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ERROR ESTIMATES FOR BINOMIAL APPROXIMATIONS
OF GAME OPTIONS

BY YURI KIFER

Hebrew University

We justify and give error estimates for binomial approximations of
game (Israeli) options in the Black–Scholes market with Lipschitz contin-
uous path dependent payoffs which are new also for usual American style
options. We show also that rational (optimal) exercise times and hedging self-
financing portfolios of binomial approximations yield for game options in the
Black–Scholes market “nearly” rational exercise times and “nearly” hedg-
ing self-financing portfolios with small average shortfalls and initial capitals
close to fair prices of the options. The estimates rely on strong invariance
principle type approximations via the Skorokhod embedding.

1. Introduction. Cox, Ross and Rubinstein’s (CRR) binomial model of a
financial market was introduced in [6] not only as a simplified discrete time
and space counterpart of the Black–Scholes (BS) model based on the geomet-
ric Brownian motion, but also as a convenient approximation of the latter which,
indeed, became a popular tool to evaluate various derivative securities. Clearly,
for an approximation to have any practical value, it is necessary to estimate the
corresponding error. Many papers dealt with both justification of the CRR approx-
imation of European and American options in the BS market and with estimates
of the corresponding error terms (see, e.g., [1, 10, 21, 22, 24, 27, 30]). Still, none
of these papers derived error estimates for options with path dependent payoffs.
In this paper we consider game (Israeli) options introduced in [15] which general-
ize American style options when not only their holders but also their writers have
the right to exercise and we obtain error estimates of binomial approximations of
fair prices, rational exercise times and hedging self-financing portfolios for such
options considered in a BS market and having path dependent payoffs.

A game option (or contingent claim) studied in [15] is a contract between a
writer and a holder at time t = 0 such that both have the right to exercise at any
stopping time before the expiry date T . If the holder exercises at time t , he may
claim the amount Yt ≥ 0 from the writer and if the writer exercises at time t , he
must pay to the holder the amount Xt ≥ Yt so that δt = Xt − Yt is viewed as a
penalty imposed on the writer for cancellation of the contract. If both exercise at
the same time t , then the holder may claim Yt and if neither have exercised until
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the expiry time T , then the holder may claim the amount YT . In short, if the writer
will exercise at a stopping time σ ≤ T and the holder at a stopping time τ ≤ T ,
then the former pays to the latter the amount R(σ, τ), where

R(s, t) = XsIs<t + YtIt≤s(1.1)

and we set IA = 1 if (an event or an assertion) A holds true and IA = 0 if not.
As usual, we start with a complete probability space (�,F ,P ) and a filtration of
σ -algebras {Ft }t≥0 generated either by a Brownian motion in the BS model or by
i.i.d. binomial random variables in the CRR model. The payoff processes Xt and Yt

should be adapted to the corresponding filtration and in the continuous time case
they are supposed to be right continuous with left limits, though the latter could be
relaxed sometimes.

Two popular models of complete markets were considered in [15] for pricing
of game options. First, the discrete time CRR binomial model was treated there
where the stock price Sk at time k is equal to

Sk = S0

k∏
j=1

(1 + ρj ), S0 > 0,(1.2)

where ρj , j = 1,2, . . . , are independent identically distributed (i.i.d.) random vari-
ables such that ρj = b > 0 with probability p > 0 and ρj = a < 0, a > −1 with
probability q = 1 − p > 0. Second, [15] deals with the continuous time BS mar-
ket model where the stock price St at time t is given by the geometric Brownian
motion

St = S0 exp
(
(α − κ2/2)t + κBt

)
, S0 > 0,(1.3)

where {Bt }t≥0 is the standard one-dimensional continuous in time Brownian mo-
tion (Wiener process) starting at zero and κ > 0, α ∈ (−∞,∞) are some parame-
ters. In addition to the stock which is a risky security, the market includes in both
cases also a savings account with a deterministic growth given by the formulas

bn = (1 + r)nb0 and bt = b0e
rt , b0, r > 0,(1.4)

in the CRR model (where we assume, in addition, that r < b) and in the BS model,
respectively.

Recall (see [28]) that a probability measure describing the evolution of a stock
price in a stochastic financial market is called martingale (risk-neutral) if the dis-
counted stock prices [(1 + r)−kSk in the CRR model and e−rtSt in the BS model]
become martingales. Relying on hedging arguments, it was shown in [15] that the
fair price V of the game option is given by the formulas

V = min
σ∈T0T

max
τ∈T0T

E
(
(1 + r)−σ∧τR(σ, τ )

)
(1.5)

in the CRR market [with usual notation a ∧b = min(a, b), a ∨b = max(a, b)] and

V = inf
σ∈T0T

sup
τ∈T0T

E
(
e−rσ∧τR(σ, τ )

)
(1.6)
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in the BS market, where the expectations are taken with respect to the correspond-
ing martingale probabilities, which are uniquely defined since these markets are
known to be complete (see [28]), T is the expiry time and Tst is the space of corre-
sponding stopping times with values between s and t taking into account that in the
CRR model σ and τ are allowed to take only integer values. Observe that formulas
(1.5) and (1.6) represent also the values of corresponding Dynkin’s (optimal stop-
ping) games with payoffs (1 + r)−σ∧τR(σ, τ ) and e−rσ∧τR(σ, τ ), respectively,
when the first and the second players stop the game at stopping times σ and τ ,
respectively. Observe that since their introduction in [15], various aspects of game
(Israeli) options were studied in [2, 5, 7, 9, 12, 17–20] and recently this technique
was applied in [8] to convertible (callable) bonds.

The continuous time BS model is generally considered as a better description
of the evolution of real stocks, in particular, since the CRR model allows only two
possible values (1 + b)Sk and (1 + a)Sk for the stock price Sk+1 at time k + 1
given its price Sk at time k. The main advantage of the CRR model is its simplicity
and the possibility of easier computations of the value V in (1.5), in particular, by
means of the dynamical programming recursive relations (see [15]),

V = V0,N , VN,N = (1 + r)−NYN and
(1.7)

Vk,N = min
(
(1 + r)−kXk,max

(
(1 + r)−kYk,E(Vk+1,N |Fk)

))
,

where a positive integer N is an expiry time and {Fk}k≥0 is the corresponding
filtration of σ -algebras.

Following [30], we will approximate the BS model by a sequence of CRR mod-
els with the interest rates r = r(n) from (1.4) and with random variables ρk = ρ

(n)
k

from (1.2) given by

r = r(n) = exp(rT /n) − 1 and
(1.8)

ρk = ρ
(n)
k = exp

(
rT

n
+ κ

(
T

n

)1/2

ξk

)
− 1,

where ξj = ξ
(n)
j , j = 1,2, . . . , are i.i.d. random variables taking on the val-

ues 1 and −1 with probabilities p(n) = (exp(κ
√

T
n

) + 1)−1 and 1 − p(n) =
(exp(−κ

√
T
n

) + 1)−1, respectively. This choice of random variables ξi , i ∈ N, de-

termines already the probability measures P
ξ
n = {p(n),1 − p(n)}∞ for the above

sequence of CRR models and since E
ξ
nρ

(n)
k = r(n), where E

ξ
n is the expectation

with respect to P
ξ
n , we conclude that P

ξ
n is the martingale measure for the corre-

sponding CRR market and the fair price V = V (n) of a game option in this market
is given by the formula (1.5) with E = E

ξ
n . Some authors consider a bit simpler

and more straightforward approximation (see, e.g., [21] and [22]) where

ρk = ρ̂k = exp
(

βT

n
+ κ

(
T

n

)1/2

ξ̂k

)
− 1(1.9)
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with β = r − κ2/2 and ξ̂k takes on the values 1 and −1 with the same probabil-
ity 1/2. This approximation leads to similar errors estimates (with, essentially, the
same proof ) but, in general, we do not arrive at the martingale probability mea-
sures in this case. Thus, we have to speak then about the prices V (n) of discrete
time Dynkin’s games (rather than about the fair prices of the corresponding game
options) given by (1.5) for the CRR market with ρ̂k and r(n) described above, but
with the expectation E = Eξ̂ taken with respect to the probability P ξ̂ generated
by ξ̂j , j = 1,2, . . . , rather than with respect to the corresponding martingale prob-
abilities. For purposes of approximation, this difference is not so important, but the
first approximation becomes more convenient for the construction of self-financing
“nearly” hedging portfolios with small average shortfalls. Another useful advan-
tage of the first approximation is that it leads to discounted stock prices evolv-
ing on the multiplicative lattice {S0 exp(mκ(T /n)1/2),m ∈ Z} which substantially
simplifies computations.

Let V be the fair price of the game option in the BS market. The main goal of
this paper is to show that for a certain natural class of payoffs Xt and Yt which
may depend on the whole path (history) of the stock price evolution (as in integral
or Russian type options) the error |V − V (n)| does not exceed Cn−1/4(lnn)3/4,
where C > 0 does not depend on n and it can be estimated explicitly. Moreover,
we will show that the rational exercise times of our CRR binomial approximations
yield near rational [(Cn−1/4(lnn)3/4)-optimal stopping times for the correspond-
ing Dynkin games] exercise times for game options in the BS market. Since the
values V (n) and the optimal stopping times of the corresponding discrete time
Dynkin’s games can be obtained directly via the dynamical programming recur-
sive procedure (1.7), our results provide a justification of a rather effective method
of computation of fair prices and exercise times of game options with path de-
pendent payoffs. The standard construction of a self-financing hedging portfolio
involves usually the Doob–Meyer decomposition of supermartingales which is ex-
plicit only in the discrete, but not in the continuous time case. We will show how
to construct a self-financing portfolio in the BS market with a small average (max-
imal) shortfall and an initial capital close to the fair price of a game option using
hedging self-financing portfolios for the approximating binomial CRR markets.
The latter problem does not seem to have been addressed until now in the liter-
ature on this subject. This hints, in particular, that since hedging self-financing
portfolio strategies can be computed only approximately, their possible shortfalls
come naturally into the picture and they should be taken into account in option
pricing even if a perfect hedging exists theoretically. Note that the results of the
present paper require not only an approximation of stock prices and the corre-
sponding payoffs, but also we have to take care about the different nature of stop-
ping times in (1.5) and (1.6). It would be interesting to obtain similar results for
discrete time and space (say, multinomial) approximations of sufficiently general
Lévy markets, that is, markets where the stock price evolve according to a geo-
metric Lévy process with jumps, but this requires additional ideas and machinery.
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Some discrete time approximation results without error estimates for American
options in the Merton stock market model were obtained in [25]. Game options
with jump–diffusion models of stock evolutions were considered recently in [8].

Our main tool is the Skorokhod type embedding of sums of i.i.d. random vari-
ables into a Brownian motion (with a constant drift, in our case). This tool was
already employed for similar purposes in [24] and [30]. The first paper treats an
optimal stopping problem which can be applied to an American style option with
a payoff function depending only on the current stock price and, more importantly,
this function must be bounded and have two bounded derivatives which excludes
usual put and call options. The second paper deals only with European options and,
again, only payoffs (though with some discontinuities) determined by the current
stock price are allowed. A number of other papers also deal with error estimates for
the CRR approximation of European and American option prices in the BS market
(see, e.g., [21, 22, 27] and references there), but none of them treat path dependent
payoffs (moreover, boundedness of payoffs conditions there usually exclude even
American style call options) and none of them consider the game options case as
well.

The main results of this paper are formulated in the next section where we dis-
cuss also the Skorokhod type embedding which we employ in the proof. In Sec-
tion 3 we show how this embedding enables us to consider both CRR and BS stock
evolutions in an appropriate way on the same probability space and we exhibit
there a series of steps which lead to the proof of the main results. The necessary
technical estimates are derived in Section 4. In Section 5 we deal with rational
exercise times and self-financing nearly hedging portfolios with small averaged
shortfalls. In Section 6 we generalize to the game options situation the estimates
from [24], which cannot be applied to the standard options as the proof relies on
very restrictive bondedness and smoothness assumptions, but still, in view of their
simplicity, the arguments there may have a pedagogical value and some readers
may prefer to read this case first.

2. Preliminaries and main results. For each t > 0, denote by M[0, t] the
space of Borel measurable functions on [0, t] with the uniform metric d0t (υ, υ̃) =
sup0≤s≤t |υs − υ̃s |. For each t > 0, let Ft and �t be nonnegative functions
on M[0, t] such that, for some constant L ≥ 1 and for any t ≥ s ≥ 0 and
υ, υ̃ ∈ M[0, t],

|Fs(υ) − Fs(υ̃)| + |�s(υ) − �s(υ̃)| ≤ L(s + 1) d0s(υ, υ̃)(2.1)

and

|Ft(υ) − Fs(υ)| + |�t(υ) − �s(υ)|
(2.2)

≤ L

(
|t − s|

(
1 + sup

u∈[0,t]
|υu|

)
+ sup

u∈[s,t]
|υu − υs |

)
.
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By (2.1), F0(υ) = F0(υ0) and �0(υ) = �0(υ0) are functions of υ0 only. By (2.2),

Ft(υ) + �t(υ) ≤ F0(υ0) + �0(υ0) + L(t + 2)

(
1 + sup

0≤s≤t

|υs |
)
.(2.3)

Next, we consider the BS market on a complete probability space together
with its martingale measure P B which exists and is unique as a corollary of the
Girsanov theorem (see [28]). Let Bt , t ≥ 0, be the standard one-dimensional con-
tinuous in time Brownian motion with respect to the martingale measure P B . Set

B∗
t = −κ

2
t + Bt, t ≥ 0.

Then the stock price SB
t (z) at time t in the BS market can be written in the form

SB
t (z) = z exp(rt + κB∗

t ), SB
0 (z) = z > 0,(2.4)

where r > 0 is the interest rate and κ > 0 is the so-called volatility. We will con-
sider game options in the BS market with payoff processes in the form

Yt = Ft(S
B(z)) and Xt = Gt(S

B(z)), t ∈ [0, T ], T > 0,

where Gt = Ft + �t , F,� satisfy (2.1) and (2.2), SB(z) = SB(z,ω) ∈ M[0, T ]
is a random function taking the value SB

t (z) = SB
t (z,ω) at t ∈ [0, T ], and in the

notation Ft(S
B(z)), Gt(S

B(z)) for t < T , we take the restriction of SB(z) to the
interval [0, t]. The fair price V = V (z) of this option with an initial value z > 0 of
the stock is given by (1.6).

Next, we consider a sequence of CRR markets on a complete probability space
such that, for each n = 1,2, . . . , the stock prices S

(n)
t (z) at time t are given by the

formula

S
(n)
t (z) = z exp

([nt/T ]∑
k=1

(
rT

n
+ κ

(
T

n

)1/2

ξk

))
, t ≥ T/n and

(2.5)
S

(n)
t (z) = S

(n)
0 (z) = z > 0, t ∈ [0, T /n)

where, recall, ξ1, ξ2, . . . are i.i.d. random variables taking the values 1 and −1

with probabilities p(n) = (exp(κ
√

T
n

)+1)−1 and 1−p(n) = (exp(−κ
√

T
n

)+1)−1,

respectively. Namely, we consider CRR markets where stock prices Sm = S
(n)
m/n(z),

m = 0,1,2, . . . , satisfy (1.2) with ρk = ρn
k given by (1.8) and, in addition, in place

of the interest rate r in the first formula in (1.4), we take the sequence of interest
rates rn = exp(rT /n) − 1, where r is the interest rate of the BS market appearing
in the second formula of (1.4) and in (1.6). We consider S(n)(z) = S(n)(z,ω) as a
random function on [0, T ], so that S(n)(z,ω) ∈ M[0, T ] takes the value S

(n)
t (z) =

S
(n)
t (z,ω) at t ∈ [0, T ]. For k = 0,1,2, . . . , n, put

Yk = Y
(n)
k (z) = FkT /n

(
S(n)(z)

)
and Xk = X

(n)
k (z) = GkT /n

(
S(n)(z)

)
.(2.6)
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Then for each n, the fair price V = V (n)(z) of the game option in the corresponding
CRR market with an initial value z > 0 of the stock is given by (1.5). Set also

Ŝ
(n)
t (z) = z exp

([nt/T ]∑
k=1

((
r − κ2

2

)
T

n
+ κ

(
T

n

)1/2

ξ̂k

))
, t ≥ T/n and

(2.7)
S

(n)
t = S

(n)
0 = z > 0, t ∈ [0, T /n),

where ξ̂1, ξ̂2, . . . are i.i.d. random variables such that ξ̂1 = 1 or ξ̂1 = −1 with the
same probability 1/2 and the corresponding product measure we denote by P ξ̂ .

Set

RB
z (s, t) = Ft(S

B(z))Is≥t + Gs(S
B(z))Is<t ,

(2.8)
QB

z (s, t) = e−rs∧tRB
z (s, t),

R(n)
z (s, t) = Ft

(
S(n)(z)

)
Is≥t + Gs

(
S(n)(z)

)
Is<t ,

(2.9)
Q(n)

z (s, t) = e−rs∧tR(n)
z (s, t),

and let R̂
(n)
z (s, t), Q̂

(n)
z (s, t) be defined by (2.9) with Ŝ(n)(z) in place of S(n)(z).

Denote by T B
0T , T ξ

0n and T
ξ̂

0n the sets of stopping times with respect to the Brownian

filtration F B
t , t ≥ 0, with values in [0, T ] and with respect to the filtrations F

ξ
k =

σ {ξ1, . . . , ξk} and F
ξ̂
k = σ {ξ̂1, . . . , ξ̂k}, k = 0,1,2, . . . , respectively, with values in

{0,1, . . . , n}. Set

V (z) = inf
σ∈T B

0T

sup
τ∈T B

0T

EBQB
z (σ, τ ),(2.10)

V (n)(z) = min
ζ∈T

ξ
0n

max
η∈T

ξ
0n

Eξ
nQ(n)

z

(
ζT

n
,
ηT

n

)
(2.11)

and

V̂ (n)(z) = min
ζ∈T

ξ
0n

max
η∈T

ξ
0n

Eξ̂ Q̂(n)
z

(
ζT

n
,
ηT

n

)
,(2.12)

where EB , E
ξ
n and Eξ̂ are the expectations with respect to the probability mea-

sures P B , P
ξ
n and P ξ̂ , respectively, and we observe that T

ξ
0n and T

ξ̂
0n are finite sets

so that we can use min and max in (2.11) and (2.12).
Recall that we choose P B to be the martingale measure for the BS market and

observe that P
ξ
n is the martingale measure for the corresponding CRR market since

a direct computation shows that E
ξ
nρ

(n)
k = rn. Thus, (2.10) and (2.11) give fair

prices of the game options in the corresponding markets. On the other hand, P ξ̂ is
not a martingale measure, in general, and so (2.12) gives the price of the Dynkin
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game, but not the fair price of the corresponding game option. We note also that
all our formulas involving the expectations EB , in particular, (2.10) giving the fair
price V of a game option, do not depend on a particular choice of a continuous in
time version of the Brownian motion since all of them induce the same probability
measure on the space of continuous sample paths (see, e.g., Chapter 2 in [29])
which already determines all expressions with the expectations EB appearing in
this paper.

The following result provides an estimate for the error term in approximation of
the fair price of a game option in the BS market by fair prices of the sequence of
game options and prices of Dynkin’s games defined above.

THEOREM 2.1. Suppose that V (z) and V (n)(z) are defined by (2.9)–(2.12)
with functions F and G = F + � satisfying (2.1) and (2.2). Then there exists a
constant C > 0 (which is, essentially, explicitly estimated in the proof ) such that

max
(∣∣V (z) − V (n)(z)

∣∣, ∣∣V (z) − V̂ (n)(z)
∣∣)

(2.13)
≤ C

(
F0(z) + �0(z) + z + 1

)
n−1/4(lnn)3/4

for all z,n > 0.

The estimates of Theorem 2.1 remain true with, essentially, the same proof if we
define V̂ (n)(z) by (2.7) and (2.12) with ξ̂1, ξ̂2, . . . being arbitrary i.i.d. bounded ran-
dom variables such that Eξ̂i = 0 and Eξ̂2

i = 1. We can choose more general i.i.d.
random variables ξ1, ξ2, . . . appearing in the definition of V (n), as well, but these
generalizations do not seem to have a financial mathematics motivation since we
want to approximate game options in the BS market by simplest possible models
which are, of course, game options in the CRR market.

Among main examples of options with path-dependent payoff, we have in mind
integral options where

Ft(υ) =
(∫ t

0
fu(υu) du − L

)+
(call option case)

or

Ft(υ) =
(
L −

∫ t

0
fu(υu) du

)+
(put option case),

where, as usual, a+ = max(a,0). The penalty functional may also have here the
integral form

�t(υ) =
∫ t

0
δu(υu) du.

In order to satisfy conditions (2.1) and (2.2), we can assume that, for some K > 0
and all x, y,u,

|fu(x) − fu(y)| + |δu(x) − δu(y)| ≤ K|x − y|
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and

|fu(x)| + |δu(x)| ≤ K|x|.
Observe also that the Asian type (averaged integral) payoffs of the form

Ft(υ) =
(

1

t

∫ t

0
fu(υu) du − L

)+
or =

(
L − 1

t

∫ t

0
fu(υu) du

)+

do not satisfy condition (2.2) if arbitrarily small exercise times are allowed, though
the latter seems to have only some theoretical interest, as it hardly happens in
reality. Still, also in this case, the binomial approximation errors can be estimated
in a similar way considering separately estimates for small stopping times and for
stopping times bounded away from zero. Namely, define Vε(z) and V

(n)
ε (z) for

ε ≥ 0 by (2.10) and (2.11), where Q
(B)
z (σ, τ ) and Q

(n)
z (

ζT
n

,
ηT
n

) are replaced by

Q
(B)
z (σ ∨ε, τ ∨ε) and Q

(n)
z (

ζT
n

∨ε,
ηT
n

∨ε), respectively. Assuming that fu and δu

are Lipschitz continuous also in u (at least for u close to 0) in the form |fs(x) −
fu(x)|+ |δs(x)− δu(x)| ≤ K(x + 1)|s −u| for some K > 0 and all s, u, x ≥ 0, we
obtain that if υ0 = z and F0(υ) = (f0(z) − L)+ or = (L − f0(z))

+, then

|Fs(υ) − F0(z)| ≤ Ks

(
1 + sup

0≤u≤s

|υu|
)

+ K sup
0≤u≤s

|υu − z|.

Using some of the estimates of Section 4, it is not difficult to see from here that
|V (z) − Vε(z)| and |V (n)(z) − V

(n)
ε (z)| do not exceed C(1 + z)

√
ε for all small

ε and some constant C. On the other hand, applying the same estimates as in the
proof of Theorem 2.1, we derive that, for some constant C > 0 and all n, ε > 0,∣∣Vε(z) − V (n)

ε (z)
∣∣ ≤ C(1 + z)ε−1n−1/4(lnn)3/4.

Choosing ε = n−1/6
√

lnn, we obtain that, under the above conditions in the case
of Asian options, |V (z) − V (n)(z)| can be estimated by 3C(1 + z)n−1/12(lnn)1/4.

Another important example of path-dependent payoffs are, so-called, Russian
options where, for instance,

Ft(υ) = max
(
m, sup

u∈[0,t]
υu

)
and �t(υ) = δυt .

Such payoffs satisfy the conditions of Theorem 2.1. Indeed, (2.1) is clear in this
case and (2.2) follows since, for t ≥ s,

max
(
m, sup

u∈[0,t]
vu

)
− max

(
m, sup

u∈[0,s]
vu

)
≤ sup

u∈[0,t]
vu − sup

u∈[0,s]
vu

≤ sup
u∈[s,t]

vu − vs

≤ sup
u∈[s,t]

|vu − vs |.
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In fact, the estimates (2.13) can be improved a bit for the Russian options case
dropping the logarithmic term there (see Remark 3.7). Of course, conditions
(2.1) and (2.2) are always satisfied in the case of standard options with payoffs
depending only on the current stock price.

Observe that many other path-dependent and look back options have payoffs
which can be represented via functions F and � satisfying (2.1) and (2.2). Barrier
options have discontinuous payoffs which cannot be represented via functions sat-
isfying (2.1) and (2.2), but a small modification of our approach goes through in
this case as well. This modification is based on the observation that troubles with
the approximation occur here when the supremum of stock prices (or a similar
quantity) belongs to a small neighborhood of the barrier value, but the probability
of this event is small since this supremum is usually a random variable having a
bounded probability density function.

In order to compare V (z) and V (n)(z) in the case of path dependent payoffs,
we have to consider both BS and CRR markets on one probability space in an
appropriate way and the main tool in achieving this goal will be here the Skorokhod
type embedding (see, e.g., [4], Section 37). In fact, for the binomial i.i.d. random
variables ξ1, ξ2, . . . and ξ̂1, ξ̂2, . . . appearing in the setup of the CRR market models
above, the embedding is explicit and no general theorems are required, but if we
want to extend the result for other sequences of i.i.d. random variables, we have to
rely upon the general result. Namely, define recursively

θ
(n)
0 = 0, θ

(n)
k+1 = inf

{
t > θ

(n)
k :

∣∣B∗
t − B∗

θ
(n)
k

∣∣ =
√

T

n

}

where, recall, B∗
t = −κ

2 t + Bt and

θ̂
(n)
0 = 0, θ̂

(n)
k+1 = inf

{
t > θ̂

(n)
k :

∣∣Bt − B
θ̂

(n)
k

∣∣ =
√

T

n

}
.

The standard strong Markov property based arguments (cf. [4], Section 37) show
that θ

(n)
k − θ

(n)
k−1, k = 1,2, . . . , and θ̂

(n)
k − θ̂

(n)
k−1, k = 1,2, . . . , are i.i.d. sequences of

random variables such that (θ
(n)
k+1 − θ

(n)
k ,B∗

θ
(n)
k+1

− B∗
θ

(n)
k

) and (θ̂
(n)
k+1 − θ̂

(n)
k ,B

θ̂
(n)
k+1

−
B

θ̂
(n)
k

) are independent of F B

θ
(n)
k

(where, recall, F B
t = σ {Bs, s ≤ t}). This is stan-

dard for the Brownian motion Bt and the stopping times θ̂
(n)
k (see [4], Section 37),

but can be proved by exactly the same method for the Brownian motion with a
constant drift B∗

t and the stopping times θ
(n)
k as well.

Another way to justify this independency assertion is to apply the Girsanov the-
orem (see [11, 13] and [28]) which is useful to have in mind in our situation any-
way. Namely, for any Brownian stopping time τ satisfying EB exp(κ2τ/8) < ∞,
the process B∗

t , t ≥ 0, becomes a standard Brownian motion on the interval [0, τ ]
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with respect to the probability measure P ∗
τ determined by

dP ∗
τ = q(τ,Bτ ) dP B or dP B = q∗(τ,B∗

τ ) dP ∗
τ ,(2.14)

where

q(t,Bt ) = exp
(

κ

2
Bt − 1

8
κ2t

)
= exp

(
κ

2
B∗

t + 1

8
κ2t

)
= (

q∗(t,B∗
t )

)−1
.

Observe that if σ > τ is another Brownian stopping time, then P ∗
σ = P ∗

τ on
the σ -algebra F B

τ so the above probability measures enable us to consider B∗
t

as a Brownian motion on any time interval. Hence, under the measure P ∗, the
process B∗

t , t ≥ 0, together with the stopping times θ
(n)
k , k ≥ 0, becomes the

Brownian motion Bt , t ≥ 0, together with the stopping times θ̂
(n)
k , k ≥ 0. Hence,

by the strong Markov property of the Brownian motion, any two events A ∈ F B

θ
(n)
k

and Ã ∈ σ {B∗
t+θ

(n)
k

− B∗
θ

(n)
k

, t ∈ [0, θ
(n)
k+1 − θ

(n)
k ]}, are independent under P ∗

θ
(n)
k+1

. But

then A and Ã will remain independent under the original probability P B in view
of the factorization property of the density q∗,

q∗(
θ

(n)
k+l,B

∗
θ

(n)
k+l

) = q∗(
θ

(n)
k ,B∗

θ
(n)
k

)
q∗(

θ
(n)
k+l − θ

(n)
k ,B∗

θ
(n)
k+l

− B∗
θ

(n)
k

)
with the first factor measurable with respect to F B

θ
(n)
k

and the second factor inde-

pendent of it and having the same distribution as q∗(θ(n)
l ,B∗

θ
(n)
l

). It follows that

(θ
(n)
k+1 − θ

(n)
k ,B∗

θ
(n)
k+1

− B∗
θ

(n)
k

) is independent of F B

θ
(n)
k

under the original probabil-

ity P B as well.
It turns out (see [30] and the beginning of Section 4) that B∗

θ
(n)
1

has the same dis-

tribution as
√

T
n
ξ1. Clearly, B

θ̂
(n)
1

=
√

T
n

or = −
√

T
n

with the same probability 1/2,

and so B
θ̂

(n)
1

has the same distribution as
√

T
n
ξ̂1. Set

�
(n)
k =

(
T

n

)1/2 k∑
j=1

ξj and �̂
(n)
k =

(
T

n

)1/2 k∑
j=1

ξ̂j ,(2.15)

then �
(n)
k and �̂

(n)
k have the same distribution as B∗

θ
(n)
k

and B
θ̂

(n)
k

, respectively.

Theorem 2.1 provides an approximation of the fair price of game options in
the BS market by means of fair prices of game options in the CRR market which
becomes especially useful if we can provide also a simple description of ratio-
nal (or δ-rational) exercise times of these options in the BS market via exercise
times of their CRR market approximations which are, by the definition, optimal (or
δ-optimal) stopping times for the Dynkin games whose price are given by (2.11)
and (2.12), respectively. For each k = 1,2, . . . , introduce the finite σ -algebra
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GB,n
k = σ {B∗

θ
(n)
1

,B∗
θ

(n)
2

− B∗
θ

(n)
1

, . . . ,B∗
θ

(n)
k

− B∗
θ

(n)
k−1

}, which is, clearly, isomorphic to

F
ξ
k = σ {ξi, i ≤ k} considered before since each element of GB,n

k and of F
ξ
k is an

event of the form

A
B,n

ι(k) =
{
B∗

θ
(n)
j

− B∗
θ

(n)
j−1

= ιj

√
T

n
, j = 1, . . . , k

}

and

A
ξ

ι(k) = {ξj = ιj , j = 1, . . . , k},
respectively, where ι(k) = (ι1, . . . , ιk) ∈ {−1,1}k , θ

(n)
0 = 0 and B0 = 0. Let SB,n

be the set of stopping times with respect to the filtration GB,n
k , k = 0,1,2, . . . ,

where GB,n
0 = {∅,�B} is the trivial σ -algebra and �B is the sample space

of the Brownian motion. The subset of these stopping times with values in
{0,1, . . . , n} will be denoted by SB,n

0,n . For each ι(n) = (ι1, . . . , ιn) ∈ {−1,1}n and

k < n, we set ι(k) = (ι1, . . . , ιk) ∈ {−1,1}k . Denote by J0,n the set of functions
ν : {−1,1}n → {0,1, . . . , n} such that if ν( ι(n)) = k ≤ n and ι̃(k) = ι(k) for some
ι̃(n) ∈ {−1,1}n, then ν(ι̃(n)) = k as well. Define the functions λ

(n)
ξ :�ξ → {−1,1}n

and λ
(n)
B :�B → {−1,1}n by λ

(n)
ξ (ω) = (ξ1(ω), . . . , ξn(ω)) and

λ
(n)
B (ω) =

√
n

T

(
B∗

θ
(n)
1 (ω)

(ω),B∗
θ

(n)
2 (ω)

(ω) − B∗
θ

(n)
1 (ω)

(ω), . . . ,

B∗
θ

(n)
n (ω)

(ω) − B∗
θ

(n)
n−1(ω)

(ω)
)
,

where �ξ and �B are sample spaces on which the sequence ξ1, ξ2, . . . and

the Brownian motion Bt are defined, respectively. It is clear that any ζ ∈ T
ξ

0n

and η ∈ SB,n
0,n can be represented uniquely in the form ζ = µ ◦ λ

(n)
ξ and η =

ν ◦ λ
(n)
B for some µ,ν ∈ J0,n. Similarly, we introduce ĜB,n

k = σ {B
θ̂

(n)
1

,B
θ̂

(n)
2

−
B

θ̂
(n)
1

, . . . ,B
θ̂

(n)
k

− B
θ̂

(n)
k−1

}, which is isomorphic to F̂
ξ
k = σ {ξ̂i , i ≤ k}, λ̂

(n)
ξ (ω) =

(ξ̂1(ω), . . . , ξ̂n(ω)) and

λ̂
(n)
B (ω) =

√
n

T

(
B

θ̂
(n)
1 (ω)

(ω),B
θ̂

(n)
2 (ω)

(ω) − B
θ̂

(n)
1 (ω)

(ω), . . . ,

B
θ̂

(n)
n (ω)

(ω) − B
θ̂

(n)
n−1(ω)

(ω)
)
.

The following result will be proved in Section 5.

THEOREM 2.2. There exists a constant C > 0 (which is, essentially, estimated
explicitly in the proof ) such that if ζ ∗

n = µ∗
n ◦λ

(n)
ξ and η∗

n = ν∗
n ◦λ

(n)
ξ , µ∗

n, ν
∗
n ∈ J0n,
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are rational exercise times for the game option in the CRR market defined by (2.5),
that is,

V (n)(z) = min
ζ∈T

ξ
0n

EξQ(n)
z

(
ζ

T

n
,η∗

n

T

n

)
= max

η∈T
ξ

0n

EξQ(n)
z

(
ζ ∗
n

T

n
,η

T

n

)
,(2.16)

then ϕ∗
n = θ

(n)

µ∗
n◦λ(n)

B

and ψ∗
n = θ

(n)

ν∗
n◦λ(n)

B

are δn(z)-rational exercise times for the game

option in the BS market defined by (2.3) and (2.4), that is,

sup
τ∈T B

0T

EBQB
z (ϕ∗

n, τ ) − δn(z) ≤ V (z) ≤ inf
σ∈T B

0T

EBQB
z (σ,ψ∗

n) + δn(z),(2.17)

where δn(z) = C(F0(z)+�0(z)+z+1)n−1/4(lnn)3/4. The assertions remain true
if we replace above λ

(n)
ξ , λ

(n)
B , Q

(n)
z and V (n)(z) by λ̂

(n)
ξ , λ̂

(n)
B , Q̂

(n)
z and V̂ (n)(z),

respectively.

It is well known (see, e.g., [26]) that when payoffs depend only on the current
stock price (a Markov case), δ-optimal stopping times of Dynkin’s games can be
obtained as first arrival times to domains where the payoff is δ-close to the value
of the game (as a function of the initial stock price). For path dependent payoffs,
the situation is more complicated and, in general, in order to construct δ-optimal
stopping times, we have to know the stochastic process of values of the games
starting at each time t ∈ [0, T ] conditioned to the information up to t . It is not
clear what kind of approximation of this process can provide some information
about δ-rational exercise times and the convenient alternative method of their con-
struction exhibited in Theorem 2.2 seems to be important both for the theory and
applications. Moreover, this construction is effective and can be employed in prac-
tice since µ∗

n and ν∗
n are functions on sequences of 1’s and −1’s which can be com-

puted (and stored in a computer) using the recursive formulas (1.7) even before the
stock evolution begins. In order to compute λ

(n)
B , we have to watch the discounted

stock price ŠB
t (z) = e−rtSB

t (z) evolution of a real stock at moments θ
(n)
k which are

obtained recursively by θ
(n)
0 = 0 and

θ
(n)
k+1 = inf

{
t > θ

(n)
k : ŠB

t (z) = e±κ(T /n)1/2
ŠB

θ
(n)
k

(z)
}

(2.18)

and to construct the {1,−1} sequence λ
(n)
B (ω) by writing 1 or −1 on kth place de-

pending on whether ŠB

θ
(n)
k

(z) = eκ(T /n)1/2
ŠB

θ
(n)
k−1

(z) or ŠB

θ
(n)
k

(z) = e−κ(T /n)1/2
ŠB

θ
(n)
k−1

(z),

respectively. Observe also that Theorem 2.2 can be extended to more general se-
quences of random variables ξ1, ξ2, . . . and ξ̂1, ξ̂2, . . . , but this does not seem to
have much of an interest for applications.

Recall (see [28]) that a sequence π = (π1, . . . , πn) of pairs πk = (βk, γk) of
F

ξ
k−1-measurable random variables βk , γk , k = 1, . . . , n, is called a self-financing
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portfolio strategy in the CRR market determined by (1.2), (1.4), (1.8) and (2.5) if
the price of the portfolio at time k is given by the formula

Z
π,n
k = βkbk + γkS

(n)
kT /n(z) = βk+1bk + γk+1S

(n)
kT /n(z)(2.19)

and the latter equality means that all changes in the portfolio value are due to
capital gains and losses but not to withdrawal or infusion of funds. A pair (ζ,π) of
a stopping time ζ ∈ T

ξ
0n and a self-financing portfolio strategy π is called a hedge

for (against) the game option with the payoff R
(n)
z given by (2.9) if (see [15])

Z
π,n
ζ∧k ≥ R(n)

z

(
ζT

n
,
kT

n

)
∀ k = 0,1, . . . , n.(2.20)

It follows from [15] that, for any ζ ∈ T
ξ

0n, there exists a self-financing portfolio
strategy πζ so that (ζ,πζ ) is a hedge. In particular, if we take the rational ex-
ercise time ζ = ζ ∗

n of the writer, then such πζ exists with the initial portfolio
capital V (n)(z). The construction of πζ goes directly via the Doob decomposition
of supermartingales and a martingale representation lemma (see [15] and [28]),
both being explicit in the CRR market case. In the continuous time BS market
we cannot write the corresponding portfolio strategies in an explicit way, and so
some approximations are necessary though, surprisingly, this problem has not been
treated before in the literature.

THEOREM 2.3. Let ζ ∈ T
ξ

0n, π = πζ and (2.19) together with (2.20) hold

true with F
ξ
k -measurable βk = β

ζ
k and γk = γ

ξ
k , so that (ζ,πζ ) is a hedge. Then

β
ζ
k = fk ◦ λ

(k−1)
ξ , γ

ζ
k = gk ◦ λ

(k−1)
ξ and ζ = µ ◦ λ

(n)
ξ for some uniquely defined

functions fk , gk on {−1,1}k−1 and some µ ∈ J0n. Let ϕ = µ ◦ λ
(n)
B and set β

ϕ
t =

fk ◦ λ
(k−1)
B and γ

ϕ
t = gk ◦ λ

(k−1)
B whenever t ∈ (θ

(n)
k−1, θ

(n)
k ]. Then

ZB
t = β

ϕ
t bt + γ

ϕ
t SB

t (z)(2.21)

is a self-financing portfolio in the BS market and there exists a constant C > 0
such that

EB sup
0≤t≤T

(
RB

z

(
θ(n)
ϕ , t

) − ZB

θ
(n)
ϕ ∧t

)+
(2.22)

≤ C
(
F0(z) + �0(z) + z + 1

)
n−1/4(lnn)3/4,

where a+ = max(a,0). In particular, there exists a self-financing portfolio of this
form satisfying (2.22) with the initial value V (n)(z) [which according to (2.13) is
close to the fair price V (z) of the game option] taking ϕ∗ = µ∗ ◦ λ

(n)
B if ζ ∗ =

µ∗ ◦ λ
(n)
ξ is the rational exercise time and π = πζ ∗

is the corresponding optimal
self-financing hedging portfolio strategy for the CRR market.
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Inequality (2.22) estimates the expectation of the maximal shortfall (risk) of
certain (nearly hedging) portfolio strategy which can be constructed effectively in
applications since the functions fl, gl and µ are determined by a self-financing
hedging strategy in the CRR market which can be computed directly and stored
in a computer even before the real stock evolution begins or in case of computer
memory limitations, we can compute these functions each time when needed us-
ing corresponding algorithms for the CRR market. The functions λ

(n)
B or, in other

words, the sequences from {−1,1}n which should be plugged into the functions fl ,
gl and µ should be obtained in practice by watching the evolution of the discounted
stock price e−rtSB

t at moments θ
(n)
k as described after Theorem 2.2.

3. Auxiliary lemmas. In addition to the set SB,n of stopping times with re-
spect to the filtration {GB,n

k }k=0,1,2,... introduced before Theorem 2.2, consider
also the set T B,n of stopping times with respect to the filtration {F B

θ
(n)
k

}k=0,1,2,...

with values in {0,1,2, . . .} and the subset of such stopping times with values in
{0,1, . . . , n} will be denoted by T B,n

0,n . Clearly, SB,n ⊂ T B,n. Set

S
B,n
t (z) = z exp

([nt/T ]∑
k=1

(
rT

n
+ κ

(
B∗

θ
(n)
k

− B∗
θ

(n)
k−1

)))
if t ∈ [T/n,T ],

S
B,n
t = S

B,n
T if t > T and(3.1)

S
B,n
t = S

B,n
0 = z > 0 if t ∈ [0, T /n)

and let Ŝ
B,n
t be the corresponding expression if we replace in (3.1) r by r − κ2

2 ,

B∗ by B , and θ
(n)
k ’s by θ̂

(n)
k . Denote

RB,n
z (s, t) = Ft(S

B,n(z))Is≥t + Gs(S
B,n(z))Is<t ,

(3.2)
QB,n

z (s, t) = e−rs∧tRB,n
z (s, t),

V B,n(z) = inf
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

EBQB,n
z

(
ζT

n
,
ηT

n

)
(3.3)

and

V
B,n
S (z) = min

ζ∈SB,n
0,n

max
η∈SB,n

0,n

EBQB,n
z

(
ζT

n
,
ηT

n

)
.(3.4)

Consider also the corresponding quantities R̂B,n
z (s, t), Q̂B,n

z (s, t), V̂ B,n(z)

and V̂
B,n
S (z) which are obtained by taking in the above formulas Ŝ

B,n
t in place

of S
B,n
t . Though V

B,n
S (z) and V̂

B,n
S (z) are not used in the proofs, their introduc-

tion clarifies the nature of various sets of stopping times involved here.
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The reason for considering the Skorokhod embedding here and the basis for
our proofs of Theorems 2.1–2.3 is the following result which is a generalization
of Lemma 3.1 from [24] and which enables us to consider all relevant processes
on one probability space and to deal with stopping times with respect to the same
Brownian filtration only.

LEMMA 3.1. For any z,n > 0,

V
B,n
S (z) = V (n)(z) = V B,n(z).(3.5)

The same result holds true if we replace in (3.5) all V ’s by V̂ ’s.

PROOF. First, observe that θ
(n)
ζ ∈ T B for any ζ ∈ T B,n (see [24]), where

T B is the set of all almost surely (a.s.) finite stopping times for the Brownian
motion Bt, t ≥ 0. Indeed,

{
θ

(n)
ζ ≤ t

} =
n⋃

k=0

{
θ

(n)
k ≤ t

} ∩ {ζ = k}(3.6)

and since {ζ = k} ∈ F B

θ
(n)
k

and {θ(n)
k ≤ t} ∈ F B

t , we conclude that the event in the

right-hand side of (3.6) belongs to F B
t , and so θ

(n)
ζ is a stopping time.

Next, as we mentioned before the statement of Theorem 2.2, T
ξ

0n = {µ ◦
λ

(n)
ξ :µ ∈ J0,n} and SB,n

0,n = {ν ◦λ
(n)
B :ν ∈ J0,n}. It is clear that, for any µ,ν ∈ J0,n,

Q(n)
z

(
T

n
µ ◦ λ

(n)
ξ ,

T

n
ν ◦ λ

(n)
ξ

)
and QB,n

z

(
T

n
µ ◦ λ

(n)
B ,

T

n
ν ◦ λ

(n)
B

)

have the same distributions, and so the first equality in (3.5) follows.
In order to prove the second equality in (3.5), we employ the dynamical

programming relations (1.7) for V
(n)
k,n = V

(n)
k,n (z) and for V

B,n
k,n = V

B,n
k,n (z), k =

0,1, . . . , n, which in our case have the form

V (n) = V
(n)
0,n , V (n)

n,n = e−rT FT

(
S(n)) and

(3.7)
V

(n)
k,n = min

(
e−rkT /nX

(n)
k (z),max

(
e−rkT /nY

(n)
k (z),E

(
V

(n)
k+1,n|F ξ

k

)))
and

V B,n = V
B,n
0,n , V B,n

n,n = e−rT FT (SB,n) and
(3.8)

V
B,n
k,n = min

(
e−rkT /nX

B,n
k (z),max

(
e−rkT /nY

B,n
k (z),E

(
V

B,n
k+1,n|F B

θ
(n)
k

)))
,

where X
(n)
k (z) and Y

(n)
k (z) are given by (2.6),

Y
B,n
k (z) = FkT /n(S

B,n(z)) and X
B,n
k (z) = GkT /n(S

B,n(z)).(3.9)
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For any numbers x1, x2, . . . , xn, set

x
(n)
t = x

(n)
t (z) = z exp

([nt/T ]∑
k=1

(
rT

n
+ κxk

))
if t ≥ T/n

and x
(n)
t = x

(n)
t (z) = z if t ∈ [0, T /n). In view of (2.1), we can write

FkT /n

(
x(n)(z)

) = qk(z, x1, . . . , xk) and
(3.10)

�kT /n

(
x(n)(z)

) = rk(z, x1, . . . , xk)

for some continuous functions qk and rk depending only on z, x1, . . . , xk .
Next, we show by the backward induction that there exist measurable functions
�k(z, x1, . . . , xk), k = 1,2, . . . , n, and �0(z) such that

V
(n)
kn (z) = �k

(
z,

(
T

n

)1/2

ξ1, . . . ,

(
T

n

)1/2

ξk

)
, V

(n)
0n (z) = �0(z)(3.11)

and

V
B,n
kn (z) = �k

(
z,B∗

θ
(n)
1

,B∗
θ

(n)
2

− B∗
θ

(n)
1

, . . . ,B∗
θ

(n)
k

− B∗
θ

(n)
k−1

)
,

(3.12)
V

B,n
0n (z) = �0(z).

Indeed, for k = n, set �n(z, x1, . . . , xn) = e−rT qn(z, x1, . . . , xn). Suppose that the
assertion holds true for k ≥ l + 1, that is, that for such k’s, we found functions �k

satisfying (3.11) and (3.12). Now, set

�l(z, x1, . . . , xl) = min
(
e−rlT /n(

ql(z, x1, . . . , xl) + rl(z, x1, . . . , xl)
)
,

(3.13)
max

(
e−rlT /nql(z, x1, . . . , xl), hl(z, x1, . . . , xl)

))
,

where

hl(z, x1, . . . , xl) = Eξ�l+1
(
z, x1, . . . , xl, (T /n)1/2ξl+1

)
= EB�l+1

(
z, x1, . . . , xl,B

∗
θ

(n)
l+1

− B∗
θ

(n)
l

)
.

Then (3.7) and (3.8) will be satisfied for k = l with V
(n)
kn (z) and V

B,n
kn (z) given by

(3.11) and (3.12), respectively, since ξl+1 and B∗
θ

(n)
l+1

−B∗
θ

(n)
l

are independent of F
ξ
l

and F B,n
l , respectively, and so by the standard fact (see, e.g., Example 34.3 in [4]),

E

(
�l+1

(
z,

(
T

n

)1/2

ξ1, . . . ,

(
T

n

)1/2

ξl,

(
T

n

)1/2

ξl+1

)∣∣∣∣F ξ
l

)

= hl

(
z,

(
T

n

)1/2

ξ1, . . . ,

(
T

n

)1/2

ξl

)
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and

EB(
�l+1

(
z,B∗

θ
(n)
1

,B∗
θ

(n)
2

− B∗
θ

(n)
1

, . . . ,B∗
θ

(n)
l

− B∗
θ

(n)
l−1

,B∗
θ

(n)
l+1

− B∗
θ

(n)
l

)∣∣F B,n
l

)
= hl

(
z,B∗

θ
(n)
1

,B∗
θ

(n)
2

− B∗
θ

(n)
1

, . . . ,B∗
θ

(n)
l

− B∗
θ

(n)
l−1

)
,

completing the induction. Now applying (3.11) and (3.12) with k = 0, we arrive at
the second equality in (3.5). We obtain the assertion (3.5) for V̂ ’s in place of V ’s
exactly in the same way as above. �

Next, for readers’ convenience, we formulate a series of lemmas which demon-
strate the plan of our proof of Theorem 2.1 leaving till the next section the actual
proof of these results which rely on relatively standard stochastic analysis esti-
mates. We will do L1-estimates directly with respect to the probability P B , though
we could do instead L2 estimates with respect to the probability P ∗

τ , and then pass
to estimates with respect to the original measure P B using the Girsanov transfor-
mation (2.14) and the Cauchy–Schwarz inequality. This would enable us to work
from the beginning with the stopping times θ̂

(n)
1 , θ̂

(n)
2 , . . . in place of θ

(n)
1 , θ

(n)
2 , . . .

which is easier but, on the other hand, would need L2 estimates which require few
additional lines anyway. We formulate results which lead to the required estimate
of |V (z) − V (n)(z)|. The corresponding estimate of |V (z) − V̂ (n)(z)| proceeds ex-
actly in the same way replacing ξk’s by ξ̂k’s and θ

(n)
k ’s by θ̂

(n)
k ’s which, in fact,

leads to a bit easier arguments.
First, observe that though S

B,n
t (z) defined by (3.1) is a piecewise constant ap-

proximation of the BS stock price St (z) given by (2.4), there is certain inconsis-
tency there between times kT /n of jumps of S

B,n
t (z) and the values B

θ
(n)
k

− B
θ

(n)
k−1

of jumps in the exponent which corresponds to the Brownian stopping time θ
(n)
k .

In order to pass to the correct time, we introduce

S
B,θ,n
t (z) = z exp

(
rθ

(n)
k + κB∗

θ
(n)
k

)
if θ

(n)
k ≤ t < θ

(n)
k+1, k = 0,1, . . . , n,

(3.14)
S

B,θ,n
t (z) = S

B,θ,n

θ
(n)
n

(z) if t ≥ θ(n)
n .

Set

RB,θ,n
z (s, t) = Ft(S

B,θ,n(z))Is≥t + Gs(S
B,θ,n(z))Is<t ,

(3.15)
QB,θ,n

z (s, t) = e−rs∧tRB,θ,n
z (s, t)

and

V B,θ,n(z) = inf
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

EBQB,θ,n
z

(
θ

(n)
ζ , θ (n)

η

)
.(3.16)
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In order to compare V B,n(z) and V B,θ,n(z), we have to be able to compare
S

B,n
t (z) and S

B,θ,n
t (z) at the same time t ∈ [0, T ]. Definitions (3.1) and (3.14)

require us to compare then, in particular, B
θ

(n)
l

and B
θ

(n)
k

, provided lT n−1 ≤ t <

(l + 1)T n−1 and θ
(n)
k ≤ t < θ

(n)
k+1. Via standard renewal theory arguments, we con-

clude that in average |k − l| for such k, l ≤ n is of order n1/2, then |θ(n)
k − θ

(n)
l | is

of order n−1/2, and so |B
θ

(n)
k

− B
θ

(n)
l

| is roughly of order n−1/4. The proof of the

following result in the next section makes these heuristic arguments precise and an
effort is made to obtain as best as possible estimates here.

LEMMA 3.2. There exists a constant C > 0 such that, for all n, z > 0,

|V B,n(z) − V B,θ,n(z)|
(3.17)

≤ C
(
F0(z) + �0(z) + z + 1

)
n−1/4(lnn)3/4.

The values V B,θ,n(z) are still defined for piecewise constant approxima-
tions SB,θ,n(z) of the BS stock prices SB given by (2.4). Thus, on the next step
we replace SB,θ,n(z) by SB estimating the corresponding error which turns out to
be of smaller order than in other lemmas, as we have to compare the Brownian
motion here at times s, t such that |t − s| ≤ θ

(n)
k − θ

(n)
k−1 and since the latter is of

order 1/n, the increment |Bt −Bs | is roughly of order n−1/2 which is made precise
in the following result.

LEMMA 3.3. For each ε > 0, there exists Cε > 0 such that, for all z,n > 0
and ζ, η ∈ T B,n

0,n ,

EB
∣∣QB,θ,n

z

(
θ

(n)
ζ , θ (n)

η

) − QB
z

(
θ

(n)
ζ , θ (n)

η

)∣∣
≤ EB max

0≤k,l≤n

∣∣QB,θ,n
z

(
θ

(n)
k , θ

(n)
l

) − QB
z

(
θ

(n)
k , θ

(n)
l

)∣∣(3.18)

≤ Cεzn
ε−1/2.

In (2.10) for V (z) the allowed stopping times take values in the interval [0, T ],
so we have to restrict the stopping times θ

(n)
k (which are not bounded) to this

interval. It is not difficult to understand that in the average |θ(n)
n − T | is of order

n−1/2 and θ
(n)
n − θ

(n)
n ∧ T is of the same order. Then the absolute value of the

increment of the Brownian motion taken at times θ
(n)
n ∧ T and θ

(n)
n is roughly of

order n−1/4, and so the restriction of embedding times to the interval [0, T ] leads
to a difference of about that order (see also Remark 3.7 below).

LEMMA 3.4. There exists a constant C > 0 such that, for all z,n > 0



BINOMIAL APPROXIMATIONS OF GAME OPTIONS 1003

and ζ, η ∈ T B,n
0,n ,

EB
∣∣QB

z

(
θ

(n)
ζ , θ (n)

η

) − QB
z

(
θ

(n)
ζ ∧ T , θ(n)

η ∧ T
)∣∣

≤ EB max
0≤k,l≤n

∣∣QB
z

(
θ

(n)
k , θ

(n)
l

) − QB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

)∣∣(3.19)

≤ C
(
F0(z) + �0(z) + z + 1

)
n−1/4.

Until now we considered only stopping times θ
(n)
k for k = 0,1, . . . , n, which

may not be enough, in principle, in order to approximate all Brownian stopping
times bounded by T , so the next result asserts that we can employ the whole se-
quence θ

(n)
0 = 0, θ

(n)
1 , θ

(n)
2 , . . . . The estimates of the corresponding difference here

are similar to Lemma 3.4 and they produce, essentially, the same result.

LEMMA 3.5. There exists a constant C > 0 such that, for all z,n > 0 and
ζ, η ∈ T B,n (with T B,n defined at the beginning of Section 3),

EB
∣∣QB

z

(
θ

(n)
ζ ∧ T , θ(n)

η ∧ T
) − QB

z

(
θ

(n)
ζ∧n ∧ T , θ

(n)
η∧n ∧ T

)∣∣
≤ EB sup

0≤k,l<∞
∣∣QB

z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

) − QB
z

(
θ

(n)
k∧n ∧ T , θ

(n)
l∧n ∧ T

)∣∣(3.20)

≤ C
(
F0(z) + �0(z) + z + 1

)
n−1/4.

Set T B,n
T = {θ(n)

ζ ∧ T : ζ ∈ T B,n} and let

V
B,n
0,T (z) = inf

σ∈T B,n
T

sup
τ∈T B,n

T

EBQB
z (σ, τ ).(3.21)

Then Lemmas 3.3–3.5 yield that, for some constant C > 0,

|V B,θ,n(z) − V
B,n
0,T (z)|

≤ sup
ζ∈T B,n

sup
η∈T B,n

EB(∣∣QB,θ,n
z

(
θ

(n)
ζ∧n, θ

(n)
η∧n

) − QB
z

(
θ

(n)
ζ∧n, θ

(n)
η∧n

)∣∣
+ ∣∣QB

z

(
θ

(n)
ζ∧n, θ

(n)
η∧n

) − QB
z

(
θ

(n)
ζ∧n ∧ T , θ

(n)
η∧n ∧ T

)∣∣
(3.22)

+ ∣∣QB
z

(
θ

(n)
ζ∧n ∧ T , θ

(n)
η∧n ∧ T

)
− QB

z

(
θ

(n)
ζ ∧ T , θ(n)

η ∧ T
)∣∣)

≤ 3C
(
F0(z) + �0(z) + z + 1

)
n−1/4.

In definition (3.21) of V
B,n
0,T (z) we consider only stopping times of the special

form, while in (2.11), which gives V (z), all Brownian stopping times with values
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in [0, T ] are allowed and the last step in the proof of Theorem 2.1 is to estimate
the corresponding error which turns out to be of the same order as in Lemma 3.3
since, again, we have to estimate increments |Bt −Bs | when |t − s| ≤ θ

(n)
k − θ

(n)
k−1,

though here k runs over all positive integers and not only up to n as in Lemma 3.3.

LEMMA 3.6. For any ε > 0, there exists a constant Cε > 0 such that, for all
z,n > 0,

|V (z) − V
B,n
0,T (z)| ≤ Cε

(
F0(z) + �0(z) + z + 1

)
nε−1/2.(3.23)

Lemmas 3.1–3.6 yield the required estimate of |V (z) − V (n)(z)| from Theo-
rem 2.1 and the corresponding estimate of |V (z) − V̂ (n)(z)| goes through exactly
in the same way.

REMARK 3.7. The estimate of Theorem 2.1 (and so the estimates of The-
orems 2.2 and 2.3) seems to be, essentially, optimal under the general conditions
(2.1) and (2.2) at least, using the method which relies on the Skorokhod embedding
as above. It is known and can be seen from the proof of Lemma 3.2 that the embed-
ding procedure cannot provide, in general, a better than n−1/4 estimate there. One
may restrict the class of payoffs assuming, for instance, that for piecewise con-
stant functions v of time t ∈ [0, T ], the functionals Ft(v) and �t(v) depend only
on the values of v but not on the time intervals between jumps of v. This condition
is satisfied, for instance, in the case of Russian type options. Then we can skip
Lemma 3.2 and after a slight modification of Lemma 3.1, we can proceed directly
to Lemma 3.3. In view of Lemmas 3.3–3.6, this would lead to a slightly better
estimate Cn−1/4 than the estimate (2.13) of Theorem 2.1. Still, it does not seem
possible to obtain under reasonably general conditions (which are satisfied, say,
for Russian options) better that n−1/4 estimates in Lemmas 3.4 and 3.5. Indeed,
in order to obtain specific estimates, we have to get rid of the general function-
als F and � using the assumptions (2.1) and (2.2), which inevitably leads to an
estimate of

EB sup
θ

(n)
n ∧T ≤t≤θ

(n)
n ∨T

∣∣Bt − B
θ

(n)
k ∧T

∣∣
(in fact, of a bit larger expression), which by the Burkholder–Davis–Gandy in-
equality (see [11], Theorem 3.1 in Section 3.3 and [13], Theorem 3.28 in Sec-
tion 3.3) is of order

EB(
θ(n)
n ∨ T − θ(n)

n ∧ T
)1/2

and the latter expression is of order n−1/4. The main obstruction to a better esti-
mate of the first expression above is that (2.2) requires us to write the supremum
and the absolute value inside and not outside of the expectation. This obstruction
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disappears in the other two papers [24] and [30] employing the Skorokhod em-
bedding which also have to face estimates of the error originated from the fact
that, after embedding, we have to consider the Brownian motion until the stopping
time θ

(n)
n which differs from the expiry time T by about n−1/2. In [30] only Eu-

ropean options with payoffs depending on the current stock price are considered,
which enables the author to apply the simple random walk machinery leading to
better estimates. In [24] and in its generalization considered in Section 6 below
the payoffs also depend only on the current stock price, which together with the
smoothness assumption enables us to use the Itô formula leading to the Dynkin
formula where the stochastic integral part disappears and the remaining Riemann
integral taken between T and θ

(n)
n has the same order n−1/2 as |T − θ

(n)
n |. There

exist other methods of strong invariance principle type uniform approximations
of the Brownian motion by means of properly normalized sums of i.i.d. random
variables (see, e.g., [3, 16, 31]) which may give a better rate of approximation,
but the problem arising there is to find a proper substitution to Lemma 3.1 which
would enable us not only to consider corresponding processes on one probability
space, but also to deal with stopping times with respect to the same filtration in the
inf sup formulas expressing values of corresponding Dynkin’s games. In the case
of European options (or contingent claims) with path dependent payoffs satisfy-
ing (2.1), we do not have to worry about stopping times and need only to produce
a best possible uniform approximation of BS stock prices by appropriate CRR
stock prices. Employing the quantile transformation method from [16] and [31],
this can always be done with an error (roughly) of order n−1/2. On the other hand,
the method of [3] can be used, in principle, in order to approximate markets where
stock prices evolve not necessarily as a geometric Brownian motion.

REMARK 3.8. It follows from [14] that, with probability one,

lim sup
n→∞

(∣∣B
θ

(n)
n

− BT

∣∣n1/4(lnn)−1/2(ln lnn)−1/4) = 21/4.

It would be interesting to understand whether the estimate (2.13) of Theorem 2.1
can be improved to Cn−1/4

√
lnn(ln lnn)1/4 or the present estimate is sharp. In

view of Lemma 4.1 below, the estimate (2.13) is connected with the bound for

EB max
0≤k≤n

∣∣B
θ

(n)
k

− BkT/n

∣∣,
though (2.13) requires also an estimate of H

(n)
2 in the next section which does not

seem to be reducible to this one. This question can be formulated in the following
classical form. Let �̂0 = 0 and, successively, �̂n+1 = inf{t > �̂n : |Bt −B

�̂n
| = 1}

with B0 = 0. The result of [14] gives that, with probability one,

lim sup
n→∞

(∣∣B
�̂n

− Bn

∣∣n−1/4(lnn)−1/2(ln lnn)−1/4) = 21/4.

For our problem, we need to know the asymptotical behavior as n → ∞ of

EB max
0≤k≤n

∣∣B
�̂k

− Bk

∣∣.



1006 Y. KIFER

Our estimates give the bound Cn1/4(lnn)3/4 for this expectation. Is there a better
bound or this bound the best possible?

4. Proving the estimates. Set

B
(n)
t = −κt

2

√
T

n
+ Bt and �(n) = inf

{
t > 0 :

∣∣B(n)
t

∣∣ = 1
}
.

By the scaling property of the Brownian motion,√
T

n
B

(n)
t

d∼B∗
(T /nt) and θ

(n)
1

d∼ T

n
�(n),(4.1)

where ξ
d∼ ξ̃ means that ξ and ξ̃ have the same distribution. Observe that, in view

of independency of increments Bl − Bl−1, l = 1,2, . . . , for any n ≥ 1,

P B{
�(n) ≥ k

} ≤ P B{|Bl − Bl−1| ≤ 2 + κ
√

T ∀ l = 1, . . . , k
} = e−bT k,(4.2)

where bT = − lnP B{|B1| ≤ 2 + κ
√

T } > 0. It follows that, for any nonnegative
a < bT ,

EBea�(n) ≤
∞∑

k=0

ea(k+1)P B{
�(n) ≥ k

} ≤ ea(1 − ea−bT )−1 < ∞.(4.3)

The estimates of Section 3 are not trivial only for large n, so we will assume that
n is sufficiently big, in particular, that various exponential moments of the form
EB exp(aT

n
�(n)) are finite, that is, that n > aT b−1

T .
Since expκB∗

t , t ≥ 0, is a martingale with respect to the probability P B , and
so EB exp(κB∗

θ
(n)
1

) = 1 (assuming that n > 1
2T b−1

T ), we derive by an easy com-

putation that B∗
θ

(n)
1

=
√

T
n

or = −
√

T
n

and B
(n)

�(n) = 1 or = −1 with probability

(1+exp(κ
√

T
n

))−1 or (1+exp(−κ
√

T
n

))−1, respectively. Set αn = EB�(n) so that

EBθ
(n)
1 = αn

T
n

. Since the Brownian motion is a martingale, and so EBB�(n) = 0,
we have that

−κ

2
αn

√
T

n
= EB

(
−κ

2
�(n)

√
T

n
+ B�(n)

)

= (
1 + eκ

√
T/n )−1 − (

1 + e−κ
√

T/n )−1
.

This together with an easy estimate shows that

|αn − 1| ≤ min

(
2κ−1

√
n

T
,
κ2T

2n

∣∣∣∣1 − κ2T

n

∣∣∣∣
−1

)
≤ K1

T

n
,(4.4)
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where

K1 = min
(
2κ−1(2κ2 + T −1)3/2, κ2)

.

By (4.2),

EB
∣∣�(n)

∣∣m ≤ Mm =
∞∑

k=1

kme−bT (k−1)

(4.5)
≤ e2bT

∫ ∞
0

xme−bT x dx = e2bT m!b−(m+1)
T .

Assuming, without loss of generality, that n ≥ K1T , we obtain from (4.4) that

P B{∣∣�(n) − αn

∣∣m ≥ k
} ≤ P B{

�(n) ≥ k − 2
}
,

and so

EB
∣∣�(n) − αn

∣∣m ≤
∞∑

k=1

kme−bT (k−3) = e2bT Mm.(4.6)

Observe that θ
(n)
k − αnk

T
n

, k = 0,1,2, . . . , is a martingale with respect to the fil-
tration F B

θ
(n)
k

, k ∈ N. Thus, using that (a + b)m ≤ 2m−1(am + bm) for a, b ≥ 0,

m ≥ 1, we obtain by (4.1), (4.4), (4.6) and the Burkholder–Davis–Gandy inequal-
ity (see [11], Theorem 3.1 in Section 3.3 and [13], Theorem 3.28 in Section 3.3)
that, for any m > 1/2,

EB sup
ζ∈T B,n

0,n

∣∣∣∣θ(n)
ζ − ζ

T

n

∣∣∣∣
2m

= EB max
0≤k≤n

∣∣∣∣θ(n)
k − kT

n

∣∣∣∣
2m

≤ 22m−1T 2m|αn − 1|2m + 22m−1EB max
0≤k≤n

∣∣∣∣θ(n)
k − αn

kT

n

∣∣∣∣
2m

(4.7)

≤ 22m−1K2m
1 T 4mn−2m + 22m−1�m

(
nEB

∣∣∣∣θ(n)
1 − αn

T

n

∣∣∣∣
2)m

≤ 22m−1T 2mn−m(T 2mK2m
1 n−m + �me2mbT Mm

2 )

≤ K
(m)
2 T 2mn−m,

where �m = 4m2
mm(2m+1)(2m − 1)m(1−2m) and K

(m)
2 = 22m−1(K2m

1 T 2m +
�me2mbT Mm

2 ) assuming that n ≥ 1. We will need (4.7) mostly with m = 1 which
requires only the Doob–Kolmogorov inequality (see, e.g., [11]) and in order to
simplify notation, we set K2 = K

(1)
2 .
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Using the exponential martingale exp(aBt − 1
2a2t) and applying the Doob–

Kolmogorov and Cauchy–Schwarz inequalities, we obtain

EB sup
0≤t≤τ

exp(aBt ) ≤ EBe(1/2)a2τ sup
0≤t≤τ

exp
(
aBt − 1

2a2t
)

≤ (
EBea2τ )1/2

(
EB sup

0≤t≤τ

exp(2aBt − a2t)

)1/2

≤ 2
(
EBea2τ )1/2(

EB exp(2aBτ − a2τ)
)1/2(4.8)

≤ 2
(
EBea2τ )1/2(

EB exp(4aBτ − 8a2τ)
)1/4(

EBe6a2τ )1/4

= 2
(
EBea2τ )1/2(

EBe6a2τ )1/4

for any finite Brownian stopping time τ and a number a. If σ ≤ τ is an-
other Brownian stopping time, then by the Burkholder–Davis–Gandy inequality
(see [11] and [13]) applied to the (continuous) martingale (stochastic integral)∫ t

0 Iσ<s≤τ dBs we obtain that, for any m > 0,

EB sup
σ≤t≤τ

|Bt − Bσ |2m ≤ �mEB |τ − σ |m,(4.9)

where �m is the same as in (4.7) and, again, we will use (4.9) only for m > 1/2.
Recall that our relevant formulas do not depend on a particular choice of a contin-
uous in time version of the Brownian motion Bt and each such version is, in fact,
Hölder continuous with probability one.

In the proof of Lemma 3.2 we will need also certain renewal theory estimates
which seem to be standard, but, since we could not find a direct reference, their
proof for readers’ convenience is given here.

LEMMA 4.1. Let k
(n)
t = max{j ≤ n : θ(n)

j ≤ t} for all t ≥ 0 and �
(n)
t = [nt/T ]

if t ∈ [0, T ] and �
(n)
t = n if t > T . Then

EB sup
0≤t≤T

∣∣k(n)
t − �

(n)
t

∣∣2 ≤ 2EB sup
0≤t≤T

∣∣k(n)
t − nt/T

∣∣2 + 2 ≤ 2(K2 + 2)n(4.10)

and

EB sup
0≤t≤θ

(n)
n

∣∣B
θ

(n)

k
(n)
t

− B
θ

(n)

�
(n)
t

∣∣2 ≤ K3n
−1/2(lnn)3/2,(4.11)

where K3 > 0 can be estimated from the proof below.

PROOF. Let �
(n)
1 ,�

(n)
2 , . . . be i.i.d. random variables with the same dis-

tribution as �(n). Set m
(n)
u = max{j ≤ n :

∑j
i=1 �

(n)
i ≤ u}, then, by (4.1), the

process m
(n)
nt/T , t ∈ [0, T ], has the same distribution as the process k

(n)
t , t ∈ [0, T ].
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Hence,

EB sup
0≤t≤T

∣∣k(n)
t − nt/T

∣∣2 = EB sup
0≤u≤n

∣∣m(n)
u − u

∣∣2.
Set �t = ∑[t]

j=1 �
(n)
j for t ≥ 1 and �t = �0 = 0 for t ∈ [0,1). It is clear that if

l < n, then m
(n)
u − u = l − u if and only if l − �l ≥ l − u > l − �l+1, and so in

this case ∣∣m(n)
u − u

∣∣ ≤ max
(|�l − l|, |�l+1 − (l + 1)| + 1

)
.

If m
(n)
u = n and u ≤ n, then �n ≤ u ≤ n, and so |m(n)

u − u| ≤ |�n − n|. Hence,

max
0≤u≤n

∣∣m(n)
u − u

∣∣ ≤ max
0≤l≤n

|�l − l| + 1.(4.12)

Observe that, by (4.4), for any l ≤ n,

|�l − l| ≤ |�l − lαn| + K1T ,(4.13)

and so by the Doob–Kolmogorov inequality,

EB max
0≤l≤n

|�l − l|2 ≤ 2EB max
0≤l≤n

|�l − lαn|2 + 2K2
1T 2

≤ 8EB |�n − nαn|2 + 2K2
1T 2 = 8nEB(

�(n) − αn

)2 + 2K2
1T 2

and (4.10) follows from (4.4) and (4.6).
Next, we prove (4.11) estimating, first,

sup
0≤t≤θ

(n)
n

∣∣B
θ

(n)

k
(n)
t

− B
θ

(n)

�
(n)
t

∣∣2

≤ 4I
sup

0≤t≤θ
(n)
n

|k(n)
t −�

(n)
t |>D

√
n lnn

sup
0≤t≤θ

(n)
n

|Bt |2

+ 4I
max

k,l≤n,|k−l|≤D
√

n lnn
|θ(n)

k −θ
(n)
l |>D2

√
n−1 lnn

sup
0≤t≤θ

(n)
n

|Bt |2

(4.14)
+ 4Imaxk≤n sup

0≤t≤D2
√

n−1 lnn
|B

θ
(n)
k

+t
−B

θ
(n)
k

|>D2n−1/4(lnn)3/4

× sup
0≤t≤θ

(n)
n

|Bt |2

+ D4n−1/2(lnn)3/2,

where D > 0 will be chosen below. Observe that

sup
0≤t≤θ

(n)
n

∣∣k(n)
t − �

(n)
t

∣∣ ≤ 2 sup
0≤t≤T

∣∣k(n)
t − �

(n)
t

∣∣(4.15)

since, by the definition of k
(n)
t and �

(n)
t ,

sup
T ≤t≤T ∨θ

(n)
n

∣∣k(n)
t − �

(n)
t

∣∣ ≤ n − k
(n)
T = �

(n)
T − k

(n)
T .
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Since |k(n)
t −�

(n)
t | ≤ |k(n)

t −nt/T |+1 and the processes m
(n)
nt/T , t ∈ [0, T ], and k

(n)
t ,

t ∈ [0, T ], have the same distribution, we derive from (4.12), (4.13) and (4.15) that

P B

{
sup

0≤t≤θ
(n)
n

∣∣k(n)
t − �

(n)
t

∣∣ > D
√

n lnn

}

≤ P B

{
max

0≤l≤n
|�l − lαn| > 1

2D
√

n lnn − 2
}

(4.16)

≤
n∑

l=0

(
P B{

�l − lαn > 1
2D

√
n lnn − 2

}

+ P B{
lαn − �l > 1

2D
√

n lnn − 2
})

.

By (4.5), (4.6), Chebyshev’s inequality and the definition of �l ,

P B

{
�l − lαn >

1

2
D

√
n lnn − 2

}

≤ P B

{
exp

(
2
√

n−1 lnn

l∑
i=1

(
�

(n)
i − αn

)) ≥ nDe−4

}

≤ e4n−D(
EB exp

(
2
√

n−1 lnn
(
�

(n)
i − αn

)))l(4.17)

≤ e4n−D

(
1 + e2bT

∞∑
m=2

(
4 lnn

n

)m/2 Mm

m!
)n

≤ e4n(8e4bT b−3
T −D) ≤ e4n−2,

where we use the inequality (1 + a/q)q < ea for a, q > 0, choose D ≥ 2 +
8e4bT b−3

T and assume that n ≥ 2(16/b2
T )2, so that n−1 lnn ≤ b2

T /16. Similarly,
under the same conditions,

P B{
lαn − �l > 1

2D
√

n lnn − 2
} ≤ e4n−2.(4.18)

Next, by (4.1), (4.3) and the Chebyshev inequality,

P B

{
max

k,l≤n,|k−l|≤D
√

n lnn

∣∣θ(n)
k − θ

(n)
l

∣∣ > D2
√

n−1 lnn

}

≤ nP B{
θ

(n)

[D√
n lnn] > D2

√
n−1 lnn

}
= nP B{

anT −1θ
(n)

[D√
n lnn] > aD2T −1

√
n lnn

}
(4.19)

≤ n exp
(−aD2T −1

√
n lnn

)
EB exp

(
anT −1θ

(n)

[D√
n lnn ]

)
≤ n

(
exp(−aDT −1)EBea�(n))D√

n lnn ≤ n−1,
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(where [b] is the integral part of b) if we choose a positive a < bT ,

D ≥ T a−1(
1− ln(1−ea−bT )

)+T +1 so that
(
ea(DT −1−1)(1−ea−bT )

)D ≥ e,

and assume that n ≥ e3, so that n−1 lnn ≤ 1/4. Now, by the strong Markov prop-
erty, the reflection principle and the scaling property of the Brownian motion (see,
e.g., [13], Chapter 2),

P B

{
max
k≤n

sup
θ

(n)
k ≤t≤θ

(n)
k +D2

√
n−1 lnn

∣∣Bt − B
θ

(n)
k

∣∣ > D2n−1/4(lnn)3/4
}

≤ nP B

{
sup

0≤t≤D2
√

n−1 lnn

|Bt | > D2n−1/4(lnn)3/4
}

≤ 4nP B{
B

D2
√

n−1 lnn
> D2n−1/4(lnn)3/4}

(4.20)
= 4nP B{

B1 > D
√

lnn
}

= 4n

∫ ∞
D(lnn)1/2

(2π)−1/2e−x2/2 dx

≤ 8n

D
√

2π lnn
e−(1/2)D2 lnn ≤ 4

n
√

2π lnn
,

provided we choose D ≥ 2. Finally, by (4.1), (4.4) and (4.9),

EB sup
0≤t≤θ

(n)
n

|Bt |2 ≤ 4EBθ(n)
n = 4T αn ≤ 4T (1 + K1T ),(4.21)

and we obtain (4.11) from (4.14) and (4.16)–(4.21) together with the Cauchy–
Schwarz inequality. �

Now we are ready to pass directly to the proof of Lemma 3.2.

PROOF OF LEMMA 3.2. By (3.3), (3.16) and the equality θ
(n)
ζ ∧ θ

(n)
η = θ

(n)
ζ∧η,

|V B,n(z) − V B,θ,n(z)| ≤ sup
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

(
J1(ζ, η) + J2(ζ, η)

)
,(4.22)

where

J1(ζ, η) = EB

(∣∣e−rT /nζ∧η − e
−rθ

(n)
ζ∧η

∣∣RB,n
z

(
ζT

n
,
ηT

n

))

and

J2(ζ, η) = EB

∣∣∣∣RB,n
z

(
ζT

n
,
ηT

n

)
− RB,θ,n

z

(
θ

(n)
ζ , θ (n)

η

)∣∣∣∣.
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Since |e−ra − e−rb| ≤ r|a − b|, we obtain by (4.7) and the Cauchy–Schwarz in-
equality

J1(ζ, η) ≤ rEB

∣∣∣∣θ(n)
ζ∧η − T

n
ζ ∧ η

∣∣∣∣RB,n
z

(
ζT

n
,
ηT

n

)
(4.23)

≤
√

K2rT√
n

(
J11(η, ζ )

)1/2
,

where by (2.3), (3.1), (3.2) and (4.8),

J11(ζ, η) = EB

(
RB,n

z

(
ζT

n
,
ηT

n

))2

≤ 2EB((
F(T/n)ζ∧η(S

B,n(z))
)2 + (

�(T/n)ζ∧η(S
B,n(z))

)2)
≤ 6

(
F 2

0 (z) + �2
0(z) + 2L2(T + 2)2EB

(
1 + sup

0≤t≤T

(S
B,n
t (z))2

))
(4.24)

≤ 6
(
F 2

0 (z) + �2
0(z) + 2L2(T + 2)2

(
1 + z2e2rT EB sup

0≤t≤θ
(n)
n

e2κBt

))

≤ 6
(
F 2

0 (z) + �2
0(z)

+ 4L2(T + 2)2(
1 + z2e2rT (

EBe4κ2θ
(n)
n

)1/2(
EBe24κ2θ

(n)
n

)1/4))
.

Since

θ(n)
n =

n∑
k=1

(
θ

(n)
k − θ

(n)
k−1

)
and B

θ
(n)
n

=
n∑

k=1

(
B

θ
(n)
k

− B
θ

(n)
k−1

)

are sums of i.i.d. random variables, we obtain by (4.1)–(4.5) and the Taylor formula
that, for any a > 0,

EBeaθ
(n)
n = (

EBea(T /n)�(n))n
≤

(
1 + a(K1 + 1)

T

n
+ a2T 2

n2

∞∑
m=0

amT mMm+2

nm(m + 2)!
)n

(4.25)

≤
(

1 + a(K1 + 1)
T

n
+ a2T 2b−3n−2 exp

(
2bT + aT

nbT

))n

≤ Ca = ea(K1+1)T ,

provided n ≥ T b−3
T exp(2bT +aT b−1

T ) and we use that (1+a/q)q ≤ ea if a, q > 0.
This together with (4.8) gives also

EBe
aB

θ
(n)
n ≤ 2

(
EBea2θ

(n)
n

)1/2(
EBe6a2θ

(n)
n

)1/4 ≤ 2(Ca2)
1/2(C6a2)

1/4,(4.26)
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assuming that n ≥ T b−3
T exp(2bT + 2a2T b−1

T ).
Next, we estimate J2(ζ, η). By (3.2) and (3.15),

J2(ζ, η) ≤ EB(∣∣FζT /n(S
B,n(z)) − F

θ
(n)
ζ

(SB,θ,n(z))
∣∣

+ ∣∣FηT /n(S
B,n(z)) − F

θ
(n)
η

(SB,θ,n(z))
∣∣(4.27)

+ ∣∣�ζT /n(S
B,n(z)) − �

θ
(n)
ζ

(SB,θ,n(z))
∣∣).

For any ζ ∈ T B,n
0,n , we obtain from (2.1) and (2.2) that∣∣FζT /n(S

B,n(z)) − F
θ

(n)
ζ

(SB,θ,n(z))
∣∣

≤ max
0≤k≤n

(∣∣F
θ

(n)
k

(SB,n(z)) − F
θ

(n)
k

(SB,θ,n(z))
∣∣

(4.28)
+ ∣∣FkT /n(S

B,n(z)) − F
θ

(n)
k

(SB,n(z))
∣∣)

≤ L
(
θ(n)
n + 1

)
J21 + L max

0≤k≤n

∣∣∣∣θ(n)
k − kT

n

∣∣∣∣(1 + J22) + LJ23,

where

J21 = sup
0≤t≤θ

(n)
n

|SB,n
t (z) − S

B,θ,n
t (z)|,

(4.29)
J22 = sup

0≤t≤T

S
B,n
t (z) ≤ zerT sup

0≤t≤θ
(n)
n

eκBt

and

J23 = max
0≤k≤n

sup
(kT /n)∧θ

(n)
k ≤u≤t≤(kT /n)∨θ

(n)
k

|SB,n
t (z) − SB,n

u (z)|.

Set

H
(n)
1 (t) =

∣∣∣∣r
(
θ

(n)

k
(n)
t

− �
(n)
t

T

n

)
+ κ

(
B∗

θ
(n)

k
(n)
t

−B∗
θ

(n)

�
(n)
t

)∣∣∣∣ and H
(n)
1 = sup

0≤t≤θ
(n)
n

H
(n)
1 (t),

with k
(n)
t and �

(n)
t defined in Lemma 4.1. Then by (3.1), (3.14) and (4.29),

J21 ≤ J22I
H

(n)
1 ≤1

sup
0≤t≤θ

(n)
n

∣∣eH
(n)
1 (t) − 1

∣∣
+ I

H
(n)
1 >1

sup
0≤t≤θ

(n)
n

(
S

B,n
t (z) + S

B,θ,n
t (z)

)
(4.30)

≤ 2zerT sup
0≤t≤θ

(n)
n

eκBt H
(n)
1 + 2zI

H
(n)
1 >1

(
erT + erθ

(n)
n

)(
sup

0≤t≤θ
(n)
n

eκBt

)
.
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Next, by (4.15),

H
(n)
1 ≤

∣∣∣∣r − κ2

2

∣∣∣∣ max
0≤k≤n

∣∣∣∣θ(n)
k − k

T

n

∣∣∣∣
(4.31)

+ 2
T

n

∣∣∣∣r − κ2

2

∣∣∣∣ sup
0≤t≤T

∣∣k(n)
t − �

(n)
t

∣∣ + κ sup
0≤t≤θ

(n)
n

∣∣B
θ

(n)

k
(n)
t

− B
θ

(n)

�
(n)
t

∣∣.
Hence, by (4.7), (4.10), (4.11), (4.31), the Cauchy–Schwarz and the Chebyshev
inequalities, it follows that there exists a constant C̃ > 0 such that

P B{
H

(n)
1 > 1

} ≤ C̃n−1/2(lnn)3/2.(4.32)

This together with (4.7), (4.8), (4.10), (4.11), (4.25), (4.30), (4.31) and the
Cauchy–Schwarz inequalities yields that there exists a constant C(1) > 0 such that

EBJ21 ≤ C(1)zn−1/4(lnn)3/4(4.33)

and both C̃ and C(1) can be estimated from the above formulas.
In order to estimate J23, set

H
(n)
2 (s, t) = rT

n

(
�
(n)
t − �(n)

s

) + κ
(
B∗

θ
(n)

�
(n)
t

− B∗
θ

(n)

�
(n)
s

)

and

H
(n)
2 = max

0≤k≤n
sup

(kT /n)∧θ
(n)
k ≤s≤t≤(kT /n)∨θ

(n)
k ∧T

H
(n)
2 (s, t).

Then by (3.1), similarly to (4.30),

J23 ≤ 2J22
(
I
H

(n)
2 >1

+ H
(n)
2

)
.(4.34)

If kT
n

∧ θ
(n)
k ≤ s ≤ t ≤ kT

n
∨ θ

(n)
k , then by (4.4),

�
(n)
t − �(n)

s ≤ n

T
(t − s) + 1 ≤ n

T
max

0≤k≤n

∣∣∣∣θ(n)
k − k

T

n

∣∣∣∣ + 1

(4.35)

≤ n

T
max

0≤k≤n

∣∣∣∣θ(n)
k − k

T

n
αn

∣∣∣∣ + K1T + 1

and

θ
(n)

�
(n)
t

− θ
(n)

�
(n)
s

≤
∣∣∣∣θ(n)

�
(n)
t

− �
(n)
t T

n

∣∣∣∣ +
∣∣∣∣θ(n)

�
(n)
s

− �
(n)
s T

n

∣∣∣∣ + T

n

∣∣�(n)
t − �(n)

s

∣∣
≤ 3 max

0≤k≤n

∣∣∣∣θ(n)
k − kT

n

∣∣∣∣ + T

n
(4.36)

≤ 3 max
0≤k≤n

∣∣∣∣θ(n)
k − kT

n
αn

∣∣∣∣ + 3K4n
−1,
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where K4 = T (K1T + 1). Hence, similarly to (4.14) and (4.31),

H
(n)
2 ≤

∣∣∣∣r − 3κ2

2

∣∣∣∣ max
0≤k≤n

∣∣∣∣θ(n)
k − k

T

n

∣∣∣∣ +
∣∣∣∣1 − κ2

2

∣∣∣∣Tn
+ max

0≤k≤n
sup

t≤θ
(n)
n −θ

(n)
k ,0≤t≤3 max0≤l≤n |θ(n)

l −(lT /n)αn|+3K4n
−1

∣∣B
θ

(n)
k +t

(4.37)

− B
θ

(n)
k

∣∣
and

sup
k≤n,t≤θ

(n)
n −θ

(n)
k ,0≤t≤3 max0≤l≤n |θ(n)

l −(lT /n)αn|+3K4n
−1

∣∣B
θ

(n)
k +t

− B
θ

(n)
k

∣∣
≤ 2I

max0≤l≤n |θ(n)
l −(lT /n)αn|>(1/3)D

√
n−1 lnn−K4n

−1

× sup
0≤t≤θ

(n)
n

|Bt | + Dn−1/4(lnn)3/4(4.38)

+ 2Imax0≤k≤n sup
0≤t≤D

√
n−1 lnn

|B
θ
(n)
k

+t
−B

θ
(n)
k

|>Dn−1/4(lnn)3/4

× sup
0≤t≤θ

(n)
n

|Bt |.

Since the sequence {θ(n)
l , l ≥ 1} has the same distribution as the sequence

{T
n
�l, l ≥ 1} defined in the proof of Lemma 4.1, then in the same way as in

(4.16) and (4.17), we obtain

P B

{
max

0≤l≤n

∣∣∣∣θ(n)
l − lT

n
αn

∣∣∣∣ >
1

3
D

√
n−1 lnn − K4n

−1
}

(4.39)

= P B

{
max

0≤l≤n
|�l − lαn| > D

3T

√
n lnn − K4T

−1
}

≤ e3K4n−1,

provided we choose D ≥ 2 + 18T 2e2bT b−3
T and assume that n ≥ 2(36T 2/b2

T )2,
so that n−1 lnn ≤ 1

36T −2b2
T . Hence, by (4.7), (4.9), (4.20), (4.37)–(4.39), the

Cauchy–Schwarz and Chebyshev inequalities, it follows that there exists a con-
stant C̃ > 0 such that

P B{
H

(n)
2 > 1

} ≤ C̃n−1/2(lnn)3/2.

This together with (4.7)–(4.9), (4.20), (4.25), (4.34), (4.37)–(4.39) and the
Cauchy–Schwarz inequality yields that there exists a constant C(2) > 0 such that

EBJ23 ≤ C(2)zn−1/4(lnn)3/4(4.40)

and both C̃ and C(2) can be estimated explicitly from the above formulas. Finally,
estimating the left-hand side of (4.28) by means of (4.7), (4.8), (4.25), (4.28),
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(4.29), (4.33), (4.40) and estimating the other two terms in the right-hand side
of (4.27) exactly in the same way, we obtain that

J2(ζ, η) ≤ C(3)zn−1/4(lnn)3/4(4.41)

for some C(3) > 0 independent of n, which together with (4.22)–(4.26) yields
(3.17), completing the proof of Lemma 3.2. �

PROOF OF LEMMA 3.3. In order to prove Lemma 3.3, we write by (2.1), (2.9)
and (3.15) that, for any k, l = 1,2, . . . , n,∣∣tQB,n,θ

z

(
θ

(n)
k , θ

(n)
l

) − QB
z

(
θ

(n)
k , θ

(n)
l

)∣∣
≤ ∣∣RB,n,θ

z

(
θ

(n)
k , θ

(n)
l

) − RB
z

(
θ

(n)
k , θ

(n)
l

)∣∣(4.42)

≤ L
((

θ(n)
n + 1

)
J3

)
,

where

J3 = sup
0≤t≤θ

(n)
n

|SB,θ,n
t (z) − SB

t (z)|.

Set

H
(n,l)
3 = max

1≤k≤l
sup

θ
(n)
k−1≤s≤t≤θ

(n)
k

(
r(t − s) + κ|B∗

t − B∗
s |) and H

(n)
3 = H

(n,n)
3 .

Then by (2.4) and (3.14), similarly to (4.19),

J3 ≤ 2zerθ
(n)
n H

(n)
3 max

0≤k≤n
e
κB

θ
(n)
k + 2zerθ

(n)
n I

H
(n)
3 >1

max
0≤k≤n

e
κB

θ
(n)
k .(4.43)

Since |Bt −Bs | ≤ |Bt −B
θ

(n)
k−1

| + |Bt −B
θ

(n)
k−1

| and (a + b)2m ≤ 22m−1(a2m + b2m)

for a, b ≥ 0, m ≥ 1/2, we obtain by (4.1), (4.5) and (4.9) that

EB
∣∣H(n)

3

∣∣2m ≤ 22m−1
∣∣∣∣r − κ2

2

∣∣∣∣
2m

EB max
1≤k≤n

∣∣θ(n)
k − θ

(n)
k−1

∣∣2m

+ 24m−1κ2mEB max
1≤k≤n

sup
θ

(n)
k−1≤t≤θ

(n)
k

∣∣Bt − B
θ

(n)
k−1

∣∣2m

≤ 22m−1
n∑

k=1

(∣∣∣∣r − κ2

2

∣∣∣∣
2m

EB
∣∣θ(n)

k − θ
(n)
k−1

∣∣2m

(4.44)

+ 22mκ2mEB sup
θ

(n)
k−1≤t≤θ

(n)
k

∣∣Bt − B
θ

(n)
k−1

∣∣2m
)

≤ 22m−1n

(∣∣∣∣r − κ2

2

∣∣∣∣
2m

EB(
θ

(n)
1

)2m + 22mκ2m�mEB(
θ

(n)
1

)m)

≤ K
(m)
5 n−m+1,
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where

K
(m)
5 = 22m−1e2bT b

−(m+1)
T T m

(∣∣∣∣r − κ2

2

∣∣∣∣
2m

(2m)!b−m
T T m + 22mκ2m�mm!

)
.

This together with the Chebyshev inequality gives that, for any integers m,n ≥ 1,

P B{
H

(n)
3 > 1

} ≤ K
(m)
5 n−m+1.(4.45)

Finally, by (4.8), (4.25), (4.42)–(4.45) and the Hölder inequality, we obtain the
assertion of Lemma 3.3. �

PROOF OF LEMMA 3.4. The proof of Lemma 3.4 starts similarly with the
estimate ∣∣QB

z

(
θ

(n)
k , θ

(n)
l

) − QB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

)∣∣ ≤ EB(
J4(k, l) + J5(k, l)

)
,(4.46)

where by (2.2)–(2.4) and (2.8),

J4(k, l) = ∣∣e−rθ
(n)
k∧l − e−rθ

(n)
k∧l∧T

∣∣RB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

)
(4.47)

≤ rL(T + 2)
(
F0(z) + �0(z) + z + 1

)
erT

(∣∣θ(n)
n − T

∣∣ sup
0≤t≤T

eκBt

)

and

J5(k, l) ≤ ∣∣RB
z

(
θ

(n)
k , θ

(n)
l

) − RB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

)∣∣
(4.48)

≤ L

(∣∣θ(n)
n − T

∣∣(1 + erθ
(n)
n sup

0≤t≤θ
(n)
n

eκBt

)
+ J51

)

with

J51 = max
0≤k≤n

sup
θ

(n)
k ∧T ≤t≤θ

(n)
k

∣∣SB
t (z) − SB

θ
(n)
k ∧T

(z)
∣∣.

Set

H
(n)
4 = max

0≤k≤n
sup

θ
(n)
k ∧T ≤t≤θ

(n)
k

(
r
(
t − θ

(n)
k ∧ T

) + κ
∣∣B∗

t − B∗
θ

(n)
k ∧T

∣∣).
By (2.4), similarly to (4.30) and (4.43), we obtain that

J51 ≤ zerT H
(n)
4 sup

0≤t≤T

eκBt

(4.49)

+ zI
H

(n)
4 >1

(
erθ

(n)
n sup

0≤t≤θ
(n)
n

eκBt + erT sup
0≤t≤T

eκBt

)
.

Observe that θ
(n)
k ∧ T < θ

(n)
k if and only if T < θ

(n)
k and since k ≤ n, we have in

this case [
θ

(n)
k ∧ T , θ

(n)
k

] ⊂ [
T , θ(n)

n

] ⊂ [
T , θ(n)

n ∨ T
]
.
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Hence,

H
(n)
4 ≤

(
r + κ2

2

)∣∣θ(n)
n − T

∣∣ + κ sup
T ≤t≤θ

(n)
n ∨T

|Bt − BT |.(4.50)

By (4.7), (4.9) and the Cauchy–Schwarz inequality,

EB sup
T ≤t≤θ

(n)
n ∨T

|Bt − BT |2 ≤ �1E
B

∣∣θ(n)
n − T

∣∣ ≤ �1T K
1/2
2 n−1/2,

which together with (4.7) and (4.50) gives

EB
∣∣H(n)

4

∣∣2 ≤ 2
(
r + κ2

2

)2

K2T 2n−1 + 2κ2�1T K
1/2
2 n−1/2.

This enables us to estimate P B{H(n)
4 > 1} by the Chebyshev inequality and to-

gether with (4.8), (4.25) and the Cauchy–Schwarz inequality yields

EBJ51 ≤ C(4)zn−1/4

for some C(4) > 0 independent of n which can be easily estimated explicitly via the
above formulas. Using (4.7), (4.8) and (4.25) together with the Cauchy–Schwarz
inequality in order to estimate EBJ4(ζ, η) and the expectation of the remaining
term in J5(ζ, η), we arrive at (3.19), completing the proof of Lemma 3.4. �

Next, we derive Lemma 3.5 using estimates similar to the above.

PROOF OF LEMMA 3.5. Namely, for any k, l = 1,2, . . . , we have∣∣RB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

) − RB
z

(
θ

(n)
k∧n ∧ T , θ

(n)
l∧n ∧ T

)∣∣
(4.51)

≤ EB(
J6(k, l) + J7(k, l)

)
,

where by (2.2)–(2.4), (2.9) and the equality θ
(n)
ζ ∧ θ

(n)
η = θ

(n)
ζ∧η similarly to

(4.43) and (4.49),

J6(k, l) = (∣∣e−rθ
(n)
k∧l∧T − e−rθ

(n)
k∧l∧n∧T

∣∣RB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

))
≤ rL(T + 2)

(
F0(z) + �0(z) + z + 1

)
erT(4.52)

× max
n<k<∞

∣∣θ(n)
k ∧ T − θ(n)

n ∧ T
∣∣ sup

0≤t≤T

eκBt

and

J7(k, l) ≤ ∣∣RB
z

(
θ

(n)
k ∧ T , θ

(n)
l ∧ T

) − RB
z

(
θ

(n)
k∧n ∧ T , θ

(n)
l∧n ∧ T

)∣∣
≤ LzerT

((
1 + sup

0≤t≤T

eκBt

)
(4.53)

×
(

max
n<k<∞

∣∣θ(n)
k ∧ T − θ(n)

n ∧ T
∣∣ + H

(n)
5 + 2I

H
(n)
5 >1

))
,
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with

H
(n)
5 = max

n<k<∞ sup
θ

(n)
n ∧T ≤t≤θ

(n)
k ∧T

(
r
(
t − θ(n)

n ∧ T
) + κ

∣∣B∗
t − B∗

θ
(n)
n ∧T

∣∣).

Observe that θ
(n)
n ∧ T < θ

(n)
k ∧ T for k > n if and only if T > θ

(n)
n and then

[
θ(n)
n ∧ T , θ

(n)
k ∧ T

] ⊂ [
θ(n)
n , T

] ⊂ [
θ(n)
n , θ(n)

n ∨ T
]
.

Hence, ∣∣θ(n)
k ∧ T − θ(n)

n ∧ T
∣∣ ≤ T ∨ θ(n)

n − θ(n)
n

(4.54)
≤ ∣∣T − θ(n)

n

∣∣
and

H
(n)
5 ≤

(
r + κ2

2

)∣∣T − θ(n)
n

∣∣ + κ sup
T ≤t≤θ

(n)
n ∨T

|Bt − BT |.(4.55)

The right-hand side of (4.55) is the same as in (4.50), and so we can use the
same estimates for H

(n)
5 as for H

(n)
4 , which together with (4.7), (4.8), (4.25), the

Chebyshev and the Cauchy–Schwarz inequalities enable us to estimate EBJ7(k, l)

by C(5)zn−1/4 for some C(5) > 0 independent of n. Finally, using (4.7), (4.8),
(4.25) and (4.54) together with the Cauchy–Schwarz inequality in order to esti-
mate EBJ6(k, l), we obtain (3.20), completing the proof of Lemma 3.5. �

In order to complete the proof of Theorem 2.1, it remains to establish
Lemma 3.6.

PROOF OF LEMMA 3.6. For each σ ∈ T B
0,T , set νσ = min{k ∈ N : θ(n)

k ≥ σ }
which, indeed, defines νσ since θ

(n)
k → ∞ with probability one as k → ∞. Ob-

serve that νσ ∈ T B,n since {νσ ≤ k} = {θ(n)
k ≥ σ } ∈ F B

θ
(n)
k

. For any σ ∈ T B
0,T , we

set σ (n) = θ
(n)
νσ ∧ T . Since T B,n

T ⊂ T B
0,T , we conclude from (2.10) that

V (z) ≥ inf
σ∈T B

0,T

sup
τ∈T B,n

T

EBQB
z (σ, τ ).(4.56)

Then for any δ > 0, there exists σδ ∈ T B
0,T such that

V (z) ≥ sup
τ∈T B,n

T

EBQB
z (σδ, τ ) − δ.(4.57)
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This together with (3.21) implies

V (z) ≥ sup
τ∈T B,n

T

EBQB
z

(
σ

(n)
δ , τ

) − δ

− sup
τ∈T B,n

T

EB(
QB

z

(
σ

(n)
δ , τ

) − QB
z (σδ, τ )

)
(4.58)

≥ V
B,n
0,T − δ − sup

τ∈T B,n
T

J8(σδ, τ ) − sup
τ∈T B,n

T

J9(σδ, τ ),

where, for any σ ∈ T B
0,T and τ ∈ T B,n

T ,

J8(σ, τ ) = EB(
e−rσ (n)∧τ (

RB
z

(
σ (n), τ

) − RB
z (σ, τ )

))
and by (2.3)–(2.4),

J9(σ, τ ) = EB(∣∣e−rσ (n)∧τ − e−rσ∧τ
∣∣RB

z (σ, τ )
)

≤ rL(T + 2)
(
F0(z) + �0(z) + z

)
erT(4.59)

× EB

(
sup

0≤k<∞
∣∣θ(n)

k+1 ∧ T − θ
(n)
k ∧ T

∣∣(1 + sup
0≤t≤T

eκBt

))
.

Since σ (n) ≥ σ , it follows that

RB
z (σ, τ ) = Fσ (SB(z)) + �σ(SB(z))

whenever

RB
z

(
σ (n), τ

) = Fσ(n)(S
B(z)) + �σ(n)(S

B(z)).

Thus, by (2.2) and (2.8), similarly to (4.53) for any σ ∈ T B
0T and τ ∈ T B,n

T ,

RB
z

(
σ (n), τ

) − RB
z (σ, τ )

≤ |Fσ(n)(S
B(z)) − Fσ (SB(z))| + |�σ(n)(S

B(z)) − �σ(SB(z))|
(4.60)

≤ LzerT

(
1 + sup

0≤t≤T

eκBt

)

×
(

sup
0≤k<∞

∣∣θ(n)
k+1 ∧ T − θ

(n)
k ∧ T

∣∣ + H
(n)
6 + 2I

H
(n)
6 >1

)
,

where

H
(n)
6 = sup

0≤k<∞
sup

θ
(n)
k ∧T ≤t≤θ

(n)
k+1∧T

(
r
(
t − θ

(n)
k ∧ T

) + κ
(
B∗

t − B∗
θ

(n)
k ∧T

))
.

It is clear that ∣∣H(n)
6

∣∣ ≤ ∣∣H(n)
3

∣∣ + ∣∣H(n)
5

∣∣(4.61)



BINOMIAL APPROXIMATIONS OF GAME OPTIONS 1021

and by (4.54), for all k ≥ 0,

∣∣θ(n)
k+1 ∧ T − θ

(n)
k ∧ T

∣∣ ≤ max
0≤k≤n−1

∣∣θ(n)
k+1 − θ

(n)
k

∣∣ + ∣∣T − θ(n)
n

∣∣.(4.62)

Hence, we can apply to the right-hand side of (4.60) the estimates of Lemmas
3.3 and 3.5 arriving at a bound of order n−1/4. In order to obtain a better estimate
promised in Lemma 3.6 (though it will not help us to improve the estimate of
Theorem 2.1), we write

∣∣H(n)
6

∣∣ ≤ ∣∣H(n,2n)
3

∣∣ + I
θ

(n)
2n <T

(∣∣H(n)
3

∣∣ + ∣∣H(n)
5

∣∣),(4.63)

with H
(n,l)
3 defined above (4.43). In the same way as in (4.44), we obtain

EB
∣∣H(n,2n)

3

∣∣2m ≤ 2K
(m)
5 n−m+1.(4.64)

Next, by (4.1) and (4.4), similarly to (4.17), (4.18) and (4.39), we obtain the fol-
lowing (large deviations) upper bound:

P B{
θ

(n)
2n < T

} = P B{2nαn − �2n > n(2αn − 1)} ≤ C̃e−ρn(4.65)

for all n ∈ N and some C̃, ρ > 0 independent of n. Estimating EB |T − θ
(n)
n |m

by (4.7), we obtain by (4.9), (4.44), (4.55), (4.63)–(4.65) and the Cauchy–Schwarz
inequality that, for any m ≥ 1, there exists K

(m)
6 > 0 (which can be explicitly esti-

mated from above formulas) such that

EB
∣∣H(n)

6

∣∣2m ≤ K
(m)
6 n−m+1.(4.66)

Since δ in (4.58) is arbitrary, we conclude by (4.7), (4.8), (4.25), (4.55),
(4.58)–(4.60), (4.62) and (4.66) together with the Chebyshev and Hölder inequali-
ties similarly to Lemma 3.3 that, for any ε > 0, there exists C

(6)
ε > 0 such that, for

all n ∈ N,

V (z) − V
B,n
0,T (z) ≥ −C(6)

ε

(
F0(z) + �0(z) + z + 1

)
nε−1/2.(4.67)

By [23], we can represent V (z) not only in the form (2.10), but also as

V (z) = sup
τ∈T B

0T

inf
σ∈T B

0T

EBQB
z (σ, τ )

≤ inf
σ∈T B,n

T

EBQB
z (σ, τδ) + δ

for each δ > 0 and some τδ ∈ T B
0T . Introducing τ

(n)
δ and employing the same argu-

ments as above, we obtain that, for any ε > 0, there exists C
(7)
ε > 0 such that, for
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all n ∈ N,

V (z) − V
B,n
0,T (z) ≤ C(7)

ε

(
F0(z) + �0(z) + z + 1

)
nε−1/2,

which together with (4.67) yields (3.23) and completes the proof of both
Lemma 3.6 and Theorem 2.1. �

5. Exercise times and hedging with small shortfalls. Set

V (n)(z, η) = min
ζ∈T

ξ
0n

Eξ
nQ(n)

z

(
ζT

n
,
ηT

n

)
,

(5.1)

V
(n)

(z, ζ ) = max
η∈T

ξ
0n

Eξ
nQ(n)

z

(
ζT

n
,
ηT

n

)
,

V B,n(z, η) = inf
ζ∈T B,n

0,n

EBQB,n
z

(
ζT

n
,
ηT

n

)
,

(5.2)

V
B,n

(z, ζ ) = sup
η∈T B,n

0,n

EBQB,n
z

(
ζT

n
,
ηT

n

)

and

V
B,n
S (z, η) = min

ζ∈SB,n
0,n

EBQB,n
z

(
ζT

n
,
ηT

n

)
,

(5.3)

V
B,n

S (z, ζ ) = max
η∈SB,n

0,n

EBQB,n
z

(
ζT

n
,
ηT

n

)
.

We define similar quantities V̂
(n)

, V̂
(n)

, V̂
B,n

, V̂
B,n

, V̂
B,n

S , V̂
B,n

S replacing Q
(n)
z by

Q̂
(n)
z and QB,n

z by Q̂B,n
z in the corresponding formulas.

PROOF OF THEOREM 2.2. The starting point in the proof of Theorem 2.2 is
the following result similar to Lemma 3.1.

LEMMA 5.1. For any z,n > 0 and each µ ∈ J0n,

V
B,n
S

(
z,µ ◦ λ

(n)
B

) = V (n)(z,µ ◦ λ
(n)
ξ

) = V B,n(
z,µ ◦ λ

(n)
B

)
(5.4)

and

V
B,n

S

(
z,µ ◦ λ

(n)
B

) = V
(n)(

z,µ ◦ λ
(n)
ξ

) = V
B,n(

z,µ ◦ λ
(n)
B

)
.(5.5)

The corresponding results hold true also for V̂
(n)

, V̂
(n)

, V̂
B,n

, V̂
B,n

, V̂
B,n

S , V̂
B,n

S

in place of V (n),V
(n)

,V B,n,V
B,n

,V
B,n
S ,V

B,n

S , respectively.
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PROOF. The first equality in (5.4) and (5.5) follows in the same way as the
first equality in (3.5), taking into account that

Q(n)
z

(
µ ◦ λ

(n)
ξ , ν ◦ λ

(n)
ξ

)
and QB,n

z

(
µ ◦ λ

(n)
B , ν ◦ λ

(n)
B

)
have the same distribution for all µ,ν ∈ J0n. In order to obtain the second equal-
ity in (5.4) and (5.5), we employ again the well-known dynamical programming
recursive relations for the optimal stopping problem (see, e.g., [26]) which have
here the form

V (n)(z, η) = V
(n)
0,n(z, η), V (n)

n,n(z, η) = Q(n)
z

(
T ,

ηT

n

)
and

(5.6)

V
(n)
k,n(z, η) = min

(
Q(n)

z

(
kT

n
,
ηT

n

)
,Eξ (

V
(n)
k+1,n(z, η)|F ξ

k

))
,

V
(n)

(z, ζ ) = V
(n)

0,n(z, ζ ), V
(n)

n,n(z, ζ ) = Q(n)
z

(
ζT

n
,T

)
and

(5.7)

V
(n)

k,n(z, η) = max
(
Q(n)

z

(
ζT

n
,
kT

n

)
,Eξ (

V
(n)
k+1,n(z, ζ )|F ξ

k

))

for any ζ, η ∈ T
ξ

0n and

V B,n(z, η) = V
B,n
0,n (z, η), V B,n

n,n (z, η) = QB,n
z

(
T ,

ηT

n

)
and

(5.8)

V
B,n
k,n (z, η) = min

(
QB,n

z

(
kT n,

ηT

n

)
,EB(

V
B,n
k+1,n(z, η)|F B

θ
(n)
k

))
,

V
B,n

(z, ζ ) = V
B,n

0,n (z, ζ ), V
B,n

n,n (z, ζ ) = QB,n
z

(
ζT

n
,T

)
and

(5.9)

V
B,n

k,n (z, η) = max
(
QB,n

z

(
ζT

n
,
kT

n

)
,EB(

V
B,n
k+1,n(z, ζ )|F B

θ
(n)
k

))

for any ζ, η ∈ T
ξ

0n.

It is clear from the construction of the stopping times µ ◦ λ
(n)
ξ and µ ◦ λ

(n)
B

for µ ∈ J0n that (µ ◦ λ
(n)
ξ ) ∧ k, I

µ◦λ(n)
ξ ≥k

and (µ ◦ λ
(n)
B ) ∧ k, I

µ◦λ(n)
B ≥k

are mea-

surable with respect to the σ -algebras F
ξ
k and GB,n

k , respectively. Since Fk(S
(n)),

�k(S
(n)) and Fk(S

B), �k(S
B) are also F

ξ
k - and GB,n

k -measurable, respectively, we

conclude that Q
(n)
z ( kT

n
, T

n
µ ◦λ

(n)
ξ ), Q

(n)
z (T

n
µ ◦λ

(n)
ξ , kT

n
) and QB,n

z (kT
n

, T
n
µ ◦λ

(n)
B ),

QB,n
z (T

n
µ ◦ λ

(n)
B , kT

n
) are F

ξ
k - and GB,n

k -measurable, respectively. It follows from
here by the backward induction in the same way as in Lemma 3.1 that there ex-
ist measurable functions �

µ
k (z, x1, . . . , xk), �

µ
0 (z) and �

µ
k (z, x1, . . . , xk), �

µ
0 (z),
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k = 1,2, . . . , n, such that

V
(n)
kn

(
z,µ ◦ λ

(k)
ξ

) = �
µ
k

(
z,

(
T

n

)1/2

ξ1, . . . ,

(
T

n

)1/2

ξk

)
,

(5.10)
V

(n)
0n

(
z,µ ◦ λ

(n)
ξ

) = �
µ
0 (z),

V
(n)

kn

(
z,µ ◦ λ

(k)
ξ

) = �
µ
k

(
z,

(
T

n

)1/2

ξ1, . . . ,

(
T

n

)1/2

ξk

)
(5.11)

V
(n)

0n

(
z,µ ◦ λ

(n)
ξ

) = �
µ
0 (z)

and

V
B,n
kn

(
z,µ ◦ λ

(k)
B

) = �
µ
k

(
z,B∗

θ
(n)
1

,B∗
θ

(n)
2

− B∗
θ

(n)
1

, . . . ,B∗
θ

(n)
k

− B∗
θ

(n)
k−1

)
,

(5.12)
V

B,n
0n

(
z,µ ◦ λ

(n)
B

) = �
µ
0 (z),

V
B,n

kn

(
z,µ ◦ λ

(k)
B

) = �
µ
k

(
z,B∗

θ
(n)
1

,B∗
θ

(n)
2

− B∗
θ

(n)
1

, . . . ,B∗
θ

(n)
k

− B∗
θ

(n)
k−1

)
,

(5.13)
V

B,n

0n

(
z,µ ◦ λ

(n)
B

) = �
µ
0 (z).

Applying these formulas for k = 0, we obtain the second equality in (5.4) and (5.5).

The corresponding results for V̂
(n)

, V̂
(n)

, V̂
B,n

, V̂
B,n

, V̂
B,n

S , V̂
B,n

S are derived in
the same way. �

Define

V
B,n
0,T (z, τ ) = inf

σ∈T B,n
T

EBQB
z (σ, τ ) and

(5.14)
V

B,n

0,T (z, σ ) = sup
τ∈T B,n

T

EBQB
z (σ, τ ).

The proof of Lemma 3.2, together with Lemmas 3.3–3.5, yields that there exists
C(8) > 0 such that, for each µ ∈ J0n and all z,n > 0,∣∣V B,n(

z,µ ◦ λ
(n)
B

) − V
B,n
0,T

(
z, θ

(n)

µ◦λ(n)
B

∧ T
)∣∣

(5.15)
≤ C(8)(F0(z) + �0(z) + z + 1

)
n−1/4(lnn)3/4

and ∣∣V B,n(
z,µ ◦ λ

(n)
B

) − V
B,n

0,T

(
z, θ

(n)

µ◦λ(n)
B

∧ T
)∣∣

(5.16)
≤ C(8)(F0(z) + �0(z) + z + 1

)
n−1/4(lnn)3/4.
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Next, set

V (z, τ ) = inf
σ∈T B

0T

EBQB
z (σ, τ ), V (z, σ ) = sup

τ∈T B
0T

EBQB
z (σ, τ ),(5.17)

and similarly to Lemma 3.6, estimate |V B,n
0,T (z, τ ) − V (z, τ )| and |V B,n

0,T (z, τ ) −
V (z, τ )|, but now it is a bit simpler since we have obvious one-sided inequalities

V
B,n
0,T (z, τ ) ≥ V (z, τ ) and V

B,n

0,T (z, τ ) ≤ V (z, τ ).(5.18)

For any τ ∈ T B,n
T and δ > 0, there exists σδ ∈ T B

0,T such that

V (z, τ ) = EBQB
z (σδ, τ ) − δ,

and so using the notation J8 and J9 from (4.58) together with their estimates, we
see that, for any ε > 0, there exists C

(9)
ε > 0 such that, for any δ > 0 and n ∈ N,

V (z, τ ) = EBQB
z

(
σ

(n)
δ , τ

) − δ − J8(σδ, τ ) − J9(σδ, τ )

≥ V
B,n
0,T (z, τ ) − δ − C(9)

ε nε−1/2.

Since δ is arbitrary and we have already inequality (5.18) in the other direction, it
follows that

|V (z, τ ) − V
B,n
0,T (z, τ )| ≤ C(9)

ε nε−1/2.(5.19)

Similarly, we obtain that

|V (z, τ ) − V
B,n

0,T (z, τ )| ≤ C(9)
ε nε−1/2.(5.20)

Finally, (5.4), (5.5), (5.10)–(5.13), (5.19) and (5.20) together with (2.13)
yield (2.17), provided (2.16) holds true. The proof is similar for λ̂

(n)
ξ , λ̂

(n)
B , Q̂

(n)
z ,

V̂ (n)(z) in place of λ
(n)
ξ , λ

(n)
B , Q

(n)
z , V (n)(z). �

Next, we establish Theorem 2.3.

PROOF OF THEOREM 2.3. Since βk = β
ζ
k and γk = γ

ζ
k in (2.19) are

Fk−1-measurable, they can be written uniquely in the form βk = fk ◦ λ
(l)
ξ and

γk = gk ◦ λ
(l)
ξ for any l = k − 1, k, . . . , n, where fk and gk are considered as

functions on {−1,1}n depending only on first k − 1 variables, that is, in fact, as
functions on {−1,1}k−1.

In order to show that the portfolio ZB
t defined by (2.21) is self-financing, it

suffices to check that the discounted portfolio

ŽB
t = ZB

t b−1
t = β

ϕ
t b0 + γ

ϕ
t ŠB

t , ŠB
t = SB

t e−rt(5.21)
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is self-financing, which means in our case that, with probability one,

(fk+1 − fk) ◦ λ
(k)
B b0 + (gk+1 − gk) ◦ λ

(k)
B ŠB

θ
(n)
k

= 0,(5.22)

where, recall, β
ϕ
t = fk ◦ λ

(k−1)
B = fk ◦ λ

(k)
B and γ

ϕ
t = gk ◦ λ

(k−1)
B = gk ◦ λ

(k)
B when-

ever t ∈ (θ
(n)
k−1, θ

(n)
k ]. But if λ

(k)
B (ω) = λ

(k)
ξ (ω′), then

(fk+1 − fk) ◦ λ
(k)
B (ω)b0 + (gk+1 − gk) ◦ λ

(k)
B (ω)ŠB

θ
(n)
k (ω)

(z,ω)

(5.23)
= (fk+1 − fk) ◦ λ

(k)
ξ (ω′)b0 + (gk+1 − gk) ◦ λ

(k)
ξ (ω′)Š(n)

kT /n(z,ω
′),

where Š
(n)
kT /n(z) = S

(n)
kT /n(z)e

−rkT /n. By (2.19), the right-hand side in (5.23) equals
zero, and so (5.22) follows.

Recall that the sequence B∗
θ

(n)
k

− B∗
θ

(n)
k−1

, k = 1,2, . . . , has the same distribu-

tion as the sequence (T
n
)1/2ξk , k = 1,2, . . . . Since the processes S

B,n
t (z), t ≥ 0,

and S
(n)
t (z), t ≥ 0, defined by (3.1) and (2.5), respectively, are obtained by the same

formulas from these sequences, they have the same distribution as well. Moreover,
if µ ∈ J0n, ζ = µ ◦ λ

(n)
ξ , and ϕ = µ ◦ λ

(n)
B , then the sequences

QB,n
z

(
ϕT

n
,
kT

n

)
− ŽB

θ
(n)
ϕ∧k

, k = 0,1, . . . , n,

and

Q(n)
z

(
ζT

n
,
kT

n

)
− Ž

πζ ,n
ζ∧k , k = 0,1, . . . , n,

are obtained by means of the same functional from the sequences

B∗
θ

(n)
k

− B∗
θ

(n)
k−1

, k = 1,2, . . . , and
(

T

n

)1/2

ξk, k = 1,2, . . . ,

respectively. This together with (2.20) yields that

EB max
0≤k≤n

(
QB,n

z

(
ϕT

n
,
kT

n

)
− ŽB

θ
(n)
ϕ ∧θ

(n)
k

)+
= 0.(5.24)

In order to estimate the left-hand side of (2.22), we observe that(
RB

z

(
θ(n)
ϕ , t

) − ZB

θ
(n)
ϕ ∧t

)+ ≤ erT (
QB

z

(
θ(n)
ϕ , t

) − ŽB

θ
(n)
ϕ ∧t

)+(5.25)

and in view of (5.24),(
QB

z

(
θ(n)
ϕ , t

) − ŽB

θ
(n)
ϕ ∧t

)+ ≤ (
QB

z

(
θ(n)
ϕ , t

) − QB
z

(
θ(n)
ϕ , θ(n)

νt

))+

+
(
QB

z

(
θ(n)
ϕ , θ(n)

νt

) − QB,n
z

(
ϕT

n
,
νtT

n

))+
(5.26)

+ (
ŽB

θ
(n)
ϕ ∧θ

(n)
νt

− ŽB

θ
(n)
ϕ ∧t

)+
IAt ,
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where we introduce the event At = {QB
z (θ

(n)
ϕ , t) ≥ ŽB

θ
(n)
ϕ ∧t

} and, again, νt =
min{k ∈ N : θ(n)

k ≥ t}. Note that since ϕ ≤ n,

QB
z

(
θ(n)
ϕ , θ(n)

νt

) = QB
z

(
θ(n)
ϕ , θ

(n)
νt∧n

)
,

(5.27)

QB,n
z

(
ϕT

n
,
νtT

n

)
= QB,n

z

(
ϕT

n
, (νt ∧ n)

T

n

)

and

QB
z

(
θ(n)
ϕ ∧ T , θ(n)

νt
∧ T

) = QB
z

(
θ(n)
ϕ ∧ T , θ

(n)
νt∧n ∧ T

)
.(5.28)

Taking into account (5.27) and (5.28), we obtain by the same estimates as in
Lemma 3.4 that there exists C(10) > 0 such that, for all z,n > 0,

EB sup
0≤t≤T

∣∣QB
z

(
θ(n)
ϕ , t

) − QB
z

(
θ(n)
ϕ ∧ T , t

)∣∣
(5.29)

≤ C(10)(F0(z) + �0(z) + z + 1
)
n−1/4

and

EB sup
0≤t≤T

∣∣QB
z

(
θ(n)
ϕ , θ

(n)
νt∧n

) − QB
z

(
θ(n)
ϕ ∧ T , θ

(n)
νt∧n ∧ T

)∣∣
(5.30)

≤ C(10)(F0(z) + �0(z) + z + 1
)
n−1/4.

Similarly to the estimates in the proof of Lemma 3.6, we obtain that, for any ε > 0,
there exists C

(11)
ε > 0 such that, for all z,n > 0,

EB sup
0≤t≤T

(
QB

z

(
θ(n)
ϕ ∧ T , t

) − QB
z

(
θ(n)
ϕ ∧ T , θ(n)

νt
∧ T

))+

≤ EB sup
0≤t≤T

(∣∣e−θ
(n)
ϕ ∧t − e−θ

(n)
ϕ∧νt

∧T
∣∣Ft(S

B(z))
)

(5.31)
+ EB sup

0≤t≤T

∣∣Ft(S
B(z)) − F

θ
(n)
νt ∧T

(SB(z))
∣∣

≤ C(11)
ε nε−1/2.

Taking into account (5.27), we obtain by estimates of Lemmas 3.2 and 3.5 that
there exists C(12) > 0 such that, for all z,n > 0,

EB sup
0≤t≤T

(
QB

z

(
θ(n)
ϕ , θ(n)

νt

) − QB,n
z

(
ϕT

n
,
νtT

n

))+

(5.32)
≤ C(12)(F0(z) + �0(z) + z + 1

)
n−1/4(lnn)3/4.



1028 Y. KIFER

By the definition, β
ϕ
s = β

ϕ

θ
(n)
νs

and γ
ϕ
s = γ

ϕ

θ
(n)
νs

, and so

(
ŽB

θ
(n)
ϕ ∧θ

(n)
νt

− ŽB

θ
(n)
ϕ ∧t

)+
IAt

≤ γ
ϕ

θ
(n)
ϕ ∧t

(
ŠB

θ
(n)
ϕ ∧θ

(n)
νt

(z) − ŠB

θ
(n)
ϕ ∧t

(z)
)+

≤ γ
ϕ

θ
(n)
ϕ ∧t

ŠB

θ
(n)
ϕ ∧t

(z)IAt

(
exp

(
κ
(
B∗

θ
(n)
ϕ ∧θ

(n)
νt

− B∗
θ

(n)
ϕ ∧t

)) − 1
)+(5.33)

≤ QB
z

(
θ(n)
ϕ , t

)
×

(
H

(n)
3 + I

H
(n)
3 >1

(
1 + erθ

(n)
n sup

0≤s≤θ
(n)
n

eκBs sup
0≤s≤T

e−κBs

))
,

with H
(n)
3 defined before (4.43). Since, by (2.3) and (2.4),

sup
0≤t≤T

QB
z

(
θ(n)
ϕ , t

) ≤ F0(z) + �0(z) + L(T + 2)

(
1 + zerT sup

0≤t≤T

eκBs

)
,

we derive from (4.8), (4.44), (4.45), (5.33) and the Hölder inequality that, for any
ε > 0, there exists C

(13)
ε > 0 such that, for all z,n > 0,

EB sup
0≤t≤T

(
ŽB

θ
(n)
ϕ ∧θ

(n)
νt

− ŽB

θ
(n)
ϕ ∧t

)+
IAt

(5.34)
≤ C(13)

ε

(
F0(z) + �0(z) + z + 1

)
nε−1/2,

which together with (5.25), (5.26) and (5.29)–(5.32) yields (2.22), completing the
proof of Theorem 2.3. �

6. Estimates á la Lamberton and Rogers. In this section we derive a game
option version of the approximation error estimates from [24] whose bounded-
ness and smoothness assumptions do not permit to employ them even for stan-
dard options, but this explicit and simple method still has certain theoretical
and pedagogical value. Let ξ1, ξ2, . . . be i.i.d. random variables on a probability
space (�ξ ,P ξ ) with Eξξ1 = 0, Eξξ2

1 = 1 and Eξξ4
1 < ∞. The latter ensures

that if � is the Skorokhod embedding time of ξ1 into the Brownian motion Bt

(i.e., a stopping time such that ξ1 and B� have the same distribution), then
Var� = E(� − 1)2 < ∞ (see [4] or [24]). We will use the same notation as in
Section 2 for �

(n)
k given by (2.17) and for the corresponding sets of stopping times

T B
0T and T

ξ
0n with respect to the Brownian filtration F B

t with values in [0, T ] and

with respect to the filtration F
ξ
k generated by ξ1, ξ2, . . . with values in {1, . . . , n},

respectively. Let g ≥ f be continuous bounded functions on [0, T ] × R and

R(s, t, x) = g(s, x)Is<t + f (t, x)It≤s .
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Set

V = inf
σ∈T B

0,T

sup
τ∈T B

0,T

EBR(σ, τ,Bσ∧τ ),(6.1)

where, recall, Bt, t ≥ 0,B0 = 0 is the standard one-dimensional continuous in time
Brownian motion, and

V (n) = inf
ζ∈T

ξ
0,n

sup
η∈T

ξ
0,n

EξR

(
ζT

n
,
ηT

n
,�

(n)
ζ∧η

)
.(6.2)

THEOREM 6.1. Let f,g : R+ × R → R be bounded, continuous and having

bounded and continuous derivatives ∂f
∂t

, ∂g
∂t

, ∂2f

∂x2 and ∂2g

∂x2 functions. Let

Lh = ∂h

∂t
+ 1

2

∂2h

∂x2

and ρ = √
Var�. Then

∣∣V − V (n)
∣∣ ≤ ρT√

n

(
3‖Lf ‖∞ + 3‖Lg‖∞ +

∥∥∥∥∂f

∂t

∥∥∥∥∞
+

∥∥∥∥∂g

∂t

∥∥∥∥∞

)
(6.3)

+ T

n
(‖Lf ‖∞ + ‖Lg‖∞),

where ‖ · ‖∞ is the supremum norm on the whole R
+ × R.

PROOF. As in Section 2, we employ the Skorokhod embedding (see, e.g., [4])
which yields the existence of a nondecreasing sequence of stopping times θ

(n)
k ,

k = 1,2, . . . , θ
(n)
0 = 0 for the Brownian motion Bt with its Brownian filtration F B

t ,

t ≥ 0, such that (θ
(n)
k+1 − θ

(n)
k ,B

θ
(n)
k+1

− B
θ

(n)
k

) is independent of F B

θ
(n)
k

and it has the

same distribution as (�
n
T ,B�

√
T
n

). Let T B,n be the set of integer valued stopping

times with respect to the filtration {F B

θ
(n)
k

}k∈N and the subset of these stopping times

with values in {0,1, . . . , n} we denote by T B,n
0,n . We claim that

V (n) = V B,n = inf
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

EBR

(
ζT

n
,
ηT

n
,B

θ
(n)
ζ ∧θ

(n)
η

)
.(6.4)

Indeed, this result can be proved similarly to Lemma 3.1 employing the cor-
responding dynamical programming recursive formulas. Namely, we can write
V (n) = V

(n)
0,n , V

(n)
n,n = f (T ,�

(n)
n ) and for k = 0,1, . . . , n − 1,

V
(n)
k,n = min

(
g

(
kT

n
,�

(n)
k

)
,max

(
f

(
kT

n
,�

(n)
k

)
,Eξ (

V
(n)
k+1,n|F ξ

k

)))
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and, on the other hand, V B,n = V
B,n
0,n , V B,n

n,n = f (T ,BT ) and for k = 0,1, . . . ,

n − 1,

V
B,n
k,n = min

(
g

(
kT

n
,B

θ
(n)
k

)
,max

(
f

(
kT

n
,B

θ
(n)
k

)
,EB(

V
B,n
k+1,n|F B

θ
(n)
k

)))
.

In the same way as in Lemma 3.1, we show by the backward induction that there
exist a sequence Qk(x1, . . . , xk), k = 1, . . . , n, of measurable functions and a con-
stant Q0 such that V

(n)
0,n = Q0, V B,n

0,n = Q0 and V
(n)
k,n = Qk((

T
n
)1/2ξ1, . . . ,(

T
n
)1/2ξk),

V
B,n
kn = Qk(Bθ

(n)
1

,B
θ

(n)
2

− B
θ

(n)
1

, . . . ,B
θ

(n)
k

− B
θ

(n)
k−1

) for k = 1, . . . , n, and so (6.4)

follows.
Next, set

V B,θ,n = inf
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

EBR
(
θ

(n)
ζ , θ (n)

η ,B
θ

(n)
ζ ∧θ

(n)
η

)
.(6.5)

Then

|V B,n − V B,θ,n|
≤ sup

ζ∈T B,n
0,n

sup
η∈T B,n

0,n

EB

∣∣∣∣R(
θ

(n)
ζ , θ (n)

η ,B
θ

(n)
ζ ∧θ

(n)
η

)
(6.6)

− R

(
ζT

n
,
ηT

n
,B

θ
(n)
ζ ∧θ

(n)
η

)∣∣∣∣
≤

(∥∥∥∥∂f

∂t

∥∥∥∥∞
+

∥∥∥∥∂g

∂t

∥∥∥∥∞

)
sup

ζ∈T B,n
0,n

EB

∣∣∣∣θ(n)
ζ − ζT

n

∣∣∣∣.

Since θ
(n)
k − kT

n
, k = 0,1, . . . , n, is a martingale with respect to the filtration F B

θ
(n)
k

,

k ≥ 0, the sequence |θ(n)
k − kT

n
|, k = 0,1, . . . , n, is a submartingale which together

with the Cauchy–Schwarz inequality yields

sup
ζ∈T B,n

0,n

EB

∣∣∣∣θ(n)
ζ − ζT

n

∣∣∣∣ ≤ EB
∣∣θ(n)

n − T
∣∣

(6.7)

≤ (
EB(

θ(n)
n − T

)2)1/2 = ρT√
n
.

Next, let T B,n
T = {θ(n)

ζ ∧ T : ζ ∈ T B,n
0,n } and set

V
B,n
0,T = inf

σ∈T B,n
T

sup
τ∈T B,n

T

EB(
e−rσ∧τR(σ, τ )

)
.(6.8)
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By the Itô formula (see [11]), we arrive at the Dynkin formula, which gives

|V B,θ,n − V
B,n
0,T |

≤ sup
ζ∈T B,n

0,n

sup
η∈T B,n

0,n

∣∣∣∣EB

(
R

(
θ

(n)
ζ , θ (n)

η ,B
θ

(n)
ζ ∧θ

(n)
η

)

− R
(
θ

(n)
ζ ∧ T , θ(n)

η ∧ T ,B
θ

(n)
ζ ∧θ

(n)
η ∧T

))∣∣∣∣
(6.9)

≤ sup
ζ∈T B,n

0,n

(∣∣∣∣EB
∫ θ

(n)
ζ

θ
(n)
ζ ∧T

Lf (s,Bs) ds

∣∣∣∣ +
∣∣∣∣EB

∫ θ
(n)
ζ

θ
(n)
ζ ∧T

Lg(s,Bs) ds

∣∣∣∣
)

≤ (‖Lf ‖∞ + ‖Lg‖∞)EB
∣∣θ(n)

n − T
∣∣

≤ ρ

√
T

n
(‖Lf ‖∞ + ‖Lg‖∞).

In order to obtain (6.3), it remains to show that

|V − V
B,n
0,T | ≤

(
T

n
+ 2

ρT√
n

)
(‖Lf ‖∞ + ‖Lg‖∞).(6.10)

As in the proof of Lemma 3.6 in Section 4, for each σ ∈ T B
0,T , define νσ = min{k ∈

N : θ(n)
k ≥ σ } and σ (n) = θ

(n)
νσ ∧ T . Similarly to (4.58), we conclude that, for any

δ > 0, there exists σδ ∈ T B
0,T such that

V ≥ V
B,n
0,T − δ − sup

τ∈T B,n
T

EB(
R

(
σ

(n)
δ , τ,B

σ
(n)
δ ∧τ

) − R
(
σδ, τ,Bσδ∧τ

))

≥ V
B,n
0,T − δ − sup

σ∈T B
0,T

∣∣EB(
g
(
σ (n),Bσ(n)

) − g(σ,Bσ )
)∣∣

(6.11)
− sup

τ∈T B
0,T

∣∣EB(
f

(
τ (n),Bτ(n)

) − g(τ,Bτ )
)∣∣

≥ V
B,n
0,T − δ − (‖Lf ‖∞ + ‖Lg‖∞) sup

σ∈T B
0,T

EB
∣∣σ (n) − σ

∣∣,
where we used also the Itô formula and took into account in the same way as
in (4.60) that σ (n) ≥ σ . By (4.62), for any σ ∈ T B

0,T ,∣∣σ (n) − σ
∣∣ ≤ max

0≤k≤n−1

∣∣θ(n)
k+1 − θ

(n)
k

∣∣ + ∣∣T − θ(n)
n

∣∣,
and so employing the estimate

E max
0≤k≤n−1

Zk ≤ EZ0 + √
nVarZ0
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from Lemma 3.5 of [24] to the i.i.d. random variables Zk = θ
(n)
k+1 − θ

(n)
k , we obtain

from (4.1) and (6.7) that

EB
∣∣σ (n) − σ

∣∣ ≤ T

n
+ 2

Tρ√
n
.(6.12)

Taking into account that δ in (6.11) can be taken arbitrarily small, we obtain from
(6.11) and (6.12) that

V − V
B,n
0,T ≥ −

(
T

n
+ 2

Tρ√
n

)
(‖Lf ‖∞ + ‖Lg‖∞).(6.13)

By [23], we can write also that

V = sup
τ∈T B

0,T

inf
σ∈T B

0,T

EBR(σ, τ,Bσ∧τ )

≤ V
B,n
0,T + δ + sup

σ∈T B,n
T

(
R

(
σ, τδ,Bσ∧τδ

) − R
(
σ, τ

(n)
δ ,B

σ∧τ
(n)
δ

))

and similarly to the above, we obtain that

V − V
B,n
0,T ≤

(
T

n
+ 2

Tρ√
n

)
(‖Lf ‖∞ + ‖Lg‖∞),

which together with (6.13) gives (6.10) and completes the proof of Theorem 6.1.
�
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