of Corol-
lary 2.6 is finite. In our case, µ1 = ∫S0

Ẽ−
x (V̂0)π̂(dx).)

Let Ĥ be the transition kernel of the Markov chain (x̂n, V̂n − V̂n−1)n≥0. It fol-
lows from Corollary 2.6 that for some A ∈ (0,1),

lim
t→∞ Ẽ−

π̂

(
e
−κ(V ∗

υ(t)−log(2t/ε))
P −

x∗
υ(t)−1(|δ0| > ε)

)
= 1

µ1

∫
S0

∫
S0×(0,∞)

∫
[0,z)

e−κwP −
y (δ0 > ε)dw Ĥ(x, dy × dz)π̂(dx)

= 1

µ1κ

∫
S0

∫
S0×(0,∞)

(1 − e−κz)P −
y (|δ0| > ε)Ĥ (x, dy × dz)π̂(dx)

≥ A

∫
S0

∫
S0

P −
y (|δ0| > ε)Ĥ

(
x, dy × (0,∞)

)
π̂ (dx)

= A

∫
S0

P −
y (|δ0| > ε)π̂(dy) = AP −

π̂
(|δ0| > ε).

It follows that if (5.13) is not true for any ε > 0 then

P −
π̂

(δ0 = 0) = 1.(5.14)

It remains to show that (5.14) implies that (1.6) holds for the function � defined
in (5.3). By the definition of the kernel H ∗ in (5.6) and the quantity δn in (5.11),
we get from (5.14) that

P −
π̂

(
Rn + �(xn)�n − �(x−1) = 0

)= 1 for all n ∈ N.(5.15)
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Taking respectively n = 0 and n = 1 in the last equality we obtain that P −
π̂

(ξ0 +
�(x0)ρ0 − �(x−1) = 0) = P −

π̂
(ξ0 + ξ1ρ0 + �(x1)ρ0ρ1 − �(x−1) = 0) = 1. It fol-

lows that

P −
π̂

(
ξ1 + �(x1)ρ1 − �(x0) = 0

)= 1.

Similarly, by induction on n, one can show that

P −
π̂

(
ξn + �(xn)ρn − �(xn−1) = 0

)= 1 for all n ∈ N.

Since the Markov chain (xn) is π -recurrent and π̂ is absolutely continuous with
respect to π, we obtain (1.6). �

5.4. Proof of parts (b) and (c) of Theorem 1.8. Let S0 be as defined in
Lemma 2.1 and recall the regeneration times Nn defined in Section 2.1. Let
Q0 = ξ0 + 1{N1≥1}

∑N1−1
i=0 ξi+1

∏i
j=0 ρj and M0 =∏N1

i=0 ρi, and for n ≥ 1,

Qn = ξNn+1 + 1{Nn+1−Nn≥2}
Nn+1−1∑
i=Nn+1

ξi+1

i∏
j=Nn+1

ρj and Mn =
Nn+1∏

i=Nn+1

ρi.

The pairs (Qn,Mn), n ≥ 0, are one-dependent and for n ≥ 1 they are identically
distributed. Since the series in (1.2) converges absolutely, we obtain the represen-
tation

R = Q0 + M0
(
Q1 + M1

(
Q2 + M2(Q3 + · · ·))) := Q0 + M0R̂.(5.16)

Note that xN1 is distributed according to the measure ψ introduced in Lemma 2.4
and hence P(|R̂| > t) = P −

ψ (|R| > t), where we denote as usual P −
ψ (·) :=∫

S P −
x (·)ψ(dx). We have:

LEMMA 5.7. The following limit exists and is strictly positive:

K̂ = lim
t→∞ tκP −

ψ (|R| > t) = lim
t→∞ tκP (|R̂| > t).(5.17)

PROOF. The measure ψ is an irreducible measure of the Markov chain
(xn)n∈Z and hence it is absolutely continuous with respect to its stationary dis-
tribution π. Therefore, the claim follows by the bounded convergence theorem
from part (a) of Theorem 1.6 and part (c) of Lemma 3.2. �

We will show next that the contribution of Q0 in R is negligible in the following
precise sense [recall that ξn are assumed to be bounded by (2.5)]: for some β > κ,

sup
x∈S0

E−
x

([
1{N1≥1}

N1−1∑
i=0

i∏
j=0

|ρj |
]β)

< ∞.(5.18)
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Let A(x) = E−
x ([1{N1≥1}

∑N1−1
i=0
∏i

j=0 |ρj |]β) < ∞. Since for any positive num-
bers {ai}ni=1 we have (a1 + a2 + · · · + an)

β ≤ nβ(a
β
1 + a

β
2 + · · · + a

β
n ), we obtain

for any β > 0 and x ∈ S0:

A(x) = E−
x

( ∞∑
n=1

n−1∑
i=0

i∏
j=0

|ρj |1{N1=n}
)β

=
∞∑

n=1

E−
x

(
n−1∑
i=0

i∏
j=0

|ρj |1{N1=n}
)β

(5.19)

≤
∞∑

n=1

nβ
n−1∑
i=0

E−
x

(
i∏

j=0

|ρj |β1{N1≥n}
)
.

Let

�̃β(x, dy) := �(x,dy)E(|ρ0ρ1ρ2 · · ·ρm−1|β |x−1 = x, xm−1 = y),

where the kernel �(x,dy) on (S0,T0) is defined in (2.3), and let

Kβ(x, dy) := Hm(x, dy)E(|ρ0ρ1ρ2 · · ·ρm−1|β |x−1 = x, xm−1 = y)

= Hm
β (x, dy),

where the kernel Hβ on (S0,T0) is defined in (2.10).
Then for any x ∈ S0,

�̃β1(x) = E−
x

(
m−1∏
j=0

|ρj |β1{N1≥m}
)

and Kβ1(x) = E−
x

(
m−1∏
j=0

|ρj |β
)
.

By Lemma 2.1 and (2.5), the kernels Kβ and �̃β satisfy the conditions of Proposi-
tion 2.4 with s(x, y) = E(|ρ0ρ1ρ2 · · ·ρm−1|β |x−1 = x, xm−1 = y) and c1 = c−m

ρ .

In virtue of Lemma 2.3, the spectral radius of Hκ and hence Kκ is equal to 1. Thus,
by part (c) of Proposition 2.4, the spectral radius of �̃κ is strictly less than one.
Since r�̃β

is a continuous function of β, we have for some β > κ :

r�̃β
< 1.(5.20)

For l ∈ N, denote l̂ = m · max{[l/m],1}, where m is as in (2.1). We obtain from
(5.20) that for any l ∈ N, n > max{l,m}, x ∈ S1, and for suitable constants Aβ > 0,
�̃β < 0:

E−
x

(
l∏

j=0

|ρj |β1{N1≥n}
)

≤ cm
ρ E−

x

(
l̂−1∏
j=0

|ρj |β1{N1≥n̂}
)

≤ cm
ρ �̃

l̂/m
β �(n̂−l̂)/m1(x) ≤ Aβen�̃β ,
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where in the first inequality we use (2.5) and the fact that n̂ ≤ n for n > m (note
also that rθ < 1 by Proposition 2.4 applied to the kernels H and �). This yields
(5.18) in virtue of (5.19).

Fix some β > κ which satisfies (5.18) and α ∈ ( κ
β
,1). By (5.19) and the Cheby-

shev inequality, limt→∞ tκP −
x (|Q0| ≥ tα) = 0 uniformly in x. Let

M0,1 = 1{N1−m=−1} + 1{N1−m≥0} ·
N1−m∏
i=0

|ρi | and M0,2 =
N1∏

i=N1−m+1

|ρi |.

Then, M0 = M0,1 · M0,2 and c−m
ρ M0 ≤ M0,1 ≤ cm

ρ M0, where cρ is introduced in
assumption (A4).

Recall the random variable R̂ defined in (5.16) and note that M0,1 and R̂ are
independent under the measure P −

x because only the m − 1 last variables in the
block (x0, x1, . . . , xN1−1} are dependent on xN1 .

For any β > κ such that (5.18) holds, we have

tκP −
x (|R| > t) ≤ tκP −

x (|Q0| + |M0R̂| > t, |Q0| < tα) + tκP −
x (|Q0| ≥ tα)

≤ tκP −
x (|M0R̂| > t − tα) + tκ

tαβ
E−

x (|Q0|β)

≤ tκP −
x (cm

ρ |M0,1R̂| > t − tα) + E−
x (|Q0|β).

The expectation E−
x (|Q0|β) is bounded on S0 by (5.18), while (5.17) and the fact

that R̂ is independent of M0,1 under P −
x imply that for some L > 0,

tκP −
x (cm

ρ |M0,1R̂| > t − tα) ≤ L

(
t

t − tα

)κ

E−
x (|M0,1|κ) ∀t > 1

yielding the upper bound in (1.7) since the expectation E−
x |(M0,1|β) is bounded

on S0 in view of (5.18).
To get the lower bound in (1.8), write

tκP −
x (|R| > t) ≥ tκP −

x (|M0R̂| − |Q0| > t)

≥ tκP −
x (|M0R̂| − |Q0| > t, |Q0| < tα)

≥ tκP −
x (|M0R̂| > t + tα) − P −

x (|Q0| > tα)

≥ tκP −
x (|M0R̂| > t + tα) − tκ

tαβ
E−

x (|Q0|β)

≥ tκP −
x (c−m

ρ |M0,1R̂| > t + tα) − tκ

tαβ
E−

x (|Q0|β),

and note that tκ

tαβ E−
x (|Q0|β) converges to zero uniformly on x by (5.18) while by

(5.17) we have for any λ > 0, some constant J > 0 that depends on λ, and all t
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large enough:

tκP −
x (c−m

ρ |M0,1R̂| > t) ≥ tκP −
x (λ · c−m

ρ · |R̂| > t; |M0,1| > λ)

≥ JP −
x (|M0,1| ≥ λ).

To complete the proof it remains to show that for some λ > 0 there exists a number
δ1 > 0 such that

P −
x (|M0,1| ≥ λ) > δ1, π-a.s.

Toward this end observe that for every x ∈ S0, with ϑ ∈ N defined in (2.4) and
cρ > 0 defined in (A4) (we will assume, actually without loss of generality, that
ϑ > m),

P −
x

(|M0,1| ≥ c−(ϑ−m)
ρ

) ≥ P −
x

(
|M0,1| ≥ min

m≤i≤ϑ
c−(i−m)
ρ ;N1 ≤ ϑ

)
= P −

x (N1 ≤ ϑ) ≥ δ,

where δ > 0 is defined in (2.4).

APPENDIX A: PROOF OF PROPOSITION 2.4

(a) First, we note that if a nonnegative eigenfunction f �≡ 0 of the operator
K :Bb → Bb exists then necessarily infx f (x) > 0. Indeed, assuming that Kf =
λf for some λ > 0, we have for any x ∈ S0,

d+m∑
i=1

λif (x) =
d+m∑
i=1

Kif (x) ≥
d∑

i=1

∫
S1

∫
S1

Ki(x, dz)Km(z, dy)f (y)

≥ p · c−1
1 ·
∫
S1

f (y)ψ(dy) > 0,

where the last inequality follows from the fact that f (x) > 0 for every x ∈ S0
(cf. [18], Proposition 5.1(ii)).

The proof of the existence of such f ∈ Bb is an application of Nussbaum’s
extension of the Krein–Rutman theorem (cf. Theorem 2.2 in [19]). Theorem 2.2.
In view of this theorem (this is explained in Appendix B) it is sufficient to show
that there exists a double-indexed sequences of compact linear operators Qn,i on
the space Bb such that

lim sup
i→∞

i
√‖Ki − Qn,i‖ ≤ 1/n, n ∈ N.(A.1)

It even suffices to show that lim supi→∞ i

√
‖Kmi − Q̂n,i‖ ≤ 1/n for some compact

operators Q̂n,i on Bb, since we can then set Qn,i = Ki−mji Q̂n,ji
, where ji is the

integer part of i/m. For this purpose we shall adapt the Yosida–Kakutani’s proof
that Markov kernels satisfying Doeblin’s condition are quasi-compact (cf. [24],
Section 4.7).
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(1) First, we observe that if n(x, y) and j (x, y) are jointly measurable bounded
function, then the product of the two operators defined by the kernels N(x, dy) =
n(x, y)µ(dy) and J (x, dy) = j (x, y)µ(dy) is compact in Bb. Indeed, we can ap-
proximate n(x, y) in L1(S0 × S0,T0 × T0,µ × µ) up to 1/i by a simple function
ni(x, y) which is a finite linear combination of the indicator functions of “rec-
tangle” sets Bi,k × Ci,k, where Bi,k,Ci,k ⊂ S0. Then, the operators correspond-
ing to the kernels Ni(x, dy) = ni(x, y)µ(dy) are finite-dimensional and hence
JN = limi→∞ JNi, being the limit in operator norm of a sequence of compact
operators, is compact.

(2) Fix n ∈ N and let δ = δ(1/n) be defined as in condition (iii) of the proposi-
tion. Let k(x, y) be a jointly measurable density of the kernel Km with respect to
µ (such a density exists since the σ -field T0 is assumed to be countably generated,
see, e.g., [18], Lemma 2.5) and set

qn(x, y) = min{k(x, y), δ−1 · ‖Km‖}.
Let Dx = {y ∈ S0 :k(x, y) �= qn(x, y)}, thus k(x, ·) ≥ δ−1‖Km‖ on Dx. Since

sup
x

Km(x,Dx) = sup
x

∫
Dx

k(x, y)µ(dy) ≤ ‖Km‖,
then µ(Dx) ≤ δ. Hence, letting Qn(x, dy) = qn(x, dy)µ(dy),

‖Km − Qn‖ ≤ sup
x

∫
Dx

k(x, y)µ(dy) = sup
x

Km(x,Dx) ≤ 1/n.

(3) Let Rn = Km − Qn. Then Kmi = (Qn + Rn)
i =∑ of 2i terms each of

them, except maybe those i + 1 where Qn appear at most once, is compact by (1).
But

‖Ri
n + QnR

i−1
n + RnQnR

i−2
n + · · · + Ri−1

n Qn‖
≤ (1/n)i + i · ‖Qn‖ · (1/n)i−1 ≤ (1/n)i + i · ‖Km‖ · (1/n)i−1,

as required.
(b) The proof for the kernel �̂ on (S1,T1) is the same as for K, since the con-

ditions of this proposition hold for �̂ as well (with d = m = 1).
(c) Let c

K
> 1 be a constant such that f (x) ∈ (c−1

K
, c

K
) for all x ∈ S0. Then, for

any x ∈ S0, c−1
K

f (x) ≤ 1(x) ≤ c
K
f (x), and hence

c−2
K

rn
K

≤ Kn1(x) ≤ c2
K
rn
K

∀x ∈ S0.(A.2)

Let K̂(x, ·) be the restriction of the kernel Km to the states of the set S1. It follows
from (A.2) that the spectral radius of K̂ coincides with rm

K
.

By [18], Proposition 5.3 and [18], Theorem 5.2, the kernel �̂ has an invari-
ant measure π�̂. Since rm

K
f ≥ �̂f, the equality r�̂ = rm

K
would imply by [18],

Proposition 5.3 and [18], Theorem 5.1 that π�̂-a.s., �̂f (x) = rm
K

f (x) = Kmf (x),

which is impossible because f (x) > 0 and Km(x, dy) − �̂(x, dy) ≥ rc−1
1 ψ(dy)

for any x ∈ S1. Hence r�̂ < rm
K

.
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APPENDIX B: THE NUSSBAUM FIXED POINT THEOREM

This appendix is devoted to the Nussbaum’s extension of the Krein–Rutman
fixed point theorem (cf. Theorem 2.2 in [19]) or, to be precise, to the version of
this theorem which is actually used in (A.1).

Let X be a Banach space. For a bounded subset S of X, Kuratowski’s measure
of noncompactness α(S) is defined by

α(S) = inf

{
d > 0 :S =

n⋃
i=1

Si, n ∈ N, and D(Si) ≤ d for 1 ≤ i ≤ n

}
,

where D(S) := supx,y∈S ‖x − y‖ is the diameter of the set S.
A bounded linear operator K in X is called a b-set-contraction for a number

b ≥ 0 if α(K(S)) ≤ bα(S) for every bounded subset S of X. A closed subset C

of X is called a cone if the following holds: (i) if x, y ∈ C and α,β ≥ 0 are
nonnegative reals, then αx + βy ∈ C. (ii) if x ∈ C − {0}, then −x /∈ C.

THEOREM B.1 ([19], Theorem 2.2). Let X be a Banach space, C be a cone
in X, and K be a bounded linear operator in X such that K(C) ⊂ C. Let

‖K‖
C

:= sup{‖Ku‖ :u ∈ C,‖u‖ ≤ 1}
and α

C
(K) := inf{b ≥ 0 :K

C
is ab-set-contraction}, where K

C
:C → C is the re-

striction of K to the cone C. Further, let

r
C
(K) := lim

n→∞
n
√‖Kn‖

C
and ρ

C
(K) := lim

n→∞ e
n
√

α
C
(Kn).

Assume that ρ
C
(K) < r

C
(K). Then there exists an x ∈ C − {0} such that Kx =

r
C
(K)x.

We want to apply this theorem in the situation of Proposition 2.4, namely to
the Banach space Bb, the operator K defined by Kf = ∫S0

K(x, dy)f (y), and the
cone C of nonnegative functions in Bb. Note that r

C
(K) coincides with the spectral

radius r
K

in this case. It follows from (2.8) and the assumption s(x, y) ∈ (c−1
1 , c1)

that r
K

> c
−1/m
1 . Therefore it suffices to show that (A.1) implies ρ

C
(K) = 0.

Since ρ
C
(K) ≤ ρ

X
(K) (cf. [19], page 321), it is even sufficient to show that

ρ
X
(K) = 0.

It will be convenient to use the notion of the Hausdorff measure of noncompact-
ness χ which is defined for a bounded subset S of a Banach space X by

χ(S) = inf{d > 0 :S has a finite d-net in X}.
By finite d-net in X we mean a finite subset {x1, . . . , xn} of X such that for any
y ∈ S there exists an index j s.t. ‖y − xj‖ < d, where ‖ · ‖ is the norm on X.
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Let

χ(K) := inf{b ≥ 0 :χ(K(S)) ≤ bχ(S) for bounded subsets S of X},
and σ(K) := limn→∞ n

√
χ(Kn). The Kuratowski and Hausdorff measures of non-

compactness are equivalent in the following sense (cf. [1], page 4): χ(S) ≤
α(S) ≤ 2χ(S) for every bounded subset S of X. Thus, it suffices to show that
σ(K) = 0 when (A.1) holds. The latter assertion follows from the following
lemma.

LEMMA B.2. Let X be a Banach space and K be a bounded linear operator
in X. Further, let ε > 0 be a positive constant and assume that there is a compact
operator Q in X such that ‖Q − K‖ < ε. Then, χ(K) ≤ 2ε‖K‖.

PROOF. Fix a bounded set S ⊆ X. Let {x1, x2, . . . , xn} ⊆ X be a finite d-net
of S for some d > 0. It suffices to show that the set K(S) has a finite ηd -net in X,

where we denote ηd := 2εd‖K‖. Let Bi, i = 1, . . . , n, be the balls in X of radius
d and centered in xi. Then, S ⊆ ⋃n

i=1 Bi and K(S) ⊆ ⋃n
i=1 K(Bi). Therefore,

it is sufficient to show that each set K(Bi), i = 1,2, . . . , n, has a finite ηd -net
in X.

Fix any δ > 0. By the semi-homogeneity property of the measures of noncom-
pactness and their invariance under translations (cf. [1], page 4) we can assume
without loss of generality that d = 1 and consider only the unit ball B0 centered
at 0 ∈ X. Let Z := {z1, z2, . . . , zm} be a finite δ-net of the totally bounded set
Q(B0). Then, the balls of radius δ +‖K‖ · ‖K −Q‖ with centers in z1, z2, . . . , zm

cover the set K(B0). Indeed, for a point x ∈ K(B0), let z(x) ∈ Z be such that
‖Qx − z(x)‖ ≤ δ. Then,

‖Kx − z(x)‖ ≤ ‖Kx − Qx‖ + ‖Qx − z(x)‖ ≤ ‖x‖ · ‖K − Q‖ + δ

≤ ‖K‖ · ‖K − Q‖ + δ ≤ ‖K‖ · ‖K − Q‖ + δ.

This completes the proof of the lemma since δ > 0 is arbitrary. �
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