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ASYMPTOTICS OF SOLUTIONS TO SEMILINEAR
STOCHASTIC WAVE EQUATIONS

BY PAO-LIU CHOW1

Wayne State University

Large-time asymptotic properties of solutions to a class of semilinear sto-
chastic wave equations with damping in a bounded domain are considered.
First an energy inequality and the exponential bound for a linear stochastic
equation are established. Under appropriate conditions, the existence theorem
for a unique global solution is given. Next the questions of bounded solutions
and the exponential stability of an equilibrium solution, in mean-square and
the almost sure sense, are studied. Then, under some sufficient conditions,
the existence of a unique invariant measure is proved. Two examples are pre-
sented to illustrate some applications of the theorems.

1. Introduction. Semilinear stochastic wave equations arise as mathematical
models to describe nonlinear vibration or wave propagation in a randomly excited
continuous medium. To be specific, the equation may take the form

∂2
t u(x, t) = c2�u − 2α ∂tu(x, t) + f (u) + σ(u)Ẇ (x, t)(1.1)

in a bounded domain D in Rd , subject to some homogeneous boundary and ini-
tial conditions to be specified later. Here ∂t = ∂

∂t
, � is the Laplacian operator,

and c and 2α are some positive constants known as the wave speed and the
damping coefficient, respectively. The nonlinear functions f and σ are given,
and Ẇ (x, t) = ∂tW(x, t) is a spatially dependent white noise, where W(x, t) is
a Wiener random field. In previous papers [3, 4], we studied the local and global
solutions of this type of equation without damping (α = 0), where the nonlinear
terms f and σ may admit a polynomial growth. As a sequel to our previous work,
this paper is concerned with some qualitative asymptotic behavior of solutions to
equation (1.1) in a bounded domain D as t → ∞. In addition to the global exis-
tence of solutions, we are interested in the questions of boundedness, asymptotic
stability and the existence of a stationary solution or an invariant measure. For a
solution of the wave equation to reach a statistical equilibrium, it is imperative
to include the damping term in equation (1.1) so that, in the physical term, the
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fluctuation–dissipation principle may hold. As a simple example, consider the ran-
domly perturbed wave equation in one dimension,

∂2
t u = c2 ∂2

xu − 2α ∂tu + Ẇ (x, t), t > 0, x ∈ D = (0, π),
(1.2)

u(x,0) = h(x), ∂tu(x,0) = 0; u(0, t) = u(π, t) = 0,

where h is a given continuous function and the Wiener field W is assumed to have
the Fourier series representation

W(x, t) =
∞∑

n=1

σnbn(t)φn(x),

where {bn(t)} is a sequence of independent copies of standard Brownian mo-
tions in one dimension, {σn} is a sequence of reals such that

∑∞
n=1 σ 2

n < ∞ and
φn = √

2/π sinnx, n = 1,2, . . . , are the normalized eigenfunctions associated
with the problem (1.2). Then, by means of the eigenfunction expansion, (1.2) can
be formally solved in the case c > α to give

u(x, t) =
∞∑

n=1

un(t)φn(x),(1.3)

where

un(t) = hne
−αt cosωnt + σn

ωn

∫ t

0
e−α(t−s) sinωn(t − s) dbn(s)(1.4)

with hn = ∫ π
0 h(x)φn(x) dx and ωn = √

(nc)2 − α2 for n = 1,2, . . . . By some sim-
ple calculations, we obtain the mean

Eun(t) = hne
−αt cosωnt → 0

and the variance

Var{un(t)} =
(

σn

ωn

)2 ∫ t

0
e−2αs sin2(ωns) ds → 1

4α

(
σn

nc

)2

as t → ∞. Then it follows from (1.4) that the solution u(x, t) is a Gaussian random
field with mean Eu(x, t) → 0, and covariance function

lim
t→∞ Cov{u(x, t), u(y, t)} =

∞∑
n=1

1

4α

(
σn

nc

)2

φn(x)φn(y).

In fact it can be shown that the solution u(·, t) converges in the mean-square to a
Gaussian random field û(·) with the above covariance function and its probability
law is the invariant measure for equation (1.2). On the other hand, without the
damping (α = 0), we would have Eun(t) = hn cosnct and

Var{un(t)} = (1/2)(σn/nc)2[t − (1/2nc) sin 2nct] → ∞ as t → ∞.
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So the asymptotic solution will cease to exist. Clearly this can also happen in the
nonlinear case. In fact it was shown that, with a cubic nonlinearity, the solution
may explode in finite time [3] unless there exists a certain energy bound. As to be
seen, the dissipation and the energy bound for a semilinear wave equation such as
(1.1) are two major ingredients to ensure proper asymptotic behavior of its solu-
tions.

Our initial work on semilinear stochastic wave equations [3] was stimulated
by two interesting papers by Mueller [18, 19] on the existence of large-time so-
lutions to some nonlinear heat and wave equations with noise. If such a solution
exists, it is natural to investigate its asymptotic behavior as t → ∞. By a semi-
group approach, asymptotic solutions to semilinear stochastic evolution equations
have been studied by many authors. For the problems of boundedness and stabil-
ity, see, for example, the papers [2, 10, 12, 13], and for the existence of invariant
measures, we mention the articles [5, 8, 14, 16], and the book [7] for further ref-
erences. In concrete terms, most of the above-mentioned results are applicable to
the parabolic or dissipative type of stochastic partial differential equations. The
asymptotic solution of a stochastic hyperbolic or wavelike equation was studied in
[15] by the method of averaging. To our knowledge the asymptotic solutions of the
semilinear wave equations under consideration have not been treated in the litera-
ture. For the deterministic case, the analysis of hyperbolic equations relies heavily
on the so-called energy method ([23], [25], Chapter 4). Therefore the associated
energy function plays an important role in the asymptotic analysis. Similarly we
shall adopt the stochastic version of the energy method in the current study. In fact,
to obtain the crucial exponential estimates, it is necessary to introduce a pseudo en-
ergy function, which can be interpreted physically as adding an artificial damping
to the system. For some related works on stochastic wave equations, we mention
the interesting papers [17, 20, 21], among many others.

2. Summary of results. In Section 3 we present three technical lemmas. In
Lemma 3.1 we prove the existence of a unique solution and the energy equation for
a linear stochastic wave equation. By introducing a pseudo energy function, a key
exponential estimate is established in Lemma 3.2. Then it is shown in Lemma 3.3
that the pseudo energy function is equivalent to the usual energy function.

The global solution to a class of semilinear stochastic wave equations of the
form (4.1) is treated in Section 4. Under the locally bounded, local Lipschitz con-
ditions in the Sobolev space H 1 and an energy inequality given by conditions
(A1)–(A4), the results of the existence and uniqueness of a global solution are
stated and proved in Theorem 4.1. The proof is based on a smooth H 1-truncation
technique and some probabilistic inequalities.

In Section 5 we consider the boundedness of solutions in a mean-square sense
as t → ∞. Assuming that, in addition to Conditions A, the nonlinear terms sat-
isfy a set of growth conditions (B1)–(B3), Theorem 5.1 shows that the solution is
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bounded in mean-square, while with a slightly stronger assumption, it is proved in
Theorem 5.2 that the solution is ultimately bounded in the mean-square sense.

Then some questions of the asymptotic stability of the null solution are consid-
ered in Section 6. Under Conditions B with an exponential integrability condition
on the parametric functions θ(t) and ρ(t), Theorem 6.1 shows that the null solu-
tion is asymptotically, exponentially stable in mean-square. If θ = ρ ≡ 0, as stated
and proved in Theorem 6.3, the null solution becomes exponentially stable almost
surely.

So far the stochastic wave equations under consideration admit that nonlinear
terms satisfy only a local Lipschitz condition in the space H 1. In particular, the
nonlinear terms are allowed to have a polynomial growth. For the existence of
an invariant measure, this poses a challenging open problem as yet to be resolved.
Even in the case of globally Lipschitzian nonlinearity, the existence result does not
seem to have been proven. Hence, in Section 7, we shall prove an existence theo-
rem (Theorem 7.1) by assuming that the nonlinear terms are globally Lipschitzian
and have linear growth. Technically our proof follows the approach of Da Prato
and Zabczyk [7] by adapting their method for the strongly dissipative equation,
such as a parabolic equation, to our hyperbolic problem. Finally two examples are
provided in Section 8 to illustrate some applications of our theorems.

3. Energy equation and exponential estimate. Let D ⊂ Rd be a bounded
domain with a smooth, say, C2 boundary ∂D . We set H := L2(D) with the inner
product and norm denoted by (·, ·) and ‖ · ‖, respectively. Let Hk = Wk,2(D) be
the L2 Sobolev space of order k with norm ‖ · ‖k , and denote by H 1

0 the closure
in H 1 of the set of all C1 functions with compact support in D . The dual space of
H 1 is given by H−1 [1].

Let (
,F ,P) be a complete probability space for which a filtration Ft of sub-
σ -fields of F is given. Let W(x, t), x ∈ D, t ≥ 0, be a continuous Wiener random
field defined in this space with W(x,0) = 0. It has a zero mean, EW(x, t) = 0 and
covariance

E[W(x, t)W(y, s)] = (t ∧ s)r(x, y), x, y ∈ D,(3.1)

where (t ∧ s) = min(t, s) for 0 ≤ t, s ≤ T and the covariance function r(x, y) is
bounded so that

sup
x∈D

r(x, x) ≤ r0.(3.2)

Let σ(x, t) = σ(x, t,ω) for t ≥ 0, x ∈ D and ω ∈ 
 be a continuous Ft -pre-
dictable random field satisfying the condition

E

∫ T

0
‖σ(·, t)‖p dt < ∞(3.3)
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for p ≥ 2. Then it can be shown that the stochastic integral

M(x, t) =
∫ t

0
σ(x, s)W(x, ds), t > 0, x ∈ D,(3.4)

is well defined and Mt = M(·, t) is a continuous H -valued Ft martingale (see the
Appendix). It has mean EM(x, t) = 0 and covariation operator Qt defined by

〈(M·, g), (M·, h)〉t =
∫ t

0
(Qsg,h)ds

for any g,h ∈ H , where the kernel function q(x, y, t) of Qt , defined by

(Qtg)(x) =
∫
D

q(x, y, t)g(y) dy,

is given by

q(x, y, t) = r(x, y)σ (x, t)σ (y, t).

In view of conditions (3.2) and (3.3), it can be shown that (see the proof of Theo-
rem A.1)

E‖Mt‖p ≤ Cp(T )E

∫ T

0
‖σ(·, t)‖p dt

for some positive constant Cp(T ). It is worth noting that the stochastic integration
in (3.4) is taken with respect to an Lp-bounded integrand σt , instead of a Hilbert–
Schmidt operator-valued process as usually done (see [6], Chapter 4). This version
of stochastic integral will be needed later on to deal with equations with pointwise
(in x) multiplicative noises (see Example 1). Since we have not been able to find a
reference for this type of integral, it will be defined in the Appendix.

Now we consider the initial boundary value problem for the linear damped hy-
perbolic equation with a random perturbation,

[∂2
t + 2α∂t − A(x,D)]u(x, t) = f (x, t) + ∂tM(x, t), 0 < t < T,

u(x,0) = u0(x), ∂tu(x,0) = v0(x), x ∈ D,(3.5)

u(·, t)|∂D = 0,

where α is a positive parameter, D = ∂x denotes the gradient operator and A(x,D)

is a strongly elliptic operator of second order of the form

A(x,D)ϕ(x) =
d∑

i,j=1

∂xi
[aij (x) ∂xj

ϕ(x)] − b(x)ϕ(x).(3.6)

In addition, the coefficients aij = aji and b are assumed to be smooth functions
that satisfy

a0(1 + |ξ |2) ≤
d∑

i,j=1

aij (x)ξiξj + b(x)|ξ |2 ≤ a1(1 + |ξ |2), ξ, x ∈ D,
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for some constants a1 ≥ a0 > 0.
To consider (3.5) as an Itô equation in a Hilbert space, we set ut = u(·, t), vt =

v(·, t) and so on, and rewrite it as

dut = vt dt,

dvt = [Aut − 2αvt + ft ]dt + dMt, 0 < t < T,(3.7)

u0 = g, v0 = h,

where the domain D(A) = H 2 ∩ H 1
0 , g ∈ H 1, h ∈ H and Mt is regarded as an

H -valued Wiener martingale. Condition (3.6) implies that (−A) is a self-adjoint,
strictly positive linear operator in H = L2(D) and its square root B = √−A is
also a self-adjoint, strictly positive operator with domain D(B), which is a Hilbert
space under the inner product (g,h)B := (Bg,Bh) and norm ‖g‖B = (Bg,Bg)1/2

(see [24], Chapter 1). Since D(B) ∼= H1, for convenience, we define ‖ · ‖1 = ‖ · ‖B

in the subsequent analysis. As usual, the Itô differential equation (3.7) is inter-
preted as a stochastic integral equation:

ut = u0 +
∫ t

0
vs ds,

(3.8)

vt = v0 +
∫ t

0
Aus ds − 2α

∫ t

0
vs ds +

∫ t

0
fs ds + Mt.

Introduce the Hilbert space H = (H 1 × H) with H0 = (H 1
0 × H), equipped

with the norm defined by

‖φ‖H = {‖u‖2
1 + ‖v‖2}1/2 = {‖Bu‖2 + ‖v‖2}1/2

for any φ = (u;v) ∈ H . Let H∗ = (H−1 ×H) denote the dual space of H . Define
the energy function e(·) :H → R+ = [0,∞) as

e(φ) := e(u;v) = ‖Bu‖2 + ‖v‖2 for φ = (u;v) ∈ H 1 × H.(3.9)

Notice that the norm ‖φ‖H = √
e(φ) is also called an energy norm. In what fol-

lows, we denote the H -norm ‖ · ‖H simply by ‖ · ‖ when there is no confusion.
Now by regarding (3.8) as a stochastic evolution equation in H∗ in the distrib-

utional sense, we have the following lemma:

LEMMA 3.1 (Energy equation). For φ0 = (u0;v0) ∈ H , let ft be a continuous
predictable process in H and let Mt be a continuous H -valued martingale with
covariation operator Qt such that

E

{∫ T

0
‖ft‖2 dt +

∫ T

0
TrQt dt

}
< ∞,(3.10)

where Tr denotes the trace operator in H. Then equation (3.8) or (3.7) has a unique
solution φt = (ut ;vt ) which is a continuous H -valued semimartingale. Moreover,
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it satisfies the energy equation

e(φt ) = e(φ0) − 4α

∫ t

0
‖vs‖2 ds + 2

∫ t

0
(vs, fs) ds

(3.11)

+ 2
∫ t

0
(vs, dMs) +

∫ t

0
TrQs ds a.s.

for t ∈ [0, T ], where the energy function e(·) on H is defined by (3.9). Moreover,
the inequality

E sup
t≤T

e(φt ) ≤ C1 + C2E

∫ T

0
{‖fs‖2 + TrQs}ds(3.12)

holds, where the constants C1,C2 depend on p,T and the initial conditions.

PROOF. Since the idea of the proof is similar to that of Lemma 2.1 in [4] with
the Laplacian replaced by A, we will only sketch the proof. The only difference
is that, instead of using Friedrichs’ mollifying approximation, we adopt a finite-
dimensional projection.

To this end, since A is strongly elliptic and self-adjoint, it has a complete
orthonormal set of eigenfunctions {ϕn} with corresponding eigenvalues {λn}.
Let Pn :H → Hn be defined by Pnh = ∑n

k=1(h,ϕk)ϕk , where Hn is a finite-
dimensional subspace of H 2 spanned by {ϕ1, . . . , ϕn}. Apply the projector Pn to
equation (3.7) to get

dun
t = vn

t dt,

dvn
t = [Aun

t − 2αvn
t + f n

t ]dt + dMn
t , 0 < t < T,(3.13)

un
0 = gn, vn

0 = hn,

where we set un
t = Pnut , . . . , h

n = Pnh. The finite-dimensional linear system has
a unique Ft -adapted continuous solution (un

t ;vn
t ) in (Hn × Hn) ⊂ (H 1

0 × H). In
particular, by the Itô formula, the following energy equation holds:

e(un
t , v

n
t ) = e(gn,hn) − 4α

∫ t

0
‖vn

s ‖2 ds + 2
∫ t

0
(vn

s , f n
s ) ds

(3.14)

+ 2
∫ t

0
(vn

s , dMn
s ) +

∫ t

0
TrQn

s ds a.s.

By means of the simple inequality 2(vn, f n) ≤ (α‖vn‖2 + 1
α
‖f n‖2) and the

B–D–G (Burkholder–Davis–Gundy) inequality ([6], page 82),

E sup
0≤t≤T

∣∣∣∣2
∫ t

0
(vn

s , dMn
s )

∣∣∣∣ ≤ 8E

{∫ T

0
‖vn

s ‖2 TrQn
s ds

}1/2

≤ 8E

{
sup

0≤t≤T

‖vn
t ‖

∣∣∣∣
∫ T

0
‖vn

s ‖TrQn
s ds

∣∣∣∣
1/2}
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≤ 1
2E sup

0≤t≤T

‖vn
t ‖2 + 36

∫ T

0
TrQn

s ds,

we can deduce from (3.14) that

E sup
0≤t≤T

e(un
t , v

n
t ) ≤ C1E

∫ T

0
{‖fs‖2 + TrQn

s }ds(3.15)

for some constant C1 > 0. Let X = L2(
;C([0;T ],H 1
0 × H)) with norm

‖(u;v)‖X = {E sup0≤t≤T e(ut , vt )}1/2. Then X is known to be a separable, re-
flexive Banach space ([22], page 218). In view of (3.15), the sequence {(un;vn)}
is bounded in X so that there exists a subsequence {(unk ;vnk )} that converges
weakly to (u;v) ∈ X.

In fact, we can show that the subsequence converges strongly in X. To do
so, denote the subsequence again by {(un;vn)} and set (umn;vmn) = (um;vm) −
(un;vn). It suffices to show that {(un;vn)} is a Cauchy sequence in X so that
‖(umn;vmn)‖X → 0 as m,n → ∞. In view of (3.13) and (3.14), the difference
sequence satisfies the energy equation

e(umn
t ;vmn

t ) = e(gmn;hmn) − 4α

∫ t

0
‖vmn

s ‖2 ds + 2
∫ t

0
(vmn

s , f mn
s ) ds

(3.16)

+ 2
∫ t

0
(vmn

s , dMmn
s ) +

∫ t

0
TrQmn

s ds a.s.

By similar estimates that lead to (3.15), we can obtain

E sup
0≤t≤T

e(umn
t , vmn

t ) ≤ C2

{
e(gmn,hmn)+E

∫ T

0
{‖f mn

s ‖2 + TrQmn
s }ds

}
(3.17)

for some constant C2 > 0. Since the right-hand side of (3.17) tends to zero as
m,n → ∞, it follows that ‖(um;vm) − (un;vn)‖ → 0. Hence {(un;vn)} is a
Cauchy sequence in X and limn→∞(un;vn) = (u;v) strongly as claimed. Due to
this strong convergence, it is easy to show that the limit (u;v) is the unique strong
solution with the depicted regularity. Moreover, we can take the limits termwise
in (3.14) to obtain the energy equation (3.11). Then the energy inequality (3.12)
follows easily. �

Notice that, due to the lack of required smoothness of solutions, the general
Itô formula does not hold here. As in the deterministic case, the energy equation
and the associated inequalities are the key to proving the existence and regularity
results for stochastic hyperbolic equations.

Owing to the dissipation term in (3.11), in contrast to the energy inequality
(3.12), it is possible to obtain an exponential estimate for the mean energy. To this
end, we introduce a pseudo energy function

eλ(φ) := eλ(u;v) = ‖Bu‖2 + ‖v + λu‖2 for u ∈ H 1, v ∈ H,(3.18)
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where λ > 0 is a parameter. Let vλ = v + λu. Then we can write

eλ(u;v) = e(u;vλ) = e(u;v) + 2λ(u, v) + λ2‖u‖2.(3.19)

Since A is strongly elliptic and strictly positive, its smallest eigenvalue η1 can be
characterized as ([25], page 62)

η1 = inf
g∈H 1,g �=0

‖g‖2
1

‖g‖2 > 0.(3.20)

LEMMA 3.2 (Exponential estimate). Let the conditions for Lemma 3.1 be sat-
isfied such that (3.10) holds for any T > 0. Then if

λ ≤ λ0 := min
{
α

2
,
η1

4α

}
,(3.21)

there exists α1 ∈ (0, λ) such that the following inequality holds:

Eeλ(φt ) ≤ eλ(φ0)e
−α1t +

∫ t

0
e−α1(t−s)E

{
2

α1
‖fs‖2 + TrQs

}
ds.(3.22)

PROOF. It follows from (3.7) that (ut ;vλ
t ) satisfies the perturbed system

dut = [vλ
t − λut ]dt,

dvλ
t = [Aut + λ(2α − λ)ut − (2α − λ)vλ

t + ft ]dt + dMt,(3.23)

u0 = g, v0 = h, 0 < t < T .

By applying Lemma 3.1 to the above system and noting eλ(ut ;vt ) = e(ut ;vλ
t ), the

pseudo energy function (3.18) satisfies

deλ(ut ;vt ) = 2
[
λ(2α − λ)(ut , v

λ
t )

− λ‖ut‖2
1 − (2α − λ)‖vλ

t ‖2 + (ft , v
λ
t ) + 1

2 TrQt

]
dt(3.24)

+ 2(vλ
t , dMt),

with eλ(u0;v0) = e(u0;vλ
0 ). Now, in view of (3.20), we have, by using some simple

inequalities,

λ(2α − λ)(u, vλ) − λ‖u‖2
1 − (2α − λ)‖vλ‖2

≤ λ(2α − λ)
‖u‖1√

η1

‖vλ‖ − λ‖u‖2
1 − (2α − λ)‖vλ‖2

≤ λ(2α − λ)

[
λ
‖u‖2

1

η1
+ 1

4λ
‖vλ‖2

]
− λ‖u‖2

1 − (2α − λ)‖vλ‖2

≤ −λ

(
1 − 2αλ

η1

)
‖u‖2

1 − 3α

4
‖vλ‖2 ≤ −λ

2
‖u‖2

1 − 3λ

4
‖vλ‖2.
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The above result together with the fact that

(ft , v
λ) ≤ λ

4
‖vλ‖2 + 1

λ
‖ft‖2

imply that

λ(2α − λ)(u, vλ) − λ‖u‖2
1 − (2α − λ)‖vλ‖2 + (ft , v

λ)
(3.25)

≤ −λ

2
(‖u‖2

1 + ‖vλ‖2) + 1

λ
‖ft‖2.

In view of (3.25), equation (3.24) yields

deλ(ut ;vt ) ≤ −λeλ(ut ;vt ) dt +
[

2

λ
‖ft‖2 + TrQt

]
dt + 2(vλ

t , dMt),(3.26)

which can be integrated to get the desired inequality (3.22), after taking the expec-
tation, with any α1 < λ. �

It is easy to show that the energy norms induced by e and eλ are equivalent. In
fact, the following lemma holds.

LEMMA 3.3. For any λ ∈ (0,µ1), the inequality
(

µ1 − λ

µ1 + λ

)
e(u;v) ≤ eλ(u;v) ≤

(
µ1 + λ

µ1 − λ

)
e(u;v)(3.27)

holds, where µ1 = (

√
4η1 + λ2 ). Moreover, we have

Ee(φt ) ≤ K(λ)

{
e(φ0)e

−α1t +
∫ t

0
e−α1(t−s)E

(
2

α1
‖fs‖2 + TrQs

)
ds

}
,(3.28)

where K(λ) = (µ1 + λ)/(µ1 − λ).

PROOF. By definition (3.19),

eλ(u;v) = e(u;v) + 2λ(u, v) + λ2‖u‖2.

It follows that, for any β > 0,

eλ(u;v) ≤ e(u;v) + (1 + β)

(
λ2

η1

)
‖u‖2

1 + 1

β
‖v‖2

≤
(

1 + 1

β

)
e(u;v) =

(
µ1 + λ

µ1 − λ

)
e(u;v)

by choosing β = 1
2{

√
(4η1/λ

2) + 1 − 1}.
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On the other hand, for any γ > 0,

eλ(u;v) ≥ e(u;v) −
{
(γ − 1)

(
λ2

η1

)
‖u‖2

1 + 1

γ
‖v‖2

}

≥
(

µ1 − λ

µ1 + λ

)
e(u;v)

by taking γ = 1
2{

√
1 + 4η1/λ

2 + 1}.
Therefore, we have verified (3.27), and the result (3.28) is now an direct conse-

quence of (3.22) and (3.27). �

4. Semilinear stochastic hyperbolic equations. Let us consider the initial
boundary value problem for the hyperbolic equation

∂2
t u(x, t) = [A(x,D) − 2α ∂t ]u(x, t)

+ f (u,Du,x, t) + σ(u,Du,x, t) ∂tW(x, t), t > 0,
(4.1)

u(x,0) = u0(x), ∂tu(x,0) = v0(x), x ∈ D ⊂ Rd,

u(·, t)|∂D = 0,

where, in contrast to the linear problem (3.1), f (s, y, x, t) and σ(s, y, x, t) for
x ∈ D , t > 0, s ∈ R and y ∈ Rd are continuous functions, and Wt = W(·, t) is a
continuous Wiener random field with covariance operator R with kernel r(x, y)

for x, y ∈ D .
Similarly we rewrite the linear case as a system of Itô equations in H∗:

dut = vt dt,
(4.2)

dvt = [Aut − 2αvt + Ft(ut )]dt + dMt(u)

or

ut = u0 +
∫ t

0
us ds,

(4.3)

vt = v0 +
∫ t

0
[Aus − 2αvs + Fs(us)]ds + Mt(u),

where we set Ft(u) := f (u,Du, ·, t),

Mt(u) =
∫ t

0
�s(us) dWs(4.4)

and �t(·) :H 1 → H is defined by �t(u)(x) := σ [u(x),Du(x), x, t] for any u ∈
H 1, x ∈ D .

We are interested in the large-time solutions of (4.1) when the nonlinear terms
allow polynomial growth and are locally Lipschitz continuous. For the existence
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of solutions, we shall impose a set of sufficient conditions. In what follows, for
r, s ∈ R, let b(r) and k(r, s) be real-valued functions which are positive, locally
bounded and monotonically increasing in each variable. Let us introduce a positive
function �(·; ·) :H → R+ which is continuous and locally bounded, and let

e(u;v) ≤ �(u;v) ≤ e(u;v) + c‖u‖k
1(4.5)

for any (u;v) ∈ H and some constants c ≥ 0 and k ≥ 2. As a shorthand notation,
we set

‖�t(u)‖2
R = TrQt(u) =

∫
D

r(x, x)[�t(u)(x)]2 dx

and impose the following conditions, which will be referred to later as Condi-
tions A:

(A1) A :H 2 ∩ H 1
0 → H is an elliptic operator as given in (3.6).

(A2) Ft(·) :H 1 → H and �t(·) :H 1 → H are continuous in t ≥ 0. There exist
functions b(r) and k(r, s) as indicated above such that, for any t ≥ 0, u ∈ H 1,

‖Ft(u)‖2 + 1
2‖�t(u)‖2

R ≤ b(‖u‖1) + q(t)

for some locally bounded function q ∈ L1(R+).
(A3) In addition,

‖Ft(u) − Ft(u
′)‖2 + 1

2‖�t(u) − �t(u
′)‖2

R ≤ k(‖u‖1,‖u′‖1)‖u − u′‖2
1,

for any u,u′ ∈ H1, t ≥ 0.
(A4) There exists a positive function � depicted as above and constants ci > 0,

i = 1,2,3, and κ < 1 such that∫ t

0

{
2
(
Fs(us), vs

) + ‖�s(us)‖2
R

}
ds

≤ c1 + c2

∫ t

0
�(us;vs) ds − c3�(ut ;vt ) + κe(ut ;vt )

for any u· ∈ C(R+;H 1) ∩ C1(R+;H) with vt = ∂tut .

THEOREM 4.1. Let Conditions A hold true. Then, for u0 = g ∈ H1 and v0 =
h ∈ H , the problem (4.1) or the system (4.2) has a unique continuous solution u· ∈
C([0, T ];H1) with ∂tu· ∈ C([0, T ];H) for any T > 0. Moreover, the following
energy equation holds:

e(ut , vt ) = e(u0, v0) + 2
∫ t

0

[(
vs,Fs(us)

) − 2α‖vs‖2]
ds

(4.6)

+ 2
∫ t

0

(
vs,�s(us) dWs

) +
∫ t

0
‖�s(us)‖2

R ds a.s.

PROOF. The existence proof is similar to that of Theorems 4.1 and 4.2 in [3],
and will only be sketched in steps as follows:
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Step 1. H1-Lipschitz truncation. For N ≥ 1, let ηN(·) : R+ = [0,∞) → R+ be
a C∞

0 function such that

ηN(s) =
{

1, for 0 ≤ s ≤ N/2,

0, for s > N,
(4.7)

and 0 ≤ ηN(s) ≤ 1 for N/2 < s ≤ N . For (u;v) ∈ H , define SNu = ηN(‖u‖1)u,
FN

t (u) = ηN(‖u‖1)Ft (SNu) and �N
t (u) = ηN(‖u‖1)�t(SNu). Instead of (4.2),

consider the truncated system

dut = vt dt,

dvt = Aut dt + FN
t (ut ) dt + �N

t (u) dWt,(4.8)

u0 = g, v0 = h.

Step 2. Local solutions. By conditions (A2) and (A3), it can be shown that

‖FN
t (u)‖2 = ηN(‖u‖1)Ft (SNu) ≤ α1(N)(4.9)

and

‖FN
t (u) − FN

t (u′)‖2 ≤ α2(N)‖(u − u′)‖1(4.10)

for any u,u′ ∈ H1, v, v′ ∈ H and for some positive constants α1, α2 depending
on N . Similarly, we can deduce that

‖�N
t (u)‖2

R ≤ α3(N)(4.11)

and

‖�N
t (u) − �N

t (u′)‖2
R ≤ α4(N)‖J (u − u′)‖2(4.12)

for any u,u′ ∈ H1, v, v′ ∈ H , where α3, α4 are some positive constants depending
on N .

Therefore the truncated system (4.8) satisfies the usual linear growth and
the global Lipschitz condition. By invoking a standard existence theorem ([6],
Theorem 7.4), equation (4.3) has a unique solution φN = (uN ;vN) ∈ L2(
;
C([0, T ];H 1

0 × H)).
Introduce a stopping time τN defined by

τN = inf{t > 0 :‖uN
t ‖1 > N/2}.

Then, for t < τN , ut = uN
t is the solution of (4.1) with ∂tut = vN

t . As τN is in-
creasing in N , let τ∞ = limN→∞ τN . Define ut for t < τ∞ ∧ T by ut = uN

t if
t < τN < T . Then ut is the unique local continuous solution.
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Step 3. Global solutions. Assume condition (A4) is also satisfied. By taking
the expectation, the energy equation reads

Ee
(
ut∧τN

;vt∧τN

) = e(u0;v0) + 2E

∫ t∧τN

0

(
vs,Fs(us)

)
ds

+ 2E

∫ t∧τN

0

(
vs,�s(us) dWs

) + E

∫ t∧τN

0
‖�s(us)‖2

R ds.

Letting ρN(t) = Ee(ut∧τN
;vt∧τN

) and invoking condition (A4), the above
yields

ρN(t) ≤ [e(u0;v0) + c1] + c2

∫ t

ρN(s) ds + κρN(t).(4.13)

Since κ < 1, there exists c3 > 0 such that

ρN(T ) ≤ c3[e(u0;v0) + c1]ec2T = CT .

On the other hand, we have

ρN(T ) = Eeλ

(
uT ∧τN

) ≥ E
{
I(τN ≤ T )eλ

(
uT ∧τN

)}

≥ CE
{∥∥uT ∧τN

∥∥2
1I(τN ≤ T )

} ≥ C

(
N

2

)2

P {τN ≤ T },

where I is the indicator function and C > 0 is a constant. The above inequality
gives

P {τN ≤ T } ≤ 4ρN(T )/CN2 ≤ 4CT /CN2.

Since the series
∑∞

N=1 P {τN ≤ T } converges, by the Borel–Cantelli lemma, we
can conclude that

P {τ∞ ≤ T } = 0

or τ∞ > T a.s. for any T > 0. Now we let uN
t = ut∧τN

and denote its limit
limN→∞ uN

t still by ut . Then ut is the global solution as claimed. The energy
equation (4.6) can be verified by taking the limits termwise, as N → ∞, in the
energy equation for the N th truncated system (4.8). �

REMARK. In the above theorem, for simplicity, we assumed that W(x, t) is
a scalar Wiener random field. Under an obvious modification, Theorem 4.1 and
the subsequent theorems still hold true when W = (W(1), . . . ,W(k)) is a k-vector-
valued Wiener random field and σ = (σ1, . . . , σk) is another k-vector-valued,
predictable random field such that the product σ(·)W(·) = ∑k

j=1 σjW
(j)(·) is in-

terpreted as a dot product.
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5. Bounded solutions. In view of (4.2), we rewrite the hyperbolic system
(4.2) as

dut = vt dt,
(5.1)

dvt = [Aut − 2αvt + Ft(ut )]dt + �t(ut ) dWt, t > 0,

with a given initial state (u0;v0) which is an F0 random vector in H . For the
existence of bounded solutions, we shall impose Conditions B as follows:

(B1) There exist � ∈ C1(H 1;R+) with Fréchet derivative �′ ∈ C(H 1;H) and
p· ∈ C(R+ × H 1;H) such that Ft(u) = −1

2�′(u) + pt(u) for any u ∈ H 1

and

c1 ≤ �(u) ≤ c2(1 + ‖u‖k
1)

for some constants c1 and c2 > 0, k ≥ 2.
(B2) There exist constants βi ≥ 0 and γi, δ1 ∈ R with i = 1,2,3, and essentially

bounded functions θ and ρ which are locally integrable such that
(
�′(u), u

) ≥ β1�(u) − γ1‖u‖2
1 − δ1,

‖pt(u)‖2 ≤ β2�(u) + γ2‖u‖2
1 + θ(t)

and

‖�t(u)‖2
R ≤ β3�(u) + γ3‖u‖2

1 + ρ(t)

for any u ∈ H1 and t > 0.
(B3) The above constants satisfy

(
β1 − 1

2

)
λ2 − β3λ − β2 ≥ 0,

(
γ1 − 1

2

)
λ2 + γ3λ + γ2 ≤ 0.

THEOREM 5.1 (Bounded in mean-square). Suppose that Conditions A and B
hold true. Given u0 ∈ H 1 and v0 ∈ H being F0 random variables such that

E{e(u0;v0) + �(u0)} < ∞,

then the solution of the problem (5.1) is bounded in mean-square. Moreover, there
exist positive constants K1 and α2 > 0 such that

E{e(ut ;vt ) + �(ut)}
≤ K1

{
E[e(u0;v0) + �(u0;v0)]e−α2t(5.2)

+
∫ t

0
e−α2(t−s)

[
1

λ
θ(s) + ρ(s)

]
ds

}
+ 2|δ1| ∀ t > 0.
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PROOF. By applying Lemma 3.2 to (5.1), as in (3.24), we obtain the perturbed
energy equation

deλ(ut ;vt ) = 2
[
λ(2α − λ)(ut , v

λ
t ) − λ‖ut‖2

1 − (2α − λ)‖vλ
t ‖2

+ (
Ft(ut ), v

λ
t

) + 1
2‖�t(ut )‖2

R

]
dt(5.3)

+ 2dMλ
t (u;v),

where we set dMλ
t (u;v) = (vλ

t ,�(ut ) dWt). As in (3.27) in Lemma 3.2, for λ <

{α ∧ η1/4α}, the above yields

deλ(ut ;vt ) ≤ −λ
(‖ut‖2

1 + 3
2‖vλ

t ‖2)
dt

(5.4)
+ [

2
(
Ft(ut ), v

λ
t

) + ‖�t(ut )‖2
R

]
dt + 2dMλ

t (u;v).

By assumptions,

(
Ft(ut ), v

λ
t

) = −1

2

(
�′(ut ), vt

) − 1

2
λ
(
�′(ut ), ut

) + (
pt(ut ), v

λ
t

)

≤ −1

2

d

dt
�(ut ) − 1

2
λ
(
�′(ut ), ut

) + λ

2
‖vλ

t ‖2 + 1

2λ
‖pt(ut )‖2,

which, in view of condition (B2), implies that

(
Ft(ut ), v

λ
t

) ≤ −1

2

d

dt
�(ut ) − 1

2

(
β1λ − β2

λ

)
�(ut)

(5.5)

+ λ

2
‖vλ

t ‖2 + 1

2

(
γ1λ + γ2

λ

)
‖ut‖2

1 + 1

2λ
θ(t) + λ

2
δ1.

Define a superenergy function J :H → R+ by

J (u;v) = e(u;v) + �(u),(5.6)

with Jλ = eλ + �. By applying (5.4), (5.5) and condition (B2) to (5.3), we obtain

dJ λ(ut ;vt ) ≤ −λeλ(ut ;vt ) dt −
(
β1λ − β2

λ
− β3

)
�(ut) dt

+
{
λ

2
‖vλ

t ‖2 +
(
γ1λ + γ2

λ
+ γ3

)
‖ut‖2

1 + 1

λ
θ(t) + ρ(t) + λδ1

}
dt

+ 2dMλ
t (u;v).

By invoking condition (B3), the above inequality gives

dJ λ(ut ;vt ) ≤ −λ

2
Jλ(ut ;vt ) dt +

{
1

λ
θ(t) + ρ(t) + λδ1

}
dt

(5.7)
+ 2dMλ

t (u;v),
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which implies that

EJλ(ut ;vt ) ≤ EJλ(u0;v0)e
−λt/2

(5.8)

+
∫ t

0
e−λ(t−s)/2

[
1

λ
θ(s) + ρ(s)

]
ds + 2|δ1| < ∞

for all t > 0. Since, by assumption, θ and ρ ∈ L1
loc(R

+) are essentially bounded,
we have

EJλ(ut ;vt ) = E{eλ(ut ;vt ) + �(ut ;vt )} < ∞.

Now, by invoking Lemma 3.3, J (u;v) ≤ CJλ(u;v) for some C > 0. Therefore,
the result (5.2) holds with some constant K1 > 0 and α2 = λ

2 . �

In fact, under somewhat stronger assumptions, it is possible to show that the
solution of (5.1) is ultimately bounded in mean-square, that is,

lim sup
t→∞

E{‖ut‖2
1 + ‖vt‖2} < ∞.

THEOREM 5.2. Assume that Conditions A and B hold true with δ1 = 0, θ and
ρ ∈ L1(R+). Then the solution φt = (ut ;vt ) is ultimately bounded in mean-square
such that

E sup
0≤t≤T

{e(ut ;vt ) + �(ut)}
(5.9)

≤ K2E{e(u0;v0) + �(u0)} + K3

∫ T

0
[θ(s) + ρ(s)]ds

for some positive constants K2 and K3.

PROOF. In view of (5.7), it is clear that

Jλ(ut ;vt ) + λ

2

∫ t

0
Jλ(us;vs) ds

≤ Jλ(u0;v0) +
∫ t

0

[
1

λ
θ(s) + ρ(s)

]
ds + 2Mλ

t (u;v).

Hence

EJλ(ut ;vt ) + λ

2

∫ t

0
EJλ(us;vs) ds

(5.10)

≤ EJλ(u0;v0) +
∫ t

0

[
1

λ
θ(s) + ρ(s)

]
ds

and

E sup
0≤t≤T

J λ(ut ;vt ) ≤ EJλ(u0;v0) +
∫ t

0

[
1

λ
θ(s) + ρ(s)

]
ds

(5.11)
+ 2E sup

0≤t≤T

|Mλ
t (u;v)|.
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By means of the B–D–G inequality for a submartingale, we can deduce that

E sup
0≤t≤T

|Mλ
t (u;v)| = E sup

0≤t≤T

∣∣∣∣
∫ t

0

(
vλ
s ,�s(us) dWs

)∣∣∣∣

≤ 3E

{∫ T

0

(
R�s(us)v

λ
s ,�s(us)v

λ
s

)
ds

}1/2

(5.12)

≤ 3E

{
sup

0≤t≤T

‖vλ
t ‖

}{∫ T

0
‖�s(us)‖2

R ds

}1/2

≤ 1
4E sup

0≤t≤T

‖vλ
t ‖2 + 9E

∫ T

0
‖�s(us)‖2

R ds.

Results (5.8) and (5.12) and condition (B2) imply that

E sup
0≤t≤T

J λ(ut ;vt ) ≤ EJλ(u0;v0) + 1

2
E sup

0≤t≤T

‖vλ
t ‖2

+ 18E

∫ T

0
‖�s(us)‖2

R ds +
∫ t

0

[
1

λ
θ(s) + ρ(s)

]
ds

≤ EJλ(u0;v0) + 1

2
E sup

0≤t≤T

‖vλ
t ‖2

+ 18E

∫ T

0
[β3�(us) + γ3‖us‖2

1]ds

+
∫ t

0

[
1

λ
θ(s) + 19ρ(s)

]
ds.

Therefore, there exist positive constants ci, i = 1,2,3, such that

E sup
0≤t≤T

J λ(ut ;vt ) ≤ c1EJλ(u0;v0) + c2

∫ T

0
E sup

0≤τ≤s

J λ(uτ ;vτ ) ds

+ c3

∫ T

0
[θ(s) + ρ(s)]ds.

From this together with the bound (5.10) and the Gronwall lemma, we can infer
that there exists a pair of positive constants k2, k3 such that

E sup
0≤t≤T

J λ(ut ;vt ) ≤ k2EJλ(u0;v0) + k3

∫ T

0
[θ(s) + ρ(s)]ds,

which, by Lemma 3.3, leads to the desired inequality (5.9). �

6. Asymptotic stability of solutions. Suppose that the hyperbolic system
(5.1) has an equilibrium solution u = û ∈ D(A) with v = 0. By a translation via û,
without loss of generality, we may assume that (û; v̂) ≡ (0;0) is an equilibrium
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solution. We are interested in the asymptotic stability of the null solution in the
following sense.

DEFINITIONS.

1. The null solution φ = (u;v) ≡ (0;0) of (5.1) is said to be asymptotically stable
in mean-square in H if ∃ δ > 0 such that, for ‖φ0‖ < δ,

lim
t→∞E‖φt‖2 = 0,

and it is exponentially stable in mean-square if there exist positive constants
K(δ) and ν such that

E‖φt‖2 ≤ K(δ)e−νt ∀ t > 0,

where ‖φ‖2 = ‖u‖2
1 + ‖v‖2.

2. The null solution is said to be a.s. (almost surely) asymptotically stable if

P

{
lim

t→∞‖φt‖ = 0
}

= 1,

and it is a.s. exponentially stable if there exist positive constants K2(δ), ν2 and
a random time T (ω) > 0 such that

‖φt‖ ≤ K2(δ)e
−ν2t ∀ t > T , a.s.

REMARK. In view of the above definitions, it is clear that the exponential
stability implies the asymptotic stability.

To proceed we assume that Ft(0) = 0 and �t(0) = 0 for any t > 0 so that
φ = (u;v) ≡ (0;0) is an equilibrium solution of equation (5.1). In the stability
analysis [11], it is often assumed that the global solution exists in the first place.
Hence we suppose, under suitable conditions such as Conditions A, that the equa-
tion has a unique global solution.

THEOREM 6.1 (Stability in mean-square). Suppose that Conditions B hold
true with the following provisions:

(1) �(0) = 0 and �(u) > 0 if u �= 0.
(2) In condition (B2), δ1 = 0 and there exists α0 > 0 such that∫ ∞

0
eα0t

[
1

λ
θ(t) + ρ(t)

]
dt = C < ∞.

Then the null solution of equation (5.1) is exponentially stable in mean-square.
Moreover, if φ0 = (u0;v0) is an F0-measurable random variable in H satisfying

E{e(u0;v0) + �(u0;v0)} < ∞,
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then the inequality

E{e(ut ;vt ) + �(ut)} ≤ E{e(u0;v0) + �(u0) + C}e−α3t(6.1)

holds for any t > 0, where α3 = (α0 ∧ α2).

The theorem follows immediately from (5.2) in Theorem 5.1 and the simple fact
that

∫ ∞
0 e−α2(t−s)θ(s) ds ≤ e−α0t

∫ ∞
0 eα0sθ(s) ds. In fact it is possible to show that

the null solution is a.s. exponentially stable. Before stating the next theorem, we
need a lemma which is a simple consequence of Theorem 5.2.

LEMMA 6.2. Under the conditions for Theorem 5.1, the solution φt = (ut ;vt )

is ultimately bounded in mean-square such that

E sup
0≤t≤T

{eλ(ut ;vt ) + �(ut)}
(6.2)

≤ K1E{eλ(u0;v0) + �(u0)} + K2

∫ T

0
[θ(t) + ρ(t)]dt

for some constants K1,K2 > 0.

With the aid of Theorem 6.1 and Lemma 6.2, we can prove the following theo-
rem.

THEOREM 6.3 (Almost sure stability). Assume that all of the conditions for
Theorem 5.1 hold true with θ = ρ ≡ 0. Then the null solution of (5.1) is expo-
nentially stable almost surely. Moreover, there exist positive constants C,ν and a
random variable T (ω) > 0 such that

e(ut ;vt ) + �(ut) ≤ C{e(u0;v0) + �(u0)}e−νt a.s.(6.3)

for any t > T .

PROOF. Owing to Lemma 3.3, instead of (6.3), it suffices to show that

{eλ(ut ;vt ) + �(ut )} ≤ C0E{eλ(u0;v0) + �(u0)}e−νt , t > T , a.s.(6.4)

for some constant C0 > 0 and for λ satisfying (3.21). To this end, decompose
R+ as R+ = ⋃∞

n=0[n,n + 1] and consider the solution (ut ;vt ) for n ≤ t < n + 1.
Following the steps leading to (5.8) in the proof of Theorem 5.1, it can be shown
that

E sup
n≤t≤n+1

Jλ(ut ;vt ) ≤ EJλ(un;vn) + 2E sup
0≤t≤T

|Mλ
t (u)|,(6.5)
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where we recall that Jλ(u;v) = eλ(u;v) + �(u). As in (5.12), we have

E sup
n≤t≤n+1

|Mλ
t (u;v)|

≤ 3E

{
sup

n≤t≤n+1
‖vλ

t ‖
}{∫ n+1

n
‖�s(us)‖2

R ds

}1/2

≤ 3
{
E sup

n≤t≤n+1
‖vλ

t ‖2
}1/2{

E

∫ n+1

n
‖�s(us)‖2

R ds

}1/2

≤ 3
{
E sup

n≤t≤n+1
‖vλ

t ‖2
}1/2{

(β3 ∨ γ3)

∫ n+1

n
EJλ(us;vs) ds

}1/2

.

By making use of (5.11), the above gives rise to the upper bound

E sup
n≤t≤n+1

|Mλ
t (u;v)|

≤ 3{EJλ(u0;v0)}
{
CK(β3 ∨ γ3)

∫ n+1

n
e−λs/2 ds

}1/2

(6.6)

≤ 6{EJλ(u0;v0)}
{
CK

λ
(β3 ∨ γ3)

}1/2

e−nλ/4.

By taking (6.1), (6.5) and (6.6) into account, we get

E

{
sup

n≤t≤n+1
Jλ(ut ;vt )

}
≤ C0{EJλ(u0;v0)}e−nλ/4(6.7)

for constant C0 > 0.
Therefore, by using the Markov inequality and (6.7),

P

{
sup

n≤t≤n+1
Jλ(ut ;vt ) > C0EJλ(u0;v0)e

−nλ/8
}

≤ E{supn≤t≤n+1 Jλ(ut ;vt )}
C0E{Jλ(u0;v0)}e−nλ/8 ≤ e−nλ/8.

Since
∑∞

n=1 e−nλ/8 < ∞, it follows from the Borel–Cantelli lemma that there
exists a random number N(ω) > 0 such that, for n > N ,

sup
n≤t≤n+1

Jλ(ut ;vt ) ≤ C0{EJλ(u0;v0)}e−nλ/8 a.s.,

which, by definition (5.6), implies (6.4) with ν = λ/8. �
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7. Invariant measures. Let us consider the autonomous version of the sys-
tem (5.1):

dut = vt dt,
(7.1)

dvt = [Aut − 2αvt + F(ut )]dt + �(ut ) dWt, t > 0,

with a given initial state (u0;v0), where F and � do not depend on t explicitly.
Let φt = (ut ;vt ) and rewrite the system (7.1) as an evolution equation in the

differential form,

dφt = Aφt dt + F (φt ) dt + dMt (φ)(7.2)

with φ0 = (u0;v0), where we set

φt =
[
ut

vt

]
, F (φ) =

[
0

F(u)

]
, Mt (φ) =

[
0

Mt(u)

]

and

A =
[

0 I

A −2αI

]

where I is the identity operator on H .
Under Conditions C given below, as an Itô equation in a Hilbert space, the so-

lution φt , if it exists, is a Markov diffusion process in H (see [6], Chapter 9). The
transition probability function is given by

Pt(ξ ;B) = P {φt ∈ B|φ0 = ξ}, ξ ∈ H , B ∈ σ(H).

Suppose there exists an invariant measure µ on (H , σ (H)), where σ(H) denotes
the Borel σ -field of H . Then it satisfies ([7], page 12):

µ(B) =
∫
H

Pt(ξ ;B)µ(dξ) ∀B ∈ σ(H).

To show the existence of an invariant measure, we shall specialize Conditions A
by assuming that the nonlinear terms satisfy a uniform Lipschitz continuity condi-
tion. To be precise, assume the following Conditions C:

(C1) Let F(·) :H 1 → H and �(·) :H 1 → H , and let there exist positive constants
bi, ci for i = 1,2, such that

‖F(u)‖2 ≤ b1‖u‖2
1 + c1

and

‖�t(u)‖2
R ≤ b2‖u‖2

1 + c2

for any u ∈ H 1.
(C2) There exist positive constants k1, k2 such that

‖F(u) − F(u′)‖2 ≤ k1‖u − u′‖2
1
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and

‖�(u) − �(u′)‖2
R ≤ k2‖u − u′‖2

1

for any u,u′ ∈ H 1.
(C3) The constants bi and ki satisfy

(b1 + b2λ) ∧ (k1 + k2λ) ≤ λ2

2
.

To show the existence of an invariant measure, we shall follow an approach by
Da Prato and Zabczyk ([7], Theorem 6.3.2) for some stochastic dissipative sys-
tems. Though not directly applicable to the present problem, it can be adapted to
proving the following theorem.

THEOREM 7.1 (Invariant measures). Suppose that the system (7.1) satisfies
Conditions C. Then there exists a unique invariant measure µ on (H , σ (H)).
Moreover, given any bounded Lipschitz continuous function G on H , there are
positive constants C and α2 such that∣∣∣∣

∫
H

G(η)Pt (ξ ;dη) −
∫
H

G(η)µ(dη)

∣∣∣∣ ≤ C(1 + ‖ξ‖)e−α2t(7.3)

for any t > 0 and ξ ∈ H .

PROOF. To extend the time domain for the system (7.1) to the whole real
line R, introduce an independent copy Vt of the Wiener process Wt for t ≥ 0.
Define Ŵt by

Ŵt =
{

Wt, for t ≥ 0,

V−t , for t ≤ 0,
(7.4)

and let F̂t = σ {Ŵs : s ≤ t} for t ∈ R. Now, for t > τ , let φt (τ ; ξ) = (ut ;vt )(τ ; ξ) =
(ut (τ ; ξ);vt (τ ; ξ)) be the solution of the extended system

dut = vt dt,

dvt = [Aut − 2αvt + F(ut )]dt + �(ut ) dŴt , t > τ,(7.5)

uτ = ξ1, vτ = ξ2,

where ξ = (ξ1; ξ2) ∈ H .
Similarly to the derivation of the inequality (5.4) in the proof of Theorem 5.1, it

can be shown that, for λ < {α ∧ η1/4α},

deλ(ut ;vt ) ≤ −λeλ(ut ;vt ) dt +
[
λ

2
‖vλ

t ‖2 + 1

λ
‖F(ut )‖2 + ‖�(ut )‖2

R

]
dt

(7.6)
+ 2

(
vλ
t ,�(ut ) dŴt

)
,
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where dM̂λ
t (u;v) = (vλ

t ,�(ut ) dŴt ). By making use of conditions (C1) and (C2),
the above yields

deλ(ut ;vt ) ≤ −λeλ(ut ;vt ) dt +
[
λ

2
‖vλ

t ‖2 +
(

b1

λ
+ b2

)
‖ut‖2

1 +
(

c1

λ
+ c2

)]
dt

+ 2dM̂λ
t (u;v)

≤
[
−λ

2
eλ(ut ;vt ) +

(
c1

λ
+ c2

)]
dt + 2dM̂λ

t (u;v),

so that

Eeλ[φt(s, ξ)] ≤ eλ(ξ)e−λ(t−s)/2 +
(

c1

λ
+ c2

)∫ t

s
e−λ(t−r)/2 dr.

Therefore, there exists a constant K1 > 0 such that

Eeλ[φt(s, ξ)] ≤ K1{1 + eλ(ξ)} for any t ≥ s.(7.7)

For τ1 > τ2 > 0, let

ui
t = ut (−τi; ξ), vi

t = vt (−τi; ξ) for t > −τ2,

with i = 1,2 and

ũt = u1
t − u2

t , ṽt = v1
t − v2

t .

Then it follows from (7.5) that we have

dũt = ṽt dt,

dṽt = [Aṽt − 2αṽt + δF (u1
t ;u2

t )]dt + δ�(u1
t ;u2

t ) dŴt , t > −τ2,(7.8)

ũ−τ2 = (
u1−τ2

− ξ1
)
, ṽ−τ2 = (

v1−τ2
− ξ2

)
,

where

δF (u1;u2) = F(u1) − F(u2),
(7.9)

δ�(u1;u2) = �(u1) − �(u2).

Let ṽλ = ṽ + λũ and ẽλ
t = e(ũt ; ṽλ

t ). As in (7.6), we can obtain the energy
inequality

d ẽλ
t ≤ −λẽλ

t dt +
[
λ

2
‖ṽλ

t ‖2 + 1

λ
‖δF (u1

t ;u2
t )‖2 + ‖δ�(u1

t ;u2
t )‖2

R

]
dt

(7.10)
+ 2

(
ṽλ
t , δ�(ut ) dŴt

)
.
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In view of (7.9) and conditions (C2) and (C3), equation (7.10) yields

d ẽλ
t ≤ −λẽλ

t dt +
[
λ

2
‖ṽλ

t ‖2 +
(

k1

λ
+ k2

)
‖ũt‖2

1

]
dt + 2

(
ṽλ
t , δ�(ut ) dŴt

)

≤ −λ

2
ẽλ
t dt + 2

(
ṽλ
t , δ�(ut ) dŴt

)
,

which implies that

Eẽλ
t ≤ Eẽλ−τ2

e−λ(t+τ2)/2.

In view of the bound (7.7) and the initial conditions in (7.8), we can show that

Eẽλ−τ2
≤ 2K1{1 + eλ(ξ)},

so that

Eẽλ
t = Eeλ(u1

t − u2
t ;v1

t − v2
t ) ≤ 2K1{1 + eλ(ξ)}e−λ(t+τ2)/2.(7.11)

Let

ψτ = (
u0(−τ ; ξ);v0(−τ ; ξ)

)
.

By setting t = 0 in (7.11), we obtain, for any ξ ∈ H ,

Eeλ(
ψτ2 − ψτ1

) ≤ 2K1{1 + eλ(ξ)}e−λτ2/2,(7.12)

which goes to zero as τ2 → ∞. By Lemma 3.3 with λ > 0, the energy functions
eλ and e are equivalent so that e(·) ≤ Ceλ(·) for some constant C > 0. Since e
defines the energy norm ‖ · ‖ on H by ‖φ‖2 = e(φ),φ ∈ H , the set {ψτ : τ ≥ 0}
is a Cauchy family of random variables in L2(
;H). Therefore, there exists a
unique random variable ψ∞ ∈ L2(
;H) such that, for any ξ ∈ H ,

lim
τ→∞E‖ψτ − ψ∞‖2 = 0.

Since the random variables ψτ = φτ (0; ξ) in distribution, φτ (0; ξ) converges
weakly to ψ∞ as τ → ∞. It follows that Pt(ξ ; ·) converges weakly to the proba-
bility measure µ for ψ∞ as t → ∞, and µ is the desired invariant measure for the
system (7.1).

To verify (7.3), let G :H → R be bounded and Lipschitz continuous on H such
that

|G(ξ) − G(η)| ≤ γ ‖ξ − η‖.
Then, for any t > s > 0, we have∣∣∣∣

∫
H

G(η)Pt (ξ ;dη) −
∫
H

G(η)Ps(ξ ;dη)

∣∣∣∣
= |EG(ψt) − EG(ψs)|
≤ γ {E‖ψt − ψs‖2}1/2

≤ K{1 + eλ(ξ)}1/2e−λs/4,

due to the bound (7.12), for some constant K > 0. Therefore, by letting s → t and
invoking Lemma 3.3, inequality (7.3) follows. �
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8. Examples. To illustrate the application of the stated theorems, let us spe-
cialize A = (� − 1) in equation (4.1) to get

∂2
t u(x, t) = (� − 1)u − 2α ∂tu + f (u, x, t) + σ(u,Du,x, t) ∂tW(x, t),

0 < t < T, x ∈ D ⊂ Rd, d ≤ 3.
(8.1)

u(x,0) = u0(x) ∈ H 1 ∩ L2n, ∂tu(x,0) = v0(x) ∈ H,

u(·, t)|∂D = 0,

where n ≥ 1. We shall present two examples with different kinds of nonlinear
terms.

EXAMPLE 1. Let

f (u, x, t) = −κu2n−1 + β(x, t)um,
(8.2)

σ(u,Du,x, t) = ζ(x, t)(1 + |Du|2)δuk,

where κ > 0 is a constant, and β and ζ are some functions on D × R+ as yet to be
specified. The positive integers n, m and r are given such that 2 ≤ m < n, where n

is any natural number for d ≤ 2 but, for d = 3, n ≤ 2. This is so because, according
to a Sobolev lemma (see [3], Lemma 4.2), an Lp-norm, depending on p and d , can
be dominated by an H 1-norm. Also we assume δ ∈ (0, 1

2) and 0 < k < m(1 − 2δ).
Owing to the Sobolev lemma mentioned above, as in [3], we can show that

Conditions A are satisfied so that the equation has a unique global solution. In
view of (8.2) and condition (A2), we set �′(u) = 2κu2n−1 so that �(u) = κ

n
‖un‖2

and pt(u) = β(·, t)um. Therefore, we have

(�′(u), u) = 2κ‖un‖2 and ‖pt(u)‖2 = ‖β(·, t)um‖2.(8.3)

By means of an elementary Young inequality ([9], page 61), it can be shown that,
for any ε > 0, we have

(βum)2 ≤ εu2n + β2q

qεq/q ′ ,

where q = n/(n − m) and q ′ = n/m, so that

‖pt(u)‖2 =
∫
D

β2u2m dx ≤ ε‖un‖2 + C1

∫
D

β2q dx(8.4)

for some constant C1 > 0. Next consider the term

‖�t(u)‖2
R =

∫
D

r(x, x)ζ 2(x, t)(1 + |Du|2)2δu2k dx.
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By a repeated application of the Young inequality, we can deduce that, for any
ε′, ε′′ > 0, there exists C2 > 0 such that

‖�t(u)‖2
R ≤

∫
D

r(x, x)ζ 2(x, t){ε′u2n + ε′′|Du|2 + C2}dx.(8.5)

Suppose that β, ζ and r are bounded and continuous such that

|β(x, t)| ≤ β0, |ζ(x, t)| ≤ ζ0 and |r(x, x)| ≤ r0(8.6)

for any x ∈ D, t ≥ 0. In view of (8.6), inequalities (8.4) and (8.5) yield

‖pt(u)‖2 ≤ εκ

n
�(u) + C1

∫
D

β2q(x, t) dx,

(8.7)

‖�t(u)‖2
R ≤ r0ζ

2
0

{
ε′κ
n

�(u) + ε′′‖u‖2
1

}
+ C2r0

∫
D

ζ 2(x, t) dx.

From (8.3) and (8.4), using the notation in condition (B2), we see that

β1 = 2κ, γ1 = δ1 = 0,

β2 = εκ

n
, γ2 = 0,(8.8)

β3 = r0ζ
2
0
ε′κ
n

, γ3 = r0ζ
2
0 ε′′

and

θ(t) = C1

∫
D

β2q(x, t) dx, ρ(t) = C2r0

∫
D

ζ 2(x, t) dx.(8.9)

Therefore, condition (B3) takes the form

2κλ2 − r0ζ
2
0
ε′κ
n

λ − εκ

n
>

λ2

2
,

(8.10)

r0ζ
2
0 ε′′λ <

λ2

2
.

Since ε, ε′ and ε′′ are arbitrary, they can be chosen so small that condition (B3)
holds simply for κ > 1

4 . Assume this is the case. Then, by applying Theorems 4.1,
5.1 and 5.2, depending on the properties of θ and ρ as defined in (8.9), we can
draw the following conclusions:

1. By the conditions in (8.6), it is clear that both θ and ρ are bounded on R+ so
that, by invoking Theorem 5.1, we can conclude that the solution of the problem
(8.1) is bounded in mean-square and there exists a constant K1 > 0 such that

sup
t>0

E{‖ut‖2
1 + ‖∂tut‖2 + ‖un‖2} ≤ K1.



784 P.-L. CHOW

2. Suppose that the functions θ and ρ defined by (8.9) belong to L1(R+) so that
∫ ∞

0

∫
D

β2q(x, t) dx dt < ∞,

∫ ∞
0

∫
D

ζ 2(x, t) dx dt < ∞.

Then, by Theorem 5.2, the solution is ultimately bounded in mean-square if
κ > 1

4 and, furthermore, there is K2 > 0 such that

E sup
t>0

{‖ut‖2
1 + ‖∂tut‖2 + ‖un‖2} ≤ K2.

3. Note that (8.1) has a null solution (u;v) = (0;0). Assume there exists α0 > 0
such that (eα0t θ) and (eα0t ρ) belong to L1(R+) or

∫ ∞
0

∫
D

eα0tβ2q(x, t) dx dt < ∞,

∫ ∞
0

∫
D

eα0t ζ 2(x, t) dx dt < ∞.

Then Theorem 6.1 shows that the null solution is exponentially stable in mean-
square and, moreover, according to Theorem 6.3, the solution is in fact a.s.
exponentially stable.

EXAMPLE 2. Consider a mildly nonlinear equation of the form

∂2
t u(x, t) = (� − 1)u − 2α ∂tu + f (u)

+ σ(Du)∂tW(x, t), 0 < t < T, x ∈ D ⊂ Rd,(8.11)

u(·, t)|∂D = 0,

subject to the initial conditions u(x,0) = u0(x) ∈ H 1 and ∂tu(x,0) = v0(x) ∈ H ,
where

f (u) = −κu tan−1(1 + u2),
(8.12)

σ(Du)∂tW = σ1{1 + |Du|2}1/2 ∂tW
(1) + σ2 ∂tW

(2).

In the above equations κ > 0, σ1 and σ2 are some constants, and W(1)(·, t),
W(2)(·, t) are independent Wiener random fields with bounded, continuous co-
variant functions r1, r2, respectively. Rewriting (8.11) in the system form (7.1) and
noting (8.12), it is easy to verify that

‖F(u)‖2 ≤
(

κπ

2η1

)2

‖u‖2
1(8.13)

and

‖�(u)‖2
R = σ 2

1

∫
D

r1(x, x)(1 + |Du|2) dx + σ 2
2

∫
D

r2(x, x) dx

(8.14)
≤ σ 2

1 r0‖u‖2
1 + c2
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for some c2 > 0, where η1 is the smallest eigenvalue of A = (−� + 1) and r0 =
supx∈D |r1(x, x)|. Similarly we can obtain the bounds

‖F(u) − F(u′)‖2 ≤ κ2

η1

(
1 + π

2

)2

‖u − u′‖2
1,

(8.15)
‖�(Du) − �(Du′)‖2

R ≤ σ 2
1 r0‖u − u′‖2

1

for any u,u′ ∈ H 1. In the notation of Conditions C, we can read off from (8.13) to
(8.15) and find c1 = 0,

b1 =
(

κπ

2η1

)2

, b2 = σ 2
1 r0,

k1 = κ2

η1

(
1 + π

2

)2

, k2 = σ 2
1 r0.

To satisfy condition (C3), we require that
(

κπ

2η1

)2

+ σ 2
1 r0λ ≤ λ2

2

and

κ2

η1

(
1 + π

2

)2

+ σ 2
1 r0λ ≤ λ2

2
.

Then Theorem 7.1 (see the remark following Theorem 5.1) ensures the existence
of a unique invariant measure µ in the state space H for (8.11) and the the corre-
sponding transition probability converges weakly to µ at an exponential rate.

APPENDIX

Let W(x, t) be a continuous Wiener random field as given in Section 3. Then
it may be regarded as an H -valued Wiener process with a finite-trace covariance
operator R with kernel r(x, y). We first define the stochastic integral with an a.s.
bounded integrand. To this end, let σ(x, t) be an a.s. bounded, continuous pre-
dictable random field such that

E

∫ T

0
‖σt‖2 dt < ∞.(A.1)

We may consider σt as a linear operator in H such that [σth](x) = σ(x, t)h(x) for
any h ∈ H . Then it is easy to check that σt :H → H is Hilbert–Schmidt a.s. and,
noting (A.1),

E

∫ T

0
Tr(σtRσ�

t ) dt = E

∫ T

0

∫
D

r(x, x)σ 2(x, t) dx dt

≤ r0E

∫ T

0
‖σ 2

t ‖2 dt < ∞,
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where � denotes the conjugation. Therefore, the stochastic integral

M(x, t) =
∫ t

0
σ(x, s)W(x, ds)(A.2)

or

Mt =
∫ t

0
σs dWs

is well defined as a continuous H -valued martingale with mean zero and covaria-
tion operator Qt defined as (see [6], page 90)

〈(M·, g), (M·, h)〉t =
∫ t

0
(Qτg,h)dτ,(A.3)

where Qs has the kernel q(x, y, s) = r(x, y)σ (x, s)σ (y, s).
Now we shall define a stochastic integral with an Lp-bounded integrand as

shown in the proof of the following theorem.

THEOREM A.1. Let W(·, t) be a continuous Wiener random field with a
bounded covariance function r(x, y) such that

sup
x∈D

r(x, x) ≤ r0.(A.4)

Suppose that σt = σ(·, t) is a predictable, continuous H -valued process satis-
fying the condition

E

∫ T

0
‖σ(·, t)‖p dt = E

∫ T

0

∫
D

|σ(x, t)|p dx dt < ∞(A.5)

for an integer p ≥ 2. Then the stochastic integral Mt in (A.2) is well defined as
a continuous H -valued, Lp-martingale with mean zero and covariation operator
Qt for t ∈ [0, T ], as given by (A.3).

PROOF. Since the set Cb of bounded continuous functions on D is dense in
Lp(D) ([1], page 28), by smoothing, there exists a sequence {σn

t } of predictable
continuous random fields converging to σt such that it satisfies condition (A.1) and

lim
n→∞E

∫ T

0
‖σn

t − σt‖p dt = 0.(A.6)

Therefore, as in (A.2), the stochastic integral

Mn
t =

∫ t

0
σn

s dWs

exists as a continuous H -valued martingale for each n. Let M
p
T denote the Banach

space of continuous Lp-martingales Nt ∈ H with norm ([6], page 79)

‖N‖T =
{
E sup

0≤t≤T

‖Nt‖p

}1/p

.
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Then the sequence {Mn
t } belongs to M

p
T , since, by the B–D–G inequality,

‖Mn‖p
T = E sup

0≤t≤T

‖Mn
t ‖p

≤ CpE

{∫ T

0

∫
D

r(x, x)|σn(x, t)|2 dx dt

}p/2

≤ Cpr
p/2
0 E

{∫ T

0
‖σn

t ‖2 dt

}p/2

≤ Cp(T )E

∫ T

0
‖σn

t ‖p dt,

in which, in view of (A.5), the upper limit is bounded, where Cp,Cp(T ) are some
positive constants.

Now, for n > m,

‖Mn − Mm‖p
T = E sup

0≤t≤T

‖Mn
t − Mm

t ‖p

≤ CpE

{∫ T

0
TrQmn

s ds

}p/2

,

where

TrQmn
s =

∫
D

qmn(x, x, s) dx

=
∫
D

r(x, x)[σn(x, s) − σm(x, s)]2 dx

≤ r0‖σn
s − σm

s ‖2.

It follows from (A.4) and (A.6) that

‖Mn − Mm‖p
T ≤ Cp(T )E

∫ T

0
‖σn

t − σm
t ‖p dt,

which goes to zero as n > m → ∞ due to (A.6). Therefore, the sequence {Mn
t }

converges to the limit denoted by Mt , which is defined as a stochastic integral
given by (A.2). We can check that it preserves the properties of Mn

t as stated in the
theorem. �
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