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We consider random variables of the form F = f (V1, . . . , Vn), where
f is a smooth function and Vi, i ∈ N, are random variables with absolutely
continuous law pi(y) dy. We assume that pi , i = 1, . . . , n, are piecewise dif-
ferentiable and we develop a differential calculus of Malliavin type based
on ∂ lnpi . This allows us to establish an integration by parts formula
E(∂iφ(F )G) = E(φ(F )Hi(F,G)), where Hi(F,G) is a random variable
constructed using the differential operators acting on F and G. We use this
formula in order to give numerical algorithms for sensitivity computations in
a model driven by a Lévy process.

1. Introduction. In recent years, following the pioneering papers [12, 13],
much work concerning numerical applications of stochastic variational calculus
(Malliavin calculus) has been carried out. This mainly concerns applications in
mathematical finance: computation of conditional expectations (which appear in,
e.g., American option pricing) and of sensitivities (the so-called Greeks). The mod-
els at hand are usually log-normal type diffusions and one may then use standard
Malliavin calculus. Currently, there is increasing interest in jump-type diffusions
(see, e.g., [7]) and one must then use the stochastic variational calculus correspond-
ing to Poisson point processes. Such a calculus has already been developed (in [4]
and [15]) concerning the noise coming from the amplitudes of the jumps and (in
[6, 9, 18, 19, 21, 22]) concerning times. Recently, Bouleau (see [5]) established the
so-called error calculus based on the Dirichlet forms language and showed that the
approaches in [4] and [6] fit into this framework. Another point of view, based on
chaos decomposition, may be found in [3, 10, 16, 17, 23].

Let us finally mention that the models considered in mathematical finance (e.g.,
Merton’s model) may have both a diffusion component (driven by a Brownian mo-
tion) and a jump part (driven by a compound Poisson process). In this case, one
may use the standard Malliavin calculus with respect to the Brownian motion in-
crements after conditioning in a clear way with respect to the Poisson component.
This is done in [8, 11, 20].
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The aim of this paper is to give a concrete application of the Malliavin calculus
approach to sensitivity computations (Greeks) for pure jump diffusion models. We
give three examples: in the first, we use the Malliavin calculus with respect to the
jump amplitudes and in the second, we differentiate with respect to the jump times.
In the third, we differentiate with respect to both of them.

The basic tool is an integration by parts formula which is analogous to the one
in the standard Malliavin calculus on the Wiener space. Here, we give an abstract
approach which, in particular, permits us to treat in an unified way the deriva-
tives with respect to the times and the amplitudes of the jumps of Lévy processes.
More precisely, we consider functionals of a finite number of random variables
Vi, i = 1, . . . , n. The only assumption is that for each i = 1, . . . , n, the conditional
law of Vi (with respect to Vj , j �= i) is absolutely continuous with respect to the
Lebesgue measure and the conditional density pi = pi(ω, y) is piecewise differ-
entiable. Using integration by parts, one may settle the duality relation which rep-
resents the starting point in Malliavin calculus. However, some border terms will
appear corresponding to the points at which pi is not continuous: for example,
if Vi has a uniform conditional law on [0,1], the density is pi(ω, y) = 1[0,1](y)

and integration by parts produces border terms in 0 and in 1. There is a simple
idea which permits us to cancel the border terms: we introduce in our calculus
some weights πi which are null at the points of singularity of pi—in the previ-
ous example, we may take πi(y) = yα(1 − y)α with some α ∈ (0,1). We then
obtain a standard duality relation between the Malliavin derivative and the Skoro-
hod integral and the machinery established in the Malliavin calculus produces an
integration by parts formula. But there is a difficulty hidden in this process: the
differential operators involve the weights πi and their derivatives. In the previous
example, π ′

i (ω, y) = α(yα−1(1 − y)α − yα(1 − y)α−1). These derivatives blow up
in the neighborhood of the singularity points and this produces some nontrivial in-
tegrability problems. We must therefore search an equilibrium between the speed
of convergence to zero and the speed with which the derivatives of the weights
blow up in the singularity points. This leads to a nondegeneracy condition which
involves the weights and their derivatives.

The integration by parts formula is established in Section 2. Since numerical al-
gorithms involve only functions of a finite number of variables, we do not develop
here an infinite-dimensional Malliavin calculus, but restrict ourselves to simple
functionals. In Section 3, we use the integration by parts formula in order to com-
pute the Delta (derivative with respect to the initial condition) for European options
based on an asset which follows a pure jump diffusion equation and in Section 4,
we give numerical results.

2. Malliavin calculus for simple functionals.

2.1. The frame. We consider a probability space (�,F ,P ), a sub-σ -algebra
G ⊆ F and a sequence of random variables Vi, i ∈ N. We define Gi = G ∨
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σ(Vj , j �= i). Our aim is to establish an integration by parts formula for functionals
of Vi , i ∈ N, which is analogous to the one in Malliavin calculus. The σ -algebra
G appears in order to describe all the randomness which is not involved in the
differential calculus.

We will work on some set A ∈ G which will be fixed throughout this section. We
denote by L(∞)(A) the space of the random variables such that E(|F |p1A) < ∞
for all p ∈ N, and L(p+)(A) will be the space of the random variables F for which
there exists some δ > 0 such that E(|F |p+δ1A) < ∞. We assume the following.

HYPOTHESIS 2.1. Vi ∈ L(∞)(A), i ∈ N.

For each i ∈ N, we consider some ki ∈ N and some Gi-measurable random
variables

ai(ω) = t0
i (ω) < t1

i (ω) < · · · < t
ki

i (ω) < t
ki+1
i (ω) = bi(ω).

We define

Bi(ω) =
ki⋃

j=0

(t
j
i (ω), t

j+1
i (ω)).

Notice that we may take

ai = −∞ and bi = ∞.

We will work with functions defined on (ai(ω), bi(ω)) which are smooth except
for the points t

j
i , j = 1, . . . , ki . We define Ck(Bi) to be the set of measurable func-

tions f :� × R → R such that for every ω, y → f (ω,y) is k-times differentiable
on Bi(ω) and for each j = 1, . . . , ki , the left-hand side and the right-hand side lim-
its f (ω, t

j
i (ω)−), f (ω, t

j
i (ω)+) exist and are finite [for j = 0 (resp., j = ki + 1),

we assume that the right-hand side (resp., the left-hand side) limit exists and is
finite]. We define

	i(f ) =
ki∑

j=1

(
f (ω, t

j
i (ω)−) − f (ω, t

j
i (ω)+)

)
(2.1)

+ f (ω,bi(ω)−) − f (ω,ai(ω)+).

For f,g ∈ C1(Bi), the integration by parts formula gives∫
(ai ,bi )

fg′(ω, y) dy = 	i(fg) −
∫
(ai ,bi )

f ′g(ω,y) dy,(2.2)

so 	i represents the contribution of the border terms—or, in other words, of the
singularities of f or g.
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Let n, k ∈ N. We denote by Cn,k the class of the G × B(Rn)-measurable func-
tions f :� × R

n → R such that Ii(f ) ∈ Ck(Bi), i = 1, . . . , n, where

Ii(f )(ω, y) := f (ω,V1, . . . , Vi−1, y,Vi+1, . . . , Vn).

For a multi-index α = (α1, . . . , αk) ∈ {1, . . . , n}k , we define

∂k
αf = ∂k

∂xα1 · · · ∂xαk

f.

Moreover, we denote by Cn,k(A) the space of functions f ∈ Cn,k such that for
every 0 ≤ p ≤ k and every α = (α1, . . . , αp) ∈ {1, . . . , n}p , ∂

p
α f (V1, . . . , Vn) ∈

L(∞)(A).

The points t
j
i , j = 1, . . . , ki , represent singularity points of the functions at hand

(note that f may be discontinuous at t
j
i ) and our main purpose is to establish a

calculus adapted to such functions.
Our basic hypothesis is the following.

HYPOTHESIS 2.2. For every i ∈ N, the conditional law of Vi with respect to
Gi is absolutely continuous on (ai, bi) with respect to the Lebesgue measure. This
means that there exists a Gi × B(R)-measurable function pi = pi(ω, x) such that

E
(

ψ(Vi)1(ai ,bi )(Vi)

) = E
(



∫
R

ψ(x)pi(ω, x)1(ai ,bi )(x) dx

)
for every positive, Gi-measurable random variable 
 and every positive, measur-
able function ψ : R → R.

We assume that pi ∈ C1(Bi) and ∂y lnpi(ω, y) ∈ L(∞)(A).

In concrete problems, we consider random variables Vi with conditional den-
sities pi and we then take t

j
i , i = 0, . . . , ki+1, to be the singularities of pi . This

means that we choose Bi in such a way that pi satisfies Hypothesis 2.2 on Bi . This
is the significance of Bi (in the case where pi is smooth on the whole R, we may
choose Bi = R).

For each i ∈ N, we consider a Gi × B(R)-measurable and positive function
πi : � × R → R+ such that πi(ω, y) = 0 for y /∈ (ai, bi) and πi ∈ C1(Bi). We
assume the following.

HYPOTHESIS 2.3. πi ∈ L(∞)(A) and π ′
i ∈ L(1+)(A).

These will be the weights used in our calculus. In the standard Malliavin cal-
culus, they appear as renormalization constants. On the other hand, pi may have
discontinuities at t

j
i , j = 1, . . . , ki , and this will produce some border terms in the

integration by parts formula; see (2.2). We may choose πi in order to cancel these
border terms (as well as the border terms in ai and bi ).



INTEGRATION BY PARTS FORMULA FOR LOCALLY SMOOTH LAWS 37

2.2. Differential operators. In this section, we introduce the differential oper-
ators which represent the analogs of the Malliavin derivative and of the Skorohod
integral.

Simple functionals. A random variable F is called a simple functional if there
exists some n and some G × B(Rn)-measurable function f :� × R

n → R such
that

F = f (ω,V1, . . . , Vn).

We denote by S(n,k) the space of simple functionals such that f ∈ Cn,k , and
S(n,k)(A) will denote the space of simple functionals such that f ∈ Cn,k(A).

We will use the notation ∂Vi
F := ∂f

∂xi
(ω,V1, . . . , Vn), i = 1, . . . , n.

Simple processes. A simple process of length n is a sequence of random vari-
ables U = (Ui)i≤n such that

Ui(ω) = ui(ω,V1(ω), . . . , Vn(ω)),

where ui :� × R
n → R, i ∈ N, are G × B(Rn)-measurable functions. We denote

by P(n,k) [resp., P(n,k)(A)] the space of simple processes of length n such that
ui ∈ Cn,k , i = 1, . . . , n [resp., ui ∈ Cn,k(A), i = 1, . . . , n]. Note that if U ∈ P(n,k),
then Ui ∈ S(n,k) and if U ∈ P(n,k)(A), then Ui ∈ S(n,k)(A).

On the space of simple processes, we consider the scalar product

〈U,V 〉π :=
n∑

i=1

πi(ω,Vi)Ui(ω)Vi(ω).

We now define the differential operators which appear in Malliavin’s calculus.

The Malliavin derivative. D :S(n,1) → P(n,0): if F = f (ω,V1, . . . , Vn), then

DiF := ∂f

∂xi

(ω,V1(ω), . . . , Vn(ω))1Bi(ω)(Vi),

DF = (DiF )i≤n ∈ P(n,0).

The Malliavin covariance matrix. Given F = (F 1, . . . ,F d), F i =
f i(ω,V1, . . . , Vn) ∈ S(n,1), the Malliavin covariance matrix is

σ
ij
F = 〈DFi,DFj 〉π =

n∑
p=1

πp(ω,Vp) ∂pf i ∂pf j (ω,V1, . . . , Vn).

This is a symmetric, positive-definite matrix.
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The Skorohod integral. We define δ :P(n,1) → S(n,0): for U = (Ui)1≤i≤n such
that Ui(ω) = ui(ω,V1, . . . , Vn), we define

δi(U) := −
(

∂

∂xi

(πiui) + (πiui) ∂ lnpi

)
(ω,V1, . . . , Vn),

δ(U) :=
n∑

i=1

δi(U).

The border term operator. For F = f (ω,V1, . . . , Vn) ∈ S(n,0) and U =
(ui(ω,V1, . . . , Vn))i=1,...,n ∈ P(n,0), we define

[F,U ]π =
n∑

i=1

	i

(
Ii(f × ui) × πi × pi

)

=
n∑

i=1

ki∑
j=1

(
(f × ui)(ω,V1, . . . , Vj−1, t

j
i −,Vj+1, . . . , Vn)(πipi)(ω, t

j
i −)

− (f × ui)(ω,V1, . . . , Vj−1,

t
j
i +,Vj+1, . . . , Vn)(πipi)(ω, t

j
i +)

)
+

n∑
i=1

(f × ui)(ω,V1, . . . , Vj−1, bi−,Vj+1, . . . , Vn)(πipi)(ω, bi−)

−
n∑

i=1

(f × ui)(ω,V1, . . . , Vj−1, ai+,Vj+1, . . . , Vn)(πipi)(ω, ai+).

REMARK 2.1. If we choose πi such that

πi(ω, t
j
i +) = πi(ω, t

j
i −) = 0, i = 1, . . . , n, j = 1, . . . , ki,

(2.3)
πi(ω, ai+) = πi(ω, bi−) = 0, i = 1, . . . , n,

then [F,U ]π = 0 for every F ∈ S(n,1) and U ∈ P(n,1). So there will be no border
terms in the duality formula or in the integration by parts formula. This is one pos-
sible reason for introducing the weights. The other one concerns renormalization.

In our framework the duality between δ and D is given by the following propo-
sition.

PROPOSITION 2.1. Let F ∈ S(n,1) and U ∈ P(n,1). Suppose that for every i =
1, . . . , n,

E(|Fδi(U)|1A) + E
(
πi(ω,Vi)|DiF × Ui |1A

)
< ∞.(2.4)
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Then E(|[F,U ]π |1A) < ∞ and

E(〈DF,U 〉π1A) = E(Fδ(U)1A) + E([F,U ]π1A).(2.5)

If (2.3) holds true, then

E(〈DF,U 〉π1A) = E(Fδ(U)1A).

PROOF. Since πi = 0 on (ai, bi)
c, we have

E(〈DF,U 〉π1A)

= E

(
n∑

i=1

E
(
πi(ω,Vi)DiF × Ui | Gi

)
1A

)

= E

(
1A

n∑
i=1

∫ bi

ai

(πiui ∂if )(ω,V1, . . . , Vi−1, y,Vi+1, . . . , Vn)pi(ω, y) dy

)
.

Using integration by parts [see (2.2)], we obtain∫ bi

ai

∂if × (πiui) × pi

=
ki∑

j=0

∫
(t

j
i ,t

j
i+1)

∂if × (πiui) × pi

= 	i

(
Ii(f × ui)πipi

) −
ki∑

j=0

∫
(t

j
i ,t

j
i+1)

f × (
∂i(πiui) × pi + (πiui) × ∂pi

)

= 	i

(
Ii(f × ui)πipi

) −
∫ bi

ai

f × (
∂i(πiui) + πiui ∂ lnpi

) × pi.

By (2.4), we have ∫
R

(|ui ∂if |πipi)(ω,V1, . . . , Vi−1, y,Vi+1, . . . , Vn) dy < ∞,∫
R

(∣∣f (
∂i(πiui) + πiui ∂ lnpi

)∣∣ × pi

)
(ω,V1, . . . , Vi−1, y,Vi+1, . . . , Vn) dy < ∞,

for almost all ω ∈ A. Thus, the above integrals make sense. Since 	i(Ii(f ×
ui)πipi) is the sum of these two integrals, we also obtain E(|	i(Ii(f × ui)πipi)|
1A) < ∞ so that E(|[F,U ]π |1A) < ∞.

Using the definition of pi , we return to expectations and obtain∫ bi

ai

(πiui ∂if )(ω,V1, . . . , Vi−1, y,Vi+1, . . . , Vn)pi(ω, y) dy

= E(Fδi(U) | Gi ) + 	i

(
Ii(f × ui)πipi

)
.

One sums over i and the proof is complete. �
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COROLLARY 2.1. Let Q ∈ S(n,1)(A) satisfy

E
(
1A(|πiQ| + |∂Vi

(πiQ)|)1+η)
< ∞, i = 1, . . . , n,(2.6)

for some η > 0. Then for every F ∈ S(n,1)(A), U ∈ P(n,1)(A), one has

E(Q〈DF,U 〉π1A) = E(Fδ(QU)1A) + E([F,QU ]π1A).(2.7)

PROOF. We need only check that F and Ũ = QU satisfy (2.4). We have

|δi(QU)| ≤ |∂Vi
(πiQ)||Ui | + |πiQ|(|∂Vi

Ui | + |Ui ||∂ lnpi |).
Since U ∈ P(n,1)(A), one has Ui, ∂Vi

Ui ∈ L(∞)(A) and by Hypothesis 2.2,
∂ lnpi ∈ L(∞)(A). So, using (2.6), we have δi(QU) ∈ L(1+)(A) and since F ∈
L(∞)(A), we obtain E(Fδi(QU)|) < ∞.

We have DiF , Ui ∈ L(∞)(A) and πiQ ∈ L(1+)(A), so E(πi |DiF × (QUi)|) <

∞. �

The Ornstein–Uhlenbeck operator. We now introduce L := δ(D) :S(n,2) →
S(n,0):

LF := −
n∑

i=1

(
∂i(πi ∂if ) + πi ∂if ∂ lnpi

)
(ω,V1, . . . , Vn)

= −
n∑

i=1

(
(π ′

i + πi ∂ lnpi)∂if + πi ∂
2
i f

)
(ω,V1, . . . , Vn).

As an immediate consequence of the duality relation (2.5), we obtain the following.

LEMMA 2.1. Let F,G ∈ S(n,2) and A ∈ G. Suppose that for every i =
1, . . . , n,

E[(|FLiG| + |GLiF | + πi |DiF × DiG|)1A] < ∞.

Then E(|[F,DG]π |1A) < ∞, E(|[G,DF ]π |1A) < ∞ and

E(FLG1A) + E([F,DG]π1A) = E(〈DF,DG〉π1A)

= E(GLF1A) + E([G,DF ]π1A).

We denote by Ck
p(Rd) the space of the functions φ : Rd → R which are k-times

differentiable and such that φ and its derivatives of order less then or equal to k

have polynomial growth. Standard differential calculus gives the following chain
rules.

LEMMA 2.2. (i) Let φ ∈ C1
p(Rd) and F = (F 1, . . . ,F d), F i ∈ S(n,1)(A).

Then φ(F ) ∈ S(n,1)(A) and

Dφ(F) =
d∑

k=1

∂kφ(F )DFk.(2.8)
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(ii) If φ ∈ C2
p(Rd) and F i ∈ S(n,2)(A), then φ(F ) ∈ S(n,2)(A) and

Lφ(F) =
d∑

k=1

∂kφ(F )LFk −
d∑

k,p=1

∂2
k,pφ(F )〈DFk,DFp〉π .

(iii) Let F ∈ S(n,1)(A) and U ∈ P(n,1)(A). Then FU ∈ P(n,1)(A) and

δ(FU) = Fδ(U) − 〈DF,U 〉π .

In particular, if F ∈ S(n,1)(A) and G ∈ S(n,2)(A), then FDG ∈ P(n,1)(A) and

δ(FDG) = FLG − 〈DF,DG〉π .(2.9)

REMARK 2.2. Let us define L2
π,n(A) to be the closure of P(n,0) with respect

to the norm associated with the scalar product 〈U,V 〉 = E(〈U,V 〉π). If [F,U ]π is
not null, then the operator D :S(n,1) ⊂ L2(�) → P(n,0) ⊂ L2

π,n(A) is not closable.
Suppose, for example, that V1 is exponentially distributed and Vi , i = 2, . . . , n,

are arbitrary and independent of V1. We take π1 = 1 and πi = 0, i = 2, . . . , n.
So we define our calculus with respect to V1 only. In this case, a1 = 0, b1 =
∞ and there are no points t

j
i . Now take Fn = fn(V1) with fn(x) = 1 −

nx for 0 < x < 1/n and fn(x) = 0 for x ≥ 1/n. Also, take u1(x) = 1 −
x for 0 < x < 1 and u1(x) = 0 for x ≥ 1 and write the duality formula
E(〈DFn,U〉π) = E(Fnδ(U)) + E([Fn,U ]π). Since [Fn,U ]π = 1 and Fn → 0 in
L2(�), we obtain limn→∞ E(〈DFn,U〉π) = 1 and so DFn � 0 in L2

π,n(A). This
proves that D is not closable.

But if [F,U ]π = 0 for every F , U [this happens, e.g., if we choose πi to satisfy
(2.3)], then the duality formula (2.5) guarantees that D and δ are closable. But we
will remain at the level of simple functionals and will not discuss the extension to
the infinite-dimensional setting.

REMARK 2.3. The above differential operators and the duality formula (2.5)
represent abstract versions of the operators introduced in Malliavin calculus and
of the duality formula used there. In order to see this, we consider the simple
example of the Euler scheme for a diffusion process, corresponding to the time
grid 0 = s0 < s1 < · · · < sn = s. This is a simple functional depending on the in-
crements of the Brownian motion B , that is, Vi = B(si) − B(si−1), i = 1, . . . , n.
The variables on which the calculus is based are independent Gaussian variables.
It follows that pi(ω, y) = (2π(si − si−1))

−1/2 exp(−y2/2(si − si−1)). Since pi is
smooth on the whole of R and has null limit at infinity, there will be no bor-
der terms, so we take ai = −∞, bi = ∞ and ki = 0. If F = f (V1, . . . , Vn), then
DiF = ∂if (V1, . . . , Vn) = DsF1[si−1,si )(s), where DsF is the standard Malliavin
derivative. We take πi = si − si−1 so that

〈DF,DG〉π =
n∑

i=1

πiDiFDiG =
∫ s

0
DuFDuGdu.
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We note that here the weights are used in order to obtain the Lebesgue measure.
Moreover, we have ∂y lnpi(y) = −y/(si − si−1), so

δi(U) = −
n∑

i=1

(
∂iui(V1, . . . , Vn)(si − si−1) − ui(V1, . . . , Vn)Vi

)
.

So we find out the standard Malliavin calculus.

REMARK 2.4. If [F,G]π = 0, the calculus presented here fits into the frame-
work introduced by Bouleau in [5]: in the notation there, the bilinear form
(F,G) → 〈DF,DG〉π leads to an error structure. A variety of examples and ap-
plications of these structures is discussed. That framework mainly focuses on the
error calculus, but examples of applications to sensitivity computations are also
given and an integration by parts formula is derived. This works well in the par-
ticular case of a one-dimensional functional. Moreover, the differential calculus
is based on a single noise Vi as in Corollary 2.2 below (so the weights πi do not
come into the nondegeneracy condition). In a more general framework, the non-
degeracy condition involves the weights πi , i ∈ N, and a more detailed analysis
must be undertaken (see the following section).

2.3. The integration by parts formula. We consider F = (F 1, . . . ,F d) ∈
Sd

(n,1)(A) and define


F (A) := {
G = σF × Q :Q ∈ Sd

(n,1)(A),Qi satisfy (2.6)
}
.

We think of G ∈ 
F (A) as a random direction in which F is nondegenerate (in
Malliavin’s sense).

The basic integration by parts formula is given in the following theorem.

THEOREM 2.1. Let F = (F 1, . . . ,F d) ∈ Sd
(n,2)(A) and G ∈ 
F (A), G =

σF × Q. Then

δ

(
d∑

i=1

QiDF i

)
,

[
φ(F ),

d∑
i=1

QiDF i

]
π

∈ L(1+)(A)

and for every φ ∈ C1
p(Rd), one has

E(〈�φ(F ),G〉1A) = E

(
φ(F )δ

(
d∑

i=1

QiDF i

)
1A

)
(2.10)

+ E

([
φ(F ),

d∑
i=1

QiDF i

]
π

1A

)
.
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PROOF. Using (2.8),

〈Dφ(F),DF i〉π =
d∑

j=1

∂jφ(F )〈DFj ,DF i〉π =
d∑

j=1

∂jφ(F )σ
ij
F .

Since G = σF × Q, we obtain

〈�φ(F ),G〉 =
d∑

j=1

∂jφ(F )Gj =
d∑

j=1

∂jφ(F )

d∑
i=1

Qiσ
ij
F

=
d∑

i=1

Qi
d∑

j=1

∂jφ(F )σ
ij
F =

d∑
i=1

Qi〈Dφ(F),DF i〉π .

Note that φ(F ) ∈ S(n,1)(A) and DFi ∈ P(n,1)(A). Since the Qi satisfy (2.6), one
may use the duality formula (2.7) and thereby obtain (2.10). �

We now give a nondegeneracy condition on σF which guarantees that all of the
directions are nondegenerate for F .

We assume that detσF �= 0 on A and define γF = σ−1
F . We also assume

that πl(detγF )2, π ′
l detγF ,πlπ

′
l (detγF )2 ∈ L(1+)(A) for every l = 1, . . . , n. This

means that there exists η > 0 such that

E
[
1A

(|πl|(detγF )2 + |π ′
l |(detγF + |πl|(detγF )2)

)1+η]
< ∞.(2.11)

LEMMA 2.3. Assume that (2.11) holds true and that F ∈ Sd
(n,2)(A). Then

Sd
(n,1)(A) ⊆ 
F (A).

PROOF. Let G ∈ Sd
(n,1)(A). Then G = σF × Q with Q = γF × G. We write

γ
ij
F = σ̂

ij
F × detγF , where σ̂

ij
F is the algebraic complement. It follows that Qi =

detγF × Si with Si = ∑d
j=1 Gj σ̂

ij
F .

Let us check that (2.6) holds true for Qi , i = 1, . . . , d . Since πl ∈ L(∞)(A)

and DlF
i ∈ L(∞)(A), one has σ̂

ij
F , detσF ∈ L(∞)(A) and since Gj ∈ L(∞)(A),

we have Si ∈ L(∞)(A). Moreover, by (2.11), πl detγF ∈ L(1+)(A), so πlQ
i =

(πl detγF )Si ∈ L(1+)(A).
We now check that Dl(πlQ

i) ∈ L(1+)(A). We write

Dlσ
ij
F = π ′

lDlF
iDlF

j +
n∑

k=1

πkDl(DkF
iDkF

j ).

Since F ∈ Sd
(n,2)(A), we have DlF

iDlF
j , Dl(DkF

iDkF
j ) ∈ L(∞)(A) and con-

sequently Dlσ
ij
F = θ1 + θ2π

′
l with θ1, θ2 ∈ L(∞)(A). Then Dl(detσF ) = µ + νπ ′

l

and DlS
i = µi + νiπ

′
l with µ, ν, µi , νi ∈ L(∞)(A).
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Using (2.11), we obtain

Dl(πlQ
i) = π ′

l detγF Si − πl(detγF )2Dl(detσF )Si + πl detγF DlS
i

= π ′
l detγF Si − πl(detγF )2(µ + νπ ′

l )S
i + πl detγF (µi + νiπ

′
l )

∈ L(1+)(A)

and the proof is complete. �

As a consequence, we obtain the following.

THEOREM 2.2. Let F = (F 1, . . . ,F d) ∈ Sd
(n,2)(A) and G ∈ S(n,1)(A). Sup-

pose that (2.11) holds true. Then

δ

(
G

d∑
j=1

γ
ji
F DFj

)
,

[
φ(F ),G

d∑
j=1

γ
ji
F DFj

]
π

∈ L(1+)(A)

and for every φ ∈ C1
p(Rd), one has

E(∂iφ(F )G1A) = E

[
φ(F )δ

(
G

d∑
j=1

γ
ji
F DFj

)
1A

]

+ E

([
φ(F ),G

d∑
j=1

γ
ji
F DFj

]
π

1A

)

for every i = 1, . . . , d.

Suppose that πl , l = 1, . . . , n, satisfy (2.3). Then

E(∂iφ(F )G1A) = E(φ(F )Hi(F,G)1A)

with

Hi(F,G) = δ

(
G

d∑
j=1

γ
ji
F DFj

)
=

d∑
j=1

(
Gγ

ji
F LF j − 〈D(Gγ

ji
F ),DF j 〉π )

.

PROOF. We take G̃ = (0, . . . ,0,G,0, . . . ,0) with G occupying the ith place
so that ∂iφ(F )G = 〈�φ(F ), G̃〉. In view of Lemma 2.3, G̃ ∈ 
F (A) and G̃ =
σF × Q, with Qj = Gγ

ji
F . One then employs Theorem 2.1. In order to obtain the

second equality in the expression for Hi(F,G), one employs (2.9). �

There is one particular situation in which the nondegeneracy condition (2.11)
does not involve the weights—when if F is one-dimensional and the integration by
parts formula is based on a single random variable Vi . We then have the following
corollary.
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COROLLARY 2.2. Let F = f (V1, . . . , Vn) ∈ S(n,2)(A) and G ∈ S(n,1)(A).
Suppose that there exists some l ∈ {1, . . . , n} such that

E
[
1A(DlF )−6(1+η)] < ∞(2.12)

for some η > 0. Consider the weights πi = 0 for i �= l and let πl be an arbi-
trary function which satisfies πl ∈ L(∞)(A) and π ′

l ∈ L(1+)(A). Then δ(GγF DF),
[φ(F ),GγF DF ]π ∈ L(1+)(A) and for every φ ∈ C1

p(R), one has

E(φ′(F )G1A) = E(φ(F )δ(GγF DF)1A) + E([φ(F ),GγF DF ]π1A).(2.13)

PROOF. Note that σF = πl(Vl)|DlF |2. We return to the proof of Theorem 2.1
and write G = QσF with

Q =


G

πl(Vl)|DlF |2 , if πl(Vl)|DlF |2 �= 0,

0, if πl(Vl)|DlF |2 = 0.

Then πl(Vl)Q = g(V1, . . . , Vn)/|DlF |2 and, as a consequence of the hypothesis
(2.12), one has πl(Vl)Q, ∂Vi

(π(Vl)Q) ∈ L(1+)(A), i = 1, . . . , n. So we may use
the duality relation to conclude the proof. �

3. Pure jump diffusions. In this section, we will use the integration by parts
formula presented in the previous section for a pure jump diffusion (St )t≥0. We
will use the notation from [14]. We consider a Poisson point measure N(dt, da) on
R with positive and finite intensity measure µ(da)×dt , that is, E(N([0, t]×A)) =
µ(A)t . We denote by Jt the counting process, that is, Jt := N([0, t] × R) and we
denote by Ti , i ∈ N, the jump times of Jt . We represent the above Poisson point
measure by means of a sequence �i , i ∈ N, of independent random variables with
law ν(da) = µ(R)−1 ×µ(da). This means that N([0, t]×A) = card{Ti ≤ t :�i ∈
A}.

We look at the solution St of the equation

St = x +
Jt∑

i=1

c(Ti,�i, ST −
i

) +
∫ t

0
g(r, Sr) dr,

(3.1)

= x +
∫ t

0

∫
R

c(s, a, Ss−) dN(s, a) +
∫ t

0
g(r, Sr) dr, 0 ≤ t ≤ T .

We will work under the following hypothesis.

HYPOTHESIS 3.1. The functions (t, x) → c(t, a, x) and x → g(t, x) are
twice differentiable and have bounded derivatives of first and second order. More-
over, we assume that they have linear growth with respect to x, uniformly with
respect to t and a, that is, |c(t, a, x)| + |g(t, x)| ≤ K(1 + |x|).
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On each set {Jt = n}, St is a simple functional of �1, . . . ,�n and T1, . . . , Tn.
In the first subsection, we present the deterministic calculus which permits us to
compute the Malliavin derivatives and in the following two subsections, we give
the integration by parts formula with respect to the amplitude of the jumps and
with respect to the jump times, separately. Finally, in the fourth subsection, we
briefly present the mixed calculus with respect to both.

We shall remain in the one-dimensional case (i.e., St ∈ R) because the multi-
dimensional case is more involved from a technical point of view. Our purpose is
to illustrate the way in which the integration by parts formula works for Poisson
point measures and to emphasize the specific difficulties. The heavy techniques
related to the multi-dimensional case would obscure these specific points, but the
machinery works just as well in this case.

3.1. The deterministic equation. We fix some deterministic 0 = u0 < u1 <

· · · < un < T and define u = (u1, . . . , un). We also fix a = (a1, . . . , an) ∈ R
n. To

these fixed numbers, we associate the deterministic equation

st = x +
Jt (u)∑
i=1

c(ui, ai, su−
i
) +

∫ t

0
g(r, sr) dr, 0 ≤ t ≤ T ,(3.2)

where Jt (u) = k if uk ≤ t < uk+1. We denote by st (u, a), or simply by st ,
the solution of this equation. This is the deterministic counterpart of our sto-
chastic equation. On the set {Jt = n}, the solution St of (3.1) is represented as
St = st (T1, . . . , Tn,�1, . . . ,�n).

In order to solve this equation, we introduce the flow � = �u(t, x), 0 ≤ u ≤ t ,
x ∈ R, which solves the ordinary integral equation

�u(t, x) = x +
∫ t

u
g(r,�u(r, x)) dr, t ≥ u.(3.3)

The solution s of the equation (3.2) is given by

s0 = x,

st = �ui
(t, sui

) for ui ≤ t < ui+1,(3.4)

sui+1 = su−
i+1

+ c(ui+1, ai+1, su−
i+1

)

= �ui
(ui+1, sui

) + c
(
ui+1, ai+1,�ui

(ui+1, sui
)
)
.

Our aim is to compute the derivatives of s with respect to uj , aj , j = 1, . . . , n.
We first introduce some notation. We define

eu,t (x) := exp
(∫ t

u
∂xg(r,�u(r, x)) dr

)
.

Since �ui
(r, sui

) = sr for ui ≤ r < ui+1, we have

eui,t (sui
) = exp

(∫ t

ui

∂xg(r, sr) dr

)
for ui ≤ t < ui+1.
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Since

∂x�u(t, x) = 1 +
∫ t

u
∂xg(r,�u(r, x)) ∂x�u(r, x) dr,

it follows that

∂x�u(t, x) = eu,t (x)

and since

∂u�u(t, x) = −g(u, x) +
∫ t

u
∂xg(r,�u(r, x)) ∂u�u(r, x) dr,

we have

∂u�u(t, x) = −g(u, x)eu,t (x).

Finally, we define

q(t, α, x) := (∂t c + g ∂xc)(t, α, x) + g(t, x) − g
(
t, x + c(t, α, x)

)
.

LEMMA 3.1. Suppose that Hypothesis 3.1 holds true. Then st (u, a) is twice
differentiable with respect to uj , j = 1, . . . , n, and with respect to aj , j = 1, . . . , n,
and we have the following explicit expressions for the derivatives.

A. Derivatives with respect to uj . For t < uj , ∂uj
st (u, a) = 0. Moreover,

∂uj
suj− = g(uj , suj−),

∂uj
suj

= (
∂tc + g(1 + ∂xc)

)
(uj , aj , suj−).

For uj < t < uj+1,

∂uj
st = q(uj , aj , suj−)euj ,t (suj

),

∂uj
suj+1− = q(uj , aj , suj−)euj ,uj+1(suj

),(3.5)

∂uj
suj+1 = q(uj , aj , suj−)

(
1 + ∂xc(uj+1, aj+1, suj+1−)

)
euj ,uj+1(suj

).

Finally, for p ≥ j + 1 and up ≤ t < up+1, we have the recurrence relations

∂uj
st = eup,t (sup) ∂uj

sup ,
(3.6)

∂uj
sup+1 = (

1 + ∂xc(up+1, ap+1, sup+1−)
)
eup,up+1(sup) ∂uj

sup .

Define T (f ) := ∂tf + g ∂xf . The second order derivatives are given by

∂2
uj

suj− = T (g)(uj , aj , suj−),

∂2
uj

suj
= T

(
∂tc + g(1 + ∂xc)

)
(uj , aj , suj−).

Define

ρj (t) = ∂uj
euj ,t (suj

)

= euj ,t (suj
)

(
−∂xg(uj , suj

) + q(uj , aj , suj−)

∫ t

uj

∂2
xg(r, sr)euj ,r (suj

) dr

)
.
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Then for uj < t < uj+1,

∂2
uj

st (u, a) = T (q)
(
uj , aj , suj−(u, a)

)
euj ,t (suj

) + q
(
uj , aj , suj−(u, a)

)
ρj (t)

and

∂2
uj

suj+1 = T (q)(uj , aj , suj−)(1 + ∂xc)(uj+1, aj+1, suj+1−)euj ,uj+1(suj
)

+ q2(uj , aj , suj−) ∂2
x c(uj+1, aj+1, suj+1−)e2

uj ,uj+1
(suj

)

+ q(uj , aj , suj−)(1 + ∂xc)(uj+1, aj+1, suj+1−)ρj (uj ).

For p ≥ j + 1, we define

ρj,p(t) = ∂uj
eup,t (sup) = eup,t (sup) ∂uj

sup

∫ t

up

∂2
xg(r, sr)eup,r (sup) dr.

Then for p ≥ j and up ≤ t < up+1, we have the recurrence relations

∂2
uj

st = eup,t (sup) ∂2
uj

sup + ρj,p(t, u, a) ∂uj
sup ,

∂2
uj

sup+1 = ∂2
x c(up+1, ap+1, sup+1−)(eup,up+1(sup) ∂uj

sup)2

+ (1 + ∂xc)(up+1, ap+1, sup+1−)

× (
ρj,p(up+1) ∂uj

sup + eup,up+1(sup) ∂2
uj

sup

)
.

B. Derivatives with respect to aj . For t < uj , ∂aj
suj

(u, a) = 0 and for t ≥ uj ,

∂aj
st (u, a) satisfies the equation

∂aj
st = ∂ac(uj , aj , suj−) +

Jt (u)∑
i=j+1

∂xc(ui, ai, sui−) ∂aj
sui−

(3.7)

+
∫ t

uj

∂xg(r, sr) ∂aj
sr dr.

The second-order derivatives satisfy

∂2
aj

st = ∂2
a c(uj , aj , suj−) +

Jt (u)∑
i=j+1

∂2
x c(ui, ai, sui−)(∂aj

sui−)2

+
∫ t

uj

∂2
xg(r, sr)(∂aj

sr )
2 dr(3.8)

+
Jt (u)∑

i=j+1

∂xc(ui, ai, sui−) ∂2
aj

sui− +
∫ t

uj

∂xg(r, sr) ∂2
aj

sr dr.
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PROOF. A. It is clear that for t < uj , st does not depend on uj and so ∂uj
st =

0. We now compute

∂uj
suj− = ∂uj

�uj−1(uj , suj−1) = g(uj ,�uj−1(uj , suj−1)) = g(uj , suj−).

Then

∂uj
suj

= ∂uj

(
suj− + c(uj , aj , suj−)

)
= ∂tc(uj , aj , suj−) + (

1 + ∂xc(uj , aj , suj−)
)
∂uj

suj−
= ∂tc(uj , aj , suj−) + (

1 + ∂xc(uj , aj , suj−)
)
g(uj , suj−).

For uj < t < uj+1, we have

∂uj
st = ∂uj

�uj
(t, suj

) = euj ,t (suj
)
(−g(uj , suj

) + ∂uj
suj

)
= euj ,t (suj

)
(−g(uj , suj

) + ∂tc(uj , aj , suj−)

+ (
1 + ∂xc(uj , aj , suj−)

)
g(uj , suj−)

)
= euj ,t (suj

)q(uj , aj , suj−)

and the same computation gives ∂uj
suj+1− = euj ,uj+1(suj

)q(uj , aj , suj−). Finally,

∂uj
suj+1 = (

1 + ∂xc(uj+1, aj+1, suj+1−)
)
∂uj

suj+1−
= (

1 + ∂xc(uj+1, aj+1, suj+1−)
)
euj ,uj+1(suj

)q(uj , aj , suj−).

We now assume that up ≤ t < up+1, p ≥ j + 1, and we write

∂uj
st = ∂uj

�up(t, sup) = eup,t (sup) ∂uj
sup .

The same computation gives ∂uj
sup+1− = eup,up+1(sup) ∂uj

sup . Finally, we have

∂uj
sup = ∂uj

(
sup− + c(up, ap, sup−)

) = (
1 + ∂xc(up, ap, sup−)

)
∂uj

sup−
= (

1 + ∂xc(up, ap, sup−)
)
eup−1,up (sup−1) ∂uj

sup−1

and the proof is complete for the first-order derivatives. The relations concerning
the second-order derivatives are obtained by direct computations.

B. Using the recurrence relations (3.4), one verifies that for every t ∈ [0, T ],
aj → st (u, a) is continuously differentiable and one may then differentiate in
equation (3.2) (this was not possible in the case of the derivatives with respect
to uj because these derivatives are not continuous). �

As an immediate consequence of the above lemma we obtain:

COROLLARY 3.1. Suppose that Hypothesis 3.1 holds true and that the start-
ing point x satisfies |x| ≤ K for some K . Then for each n ∈ N and T > 0, there
exists a constant Cn(K,T ) such that for every 0 < u1 < · · · < un < T , a ∈ R

n and
0 ≤ t ≤ T ,

max
j=1,...,n

(|st | + |∂uj
st | + |∂2

uj
st | + |∂aj

st | + |∂2
aj

st |)(u, a) ≤ Cn(K,T ).(3.9)
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Finally, we present a corollary which is useful in order to control the nondegen-
eracy.

COROLLARY 3.2. Assume that Hypothesis 3.1 holds true and there exists a
constant η > 0 such that for every (t, a, x) ∈ [0, T ] × R × R, one has

|1 + ∂xc(t, a, x)| ≥ η,
(3.10)

|q(t, a, x)| ≥ η.

Let n ∈ N be fixed. Then there exists a constant εn > 0 such that for every j =
1, . . . , n and every (u, a) ∈ [0, T ]n × R

n, we have,

inf
t>uj

|∂uj
st (u, a)| ≥ εn.(3.11)

PROOF. Since ∂xg is bounded, there exists a constant C > 0 such that
es,t (x) ≥ e−CT for 0 ≤ s < t ≤ T . One then employs (3.5) and (3.6). �

3.2. Integration by parts with respect to the amplitudes of the jumps. In this
section, we will use the integration by parts formula for St which will be regarded
as a simple functional of �i, i ∈ N. So, with the notation from Section 2, we have
Vi = �i and G = σ {Ti : i ∈ N}. We recall that Jt = n on {Tn ≤ t < Tn+1}. Then, on
{Jt = n}, we have

St = st (T1, . . . , Tn,�1, . . . ,�n),

where st is defined in the previous section [see (3.2)].
We assume that Hypotheses 3.1 and 2.1 [i.e., E(|�i |p) < ∞ for all p ∈ N] hold

true. Moreover, we consider some q0 < q1 < · · · < qk+1 and define

I =
k⋃

i=0

(qi, qi+1).

We assume the following.

HYPOTHESIS 3.2. The law of �i is absolutely continuous on I with respect
to the Lebesgue measure and has the density p(y) = 1I (y)eρ(y), that is,

E(f (�i)) =
∫
I
f (y)eρ(y) dy

for every measurable and positive function f .
The function ρ is assumed to be continuously differentiable and bounded on I .

Therefore, Hypothesis 2.2 holds true.
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Since ρ is not differentiable on the whole of R, we work with the following
weight. We take α ∈ (0,1) and β > α and we define

π(y) =
{

(qi+1 − y)α(y − qi)
α, for y ∈ (qi, qi+1), i = 0, . . . , k,

0, for y ∈ (q0, qk+1)
c.

We introduce the following convention: if b = qk+1 = +∞ or a = q0 = −∞, we
define

π(y) =
{

(y − qk)
α|y|−β, for y > qk ,

(q1 − y)α|y|−β, for y < q1.

Since α ∈ (0,1), we can show by elementary computations that π satisfies Hy-
pothesis 2.3, that is, π ∈ L(∞)(A) and π ′ ∈ L(1+)(A).

Let A := {Jt = n}. In view of (3.9),

(a1, . . . , an) → st (T1(ω), . . . , Tn(ω), a1, . . . , an)

is twice continuously differentiable and has bounded derivatives. It follows that
St ∈ S(n,2)(A).

The differential operators which appear in the integration by parts formula are

DiSt = ∂ai
st (T1, . . . , Tn,�1, . . . ,�n),

LSt = −
n∑

i=1

(
π(�i)∂

2
ai

st (T1, . . . , Tn,�1, . . . ,�n)

+
(
π ′ + π

ρ′

ρ

)
(�i) ∂ai

st (T1, . . . , Tn,�1, . . . ,�n)

)
,

σSt =
n∑

i=1

π(�i)|DiSt |2 =
n∑

i=1

π(�i)|∂ai
st (T1, . . . , Tn,�1, . . . ,�n)|2,

γSt = 1

σSt

= 1∑n
i=1 π(�i)|∂ai

st (T1, . . . , Tn,�1, . . . ,�n)|2 .

All of these quantities may be computed using (3.7) and (3.8).
The result which is used in sensitivity computations is the following.

PROPOSITION 3.1. Suppose that Hypotheses 3.1 and 3.2 hold true and, more-
over, suppose that there exists a positive constant η such that for every t, a, x, we
have

(i) |∂ac(t, a, x)| ≥ η,
(3.12)

(ii) |1 + ∂xc(t, a, x)| ≥ η.

Take α ∈ (0,1/2) and β > α. Then for every differentiable function φ : R → R

which has linear growth and for every n ≥ 1,

E
(
φ′(St ) ∂xSt1{Jt=n}

) = E
(
φ(St )Hn1{Jt=n}

)
,
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with, on {Jt = n},
Hn := Hn(St , ∂xSt )

= ∂xStγSt LSt − γSt 〈DSt,D(∂xSt )〉π − ∂xSt 〈DSt,DγSt 〉π .

PROOF. Let n ∈ N
∗ be fixed. We already know that St ∈ S(n,2)(A) with A =

{Jt = n}.
Moreover, ∂xSt = ∂xst (T1, . . . , Tn,�1, . . . ,�n) and ∂xst is computed by the

recurrence relations

∂xs0 = 1,

∂xst = (
1 + ∂xc(ui, ai, sui−)

)
∂xsui− +

∫ t

ui

∂xg(r, sr) ∂xsr dr, ui ≤ t < ui+1.

It is then easy to check that ∂xst and its derivatives with respect to ai , i = 1, . . . , n,
are bounded on the set {Jt = n} and consequently that ∂xSt ∈ S(n,1)(A).

• Suppose that n = 1. We will use Corollary 2.2, so we check that the nonde-
generacy condition (2.12) holds true. One has

∂a1st = ∂ac(u1, a1, su1−) +
∫ t

u1

∂xg(r, sr) ∂a1sr dr

so that, using (3.12),

|∂a1st | = |∂ac(u1, a1, su1−)| exp
(∫ t

u1

∂xg(r, sr)

)
≥ c

for some positive constant c. Inequality (2.12) then follows. Then the integra-
tion by parts formula (2.13) holds true for St and ∂xSt on the event A = {Jt =
1}. Moreover, by our choice of π , the border terms are canceled, which gives
E(φ′(St ) ∂xSt1{Jt=1}) = E(φ(St )H11{Jt=1}) with

H11{Jt=1} = δ(∂xStγtDSt )1{Jt=1}
= −∂a1(π(�1) ∂xStγSt DSt ) − π(�1) ∂ lnpγSt DSt ∂xSt1{Jt=1}.

On {Jt = 1}, we have

π(�1) ∂xStγSt DSt = π(�1) ∂xst (T1,�1) ∂a1st (T1,�1)

π(�1)|∂a1st (T1,�1)|2

= ∂xst (T1,�1)

∂a1st (T1,�1)
1I (�i).

• Now suppose that n ≥ 2. In this case, we will use Theorem 2.2, so we look at
the nondegeneracy condition (2.11). Since π is bounded, this amounts to finding
δ > 0 such that for i = 1, . . . , n,

E
[
1{Jt=n}

(
(1 + |π ′(�i)|)γ 2

St

)1+δ]
< ∞.(3.13)
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We recall that π(y) = ∑k
i=0(qi+1 − y)α(y − qi)

α1(qi ,qi+1)(y), so

π ′(y) =
{

α(qi+1 − y)α−1(y − qi)
α−1(qi − 2y + qi+1), if y ∈ (qi, qi+1),

0, if y ∈ (q0, qk+1)
c.

We choose δ > 0 such that 2α(1+δ) < 1 and (1−α)(1+δ) < 1 [which is possible
because α ∈ (0,1/2)]. In particular, since ρ is bounded on I and �i have finite
moments of any order, this gives

E
(
π(�i)

−2(1+δ)) < ∞ and E(|π ′(�i)|1+δ) < ∞.

The proof of (3.13) is different for i = n and i = 1, . . . , n − 1.
First, take i < n. One has |∂anst | = |∂ac(un, an, sun−)| exp(

∫ t
un

∂xg(r, sr)) ≥ c,
so σSt ≥ c2π2(�n). Since �i and �n are independent,

E
[
1{Jt=n}

((
1 + |π ′(�i)|)γ 2

St

)1+δ] ≤ c−2E
[
1{Jt=n}

((
1 + |π ′(�i)|)π−2(�n)

)1+δ]
= c−2E

(
π−2(1+δ)(�n)

)
E

[(
1 + |π ′(�i)|)1+δ]

< ∞.

Now, take i = n and write σSt ≥ π2(�n−1)|Dn−1St |2. A simple computation
shows that

∂an−1st = ∂ac(un−1, an−1, su−
n−1

)
(
1 + ∂xc(un, an, su−

n
)
)

exp
(∫ t

un−1

∂xg(r, sr) dr

)
.

Using (3.12), we obtain ∂an−1st ≥ c > 0, so σSt ≥ c2π2(�n−1). Consequently,

E
[
1{Jt=n}

((
1 + |π ′(�n)|)γ 2

St

)1+δ]
≤ c−2E

[
1{Jt=n}

((
1 + |π ′(�i)|)π−2(�n)

)1+δ]
= c−2E

(
π−2(1+δ)(�n−1)

)
E

[(
1 + |π ′(�n)|)1+δ]

< ∞
and the proof is complete. �

REMARK 3.1. Suppose now that ρ is differentiable on the whole of R. We
then take no weight, π = 1 and hypothesis (3.12)(i) gives σSt ≥ c on {Jt = n} for
all n ∈ N

∗. So the above integrability problems disappear. In particular, hypothe-
sis (3.12)(ii) is no longer necessary. This case is discussed in [1].

3.3. Integration by parts with respect to the jump times. In this section, we
differentiate with respect to the jump times Ti , i ∈ N. It is well known (see [2])
that conditionally to {Jt = n}, the law of the vector (T1, . . . , Tn) is absolutely con-
tinuous with respect to the Lebesgue measure and has the following density:

p(ω, t1, . . . , tn) = n!
tn

1{0<t1<···<tn<t}(t1, . . . , tn)1{Jt (ω)=n}.
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In particular, for a given i = 1, . . . , n, conditionally to {Jt = n} and to {Tj , j �= i},
Ti is uniformly distributed on [Ti−1(ω), Ti+1(ω)]. Therefore, it has the density
(with the convention T0 = 0, Tn+1 = t)

pi(ω,u) = 1

Ti+1(ω) − Ti−1(ω)
1[Ti−1(ω),Ti+1(ω)](u) du, i = 1, . . . , n.

Since pi is not differentiable with respect to u, we must use the following weights:

πi(ω,u) = (
Ti+1(ω) − u

)α(
u − Ti−1(ω)

)α1[Ti−1(ω),Ti+1(ω)](u), i = 1, . . . , n,

with α ∈ (0,1/2).
In order to fit with the notation from the first section, we take Vi = Ti , ki = 2,

t1
i = Ti−1 and t2

i = Ti+1. We have G = σ(�i, i ∈ N) ∨ σ(Jt ). We fix n and
work on the set A = {Jt = n}. Hypotheses 2.1, 2.2 and 2.3 then hold true and
St = st (T1, . . . , Tn,�1(ω), . . . ,�n(ω)). So St is a simple functional and the func-
tion which represents St is twice differentiable and has continuous derivatives on
the whole of R

n. The differential operators are

DiSt = ∂ui
st (T1, . . . , Tn,�1(ω), . . . ,�n(ω)),

σSt =
n∑

i=1

πi(ω,Ti)|∂ui
st (T1, . . . , Tn,�1(ω), . . . ,�n(ω))|2,

LiSt = −(π ′
i ∂ui

st + πi ∂
2
ui

st )(T1, . . . , Tn,�1(ω), . . . ,�n(ω))

and all of these quantities may be computed using Lemma 3.1.

PROPOSITION 3.2. Suppose that Hypothesis 3.1 holds true. Suppose, more-
over, that (3.10) is satisfied, that is, that

|q(t, a, x)| ≥ η > 0,

|(1 + ∂xc)(t, a, x)| ≥ η > 0

for some η > 0. Take α ∈ (0, 1
2). Then for every n ≥ 4 and every continuously

differentiable function φ which has linear growth, we have

E
(
φ′(St ) ∂xSt1{Jt=n}

) = E
(
φ(St )Hn1{Jt=n}

)
with, on {Jt = n},

Hn := Hn(St , ∂xSt )

= ∂xStγSt LSt − γSt 〈DSt,D(∂xSt )〉π − ∂xSt 〈DSt,DγSt 〉π .

PROOF. From (3.9), we know that st (u, a) and its derivatives up to order
two with respect to ui , i = 1, . . . , n, are bounded on [0, T ]n. It follows that
St ∈ S(n,2)(A).
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Since πi are bounded, the nondegeneracy condition (2.11) amounts to

E
[
1{Jt=n}γ 2(1+η)

St

]
< ∞ and E

[
1{Jt=n}γ 2(1+η)

St
|π ′

i (Ti)|1+η]
< ∞

for some η > 0.
Let us prove that E[1{Jt=n}γ 2(1+η)

St
|π ′

i (Ti)|1+η] < ∞. We define δi = Ti − Ti−1
and δn+1 = T − Tn, so that πi = δα

i δα
i+1. We use (3.11) in order to obtain

σSt =
n∑

i=1

δα
i+1δ

α
i |∂ui

st (T1, . . . , Tn,�1, . . . ,�n)|2 ≥ ε2
n∑

i=1

δα
i+1δ

α
i .

Since π ′
i (Ti) = α(−δα−1

i+1 δα
i + δα

i+1δ
α−1
i ), we must check that, for every i =

1, . . . , n,

E

[
(δα−1

i δα
i+1 + δα

i δα−1
i+1 )1+η

(
n∑

j=1

δα
j+1δ

α
j

)−2(1+η)]
< ∞.

Take i = 1 and write

E

[
(δα−1

1 δα
2 )1+η

(
n∑

j=1

δα
j+1δ

α
j

)−2(1+η)]
≤ E

[
(δα−1

1 δα
2 )1+η(δα

2 δα
3 )−2(1+η)]

= E
(
δ
(α−1)(1+η)
1

)
E

(
δ
−α(1+η)
2

)
E

(
δ
−2α(1+η)
3

)
.

Since δi is exponentially distributed of parameter µ(R), a necessary and sufficient
condition in order to have E(δ

−p
i ) < ∞ is p < 1. We then choose η sufficiently

small that (1 − α)(1 + η) < 1 and α(1 + η) < 2α(1 + η) < 1 (which is possible
because 0 < α < 1/2) and we have E(δ

(α−1)(1+η)
1 ) < ∞, E(δ

−α(1+η)
2 ) < ∞ and

E(δ
−2α(1+η)
3 ) < ∞. So

E

[
(δα−1

1 δα
2 )1+η

(
n∑

j=1

δα
j+1δ

α
j

)−2(1+η)]
< ∞.

We now write

E

[
(δα

1 δα−1
2 )1+η

(
n∑

j=1

δα
j+1δ

α
j

)−2(1+η)]

≤ E
[
(δα

1 δα−1
2 )1+η(δα

3 δα
4 )−2(1+η)]

= E
(
δ
(α−1)(1+η)
2

)
E

(
δ
α(1+η)
1

)
E

(
δ
−2α(1+η)
3

)
E

(
δ
−2α(1+η)
4

)
.

Recalling that δi has finite moments of any order, by the choice of η, we obtain

E

[
(δα

1 δα−1
2 )1+η

(
n∑

j=1

δα
j+1δ

α
j

)−2(1+η)]
< ∞.
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Since n ≥ 4, the same argument works for i = 2, . . . , n and leads to E[1{Jt=n} ×
γ

2(1+η)
St

] < ∞. �

REMARK 3.2. Suppose that n = 2. Then

(δα−1
1 δα

2 )1+η

(
n∑

j=1

δα
j+1δ

α
j

)−2(1+η)

= (δα−1
1 δα

2 )1+ηδ
−2α(1+η)
2 (δα

1 + δα
3 )−2(1+η)

= δ
−α(1+η)
2 × (

δ
−(α+1)(1+η)
1 + δ

−2α(1+η)
3 δ

−(1−α)(1+η)
1

)
and this quantity is not integrable for α > 0, η > 0.

REMARK 3.3. For n = 1, one may use Corollary 2.2 in order to obtain an
integration by parts formula.

But for n = 2 and n = 3, we are not able to handle the nondegeneracy problem.
In our numerical examples, we will use the noise coming from the amplitudes of
the jumps in order to solve the problem for n = 2 and n = 3.

3.3.1. Examples. • We consider the geometrical model

dSt = St

(
rdt + α(t, a) dN(t, a)

)
.

In this case, g(t, x) = xr and c(t, a, x) = xα(t, a). It follows that

q(t, a, x) = x ∂tα(t, a) + xrα(t, a) + xr − r
(
x + xα(t, a)

) = x ∂tα(t, a).

In particular, if α does not depend on the time, the model is degenerate from the
point of view of the jump times. The nondegeneracy condition becomes

|∂tα(t, a)| ≥ ε.

On the other hand, the condition |1 + ∂xc(t, a, x)| ≥ η becomes

|1 + α(t, a)| ≥ η.

• We now consider the following Vasicek-type model:

dSt = Str dt + α(t, a) dN(t, a).

In this case, g(t, x) = xr and c(t, a, x) = α(t, a). It follows that

q(t, a, x) = ∂tα(t, a) + xr − r
(
x + α(t, a)

) = ∂tα(t, a) − rα(t, a).

Suppose that α does not depend on the time so that ∂tα = 0. Then the nondegen-
eracy assumption becomes

|α(a)| ≥ ε.

The condition |1 + ∂xc(t, a, x)| ≥ η becomes

|1 + α(a)| ≥ η.
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3.4. Mixed calculus. In this section, we briefly present the differential calcu-
lus with respect to both noises coming from the jump amplitudes and from the
jump times. So the random variables will be Vi = Ti, i = 1, . . . , n, Vn+i = �i ,
i = 1, . . . , n, and G = σ(Jt ). We combine the results from the two previous
sections (and we keep the notation therefrom). We still assume Hypotheses 3.1
and 3.2. The differential operators are

DiSt =
{

∂ui
st (u1, . . . , un,�1(ω), . . . ,�n(ω)), i = 1, . . . , n,

∂ai−n
st (T1, . . . , Tn,�1, . . . ,�n), i = n + 1, . . . ,2n.

We will use the weights defined in the previous sections, namely

πi(ω,u) = (
Ti+1(ω) − u

)α(
u − Ti−1(ω)

)α1[Ti−1(ω),Ti+1(ω)](u), i = 1, . . . , n,

πi(y) = π(y) =
k−1∑
p=1

(qp+1 − y)α(y − qp)α1(qp,qp+1)(y), i = n + 1, . . . ,2n,

where α ∈ (0, 1
2).

We have

LiSt =
{−(

π ′
i (Ti) ∂ui

st + πi(Ti) ∂2
ui

st
)
, for i = 1, . . . , n,

−(
π(�i) ∂2

ai
st + (π ′ + πρ′)(�i) ∂ai

st
)
, for i = n + 1, . . . ,2n.

Finally, LSt = ∑2n
i=1 LiSt . All of these quantities may be computed using the for-

mulas from the previous sections.

THEOREM 3.1. Suppose that Hypotheses 3.1 and 3.2 hold true and that

(i) |q(t, a, x)| ≥ ε > 0,

(ii) |∂ac(t, a, x)| ≥ ε > 0,

(iii) |(1 + ∂xc)(t, a, x)| ≥ ε > 0.

Then for every n ≥ 1 and every continuously differentiable function φ which has
linear growth, we have

E
(
φ′(St ) ∂xSt1{Jt=n}

) = E
(
φ(St )Hn1{Jt=n}

)
with, on {Jt = n},

Hn := Hn(St , ∂xSt )

= ∂xStγSt LSt − γSt 〈DSt,D(∂xSt )〉π − ∂xSt 〈DSt,DγSt 〉π .

PROOF. We write

σSt ≥ (
πn(ω,Tn)|∂unst |2 + π(�n)|∂anst |2

)
(T1, . . . , Tn,�1, . . . ,�n)

≥ ε2(
πn(ω,Tn) + π(�n)

)



58 V. BALLY, M.-P. BAVOUZET AND M. MESSAOUD

for some ε > 0. Then, using the same techniques as in the proofs of Proposi-
tions 3.2 and 3.1, one shows that the nondegeneracy (2.11) condition holds true.

�

REMARK 3.4. Note that the nondegeneracy condition holds true for every n

(including n = 2) because we may use the noises coming from the jump times and
the jump amplitudes at the same time.

4. Numerical results.

4.1. Malliavin estimator. In this section, we compute the Delta of two Euro-
pean options: call option with payoff φ(x) = (x − K)+ and digital option with
payoff φ(x) = 1x≥K . The asset (St )t≥0 follows a one-dimensional pure jump dif-
fusion process. We use the notation from the beginning of Section 3.

We deal with two different pure jump diffusion models. The first is a Vasicek-
type model,

St = x −
∫ t

0
r(Su − α)du +

Jt∑
i=1

σ�i,(4.1)

and the second is a geometrical model,

St = x +
∫ t

0
rSu du + σ

Jt∑
i=1

ST −
i

�i.(4.2)

In both models, we take �i ∼ N (0,1), i ≥ 1. That is, for all i ≥ 1, �i has the
density p(x) = 1√

2π
eρ(x) with ρ(x) = −x2

2 . Note that even if ρ is not bounded on
R, the integration by parts formula holds by a truncation argument.

Our aim is to compute ∂xE(φ(ST )) using the integration by parts formula de-
rived in the previous sections. We write

∂xE(φ(ST )) = E(φ′(ST ) ∂xST )

= E
(
φ′(ST ) ∂xST 1{JT =0}

) +
∞∑

n=1

E
(
φ′(ST ) ∂xST 1{JT =n}

)
.

For n ≥ 1, we use the integration by parts formula on {JT = n} and obtain

E
(
φ′(ST ) ∂xST 1{JT =n}

) = E
(
φ(ST )Hn1{JT =n}

)
,

where Hn is a weight involving Malliavin derivatives of ST and ∂xST . Summing
over n = 1,2, . . . , we obtain

∂xE(φ(ST )) = E
(
φ′(ST )∂xST 1{JT =0}

) + E
(
φ(ST )HJT

(ST , ∂xST )1{JT ≥1}
)
.

In order to compute the two terms in the right-hand side of the above equality,
we proceed as follows. On {JT = 0}, there is no jump on ]0, T ], thus ST and
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∂xST solve some deterministic integral equation. In the examples that we con-
sidered in this paper, the solutions of these equations are explicit, so this term
is explicitly known. We may use the finite difference method. For the computa-
tion of the second term, we use a Monte Carlo algorithm. We simulate a sample
((T k

n )n∈N, (�k
n)n∈N), k = 1, . . . ,M , of the times and the amplitudes of the jumps

and we compute the corresponding J k
t , Sk

T and Hk

Jk
T

. We then write

E
(
φ(ST )HJT

(ST , ∂xST )1{JT ≥1}
) � 1

M

M∑
k=1

φ(Sk
T )Hk

J k
T

1{J k
T ≥1}.

We now compute the Malliavin weights Hk
JT

(Sk
T , ∂xS

k
T ) for our examples. One

may use Lemma 3.1, but in the particular cases that we discuss here, we have
explicit solutions, so direct computations are much easier.

• We first study the diffusion process defined by (4.1). We have the following
explicit expression for ST on {JT = n}:

ST = xe−rT + α(1 − e−rT ) + σ

n∑
j=1

�je
−r(T −Tj ).(4.3)

We may use integration by parts with respect to the jump amplitudes, to the jump
times or to both of them.

∗ Jump amplitudes: HJT
has been calculated in [1]. Since �i is Gaussian dis-

tributed for all i, the weight is π(ω,�i) = 1 and on {JT = n},

Hn(ST , ∂xST ) =
∑n

j=1 erTj �j

σ
∑n

j=1 e2rTj
.(4.4)

∗ Jump times: suppose that n ≥ 4 and JT = n. We use the weights πi(ω,Ti) =
(Ti+1 − Ti)

α(Ti − Ti−1)
α and we have π ′

i = αδα−1
i+1 δα−1

i (δi+1 − δi), where δi =
Ti − Ti−1. Then

DiST = σ�ire
−r(T −Ti)

and

LiST = −σr�ie
−r(T −Ti)

(
rπi + α(δi+1δi)

α−1(δi+1 − δi)
)
,

σST
=

n∑
i=1

πi(σ r)2�2
i e

−2r(T −Ti).

We define

Aj = α(δj+1δj )
α−1�2

j e
2rTj ,

Bj = �2
j e

2rTj [2rπj + α(δj+1δj )
α−1(δj+1 − δj )].
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Then

DjσST
= (σ r)2e−2rT (Aj−1δj−1 − Aj+1δj+2 + Bj).

Moreover, ∂xST = e−rT so that Di ∂xST = 0 for all i = 1, . . . , n.
We now have the expression for all of the terms involved in Hn and we obtain

Hn =
∑n

i=1 �ie
rTi (rπi + α(δi+1δi)

α−1(δi+1 − δi))

σ rσ̂
(4.5)

−
∑n

i=1 πi�ie
rTi (Ai−1δi−1 − Ai+1δi+2 + Bi)

σ rσ̂ 2 ,

where σ̂ = ∑n
i=1 πi�

2
i e

2rTi .
For n = 1,2,3, we use integration by parts with respect to �1 only. Similar

computations then give

Hn = e−rT1

σ�1
.

• We study the jump diffusion process defined by (4.2). On {JT = n}, we have

ST = xerT
n∏

j=1

(1 + σ�j ).

We may not use integration by parts with respect to the jump times because ST

depends on T1, . . . , Tk by means of Jt only. Therefore, we use the integration by
parts formula with respect to the jump amplitudes only. On {JT = n}, the Malliavin
weight is, in this case (see [1]),

Hn(ST , ∂xST ) = Bσ

σxAσ

+ 1

x
− 2Cσ

xA2
σ

,(4.6)

where

Aσ =
n∑

j=1

1

(1 + σ�j )2 , Bσ =
n∑

j=1

�j

(1 + σ�j)

and

Cσ =
n∑

j=1

1

(1 + σ�j)4 .

5. Numerical experiments. In this section, we present several numerical ex-
periments in order to compare the Malliavin approach to the finite difference
method. We use the geometrical model and the Vasicek-type model and, in the
latter, we use the Malliavin calculus with respect to the amplitudes of the jump
and to the jump times. We also look at two types of payoff: call options and digital
options.
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FIG. 1. Vasicek-type model. Delta of a European call option using Malliavin calculus based on
jump times, on jump amplitudes and finite difference method.

The comparison is illustrated by some graphs (see Figures 1–3) on one hand and
by empirical variance tables (see Tables 1–3) on the other. In Tables 1–3, we give
the empirical variance of the two estimators denoted Var Mall and Var Diff and we

TABLE 1
Variance of the Malliavin JT estimator, AJ estimator and of the FD for call option in the

Vasicek-type model

σ Variance(ST ) Var MallJT Var MallAJ Var Diff

15.8114 796.241 0.0285123 0.0106426 0.0300379
16.6667 897.577 0.0417219 0.0115955 0.0298567
17.6777 991.453 0.0400695 0.013123 0.0298904
18.8982 1134.11 0.0410136 0.0144516 0.0299574
20.4124 1313.42 0.0433065 0.0162378 0.029862
22.3607 1584.9 0.0400481 0.0178726 0.0298987
25 1967.53 0.0407136 0.0202055 0.0299007
28.8675 2604.22 0.0362728 0.0224265 0.0299651
35.3553 3961.31 0.0343158 0.0253757 0.0297775
50 7890.4 0.0333298 0.0287716 0.0299749
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FIG. 2. Vasicek-type model. Delta of an European digital option using Malliavin calculus based
on the jump amplitudes, on the jump times and finite difference method.

compare them. We also include in our tables the value of the volatility σ that we
use and the corresponding variance of the underlying, denoted by Variance(St ).
We choose the parameter σ in the following way.

TABLE 2
Vasicek-type model. Variance of the Malliavin JT estimator,

AJ estimator and of the FD for digital option

σ Variance(ST) Var MallJT Var MallAJ Var Diff

15.8114 796.241 0.00144622 7.18878e–5 0.00514743
16.6667 897.577 0.00254652 7.3629e–5 0.00459619
17.6777 991.453 0.0018011 7.85552e–5 0.00496369
18.8982 1134.11 0.0109864 8.14005e–5 0.00477995
20.4124 1313.42 0.00177648 8.1627e–5 0.00386111
22.3607 1584.9 0.00152777 8.06193e–5 0.00496369
25 1967.53 0.0013786 7.94341e–5 0.0062497
28.8675 2604.22 0.00100181 7.5835e–5 0.00551488
35.3553 3961.31 0.000617271 6.95225e–5 0.00459619
50 7890.4 0.000373802 5.64325e–5 0.00533116
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FIG. 3. Geometrical model. Delta of an European digital option using Malliavin calculus based
on the jump amplitudes and finite difference method.

• For the geometrical model, the variance of St is

Variance(St ) = x2e2rt (eσ 2λt − 1).

We take λ = 1, r = 0.1, T = 5 and x = 100. Then for σ ∈ [0.1,0.6], 1393.69 ≤
Variance(ST ) ≤ 137264.

TABLE 3
Variance of the Malliavin estimator of the Delta and variance of the FD for digital option

σ Variance(ST) Var Mall Var Diff

0.1 1405.06 0.000263425 0.00102718
0.2 6183.72 0.000917207 0.00164801
0.3 16005.5 0.000885212 0.00117345
0.4 42590.8 0.000685313 0.0013196
0.5 69018.7 0.000531118 0.000917399
0.6 130425 0.000310461 0.0003307
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• For the Vasicek-type model, we have

Variance(St ) = 2αe−2rt (x − α) + λσ 2

2r
(1 − e−2rt ).

We take λ = 1, r = 0.1, T = 5, α = 10 and x = 100. Then for σ ∈ [16,50]
(note that the practitioners use σ = 20 to 30 in the short-term rate modeling),
1471.3 ≤ Variance(ST ) ≤ 8563.69.

In all of our simulations, we have used a variance reduction method based on lo-
calization (analogous to the one introduced in [13] and [12]). We use the following
abbreviations:

• AJ: amplitude of the jumps.
• JT: jump times.
• FD: finite differences.
• G: geometrical model.
• V: Vasicek-type model.
• Call: call option.
• Dig: digital option.

(G/Dig/AJ) then means that we are in the geometrical model (G) with a digital
option (Dig) and we use an algorithm based on the amplitudes of the jumps (AJ).
(G/Dig/AJ) versus (G/Dig/FD) means that we compare these two estimators.

5.1. Numerical results for the Vasicek-type model. Here, we compare the
Delta of European call and digital options obtained by using Malliavin calculus
on the one hand and finite difference method on the other hand.

• (V/Call/AJ) versus (V/Call/JT) versus (V/Call/FD).
• (V/Dig/AJ) versus (V/Dig/JT) versus (V/Dig/FD).

In the call options case, both the graph and the variance table show that the
Malliavin estimators and the finite difference variances are very close. The meth-
ods then give comparable results.

In the digital options case, the algorithm based on Malliavin calculus is signifi-
cantly better than the one based on finite difference. We also note that the Malliavin
estimator using jump amplitudes gives less variance than the one based on jump
times.

5.2. Numerical results for the geometrical model. These are similar to those
of the Vasicek-type model, as we can see for digital options.

(G/Dig/AJ) versus (G/Dig/FD).
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5.3. Conclusions.

• For a smooth payoff (as the call), the algorithms based on the Malliavin calculus
(with respect to the jump times or amplitudes) give comparable results to those
based on the finite difference method.

• For a discontinuous payoff (as in the digital options), the algorithms based on
Malliavin calculus give significantly better results than those based on the finite
difference method.
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