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WIDTH AND MODE OF THE PROFILE FOR SOME RANDOM
TREES OF LOGARITHMIC HEIGHT

BY LUC DEVROYE1 AND HSIEN-KUEI HWANG1,2

McGill University and Academia Sinica

We propose a new, direct, correlation-free approach based on central mo-
ments of profiles to the asymptotics of width (size of the most abundant
level) in some random trees of logarithmic height. The approach is sim-
ple but gives precise estimates for expected width, central moments of the
width and almost sure convergence. It is widely applicable to random trees of
logarithmic height, including recursive trees, binary search trees, quad trees,
plane-oriented ordered trees and other varieties of increasing trees.

1. Introduction. Most random trees in the discrete probability literature have
height either of order

√
n or of order logn (n being the tree size); see [1]. For

simplicity, we call these trees square-root trees and log trees, respectively. Profiles
(number of nodes at each level of the tree) of random square-root trees have a
rich connection to diverse structures in combinatorics and in probability, and have
been extensively studied. In contrast, profiles of random log trees, arising mostly
from data structures and computer algorithms, were less addressed and only quite
recently were their limit distributions, drastically different from those of square-
root trees, better understood; see [3, 12, 13, 21, 27] and the references therein.

We study in this paper the asymptotics of width, which is defined to be the size
of the most abundant level, and its close connection to the profile. There are many
results on first-order asymptotics of profiles for standard log trees, such as binary
search trees, random recursive trees, m-ary search trees and quad trees. In some
cases, quite accurate asymptotic expressions are known for the expected profile.
There is already a paucity of results with regard to higher moments of the profile,
let alone limit laws for properly centered and scaled profiles. The literature on
this subject was surveyed by Drmota and Hwang [12, 13] and Fuchs, Hwang and
Neininger [21], but some key historical references are repeated here. In fact, the
last paper describes the complete asymptotics for the profile of random recursive
trees and random binary search trees, two important representatives. The present
paper extends the results to a universal class of log trees called width-regular. It
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adds a host of new results on the width of these trees, such as its exact location up
to O(1) as well as tight estimates on the central moments of the width and some
strong laws of large numbers. Equally important is the fact that these results are
obtained from simple moment estimates. For example, the correlation between the
profiles at different levels is not needed at all in the study of the width.

Recursive trees. A prototypical log tree is the recursive tree, which has been
introduced in diverse fields due to its simple construction. We will present our
methods of proof for recursive trees and then indicate the required elements needed
for other random trees.

Combinatorially, recursive trees are rooted, labeled, nonplane trees such that
the labels along any path down from any node form an increasing sequence. By
random recursive trees, we assume that all recursive trees of n nodes are equally
likely. Probabilistically, they can be constructed by successively adding nodes as
follows. Start from a single root node with label 1. Then at the ith stage, the new
node with label i chooses any of the previous i − 1 nodes uniformly at random
[each with probability 1/(i − 1)] and is then attached to that node. This construc-
tion implies that there are (n− 1)! recursive trees of size n. The first paper on such
tree models we could find is Tapia and Myers (under the name of concave node-
weighted trees); see [45] and [13, 21, 43] for more references on the literature of
recursive trees and their uses in other fields.

Note that the term “recursive trees” (first used in [35] and [37]) is less specific
and has also been used in different contexts for different objects. For example,
they are used in recursion computation theory to represent a computable set of
strings with branching structure and in compilers to record the history of recursive
procedures. They also appeared in classification trees, dynamic systems and data
base languages with a different meaning.

Profile. Let Yn,k denote the number of nodes at distance k from the root in
random recursive trees of n nodes (the root being at level zero). Such a profile is
very informative and closely related to many other shape parameters, although it
does not uniquely characterize the tree.

The combinatorial sister of the random recursive tree is the random binary
search tree. Early work by Lynch [30] and Knuth [28] (see also [42]) showed that
the expected profile of random binary search trees is related to Stirling numbers
of the first kind and it peaks at k about 2 logn. It peaks at logn + O(1) in random
recursive trees. In contrast, the random variable Yn,k has received less attention
until recently.

The profiles of random binary search trees and random recursive trees exhibit
many interesting phenomena such as (i) bimodality of the variance, (ii) different
ranges for convergence in distribution and for convergence of all moments of the
normalized profile Yn,k/E{Yn,k}, (iii) no convergence to a fixed limit law at the
peak levels and (iv) sharp sign changes for the correlation coefficients of two level
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sizes; see [13, 21] for more information. See also [27], where the limit distribu-
tion of the profile of random binary search trees was first studied, and [3], where
the width was addressed. However, their approach, which is based on martingale
arguments, is very different from the moment approach used in this paper.

For simplicity, write throughout this paper Ln := max{logn,1}. The expected
profile µn,k := E{Yn,k}, which gives the first picture of the general silhouette of
random recursive trees, is known to be enumerated by the signless Stirling numbers
of the first kind (see [43] and [21])

∑
k

µn,ku
k = ∏

1≤j<n

(
1 + u

j

)
=

(
n + u − 1

n − 1

)
.

From this, it follows by the saddle point method that

µn,k = n√
2πLn

e−�2/(2Ln)+O(|�|3/L2
n)

(
1 + O

(
1 + |�|

Ln

))
(1.1)

uniformly for k = Ln + O(L
2/3
n ), where, here and throughout this paper, � :=

k − Ln. The asymptotic approximation (1.1) is crucial for our analysis. It means
that most nodes in a random recursive tree are located at the levels with k ∼ Ln. In
particular, we have

max
k

µn,k = n√
2πLn

(
1 + O(L−1

n )
);(1.2)

see [46] or [25] for more precise expansions for µn,k .

Expected width. We define the width of random recursive trees to be Wn :=
maxk Yn,k . The approximation (1.1) can be interpreted as a local limit theorem for
the depth, which is the distance to the root of a randomly chosen node in recursive
trees (each with the same probability). Thus it is intuitively clear that the width will
be roughly close to n/

√
2πLn. Our first result gives a more precise description of

this.

THEOREM 1.1. The expected width satisfies

E{Wn} = n√
2πLn

(
1 + �(L−1

n )
)
.(1.3)

This theorem improves upon the error term O(L
−1/4
n logLn) given in [13],

where the proof depends on estimates for correlations of two level sizes and a
tightness argument for the process. The approximation (1.3) also says, when com-
pared with (1.1), that

E{Wn} = µn,Ln+O(1)

(
1 + O(L−1

n )
)
.
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In particular, by (1.2),

E

{
max

k
Yn,k

}
= max

k
E{Yn,k}(1 + O(L−1

n )
)
.

Note that the index k̂ reaching the maximum of µn,k satisfies

k̂ = �Ln − 1 + γ + O(L−1
n )�;(1.4)

see [22] or pages 140–141 of [24]. Erdős [14] showed that k̂ is unique.

An estimate for absolute central moments. We see from (1.3) that the expected
width is asymptotically of the same order as the expected level sizes at k = Ln +
O(1). We show that not only their expected values are of the same order, but also
all higher absolute central moments are asymptotically close.

THEOREM 1.2. For any s ≥ 0,

E
{|Wn − E{Wn}|s} = O(nsL−3s/2

n ).(1.5)

From [21], we have

E{(Yn,k − µn,k)
m} = O(|�|mL−m

n µm
n,k)

(
k = Ln + o(Ln)

)
.(1.6)

By Lyapounov’s inequality (see page 174 of [29]), we obtain, for any s ≥ 0,

E{|Yn,k − µn,k|s} = O(|�|sL−s
n µs

n,k)
(
k = Ln + o(Ln)

)
.(1.7)

In particular, this implies, by (1.1), that

E
{|Wn − E{Wn}|s} = O(E{|Yn,k − µn,k|s}) (s ≥ 0)

for k = Ln + O(1).

Almost sure convergence. In sequential growth models of random trees, such
as the incremental model for random recursive trees described above, it makes
sense to study almost sure convergence properties. One can also define sequential
growth in random binary search trees and most other log trees discussed in this
work. This is because most definitions derive from data storage applications, where
the sequential insertion of new data in trees is a natural way to grow them. For
random recursive trees, we use (1.5) to show that

Wn

E{Wn} −→ 1 almost surely.(1.8)

This result was proved in [13] by martingale arguments and complex analysis,
following [3]. Our proof relies on (1.5) with s = 2+ε and the usual Borel–Cantelli
argument. It is conceptually simpler and also applies to random trees for which no
martingale structure is available.
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Level reaching the width. Let k∗ denote one of the levels such that Yn,k∗ = Wn.
We show that k∗ takes most likely the values Ln + O(1).

THEOREM 1.3. For every B > 0, there exists T0 > 1 such that

P(|k∗ − Ln| ≥ T ) = O(T −B)

for T > T0.

Thus width will with very small probability lie outside the range Ln + O(1).

Approaches used. The most notable feature of our method of proof is that with
the two crucial estimates (1.1) and (1.6) at hand, only basic probability tools such
as Markov and Chebyshev inequalities and the Borel–Cantelli lemma are used.
However, asymptotic tools for proving the two estimates for general random trees
may differ from one case to another. In most cases we considered, the estimate
(1.1) is proved by a combination of diverse analytic tools such as differential equa-
tions, singularity analysis (see [19]) and the saddle point method. The remaining
analysis required for higher central moments of the profile is then mostly ele-
mentary, since this corresponds roughly to the large “toll-functions” cases for the
underlying bivariate recurrences; see [21]. Although tools for handling the width
of random square-root trees are very different from those for random log trees
considered in this paper, the profiles provide in both classes of trees an accessible
route to the asymptotics of the width; see [11] and the references therein.

Generality of the phenomena. The treatment for random recursive trees can
be extended to width-regular trees, a large class of log trees defined below. This
class includes familiar trees such as random m-ary search trees, quad trees, grid
trees and increasing trees. To check whether a tree is width-regular is done case
by case, unfortunately, because we need uniform estimates on the expected profile.
A universal asymptotic tool is still lacking to extend the results, for example, to all
random split trees [8].

Organization of the paper. For self-containedness and to pave the way for gen-
eral random trees, we give a sketch of the proof for (1.1) and (1.6) in the next sec-
tion. We then prove the theorems in Section 3. Extension of the same arguments to
other log trees is given in Sections 4–7.

NOTATION. Throughout this paper, the generic symbol ε > 0 always repre-
sents a sufficiently small constant whose value may differ from one occurrence to
another. Also Ln := max{logn,1} and � := k − Ln.

2. Estimates for the profile moments. We briefly sketch the main ideas that
lead to the estimates (1.1) and (1.6); see [21] for details and more precise estimates
than (1.6).



WIDTH OF RANDOM LOG TREES 891

Recurrence of Yn,k . By construction, the profile of random recursive trees sat-
isfies the recurrence

Yn,k
d= ∑

1≤s<n

1

s!
∑

j1+···+js=n−1
j1,...,js≥0

(
n − 1

j1, . . . , js

)
(j1 − 1)! · · · (js − 1)!

(n − 1)!︸ ︷︷ ︸
P( the root degree equals s and

the s subtrees have sizes j1,...,js
)

× (
Y

(1)
j1,k−1 + · · · + Y

(s)
js ,k−1

)
for n ≥ 2 and k ≥ 1 with Y1,0 = 1, where the Y

(i)
n,k’s are independent copies of Yn,k .

From this we deduce, by conditioning on the size of the first subtree, that

Yn,k
d= YIn,k−1 + Y ∗

n−In,k (n ≥ 2;k ≥ 1),(2.1)

with Y1,0 = 1, where the Y ∗
n,k’s are independent copies of Yn,k and independent

of In, which is uniformly distributed in {1, . . . , n − 1}.

The expected profile and the expansion (1.1). From (2.1), we derive, by taking
expectation and by solving the resulting recurrence, the relation∑

k

µn,ku
k =

(
n + u − 1

n − 1

)
(u ∈ C);

see [10, 36, 43]. Then by singularity analysis (see [19]),

∑
k

µn,ku
k = nu

�(1 + u)

(
1 + O

(|u|(1 + |u|)n−1))
,(2.2)

where the O-term holds uniformly for |u| ≤ C for any C > 0. Note that the Stirling
formula with complex parameter for the Gamma function does not give the re-
quired uniformity in u.

The uniform approximation (1.1) is then obtained by Cauchy’s integral formula
using (2.2) and the saddle point method.

A uniform estimate for µn,k . A very useful uniform estimate for µn,k is given
by

µn,k = O(L−1/2
n r−knr)

(
0 < r = O(1)

)
(2.3)

uniformly for all 0 ≤ k ≤ n. This is easily obtained by Cauchy’s integral formula
and (2.2) since

µn,k = O

(
r−knr

∫ π

−π
n−r(1−cos t) dt

)
,

which gives (2.3). Throughout this paper, r is always taken to be r = 1 + o(1)

unless otherwise specified.
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Although one can prove that

µn,k = O

(
Lk

n

k!
)

(2.4)

uniformly for 0 ≤ k ≤ n, the reason for using the estimate (2.3) instead of (2.4) is
that, for general random search trees, it is much harder to derive the Poisson type
estimate (2.4) for all k.

Recurrence of higher central moments. Let P
(m)
n,k = E{(Yn,k − µn,k)

m}. Then

P
(m)
n,k satisfies, by (2.1), the recurrence

P
(m)
n,k = 1

n − 1

∑
1≤j<n

(
P

(m)
j,k−1 + P

(m)
n−j,k

) + Q
(m)
n,k ,

with P
(m)
n,0 = 0 for n,m ≥ 1, where

Q
(m)
n,k := ∑

(a,b,c)∈Im

(
m

a,b, c

)
1

n − 1

∑
1≤j<n

P
(a)
j,k−1P

(b)
n−j,k∇c

n,k(j) (m ≥ 2),

with ∇n,k(j) := µj,k−1 + µn−j,k − µn,k and

Im := {(a, b, c) ∈ Z
3 :a + b + c = m,0 ≤ a, b < m,0 ≤ c ≤ m}.

We prove (1.6) in two stages. A uniform estimate for ∇n,k(j) for 1 ≤ j, k < n

is first derived, which then implies by induction a uniform bound for P
(m)
n,k for

1 ≤ k < n. This bound is, however, not tight when � = o(
√

Ln ). Then we refine
the estimate for ∇n,k(j) when � = O(

√
Ln ), which then leads to (1.6) by another

induction.
First estimate for P

(m)
n,k . By (2.2), we have the integral representation

∇n,k(j) = 1

2πi

∮
|u|=r

u−k−1nu

�(1 + u)
ϕ(u; j/n)

(2.5)
× (

1 + O
(
j−1 + (n − j)−1))

du,

where ϕ(u;x) := uxu + (1 − x)u − 1. Since ϕ(1;x) = 0, we have

ϕ(u;x)

�(1 + u)
= O(|u − 1|)

uniformly for x ∈ [0,1]. Substituting this estimate into (2.5), we obtain

∇n,k(j) = O

(
r−knr

∫ π

−π
|reiθ − 1|n−r(1−cos θ) dθ

)
(2.6)

= O
(
(|r − 1| + L−1/2

n )L−1/2
n r−knr)
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uniformly for 1 ≤ j, k < n, where r = 1 + o(1). This bound is not tight for all k,
but is sufficient for most of our purposes. In particular, since r is not specially
chosen to minimize the error term, (2.6) is not optimal when |r − 1| = o(L

−1/2
n ),

which is the case when we choose r = k/Ln and |k − Ln| = o(
√

Ln ).
We now prove by induction that

P
(m)
n,k = O

(
(|r − 1|m + L−m/2

n )L−m/2
n r−kmnmr) (m ≥ 0)(2.7)

uniformly for 1 ≤ k < n.
Obviously, (2.7) holds for m = 0,1. Assume m ≥ 2. To estimate Q

(m)
n,k , we split

the sum into two parts,

Q
(m)
n,k = ∑

(a,b,c)∈Im

(
m

a,b, c

)
1

n − 1

( ∑
j∈Jm

+ ∑
j∈J′

m

)
P

(a)
j,k−1P

(b)
n−j,k∇c

n,k(j),

where Jm := {j :n/Lm
n ≤ j ≤ n − n/Lm

n } and J′
m := {1, . . . , n − 1} \ Jm. Then by

induction and (2.6), the terms in Q
(m)
n,k with j ∈ J′

m are bounded above by

O

(
r−mkn−1

∑
(a,b,c)∈Im

(
L−(b+c)/2

n n(b+c)r
∑

j<n/Lm
n

L
−a/2
j jar

+ L−(a+c)/2
n n(a+c)r

∑
j<n/Lm

n

L
−b/2
j jbr

))

= O(L−3m/2
n r−mknmr)

uniformly for 1 ≤ k < n.
On the other hand, when j ∈ Jm, we have Lj ∼ Ln−j ∼ Ln; thus by induction

and the two estimates (2.6) and (2.7),

∑
(a,b,c)∈Im

(
m

a,b, c

)
1

n − 1

∑
j∈Jm

P
(a)
j,k−1P

(b)
n−j,k∇c

n,k(j)

= O
(
(|r − 1|m + L−m/2

n )L−m/2
n r−kmnmr),

it follows that

Q
(m)
n,k = O

(
(|r − 1|m + L−m/2

n )L−m/2
n r−kmnmr)(2.8)

uniformly for 1 ≤ k < n.
From [21], we have the closed-form expression

P
(m)
n,k = Q

(m)
n,k + ∑

1≤j<n

∑
0≤	≤k

Q
(m)
j,k−	

j
[u	](u + 1)

∏
j<h<n

(
1 + u

h

)
,(2.9)
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where [u	]F(u) denotes the coefficient of u	 in the Taylor expansion of F . Sub-
stituting the estimate (2.8), we obtain

P
(m)
n,k = O

(
Q

(m)
n,k + r−km

∑
1≤j<n

(|r − 1|m + L
−m/2
j )L

−m/2
j jmr−1

× ∑
0≤	≤k

rm	[u	](u + 1)
∏

j<h<n

(
1 + u

h

))
.

Now

∑
0≤	≤k

rm	[u	](u + 1)
∏

j<h<n

(
1 + u

h

)
≤ (1 + rm)

∏
j<h<n

(
1 + rm

h

)

= O

((
n

j

)rm)
.

Thus (2.7) follows.
When k ∼ Ln, we take r = k/Ln in (2.7), giving

P
(m)
n,k = O

(
(|�|m + Lm/2

n )L−m
n µm

n,k

)
,

which proves (1.6) when
√

Ln ≤ |�| = o(Ln).

Proof of (1.6) when � = O(
√

Ln ). We now refine the above procedure and
prove (1.6) when � = O(

√
Ln ), which has the form

P
(m)
n,k = O(|�|mL−3m/2

n nm) (m ≥ 0).(2.10)

By applying the expansion

ϕ(u;x) = ϕ′
u(1;x)(u − 1) + O(|u − 1|2) (x ∈ [0,1])

and the usual saddle point method to (2.5), we deduce that

∇n,k(j) = O(|�|L−3/2
n n)(2.11)

uniformly for � = O(
√

Ln ) and 1 ≤ j < n. Note that this estimate also follows
from (1.1).

We apply the same inductive procedure used to prove (2.8). By applying (2.7)
to terms with j ∈ J′

m and (2.10) to terms with j ∈ Jm [starting from (2.11)], we
have

Q
(m)
n,k = O(|�|mL−3m/2

n nm) (m ≥ 2)
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uniformly for � = O(
√

Ln ). This estimate and (2.8) gives, by (2.9), (2.10) and a
similar decomposition of the sums involved,

P
(m)
n,k = O

(
Q

(m)
n,k + ∑

j∈Jm

∑
0≤	=o(Ln)

|k − 	 − Lj |mL
−3m/2
j jm−1[u	]

× (u + 1)
∏

j<h<n

(
1 + u

h

))

= O(|�|mL−3m/2
n nm).

This completes the proof of (2.10).
Such a two-stage proof of (1.6) is completely general when we have an integral

representation for ∇n,k(j) of the form (2.5) and a closed-form similar to (2.9). We
will sketch means to handle the cases when no closed-form solution like (2.9) is
available.

3. Asymptotics of the moments of the width. We first prove Theorem 1.1;
then we extend the proof for (1.5) and finally prove Theorem 1.3.

3.1. Expected width.

Lower bound for the expected width. The lower bound follows easily from the
inequality

E{Wn} ≥ Mn,

where

Mn := max
k

E{Yn,k} = n√
2πLn

(
1 + O(L−1

n )
);

see (1.2).
An inequality for the upper bound. For the upper bound, we use the inequality

E{Wn} ≤ Mn + ∑
|�|≤K

E{(Yn,k − Mn)+} + ∑
|�|>K

µn,k

=: w(1)
n + w(2)

n + w(3)
n ,

where K := L
2/3
n .

The sum w
(3)
n . The last sum is easily estimated, since by (2.3),

w(3)
n = O

(
L−1/2

n nr

( ∑
0≤k≤Ln−K

+ ∑
k≥Ln+K

)
r−k

)
.
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Taking r = 1 − L
−1/3
n , we see that

∑
0≤k≤Ln−K

µn,k = O

(
L−1/2

n nr r−Ln+K

1 − r

)

= O
(
L−1/2

n n1−L
−1/3
n L1/3

n (1 − L−1/3
n )−Ln+L

2/3
n

)
= O

(
nL−1/6

n e−L
1/3
n /2)

.

The same upper bound holds for
∑

k≥Ln+K µn,k by taking r = 1 + L
−1/3
n .

An estimate for the second sum w
(2)
n . We use the inequalities

E{(Yn,k − Mn)+} ≤ E
{
(Yn,k − µn,k)1(Yn,k>Mn)

}
≤ E{(Yn,k − µn,k)

2}
Mn − µn,k

for those k’s for which Mn > µn,k . By (1.1),

Mn − µn,k = n√
2πLn

(
1 − e−�2/(2Ln)+O(|�|3/L2

n))(1 + o(1)
)

= n√
2πLn

(
1 − e−�2/(2Ln)

(3.1)
+ O

(
e−�2/(2Ln)|�|3L−2

n

))(
1 + o(1)

)
≥ n√

2πLn

(
1 − e−�2/(3Ln))(1 + o(1)

)
uniformly for 1 ≤ |�| ≤ K . On the other hand, the variance is bounded above by

V{Yn,k} = O(�2L−2
n µ2

n,k) = O
(
�2L−3

n n2e−�2/Ln
)

(3.2)

uniformly for 1 ≤ |�| ≤ K . It follows from these estimates that

w(2)
n ≤

√
V

{
Yn,�Ln�

} + ∑
1≤|�|≤K

V{Yn,k}
Mn − µn,k

= O(nL−3/2
n ) + O

(
L−5/2

n n

∫ ∞
1

x2e−x2/Ln

1 − e−x2/(3Ln)
dx

)

= O(nL−1
n ).

Collecting all estimates, we get a weaker error term than (1.3),

E{Wn} = n√
2πLn

(
1 + O(L−1/2

n )
)
,(3.3)

but we only used estimates for E{Yn,k} and V{Yn,k}.
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Improving the error term by the fourth central moment of Yn,k . We can im-
prove the error term in (3.3) by using the estimate for the fourth central moment
of Yn,k ; see (1.6). Taking m = 4 in (1.6) and repeating the same analysis as above,

w(2)
n ≤

√
V

{
Yn,�Ln�

} + ∑
1≤|�|≤K

E{(Yn,k − µn,k)
4}

(Mn − µn,k)3

= O(nL−3/2
n ) + O

(
nL−9/2

n

∫ ∞
1

x4e−2x2/Ln

(1 − e−x2/(3Ln))3
dx

)

= O(nL−3/2
n ) + O

(
nL−2

n

∫ ∞
1/Ln

v3/2e−2v

(1 − e−v/3)3 dv

)

= O(nL−3/2
n ) + O

(
nL−2

n

∫ ∞
1/Ln

v−3/2 dv

)

= O(nL−3/2
n ).

This proves (1.3).

3.2. Higher absolute central moments of Wn. We prove only an upper bound
for s = 2, namely for the variance of Wn; other values of s follow by the same
argument and Lyapounov’s inequality.

An upper bound for the variance of the width. We show, by using central mo-
ments of Yn,k of order 6, that

V{Wn} = O(n2L−3
n ),(3.4)

which proves (1.5) with s = 2.
The proof extends that for E{Wn}. Define k0 = �Ln�. We start from

E
{
(Wn − E{Wn})2} = E

{(
Wn − µn,k0 + µn,k0 − E{Wn})2}

≤ 2E
{(

Wn − µn,k0

)2} + 2E
{(

µn,k0 − E{Wn})2}
.

By (1.3),

E
{(

µn,k0 − E{Wn})2} = O(n2L−3
n )

and, similarly to the analysis for E{Wn},

E
{(

Wn − µn,k0

)2} ≤ E

{ ∑
|�|≥0

(
Yn,k0+� − µn,k0

)2
+ · 1(Yn,k0+�>µn,k0 )

}

≤ V
{
Yn,k0

} + ∑
1≤|�|≤K

E
{(

Yn,k0+� − µn,k0

)2
+

}
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+ ∑
|�|≥K

V
{
Yn,k0+�

}

=: v(1)
n + v(2)

n + v(3)
n .

By (3.2),

v(1)
n = O(n2L−3

n ).

The estimation of v
(2)
n follows mutatis mutandis from that for w

(2)
n by using (1.6)

with m = 6:

v(2)
n ≤ ∑

1≤|�|≤K

E{(Yn,k − µn,k)
6}

(µn,k0 − µn,k0+�)4

= O

(
n2L−7

n

∑
1≤|�|≤K

�6e−3�2/Ln

(1 − e−�2/(3Ln))4

)

= O

(
n2L−7/2

n

∫ ∞
1/Ln

v−3/2 dv

)

= O(n2L−3
n ).

For the last term v
(3)
n , we use again (2.3),

V{Yn,k} ≤ µ2
n,k = O(L−1

n r−2kn2r )

uniformly for 1 ≤ k ≤ n, where r > 0 is any bounded real number. Substituting
this into v

(3)
n gives

v(3)
n = O

(
L−1

n n2r
∑

|�|≥K

r−2k0−2�

)

= O
(
L2/3

n n2e−L
1/3
n

)
by taking r = 1 + sign(�)L

−1/3
n .

This completes the proof of (3.4).

Higher central moments of Wn. The same analysis can be carried out for
higher absolute central moments using (1.7). Then the same proof for V{Wn} gives
(1.5) by using (1.7) with order 2s + 2.

Almost sure convergence. We need first a tail bound for the width. By
Markov’s inequality (see page 160 of [29]; sometimes referred to as Chebyshev
inequality),

P
{|Wn − E{Wn}| ≥ εE{Wn}} ≤ E{|Wn − E{Wn}|s}

(εE{Wn})s
= O(ε−sL−s

n )
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for any s > 0 and ε ∈ (0,1).
From this estimate it follows, by applying the Borel–Cantelli lemma and by

taking s > 2, that

Wn	

E{Wn	
} −→ 1 almost surely,

where n	 := �e
√

	�, since
∑

	 L−s
n	

= O(
∑

	 	−s/2) = O(1).
Now observe that

n	+1 − n	 = �(n		
−1/2) = �

(
n	L

−1
n	

) = �
(
E

{
Wn	

}
L−1/2

n	

)
.

On the other hand, by construction, adding a new node to random recursive trees
affects the value of Wn by at most 1. Consequently,

sup
n	≤n<n	+1

max
(∣∣Wn − Wn	

∣∣, ∣∣E{Wn} − E
{
Wn	

}∣∣) ≤ n	+1 − n	

= �
(
E

{
Wn	

}
L−1/2

n	

)
.

So, deterministically,

sup
n	≤n<n	+1

∣∣∣∣ Wn

E{Wn} − Wn	

E{Wn	
}
∣∣∣∣ = O

(
E{Wn	

}L−1/2
n	

E{Wn	
} − (n	+1 − n	)

)

= O
(
L−1/2

n	

)
= O(	−1/4).

This completes the proof of (1.8).

An alternative form to (1.8). The same argument can be modified to show that

Wn

n/
√

2πLn

= 1 + O(L−1+δ
n )(3.5)

almost surely for any fixed δ > 0. The proof is modified from that for (1.8) as
follows. By (1.3), we have

Wn

n/
√

2πLn

= Wn

E{Wn}
(
1 + O(L−1

n )
)
.

Instead of n	 := �e
√

	�, we now take n	 := �e
√

	/(2−δ)�. Then, setting ε = εn =
L−1+δ

n in the proof, we deduce that, again by the Borel–Cantelli lemma,

Wn	

E{Wn	
} = 1 + O

(
εn	

)
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almost surely as 	 → ∞ provided that ε−s
n	

L−s
n	

is summable in 	. This forces the
choice s > 2/δ. Next,

n	+1 − n	 = �
(
E

{
Wn	

}
	−1/4)

.

This proves (3.5).

Almost sure convergence for Yn,k . We can also obtain strong convergence by
the same argument for the profiles Yn,k in the central range [Ln − L1−ε

n ,Ln +
L1−ε

n ], where ε ∈ (0,1). We prove that

sup
Ln−L1−ε

n ≤κ≤Ln+L1−ε
n

∣∣∣∣ Yn,κ

E{Yn,κ} − 1
∣∣∣∣ → 0(3.6)

almost surely.

PROOF. Set tn := 2L1−ε
n and n	 := �e

√
	�. Using (1.7) and Markov’s inequal-

ity used above, it is easy to see that

sup
Ln

	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣∣∣ Yn	,κ

E{Yn	,κ
} − 1

∣∣∣∣ → 0,

almost surely as 	 → ∞. By the union bound and the Borel–Cantelli lemma, this
requires that we take s so large that L−s

n	
t1+s
n	

is summable in 	. Any choice with
s > 3/ε − 1 suffices for that purpose. Furthermore, by the monotonicity of Yn,k in
n for fixed k,

sup
n	≤n<n	+1

sup
Ln

	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣Yn,κ − Yn	,κ

∣∣
≤ sup

Ln
	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣Yn	+1,κ
− Yn	,κ

∣∣
and

sup
n	≤n<n	+1

sup
Ln

	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣E{Yn,κ} − E
{
Yn	,κ

}∣∣
≤ sup

Ln
	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣E{
Yn	+1,κ

} − E
{
Yn	,κ

}∣∣.
Thus,

sup
n	≤n<n	+1

∣∣∣∣ Yn,κ

E{Yn,κ} − Yn	,κ

E{Yn	,κ
}
∣∣∣∣

≤ Yn	+1,κ

E{Yn	,κ
} − Yn	,κ

E{Yn	,κ
}

≤ Yn	+1,κ

E{Yn	+1,κ
} − Yn	,κ

E{Yn	,κ
} +

(
E{Yn	+1,κ

}
E{Yn	,κ

} − 1
) Yn	+1,κ

E{Yn	+1,κ
} .
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Putting the supremum over Ln	
− tn	

≤ κ ≤ Ln	
+ tn	

in front of all of the latter
inequalities, we see that both terms tend to zero almost surely provided that

lim
	→∞ sup

Ln
	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣∣∣E{Yn	+1,κ
}

E{Yn	,κ
} − 1

∣∣∣∣ = 0.

This follows from an extension of the Taylor series estimate used in (1.1); indeed,
the estimate (see [25])

µn,k = Lk
n

�(1 + k/Ln)k!
(
1 + O(L−1

n )
) (

k = O(Ln)
)

is sufficient for our use.
Thus we have shown that

sup
n	≤n<n	+1

sup
Ln

	
−tn

	
≤κ≤Ln

	
+tn

	

∣∣∣∣ Yn,κ

E{Yn,κ} − 1
∣∣∣∣ → 0

almost surely. An additional argument shows that for 	 large enough, [Ln −
L1−ε

n ,Ln + L1−ε
n ] is contained in [Ln	

− tn	
,Ln	

+ tn	
] for n	 ≤ n < n	+1, thus

concluding the proof of (3.6). �

3.3. Level reaching the width. We now prove Theorem 1.3. For |�| > |k̂ − k0|
and B > 1,

P(k∗ = k0 + �) = P
(
Wn = Yn,k0+�

)
≤ P

(
Yn,k0+� > Yn,k0

)
= P

(
Yn,k0+� − µn,k0+� > Yn,k0 − µn,k0 + µn,k0 − µn,k0+�

)
≤ P

(
Yn,k0+� − µn,k0+� ≥ 1

2

(
µn,k0 − µn,k0+�

))

+ P

(
Yn,k0 − µn,k0 ≤ −1

2

(
µn,k0 − µn,k0+�

))

≤ 2B
E|Yn,k0+� − µn,k0+�|B
(µn,k0 − µn,k0+�)B

+ 2B
E|Yn,k0 − µn,k0 |B

(µn,k0 − µn,k0+�)B

by Markov’s inequality. By (1.1), we obtain an estimate similar to (3.1) for µn,k0 −
µn,k0+�, which together with (3.2) gives

P(k∗ = k0 + �) = O

(
�BL−B

n e−B�2/(2Ln)

(1 − e−�2/(3Ln))B
+ L−B

n

(1 − e−�2/(3Ln))B

)

= O(�−B + �−2B ∨ L−B
n )

= O(�−B)
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uniformly for 1 ≤ |�| ≤ K . It follows that there exists a T0 > 1 such that for
T > T0,

P(|k∗ − k0| ≥ T ) = O

( ∑
T ≤|�|≤K

�−B

)
+ P(|k∗ − k0| ≥ K)

= O(T 1−B) + P(|k∗ − k0| ≥ K).

The tail probability P(|k∗ − k0| ≥ K) is estimated as follows, where we let k1 :=
�√Ln�:

P(|k∗ − k0| ≥ K) ≤ P

(
max|k−k0|≥K

Yn,k ≥ Yn,k0

)

≤ P

(
max|k−k0|≥K

Yn,k ≥ µn,k0+k1

)
+ P

(
Yn,k0 < µn,k0+k1

)

≤ µ−1
n,k0+k1

∑
|k−k0|≥K

µn,k + V{Yn,k0}
(µn,k0 − µn,k0+k1)

2

= O
(
L1/3

n e−L
1/3
n /2 + L−2

n

)
,

which tends to zero as n → ∞, where we used again (2.3) to bound∑
|k−k0|≥K µn,k . Since B > 1 is arbitrary, this proves Theorem 1.3.

Limit distribution of Wn? It is known that the centered and normalized random
variables (Yn,k − µn,k)/

√
V{Yn,k} do not converge to a fixed limit law when k =

Ln + O(1) due to periodicity; see [21]. The origin of the periodicity lies at the
second-order term in the asymptotic expansion of µn,Ln+O(1),

µn,k0+	 = n√
2πLn

(
1 + p	({Ln})

Ln

+ O(L−2
n )

)
(	 ∈ Z),

where {x} denotes the fractional part of x and

p	(x) := −1

2

(
x − 	 − 3

2
+ γ

)2

− γ

2
+ π2

12
+ 1

24
.

This periodic second-order term is the origin of all fluctuations of higher central
moments. Note that

max
	∈Z

x∈[0,1]
p	(x) =

{
p−1(x), if x ∈ [0,1 − γ ],
p0(x), if x ∈ [1 − γ,1];(3.7)

compare (1.4).
The main open question is the limit distribution (if it exists) of Wn. Simulations

seem to indicate the closeness of the histogram of Wn to that of Yn,k0−1 when
{Ln} < 1 − γ and to that of Yn,k0 when {Ln} > 1 − γ ; see Figure 1.
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FIG. 1. Simulated histograms for Wn and Yn,�Ln�+	 for 	 = −1,0,1, where n = 107 (top), for
which the expected width is asymptotically reached at �Ln� − 1 ({Ln} < 1 − γ ), and n = 404960
(bottom), for which the expected width is asymptotically reached at �Ln� ({Ln} > 1 − γ ); see (1.4)
and (3.7).

4. Width of general random log trees. Our methods of proof for recursive
trees can be formulated in a general, simple framework described below, which
gives sufficient conditions we need to obtain asymptotics of the width of general
random log trees. We first describe the estimates we need to handle the width of
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general random log trees and then discuss a few concrete examples in the remain-
ing sections.

4.1. An analytic scheme for the profile and width. We start from a general
framework for the moments of the profiles of random log trees. The same notations
as those for recursive trees are used in this section. So we denote by Yn,k the profile
of the random log trees in question, the initial condition being immaterial for our
purpose. We impose the following three conditions.

CONDITION I (Quasi-power form for the expected profile polynomial). The
generating polynomial of the expected profile µn,k := E{Yn,k} of the random log
trees in question satisfies asymptotically

�n(u) := ∑
k

µn,ku
k = g(u)nf (u)(1 + O(n−ε)

)
(4.1)

uniformly for |u − 1| ≤ ε0, u ∈ C, ε0 > 0. Here g and f are analytic functions in
|u − 1| ≤ ε0 and satisfy g(1) = f (1) = 1.

CONDITION II (Regularity condition for the expected profile polynomial).
The estimate

|�n(u)| = O(n1−ε)(4.2)

holds uniformly for {u ∈ C : 1 − ε1 ≤ |u| ≤ 1 + ε1} \ {u ∈ C : |u − 1| ≤ ε0}, where
0 < ε1 < ε0; see Figure 2 for a plot.

FIG. 2. The different regions in the complex u-plane as used by Conditions I and II for Theorem 4.1.
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CONDITION III (Asymptotic estimates for the central moments). The central
moments of Yn,k satisfy

E{(Yn,k − µn,k)
m} = O(|�|mL−m

n µm
n,k) (m ≥ 0)(4.3)

uniformly for |�| = o(Ln).

THEOREM 4.1 (Width regularity of general random log trees). Under Con-
ditions I, II and III, the width of the random log trees in question satisfies the
properties

E{Wn} = n√
2πσ 2Ln

(
1 + O(L−1

n )
)
,

E
{|Wn − E{Wn}|s} = O(nsL−3s/2

n ) (s ≥ 0),(4.4)

P
(|k∗ − f ′(1)Ln| ≥ T

) = O(T −B).

The last estimate holds for every B > 0 and T > T0 for some T0 > 1. Furthermore,
if inserting a new node to the tree changes the width by at most a bounded quantity,
then we also have

Wn

E{Wn} −→ 1 almost surely.(4.5)

For ease of reference, we will refer to the properties (4.4) by saying that the
random log trees are width-regular with parameters (f ′(1), σ 2).

PROOF (Sketch). First, Conditions I and II imply, by standard application of
the saddle point method, that

µn,k = n√
2πσ 2Ln

e−�2/(2σ 2Ln)+O(|�|3/L2
n)

(
1 + O

(
1 + |�|

Ln

))
(4.6)

uniformly for |�| ≤ L
2/3
n , where � := k − f ′(1)Ln and

σ =
√

f ′(1) + f ′′(1).

Note that to prove the estimate (4.6), we used (4.1) and (4.2) only when u = eiθ ,
θ ∈ R. However, the uniform estimates (4.1) and (4.2) in a complex neighborhood
of unity also yield, by Cauchy’s integral representation,

µn,k = O
(
L−1/2

n r−knf (r) + r−kn1−ε) = O
(
L−1/2

n r−knf (r))(4.7)

uniformly for all k = 0, . . . , n, where r = 1+o(1). This crude estimate is sufficient
for our purpose in bounding all error terms involved.

The remaining proofs follow closely those used for recursive trees, details being
omitted here. �

Note that our proof for the almost sure convergence (4.5) requires the estimate
for E{|Wn − E{Wn}|2+ε} for which (4.3) with m = 8 suffices. Similarly, the esti-
mate for the expected width needs (4.3) with m = 4.
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4.2. The moments estimates (4.3). Theorem 4.1 reduces the proofs of the
width-regularity properties to those for the three hard estimates (4.1), (4.2)
and (4.3). While the two estimates (4.1) and (4.2) are more tree dependent and
may rely on different analytic tools, we indicate in this subsection how the mo-
ments estimates (4.3) can in many cases be deduced from (4.1) and (4.2), coupling
with suitable “asymptotic transfer” for the underlying bivariate recurrence.

Recurrence of profile. The profiles of many random log trees that arise from
data structures, analysis of algorithms and discrete probability are of the form (see
[2, 8, 28, 32])

Yn,k
d= ∑

1≤j≤h

Y
(j)
In,j ,k−1 (n ≥ 2;k ≥ 1),(4.8)

with Yn,0 = 1 for n ≥ 1, where h ≥ 2, the Y
(j)
n,k ’s are independent copies of Yn,k

and the underlying splitting distribution satisfies
∑

1≤j≤h In,j = n − κ for some
integer κ ≥ 0. Physically, the root of such random log trees has at most h subtrees,
each of which has the same (recursive) structure; the distribution of the size of the
j th subtree of the root is described by I

(j)
n,j and κ represents the number of nodes

retained at the root.
Then the moments of Yn,k satisfy a recurrence of the form

an,k = h
∑

0≤j<n

πn,j aj,k−1 + bn,k,(4.9)

where πn,j = P(In,1 = j) satisfies
∑

j πn,j = 1 and the bn,k’s are known. For our
purpose, we can always assume that bn,k = 0 for k < 0 and k ≥ n.

Higher central moments. If Yn,k satisfies the distributional recurrence (4.8),
then the central moments P

(m)
n,k := E{(Yn,k − µn,k)

m} can be recursively computed
by the recurrence

P
(m)
n,k = h

∑
0≤j<n

πn,jP
(m)
j,k−1 + Q

(m)
n,k ,

where

Q
(m)
n,k := ∑

i0+i1+···+ih=m

0≤i1,...,ih<m

0≤i0≤m

∑
j1+···+jh=n−κ

P{In,1 = j1, . . . , In,h = jh}

× P
(i1)
j1,k−1 · · ·P (ih)

jh,k−1∇ i0
n,k( j) (m ≥ 2),

with [ j = (j1, . . . , jh)]

∇n,k( j) := ∑
1≤	≤h

µj	,k−1 − µn,k.(4.10)
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By Cauchy’s integral formula and (4.1), we have

∇n,k( j) = 1

2πi

∫
|u|=r

|u−1|≤ε

g(u)u−k−1nf (u)ϕ

(
u; j

n

)

×
(

1 + O

( ∑
1≤	≤h

1

(j	 + 1)ε

))
du + O(r−kn1−ε),

where

ϕ

(
u; j

n

)
:= ∑

1≤	≤h

u

(
j	

n

)f (u)

− 1.

Since
∑

1≤	≤h j	 = n + O(1), we deduce, by expanding ϕ(u;x) at u = 1, the two
estimates

∇n,k( j) =
{

O
(
(|r − 1| + L

−1/2
n )L

−1/2
n r−knf (r)

) (
r = 1 + o(1)

)
,

O(|�|L−3/2
n n),

(4.11)

where the first estimate holds uniformly for all tuples (j1, . . . , jh) and 1 ≤ k < n,
and the second holds for all tuples (j1, . . . , jh) and � = O(

√
Ln ). Note that if we

take r to be the solution near unity of the equation rf ′(r) = k/Ln = f ′(1)+�/Ln,
then r = 1 + �/(σ 2Ln) + O(�2/L2

n) and

r−knf (r) = ne−�2/(2σ 2Ln)+O(|�|3L−2
n )(4.12)

uniformly for � = O(L
2/3
n ). This means that the first estimate in (4.11) is not tight

when � = o(
√

Ln ), which is the reason why we need the second estimate.
Once the precise estimates for ∇n,k( j) are available, the remaining proof for

(4.3) is then reduced to the derivation of suitable “asymptotic transfer” for the
recurrence (4.9) via which one deduces estimate for an,k from that for bn,k . Instead
of further abstraction for general random log trees, we will give more details for
specific trees below.

5. Random quad trees and grid trees. We start from quad trees, which are
useful data structures for spatial points, and then indicate the estimates needed for
the more general grid trees proposed in [8]. We show that both classes of trees are
width-regular.

Random quad trees and their construction. Quad trees were proposed by
Finkel and Bentley [15]. The first probabilistic analysis of the typical depth of a
node, the expected profile, the height, and the partial match cost was carried out by
Flajolet, Gonnet, Puech and Robson [16, 17] (work carried out in 1988), Devroye
and Laforest [9] and Flajolet, Labelle, Laforest and Salvy [18].
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Given a sequence of n points independently and uniformly chosen from [0,1]d ,
the random (point) quad tree associated with this random sample is constructed by
placing the first point at the root, which splits the space into 2d hyperrectangles,
each corresponding to one of the 2d subtrees of the root. Points that fall in each
hyperrectangle are directed to the corresponding subtree and are constructed recur-
sively. For more information on quad trees, see [18, 28, 32, 41] and the references
therein.

The profile. By such a construction, the profile Yn,k satisfies (4.8) with h = 2d ,
κ = 1 and

πn,j := P(In,1 = j1, . . . , In,2d = j2d )

=
(

n − 1
j1, . . . , j2d

)

×
∫
[0,1]d

∏
1≤	≤2d

	−1=(b1,...,bd )2

( ∏
1≤i≤d

bi(1 − xi) + (1 − bi)xi

)j	

dx,

where (b1, . . . , bd)2 denotes the binary representation of 	 − 1 [prefixed by zeros
if �log2(	 − 1)� < d − 1] and dx = dx1 · · ·dxd .

The underlying recurrence. From the expression for πn,j, it follows that all
moments of Yn,k satisfy (4.9) with (see [18])

πn,j = 1

n

∑
j<j1≤···≤jd−1≤n

1

j1 · · · jd−1
(0 ≤ j < n).(5.1)

In particular, the expected profile µn,k satisfies the estimates (4.1) and (4.2) with
f (u) = 2u1/d − 1 and

g(u) := 1

�(2u1/d)d(2u1/d − 1)

× ∏
1≤	<d

�(2u1/d(1 − e2	πi/d))

�(2 − 2u1/de2	πi/d)
;

see [4] and [20]. The exact form of g is less important for our purpose; the analyt-
icity of g for u near unity is, however, technically useful. Note that

f ′(1) = 2

d
, σ 2 = 2

d2 .
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Recurrence of P
(m)
n,k := E{(Yn,k − µn,k)

m}. Obviously, P
(0)
n,k = 1, P

(1)
n,k = 0 and

P
(m)
n,k satisfies the recurrence

P
(m)
n,k = 2d

∑
0≤j<n

πn,jP
(m)
j,k−1 + Q

(m)
n,k (m ≥ 2),

where

Q
(m)
n,k := ∑

(i0,...,i2d )∈Im

(
m

i0, . . . , i2d

)

× ∑
j1+···+j2d =n−1

πn,jP
(i1)
j1,k−1 · · ·P (i2d )

j2d ,k−1∇ i0
n,k( j).

Here ∇n,k( j) is given in (4.10) with h = 2d there and

Im := {
(i0, . . . , i2d ) ∈ {0, . . . ,m} × {0, . . . ,m − 1}d : i0 + · · · + i2d = m

}
.

Following the proof pattern for recursive trees and the discussions in Sec-
tion 4.2, we prove, based on the estimates (4.11), the two bounds

P
(m)
n,k =

{
O

(
(|r − 1|m + L

−m/2
n )L

−m/2
n r−mknmf (r)

)
, r = 1 + o(1),

O(|�|mL
−3m/2
n nm),

(5.2)

the first being uniform for 1 ≤ k < n and the second uniform for � := k −
f ′(1)Ln = O(

√
Ln ). These two estimates imply (4.3) by (4.7) and (4.12).

An asymptotic transfer for the double-indexed recurrence. To justify the
width-regularity properties (4.4), it remains to prove the two estimates in (5.2).
For an exact solution for (4.9) similar to (2.9), see [18]. Here we use a different
inductive argument, which is easily amended for other varieties of trees.

LEMMA 1. Assume that an,k satisfies (4.9) with πn,j given in (5.1) and that
an,0, a1,k = O(1). If

|bn,k| ≤ c|k − f ′(1)Ln|λLβ
nρ−knα

for n ≥ 1 and 1 ≤ k ≤ n, where λ ≥ 0, β ∈ R, c > 0 and the two real numbers
α,ρ > 0 satisfy ρ < ((α + 1)/2)d , then

|an,k| ≤ C0|k − f ′(1)Ln|λLβ
nρ−knα(5.3)

for n ≥ 1 and 1 ≤ k ≤ n, where C0 > 0 is chosen so large that C0 ≥ c/(1 − ε −
2dρ/(α + 1)d).

PROOF. We apply induction on k and n. The boundary conditions are easily
checked by taking C0 sufficiently large. We may assume that |k −f ′(1)Ln| → ∞,
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for otherwise we need only modify the value of c. By the induction hypothesis, we
have (see [4])

|an,k| ≤ c|k − f ′(1)Ln|λLβ
nρ−knα

+ 2dC0ρ
1−kn−1

∑
1≤j<j1≤···≤jd−1≤n

|k − 1 − f ′(1)Lj |λLβ
j jα

j1 · · · jd−1

∼ c|k − f ′(1)Ln|λLβ
nρ−knα

+ 2dC0

(d − 1)!ρ
1−kn−1

∑
1≤j<n

|k − f ′(1)Lj |λLβ
j jα

(
log

n

j

)d−1

= cnαLβ
nρ−k + 2d

(α + 1)d
C0

(
1 + o(1)

)|k − f ′(1)Ln|λLβ
nρ1−knα;

thus (5.3) follows by properly tuning C0 [since ρ < ((α + 1)/2)d ]. �

Asymptotics of P
(m)
n,k . We prove by induction the first bound in (5.2). Assume

m ≥ 2.
Consider Q

(m)
n,k . As for recursive trees, we distinguish between two cases. If

j1, . . . , j2d ≥ n/Lm
n , then Lj	

∼ Ln for 	 = 1, . . . ,2d and we have∑
(i0,...,i2d )∈Im

(
m

i0, . . . , i2d

)

× ∑
n/Lm

n ≤j1,...,j2d <n

πn,jP
(i1)
j1,k−1 · · ·P (i2d )

j2d ,k−1∇ i0
n,k( j)(5.4)

= O
(
(|r − 1|m + L−m/2

n )L−m/2
n r−mknmf (r)).

We now assume that one of the j	’s, say j1, is less than n/Lm
n . We may fur-

thermore assume that the corresponding index i1 of j1 is nonzero; for otherwise,
if all i	 = 0 for those j	’s with j	 ≤ n/Lm

n , then the bound on the right-hand side
of (5.4) obviously holds, since all other j	’s satisfy Lj	

∼ Ln. Terms in Q
(m)
n,k with

i1 ≥ 1 and j1 ≤ n/Lm
n are bounded above by

O

(
r−mk

∑
(i0,...,i2d )∈Im

n(m−i1)f (r)
∑

j1≤n/Lm
n

πn,j1j
i1f (r)
1

)
= O

(
L−m

n r−mknmf (r)).
This proves that

Q
(m)
n,k = O

(
(|r − 1|m + L−m/2

n )L−m/2
n r−mknmf (r)).

Thus the first estimate in (5.2) holds by applying the O-transfer of Lemma 1.
The proof of the second estimate in (5.2) follows by applying the same inductive
argument; the details are omitted here.
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Consequently, random quad trees are width-regular with parameters (2/d,

2/d2) and with the almost sure convergence (4.5). All our results are new except
when d = 1, for which quad trees reduce to binary search trees and the almost sure
convergence in (4.4) was derived in [3], and the expected width in [13] (with a
weaker error term).

Random grid trees. Grid trees were first proposed by Devroye [8] and repre-
sent one of the extensions of quad trees. Instead of placing the first element in the
given sequence at the root (as in quad trees), we fix an integer m ≥ 2 and place the
first m− 1 elements at the root, which then split the space into md hyperrectangles
(called grids). The remaining construction is similar to that for quad trees.

In this case, we have h = md and (j0 := j, jd := n − m + 1)

πn,j = ∑
j≤j1≤···≤jd−1≤n−m+1

∏
1≤	≤d

(j	−j	−1+m−2
m−2

)
(j	+m−1

m−1

) ,

and (4.1) and (4.2) hold by applying the approach proposed in [4], where f (u)

satisfies ((
f (u) + 1

) · · · (f (u) + m − 1
))d = m!du (m ≥ 2;d ≥ 1),

with f (1) = 1. An O-transfer similar to that given in Lemma 1 can also be derived
by noting that∑

1≤j<n

πn,j |k − 1 − f ′(1)Lj |λLβ
j jα

= ∑
1≤j≤j1≤···≤jd−1≤n−m+1

|k − 1 − f ′(1)Lj |λLβ
j jα

∏
1≤	≤d

(j	−j	−1+m−2
m−2

)
(j	+m−1

m−1

)
∼ (m − 1)d

n

× ∑
1≤jd−1≤n

1

jd−1

(
1 − jd−1

n

)m−2

× ∑
1≤jd−2≤jd−1

· · · ∑
1≤j1≤j2

1

j1

(
1 − j1

j2

)m−2

× ∑
1≤j≤j1

|k − f ′(1)Lj |λLβ
j jα

(
1 − j

j1

)m−2

∼ (m − 1)d
(

�(m − 1)�(α + 1)

�(m + α)

)d

|k − f ′(1)Ln|λLβ
nnα,
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so that the same type of asymptotic transfer there holds when α,ρ > 0 satisfy the
inequality

ρ <

(
(α + 1) · · · (α + m − 1)

m!
)d

.

Thus random grid trees are width-regular with

f ′(1) = 1

d(Hm − 1)
, σ 2 = H

(2)
m − 1

d2(Hm − 1)3

and with the almost sure convergence (4.5), where Hm := ∑
1≤j≤m 1/j and

H
(2)
m := ∑

1≤j≤m 1/j2. Note that d = 1 corresponds to m-ary search trees (see
[32]), and m = 2 corresponds to quad trees. No martingale structure is known for
grid trees for general (m,d). Our results are new.

6. Generalized m-ary search trees. The m-ary search tree, proposed by
Muntz and Uzgalis [38], generalizes the binary search tree. For the random version
built from a random permutation of {1, . . . , n}, early results on the typical depth
and expected profile are from [33, 34]. These trees in turn led to the generalized
m-ary search trees of Hennequin [23] (see also [5]). Instead of placing the first
m − 1 elements in the given sequence of numbers at the root (as in m-ary search
trees), we choose a random sample of m(t + 1) − 1 elements, where m ≥ 2 and
t ≥ 0, and sort it in increasing order. Then use the (t + 1)st, the 2(t + 1)st, . . . and
the (m − 1)(t + 1)st smallest elements in the sample to partition the original sam-
ple into m groups, corresponding to the m subtrees of the root. Elements that fall
in each subtree are constructed recursively in the same way and the process stops
as long as the subtree size is less than m(t + 1) − 1, which can then be arranged
arbitrarily, since asymptotically this will have a limited effect.

In this case, the profile Yn,k satisfies (4.8) with h = m and

P(In,1 = j1, . . . , In,m = jm) =
(j1

t

) · · · (jm

t

)
( n
m(t+1)−1

) .

Furthermore, (4.1) and (4.2) hold with f (u) satisfying the equation (see [32])

(
f (u) + t + 1

) · · · (f (u) + m(t + 1) − 1
) = (m(t + 1))!

(t + 1)! u,

with f (1) = 1, where m ≥ 2 and t ≥ 0; see [5–7] for the asymptotic tools needed
(based on differential equations). Straightforward computation gives

f ′(1) = 1

Hm(t+1) − Ht+1
, σ 2 = H

(2)
m(t+1) − H

(2)
t+1

(Hm(t+1) − Ht+1)3 .
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The estimate (4.3) can be checked by an inductive argument similar to quad
trees by using the expression

πn,j =
(j
t

)( n−1−j
(m−1)(t+1)−1

)
( n
m(t+1)−1

) .

In particular, we can derive an O-transfer similar to Lemma 1 with the two num-
bers α,ρ there satisfying

ρ <
(α + t + 1) · · · (α + m(t + 1) − 1)

(t + 2) · · · (m(t + 1))
.

Thus the generalized m-ary search trees are also width-regular with the almost
sure convergence (4.5).

Note that m-ary search trees correspond to t = 0 and that m = 2 reduces to the
so-called fringe-balanced or median-of-(2t + 1) binary search trees; see [8].

7. Random increasing trees. Bergeron, Flajolet and Salvy [2] proposed the
increasing tree model: rooted trees with increasing labels along paths down from
the root, such that the number of trees of a certain structure is prescribed in some
general manner. The exponential generating function τ(z) := ∑

n τn≥1z
n/n! for

the number τn of increasing trees (of n labels) has the form

τ ′(z) = φ(τ(z)),(7.1)

with τ(0) = 0 and τ(1) = 1 for some function φ(w) with φ(0) = 1 and nonnega-
tive Taylor coefficients. The degree function φ(w) specifies how the trees are re-
cursively formed. In this case, there are three representative varieties of increasing
trees: (i) recursive trees with φ(w) = ew; (ii) binary increasing trees with φ(w) =
(1 + w)2; (iii) plane-oriented recursive trees (PORTs) with φ(w) = 1/(1 − w).

We already studied the width of random recursive trees and random binary in-
creasing trees (identically distributed as random binary search trees). We consider
first PORTs and then mention other varieties of increasing trees (in some general-
ity).

Random PORTs. PORTs are ordered (or plane) increasing trees without re-
striction on the degree of each node. To the best of our knowledge, such trees
first appeared in a combinatorial form in [40], and in a more general probabilis-
tic form in [44]; see also [2, 39, 43] for more details. Probabilistic properties of
PORTs received much recent attention due partly to their close connection to ran-
dom complex models; see [26] for more references.

The recurrence for the profile Yn,k is similar to (2.1), but with a very different
underlying distribution (see [26])

Yn,k
d= YIn,k−1 + Y ∗

n−In,k (n ≥ 2;k ≥ 1),
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where the Y ∗
n,k’s are independent copies of Yn,k and

πn,j = P(In = j) = 2
(2j−2

j−1

)(2n−2j−2
n−j−1

)
j
(2n−2

n−1

) (1 ≤ j < n).

We have

�n(u) = 1

(1 + u)

(
2
√

π

�(u/2)
n(u+1)/2 + 1

)(
1 + O(n−ε)

)
uniformly for |u| ≤ C for any C > 0; see also [2, 31]. Then we have (4.1) with
f (u) = (u + 1)/2, so that f ′(1) = σ 2 = 1/2. Note that although the recurrence
satisfied by Yn,k is not of the form (4.8), the technicalities are similar to those for
recursive trees; see [26] for details. Thus PORTS are width-regular with parame-
ters (1/2,1/2); the almost sure convergence (4.5) also holds.

The widths and profiles of random increasing trees for which 1/φ(w) equals a
polynomial also exhibit similar behaviors.

Polynomial varieties. We now show that the same width-regularity results
(4.4) also hold for polynomial varieties of increasing trees; see [2]. Briefly, these
are increasing trees in which each node has at most d subtrees and the exponential
generating function τ(z) := ∑

n≥1 τnz
n/n! satisfies (7.1) with

φ(w) := ∑
0≤j≤d

φjw
j (d ≥ 2),

where φj ≥ 0 for 0 ≤ j ≤ d and φ0, φd > 0. In this case, it is known that

τn

n! = p

�(1/(d − 1))

(
(d − 1)φdR

)−1/(d−1)

(7.2)
× R−nn−(d−2)/(d−2)(1 + O

(
n−2/(d−1))),

where p denotes the period of φ(v), R := ∫ ∞
0 dv/φ(v) and

∑
n,k

E{Yn,k}uk zn

n! = (τ ′(z))−u
∫ z

0
(τ ′(v))1−u dv;

see [2]. From these relations, we deduce the two estimates (4.1) and (4.2) with

f (u) = d

d − 1
u − 1

d − 1
,

g(u) = φ
(1−u)/(d−1)
d

(
R(d − 1)

)(1−du)/(d−1)

× �(1/(d − 1))

�(du/(d − 1))

∫ ∞
0

φ(v)−u dv.
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Furthermore, the higher moments of Yn,k (centered or not) satisfy the recurrence

an,k = bn,k + ∑
1≤j<n

�n,jaj,k−1,

where

�n,j := (n − 1)!τj

τnj ! [zn−1−j ]φ′(τ (z)).

By (7.2), we then derive an O-transfer for an,k similar to Lemma 1 with α and ρ

there satisfying

ρ <
d − 1

dpd−1

(
α + 1

d − 1

)
;

from this the estimates (4.3) are then justified, implying the width-regularity prop-
erties (4.4).

Random mobile trees. These are increasing trees in which all subtrees are
arranged in cyclic order and whose enumerating generating function satisfies (7.1)
with φ(w) = 1 − log(1 − w); see [2]. This example is less natural but very inter-
esting because nodes are distributed in a rather different way and the trees are not
width-regular.

First, the generating polynomial for the expected profile is given by

�n(u) = ∑
k

µn,ku
k = n!

τn

[zn]τ ′(z)u
∫ z

0
τ ′(v)1−u dv.

Here the number τn of such trees satisfies
τn

n! = R1−nn−2(
1 + O(L−1

n )
)
,

where R = ∫ ∞
0 (1 + v)−1e−v dv. By singularity analysis (see [19]), we deduce that

�n(u) = g(u)nLu−1
n

(
1 + O

(
logLn

Ln

))
,

where the O-term holds uniformly for bounded complex u and

g(u) = R−1u

∫ ∞
0

e−v(1 + v)−u dv.

Note that this is not of the form (4.1) and g(1) = 1. Thus such mobile trees are very
“bushy” at each level (the root already having about n/Ln nodes) and we have

max
k

µn,k ∼ n√
2π logLn

,

the mode being reached at k ∼ logLn. The same methods of proof we used for
recursive trees can be extended to show that

E{Wn} ∼ n√
2π logLn

,

a very different behavior from all types of random trees we have discussed.
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[10] DONDAJEWSKI, M. and SZYMAŃSKI, J. (1982). On the distribution of vertex-degrees in a
strata of a random recursive tree. Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 205–209.
MR0673253

[11] DRMOTA, M. and GITTENBERGER, B. (2004). The width of Galton–Watson trees conditioned
by the size. Discrete Math. Theor. Comput. Sci. 6 387–400. MR2081482

[12] DRMOTA, M. and HWANG, H.-K. (2005). Bimodality and phase transitions in the profile vari-
ance of random binary search trees. SIAM J. Discrete Math. 19 19–45. MR2178182

[13] DRMOTA, M. and HWANG, H.-K. (2005). Profiles of random trees: Correlation and width
of random recursive trees and binary search trees. Adv. in Appl. Probab. 37 321–341.
MR2144556
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[44] SZYMAŃSKI, J. (1987). On a nonuniform random recursive tree. In Random Graphs’85 (Poz-
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