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A SIMPLE PROOF OF KAIJSER’S UNIQUE ERGODICITY RESULT
FOR HIDDEN MARKOV α-CHAINS

BY FRED KOCHMAN AND JIM REEDS

Center for Communications Research

According to a 1975 result of T. Kaijser, if some nonvanishing product
of hidden Markov model (HMM) stepping matrices is subrectangular, and
the underlying chain is aperiodic, the corresponding α-chain has a unique
invariant limiting measure λ.

Here the α-chain {αn} = {(αni)} is given by

αni = P(Xn = i|Yn,Yn−1, . . .),

where {(Xn,Yn)} is a finite state HMM with unobserved Markov chain com-
ponent {Xn} and observed output component {Yn}. This defines {αn} as a sto-
chastic process taking values in the probability simplex. It is not hard to see
that {αn} is itself a Markov chain. The stepping matrices M(y) = (M(y)ij )

give the probability that (Xn,Yn) = (j, y), conditional on Xn−1 = i. A ma-
trix is said to be subrectangular if the locations of its nonzero entries forms a
cartesian product of a set of row indices and a set of column indices.

Kaijser’s result is based on an application of the Furstenberg–Kesten the-
ory to the random matrix products M(Y1)M(Y2) · · ·M(Yn). In this paper we
prove a slightly stronger form of Kaijser’s theorem with a simpler argument,
exploiting the theory of e chains.

1. Introduction. In 1975 Kaijser [9] gave a simple sufficient condition for
the uniqueness of the invariant measure for the so-called α-chain, a certain weak
Feller chain with compact state space arising in the study of an arbitrary finite
state hidden Markov model. This provided an elegant partial answer to a question
posed by David Blackwell in 1957 [3]. (We follow Blackwell in using αn to denote
the state of the α-chain at time n. Kaijser calls it Zn.) The transition behavior of
a finite state hidden Markov model (HMM) and of its associated α-chain can be
specified by a finite collection of substochastic matrices, the stepping matrices;
and probability calculations with HMMs involve, at least conceptually, lengthy
matrix products of stepping matrices. Accordingly, Kaijser’s analysis utilized the
Furstenburg–Kesten theory [6] of random matrix products. However, by exploiting
the theory of e-chains, in particular Theorem 18.4.4 of [11], we are able to give
a simpler proof of a result slightly stronger than that in [9].

Briefly, an HMM [2] consists of a pair of stochastic processes, {Xn} and {Yn},
taking values in finite sets X and Y, such that {Xn} is a Markov chain and each
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Yn is a probabilistic function of (Xn−1,Xn). In modeling applications [5, 10], the
“observable” marginal process {Yn} is “output” from the “hidden” process {Xn}.

The transition structure of (Xn,Yn) can be specified by the stepping matrices
M(y) = (M(y)ij ), given by

M(y)ij = P
(
(Xn+1, Yn+1) = (j, y)|Xn = i

);
their sum M = ∑

y M(y) is equal to the transition matrix of the Markov
chain {Xn}.

Let � be the finite-dimensional simplex of probability measures on X, and
provisionally set α0 ∈ � to be the marginal distribution of X0 and, for n ≥ 0, set
αn ∈ � to be the conditional distribution of Xn given {Yt : 1 ≤ t ≤ n}. It can be
shown [3, 9], that {αn} is a Markov chain with � as its (continuous) state space.

Blackwell [3] first studied the α-chain and posed the question of when its transi-
tion law has a unique invariant measure. His partial answer is based on contractiv-
ity hypotheses far stronger than Kaijser’s hypotheses, or ours. For Blackwell, αn is
the conditional distribution of Xn given the infinite past {Yt :−∞ < t ≤ n}, where
now {Xn} is assumed to be stationary, so {αn} is stationary as well. This {αn} is
again a Markov chain, with the same transition law as the provisional {αn} defined
above. (Blackwell’s motivation for studying the α-chain is a formula expressing
the entropy of {Yn} in terms of the distribution of his version of αn.) By starting
the α-chain in the infinite past, so it is in effect born stationary, Blackwell avoids
questions of convergence to a limiting distribution. But by allowing the X chain to
start at finite time t = 0, with arbitrary distribution, Kaijser opens the possibility
that the α-chain could be nonstationary, which, in turn, raises the additional ques-
tion about whether the finite-time distributions of αn converge to a stationary limit
measure. These two versions of the α-chain have the same transition mechanism,
but usually different initial or marginal distributions on �.

For our result, we allow {αn} to have any initial distribution on � at time t = 0,
but with the same transition law as above. Of course, this destroys the original
motivating interpretation of αn as a conditional distribution of Xn; but it is the
(unchanged) transition mechanism whose properties are of primary interest to us,
rather than any particular realization of the chain.

We now prepare to state Kaijser’s result. Following Kaijser, call a nonnegative
matrix (Dij ) subrectangular if the set of subscript pairs (i, j) with Dij > 0 forms
a Cartesian product, that is, if there exist sets R and C of row and column sub-
scripts so that Dij > 0 if and only if (i, j) ∈ R × C. Call the matrix M (and the
chain {Xn}) irreducible if for every pair of subscripts (i, j), there is some k [whose
value may depend on (i, j)] for which (Mk)ij > 0. If there is a single value of k

such that for all (i, j) we have (Mk)ij > 0, the matrix M (and the chain {Xn}) are
said to be aperiodic.

With this terminology, the result is (slightly paraphrased):
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THEOREM A ([9]). Suppose the transition matrix M is aperiodic. Suppose
some nonzero product of stepping matrices is subrectangular. Then the probability
distribution of αn converges weakly to a unique limit measure, independent of the
initial distribution for α0.

Kaijser’s argument is along the following lines. A path for the chain {αn}, start-
ing from α0, can be written as

α0,
α0M(Y1)

α0M(Y1)e
,

α0M(Y1)M(Y2)

α0M(Y1)M(Y2)e
, . . . ,

α0M(Y1)M(Y2) · · ·M(Yk)

α0M(Y1)M(Y2) · · ·M(Yk)e
, · · · ,

where {Yn} is the marginal process defined above and e is the column vector of
all 1’s. Since the sequence {M(Yn)} of matrices is itself a stochastic process,
Kaijser was able to cleverly adapt methods of the Furstenberg–Kesten theory to
the present subject.

However, we have a different line of argument, based on the theory of e-chains,
which we think is ultimately easier to understand. We replace the subrectangularity
condition with the following, which we will show to be weaker. Let M be the set
of stepping matrices, let M∗ be the set of all finite products of elements of M, and
let C = R

+M∗ be the cone on M∗, that is, all positive scalar multiples of elements
of M∗. Our condition is that the closure, C, should contain a matrix of rank 1.

A very brief sketch of our argument is as follows.
First, in Theorem 1 we show our key technical result, that for an arbitrary

transition matrix M and arbitrary decomposition into stepping matrices, {αn} is
an e-chain, in the sense of [11], page 144. Then we exploit the associated limit
theory. Namely, given our rank 1 hypothesis, when the matrix M is irreducible,
we show that the state space � possesses a topologically reachable point v, in
the sense of [11], page 455. Further, if M is also aperiodic, then v must be topo-
logically aperiodic in the sense of [11], page 459, as well. Since � is compact,
Theorem 18.4.4 of [11], page 460, immediately applies, yielding the proof of our
main result:

THEOREM 2. Let the matrix M be irreducible. Suppose there exists a rank 1
element of C. Then TM has a unique stationary distribution λ, and (T ∗

M)nµ −→ λ

weakly in Cesaro mean, for each probability measure µ on �. If, in addition, M is
aperiodic, then also (T ∗

M)nµ −→ λ weakly, for each probability measure µ on �.

[Here TM denotes the Markov operator on C(�) associated with the α-chain.]
Finally, we derive Kaijser’s Theorem A from our Theorem 2, by showing that if

his subrectanglarity hypothesis is true, so is our rank 1 hypothesis.
We conclude the paper with three calculations. The first shows that aperiodic-

ity of M , by itself, does not imply uniqueness of the stationary measure for the
α-chain. Another shows that in Kaijser’s theorem the condition of aperiodicity
cannot be replaced with that of irreducibility. The third shows that an example
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of Kaijser’s, while not satisfying the conditions of his result (Theorem A), does
satisfy the conditions of ours (Theorem 2).

We now address the relation of this work to “random systems with complete
connections” [4] and Chapter 2 of [8] and “place dependent random iterated func-
tion systems” (IFS) [1]. The α-chain seems—ignoring technicalities—to fall un-
der the scope of these theories, so one might suppose Kaijser’s theorem followed
as a corollary of standard IFS results. We have, however, been unable to derive
Kaijser’s results this way. Our main obstacle is that the state update functions for
α-chains are only defined, in general, on open dense subsets of � and need not
extend continuously to all of �; nor do they seem to satisfy the conventional con-
tractivity or mean contractivity hypotheses imposed in the IFS literature. Since we
ultimately rely on the classical Perron theorem for aperiodic matrices, we too are
exploiting a kind of contractivity; the difference seems to be that it enters at a later
stage of the argument.

In common with Kaijser’s argument, ours does exploit the special role played
by matrix products in α-chain calculations. We find it striking how smoothly the
theory of e-chains may be applied without clutter to the matrix product formula-
tion, once the necessary ground work is completed. There does not seem to be any
easy analogue of this matrix product structure in the generic IFS example.

2. Notation, formulae. Let X and Y be finite sets, with s = |X|, and let
� ⊂ R

s be the simplex of probability measures on X. Let e be the s-long column
vector of all 1’s. Let C(�) be the space of all continuous real-valued functions
on �, with the sup-norm topology. Let P (�) denote the probability measures on
�, equipped with with the weak topology. Let M = {M(y) :y ∈ Y} be a fam-
ily of nonnegative matrices whose sum, M = ∑

y M(y), is a Markov transition
matrix; so the stepping matrices M(y) are substochastic. Let M∗ be the set of
finite products of elements of M. As a convenience, we will use notations like
y = y1, y2, . . . , yn ∈ Yn to denote finite sequences of elements of Y. If y ∈ Mn,
let |y| = n denote its length. If y = y1, y2, . . . , yn ∈ Yn, we will let M(y) be short-
hand for the matrix product M(y1)M(y2) · · ·M(yn). We use the term word to refer
(indiscriminately) to tuples y or matrix products M(y).

For each µ ∈ P (�), the α-chain may be concisely defined as follows: Pick α0
according to µ; conditional on α0, pick {Yn} so that P(Y1 = y1, . . . , Yn = yn) =
α0M(y0) · · ·M(yn)e, and then conditional on α0 and Y1, . . . , Yn, define {αn} to
satisfy the conditionally certain recursion

αn = αn−1M(Yn)

αn−1M(Yn)e
,

which is to say,

αn = α0M(Y1) · · ·M(Yn)

α0M(Y1) · · ·M(Yn)e
.
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Though {Yn} is not generally Markov of any finite order, it is known [3, 9]
that {αn} is a Markov chain on � whose transition law is given by the transition
kernel

P(α,A) = ∑
y

′
αM(y)e,

where the sum extends over all y ∈ Y such that

αM(y)

αM(y)e
∈ A.

The chain is weak Feller: its Markov operator

TM :C(�) → C(�)

is given by the formula

(TMf )(α) = ∑
y

(αM(y)e)f

(
αM(y)

αM(y)e

)
,

where any term with αM(y)e = 0 is set equal to 0. For later use, we record the
telescoped n-step transition formulas

P n(α,A) = ∑
y

′αM(y)e,(1)

where the sum extends over all y ∈ Mn such that αM(y)/αM(y)e ∈ A, and

(T n
Mf )(α) = ∑

y∈Mn

(αM(y)e)f

(
αM(y)

αM(y)e

)
.(2)

Since � is compact, it is immediate that at least one TM-invariant probability
law exists; part of what is at issue is whether there is more than one. If there is
a unique TM-invariant probability law, we say the α-chain is uniquely ergodic.

3. The α-chain is an e-chain. A weak Feller chain with compact state
space S is an e-chain if its operator T on C(S) is such that, for each f ∈ C(S),
the set of functions {T nf :n > 0} is equicontinuous. We show that every α-chain
is an e-chain:

THEOREM 1. Let M be any transition matrix with any stepping decomposi-
tion M. Then the corresponding α-chain is an e-chain.

PROOF. By the Arzela–Ascoli theorem, since � is compact, it suffices to show
that, for given f ∈ C(�), the set {T n

Mf } is relatively compact. To this end, we will
construct a compact set Kf ⊂ C(�) for which {T n

Mf } ⊆ Kf .
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Let h ∈ � be some fixed probability distribution on X for which hi > 0 for
all i ∈ X. Let W = {V = (vij ) : vij ≥ 0, hV e = 1} be the s × s matrices with
nonnegative entries obeying the linear constraint hV e = 1.

Given f , we define a continuous function g(α,V ) = αV ef (αV/αV e). The
function is defined in the first instance for those (α,V ) ∈ � × W for which
αV e 
= 0, and because f is bounded, g has a unique continuous extension to all of
� × W : take g(α,V ) = 0 when αV e = 0. Let Kf ⊂ C(�) be the set of all func-
tions of α obtained by integrating g(α,V ) with respect to all probability measures
on the compact set W , that is, all functions of form

α �→ Eg(α,V )

for random elements V in W . Thus, Kf is the closed convex hull of the compact
set of all the functions of α obtained from g(α,V ) by holding V fixed. Hence,
Kf is also compact.

For given n, pick a random element w ∈ Yn with probability hM(w)e and set

Vn = M(w)

hM(w)e
,

which, with probability 1, is a matrix in W . Then, referring to (2), we see that

(T n
Mf )(α) = Eg(α,Vn),

so T n
Mf ∈ Kf . Thus, {T n

Mf } is contained in Kf and, hence, is equicontinuous.
�

4. Main result. We now embark on the proof of our main result. Recall that
C is the set of all positive scalar multiples of matrices in M∗ and that its closure
is C.

THEOREM 2. Let M and M be given. Suppose M is irreducible and suppose
that C contains an element of rank 1. Then TM has a unique stationary distribu-
tion λ, and (T ∗

M)nµ −→ λ weakly in Cesaro mean, for each µ ∈ P (�). Suppose,
in addition, that M is aperiodic. Then (T ∗

M)nµ −→ λ weakly, for each µ ∈ P (�).

PROOF. We will use the rank 1 element of C to construct a topologically
reachable point v ∈ �. If M is aperiodic, v will also be topologically aperiodic.
According to Theorem 18.4.4 of [11], page 460, the existence of such v, the fact
that we are working with an e-chain, and the compactness of � together imply the
stated results.

Suppose R ∈ C has rank 1, so R = uv, where u 
= 0 is a nonnegative column
vector and v a nonnegative row vector which we may assume scaled so ve = 1.
In particular, v ∈ �. We will show that if M is irreducible, then v is topologically
reachable, that is, for each α ∈ � and each open set O containing v, there exists a
k > 0 such that P k(α,O) > 0.
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For each α ∈ �, there is some word M(z) such that αM(z)u > 0, as follows.
There are certainly i and j with αi > 0, uj > 0, and since for some k, we have∑

z∈Mk M(z)ij = (Mk)ij > 0, we must have αM(z)u > 0 for some z ∈ Mk .
As a consequence, αM(z)R is a nonzero multiple of v. But R is a limit of

rescaled words:

R = lim
n→∞M(yn)/sn

for some sequence of words yn and reals sn > 0. For all n sufficiently large,
αM(z)M(yn)e > 0, so

v = αM(z)R
αM(z)Re

= lim
n→∞

αM(z)M(yn)

αM(z)M(yn)e
.

This implies that, for any neighborhood O of v, for n large enough, we must also
have

αM(z)M(yn)

αM(z)M(yn)e
∈ O.

Hence, referring to (1), P k(α,O) ≥ αM(z)M(yn)e > 0 for k = |z| + |yn|, and so
v is topologically reachable.

If M is also aperiodic, then a strengthening of this argument yields a positive
lower bound on P k(α,O) which is uniform in large k, showing that v is a topolog-
ically aperiodic state. Let yn, u, v and R = uv be as above, and let π be the sta-
tionary probability vector for M . Pick z so πM(z)u > 0, let w = M(z)u/πM(z)u,
and define Sn = M(z)M(yn). Then limn→∞ Sn/πSne = wv.

Let ‖ · ‖ denote the l1 norm for row vectors and the induced operator norm for
matrices acting on row vectors on the right, so for row vector α and matrix T we
have |αT e| ≤ ‖αT ‖ ≤ ‖α‖‖T ‖. Let B be the closed unit l1 ball in R

s . Then there
exist matrices Tn and scalars δn ≥ 0 so that

Sn

πSne
= wv + δnTn,

with ‖Tn‖ ≤ 1 and limn→∞ δn = 0. Now pick n so large that πSne > 0 and that δn

is sufficiently small that both δn < 1/4 and, for all β ∈ B,

v + √
δnβ

1 + √
δnβe

∈ O.

Finally, let t = 2
√

δnπSne and let m = |z| + |yn|.
Given all these choices, we claim that, for all α ∈ �,

P k+m(α,O) ≥ αMkSne − t(3)

for all k ≥ 0. If so, since M is aperiodic, αMk → π as k → ∞, so

lim inf
k→∞ P k+m(α,O) ≥ πSne − t

= (
1 − 2

√
δn

)
πSne > 0.
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Letting α = v shows, in particular, that v is a topologically aperiodic state.
To prove (3), first assume k = 0. Since (3) is then trivially true if αSne ≤ t , we

may assume αSne > t . But in that case Sn steps α into O as follows. Since

αw + δnαTne = αSne

πSne
> 2

√
δn,

we get a lower bound on the scalar αw:

αw > 2
√

δn − δnαTne > 2
√

δn − δn >
√

δn.

Let β = √
δn αTn/αw, so β ∈ B. Then

αSn

αSne
= αSn

πSne

/αSne

πSne

= αwv + δnαTn

αw + δnαTne

= v + √
δnβ

1 + √
δnβe

∈ O.

Hence, the word Sn ∈ Mm steps α into O. This implies P m(α,O) ≥ αSne, verify-
ing (3) when k = 0.

For k > 0, we have

P k+m(α,O) = ∑
|w|=k

αM(w)e P m

(
αM(w)

αM(w)e
,O

)

≥ ∑
|w|=k

αM(w)e

(
αM(w)Sne

αM(w)e
− t

)

= ∑
|w|=k

αM(w)Sne − ∑
|w|=k

αM(w)et

= αMkSne − t,

concluding the verification of (3).
By Theorem 1, {αn} is an e-chain; it is obviously bounded in probability on

average in the sense of [11], page 285, since � is compact.
Hence, Theorem 18.4.4 of [11], page 460, applies, and our theorem follows. �

5. Kaijser’s result. We are now in a position to derive Kaijser’s theorem from
our Theorem 2.

THEOREM A ([9]). Suppose M is aperiodic. If there is a nonvanishing sub-
rectangular M(y) ∈ M∗, then there exists a unique TM-invariant probability mea-
sure λ, and for all µ ∈ P (�), we have (T ∗

M)nµ −→ λ (weakly) as n → ∞.
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PROOF. First, we find a nonvanishing subrectangular word G = M(z) with a
positive entry in its (1,1) position. If M(y) does not already have this property,
we pick (i, j) such that M(y)ij > 0, and then, as in the proof of Theorem 2, find
words M(u) and M(v) such that M(u)1i > 0 and M(v)j1 > 0. Let z = uyv. The
product of a subrectangular matrix and a nonnegative matrix is subrectangular, so
M(z) = M(u)M(y)M(v) has the desired property.

Let R and C be the sets of row and column indices which specify where
Gij > 0. That is, Gij > 0 if and only if i ∈ R and j ∈ C. For notational conve-
nience, pretend that R = SI ∪ SII and C = SI ∪ SIII, where SI, SII, SIII and SIV are
a partition of X into blocks of consecutive integers. That is to say, G has block
structure

G =




A 0 B 0
C 0 D 0
0 0 0 0
0 0 0 0


 ,

where all of the entries in blocks A,B,C and D are strictly positive, and the blocks
on the diagonal are square. In particular, since G11 > 0, the upper left block A is
k × k, for some k ≥ 1.

Check by induction that, for n ≥ 2,

Gn =




A

C

0
0


An−2 (A 0 B 0 ) .

By the Perron theorem [7], page 502, a suitably rescaled version of An has a limit:

lim
n→∞ θn An = Ā,

where θ > 0 is the reciprocal of the spectral radius of A, all elements of Ā are
strictly positive, and Ā has rank 1.

Hence, for some sequence of scaling constants sn,

lim
n→∞Gn/sn =




A

C

0
0


 Ā (A 0 B 0 )

also has rank 1. Since each Gn ∈ M∗, we have exhibited a rank 1 element of C
and the result then follows from Theorem 2. �

6. Three examples and a question. First, we give an example showing that
the assumption of aperiodicity, by itself, is not enough to guarantee unique ergod-
icity of the α-chain. The matrices

M =
(

1/2 1/2
1/2 1/2

)
, M(0) =

(
1/2 0
0 1/2

)
, M(1) =

(
0 1/2

1/2 0

)
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give rise to an α-chain with the following simple description: αn = (u, v) ∈ � ⊂ R
2

moves with probability 1/2 to αn+1 = (u, v) and with probability 1/2 to (v, u).
Thus, |u − v| is a nontrivial invariant for the α-chain, which therefore has multi-
ple stationary distributions. Examples of such include the following: the uniform
distribution on �, the point mass at (1/2,1/2) and, for each 0 < u < 1/2, the
measures assigning probability 1/2 to each of (u,1 −u) and (1 −u,u). (A similar
example appears in [9].)

Next, we give an example showing that the assumption of aperiodicity cannot
be replaced by irreducibility in Kaijser’s result. The matrices

M =
(

0 1
1 0

)
, M(0) =

(
0 0
1 0

)
, M(1) =

(
0 1
0 0

)

specify an HMM satisfying the subrectangularity condition. M is clearly irre-
ducible but not aperiodic. If the starting measure µ puts mass 1 at α0 = (x,1 − x),
where x /∈ {0,1/2,1}, the subsequence α2n has one limit distribution [which puts
mass x at (1,0) and mass 1−x at (0,1)] and the subsequence α2n+1 has a different
limit distribution [which puts mass x at (0,1) and mass 1 − x at (1,0)].

Finally, at the end of his paper Kaijser conjectures that if p 
= q , the α-chain for
the HMM with two stepping matrices

M(0) =




p 0 0 0
0 1/2 0 0

1/2 0 0 0
0 1/2 0 0


 and M(1) =




0 0 q 0
0 0 0 1/2
0 0 0 1/2
0 0 1/2 0




has a unique stationary distribution, even though there are no nonzero subrectan-
gular words. This conjecture is true, as we now show.

Applying the method used in our proof of Theorem A, consider the rescaled
limits of M(0)n. It is easy to check that

M(0)n =




pn 0 0 0
0 1/2n 0 0

pn/2p 0 0 0
0 1/2n 0 0


 .

So if p > 1/2,

lim
n→∞

M(0)n

e′M(0)ne
= 2p

2p + 1




1 0 0 0
0 0 0 0

1/2p 0 0 0
0 0 0 0




and if p < 1/2,

lim
n→∞

M(0)n

e′M(0)ne
=




0 0 0 0
0 1/2 0 0
0 0 0 0
0 1/2 0 0


 .
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In either case the limit has rank 1, so, by Theorem 2, the α-chain has a unique
invariant measure.

Thus, Kaijser’s subrectangularity condition is sufficient but not necessary.
In light of our proof, as well as this example, one may ask the following ques-

tion: Is the condition that C contains a rank 1 matrix a necessary and sufficient
condition for the α-chain to have a unique invariant measure, when M is irre-
ducible?

Acknowledgment. The authors are grateful to a referee for suggestions which
greatly improved the presentation.
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