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LEARNING NONSINGULAR PHYLOGENIES AND HIDDEN
MARKOV MODELS

BY ELCHANAN MOSSEL1 AND SÉBASTIEN ROCH2

University of California, Berkeley

In this paper we study the problem of learning phylogenies and hidden
Markov models. We call a Markov model nonsingular if all transition matri-
ces have determinants bounded away from 0 (and 1). We highlight the role
of the nonsingularity condition for the learning problem. Learning hidden
Markov models without the nonsingularity condition is at least as hard as
learning parity with noise, a well-known learning problem conjectured to be
computationally hard. On the other hand, we give a polynomial-time algo-
rithm for learning nonsingular phylogenies and hidden Markov models.

1. Introduction. In this paper we consider the problem of learning phyloge-
nies and hidden Markov models, two of the most popular Markov models used in
applications.

Phylogenies are used in evolutionary biology to model the stochastic evolution
of genetic data on the ancestral tree relating a group of species. More precisely, the
leaves of the tree correspond to (known) extant species. Internal nodes represent
extinct species, while the root of the tree represents the most recent ancestor to all
species in the tree. Following paths from the root to the leaves, each bifurcation
indicates a speciation event whereby two new species are created from a parent.

The underlying assumption is that genetic information evolves from the root to
the leaves according to a Markov model on the tree. This genetic information may
consist of DNA sequences, proteins, and so on. Suppose, for example, that the
genetic data consists of (aligned) DNA sequences and consider the evolution of
the first letter in all sequences. This collection, named the first character, evolves
according to Markov transition matrices on the edges. The root is assigned one of
the four letters A,C,G and T . Then this letter evolves from parents to descendants
according to the Markov matrices on the edges connecting them.

The map from each node of the tree to the ith letter of the corresponding se-
quence is called the ith character. It is further assumed that the characters are i.i.d.
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random variables. In other words, each site in a DNA sequence is assumed to mu-
tate independently from its neighbors according to the same mutation mechanism.
Naturally, this is an over-simplification of the underlying biology. Nonetheless,
the model above may be a good model for the evolution of some DNA subse-
quences and is the most popular evolution model in molecular biology, see, for
example, [12].

One of the major tasks in molecular biology, the reconstruction of phylogenetic
trees, is to infer the topology of the (unknown) tree from the characters (sequences)
at the leaves (extant species). Often one is also interested in inferring the Markov
matrices on the edges. In this paper we pay special attention to computational is-
sues arising from the problem of inferring the complete Markov model. We seek to
design efficient reconstruction algorithms or provide evidence that such algorithms
do not exist. Here, efficiency means both that the length of the sequences used
is polynomial in the number of leaves—that is, information-theoretic efficiency—
and that the number of elementary steps performed by the reconstruction algorithm
is polynomial in the number of leaves—that is, complexity-theoretic efficiency.
The main technique for proving that a computational problem does not admit an
efficient algorithm is to show that a well-known hard problem is a special case
of this new problem. This is called a reduction, the most common of which is an
NP-hardness reduction [16]. Let n be the number of leaves; then the fact that a
sequence of length �(nc), with c > 0, is needed is established in [25].

In the systematics and statistics literature, three main approaches have been
studied in depth for the reconstruction problem: parsimony, maximum likelihood
and distance-based methods (see, e.g., [12, 30] for a detailed review and a thor-
ough bibliography). Parsimony is known to be inconsistent [15] (it may con-
verge to the wrong tree even if the number of characters tends to infinity) and
NP-hard [18]. Maximum likelihood is also NP-hard [6, 29], but it is consistent [5].
As for distance-based methods, they can be consistent and, furthermore, run in
polynomial time [10] (under some assumptions, see below). However, these meth-
ods have not gained popularity in biology yet (see [28]).

Much work has been devoted to the reconstruction of phylogenies in the learn-
ing setting [2, 7, 13]. In particular, in [7] a polynomial-time algorithm is obtained
for Markov models on 2-state spaces in complete generality (in particular, there
are no assumptions of regularity of the Markov transition matrices). Note that the
authors of [7] also conjecture that their technique extends to the general k-state
model, but then restrict themselves to k = 2.

One may roughly summarize the different approaches to phylogenetic recon-
struction as follows:

• In biology the interest is usually in reconstructing the tree topology, as well
as the full Markov model. However, most work in biology deals with special
reconstruction methods and there are no results on efficient reconstruction.

• Work in combinatorial phylogeny focuses on efficient reconstruction of the tree
topology. Here the Markov mutation model on the tree is not reconstructed.
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• Work in learning theory shows that tree topologies and Markov models can be
efficiently reconstructed when the number of character states is 2. In this pa-
per we discuss the problem of recovering trees and Markov models when the
number of character states is more than 2.

The framework of Markov models on trees has several special cases that are of
independent interest. The case of mixtures of product distributions is discussed
in [14]. Arguably, the most interesting special case is that of learning hidden
Markov models (HMMs). HMMs play a crucial role in many areas from speech
recognition to biology; see, for example, [8, 27]. It is easy to encode an HMM as a
Markov model on a caterpillar tree. See Figure 1, where the states on the top line
correspond to the hidden states and the states at the bottom correspond to observed
states. The arrows going downward correspond to functions applied to the hidden
states.

In [1] it is shown that finding the “optimal” HMM for an arbitrary distribution is
hard unless RP = NP (it is widely believed that RP �= NP ). See also [24] where
hardness of approximation results are obtained for problems such as comparing
two hidden Markov models. Most relevant to our setting is the conjecture made
in [22] that learning parity with noise is computationally hard. It is easy to see that
the problem of learning parity with noise may be encoded as learning an HMM
over 4 states. See Section 1.3.

There is an interesting discrepancy between the two viewpoints taken in works
concerning learning phylogenies and works concerning learning hidden Markov
models. The results in phylogeny are mostly positive—they give polynomial-time
algorithms for learning. On the other hand, the results concerning HMMs are
mostly negative.

This paper tries to resolve the discrepancy between the two points of view by
pointing to the source of hardness in the learning problem. Roughly speaking, it
seems like the source of hardness for learning phylogenies and hidden Markov
models are transition matrices P such that detP is 0 (or close to 0) but rankP > 1
(or P is far from a rank 1 matrix). Note that, in the case k = 2, there are no matrices
whose determinant is 0 and whose rank is more than 1. Indeed, in this case, the
problem is not hard [7]. We note, furthermore, that in the problem of learning
parity with noise all of the determinants are 0 and all the ranks are greater than 1.

The main technical contribution of this paper is to show that the learning prob-
lem is feasible once all the matrices have β < |detP | < 1 − 1/poly(n) for some
β > 0. We thus present a proper PAC learning algorithm for this case. In the case
of hidden Markov models we prove that the model can be learned under the weaker
condition that 1/poly(n) < |detP | ≤ 1. Assuming that learning parity with noise
is indeed hard, this is an optimal result. See Section 1.3.

The learning algorithms we present are based on a combination of techniques
from phylogeny, statistics, combinatorics and probability. We believe that these
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algorithms may also be extended to cases where |detP | is close to 1 and, further-
more, to cases where if |detP | is small, then the matrix P is close to a rank 1
matrix, thus, recovering the results of [7].

Interestingly, to prove our result, we use and extend several previous results
from combinatorial phylogeny and statistics. The topology of the tree is learned
via variants of combinatorial results proved in phylogeny [10]. Thus, the main
technical challenge is to learn the mutation matrices along the edges. For this,
we follow and extend the approach developed in statistics by Chang [5]. Chang’s
results allow the recovery of the mutation matrices from an infinite number of
samples. The reconstruction of the mutation matrices from a polynomial number
of samples requires a delicate error analysis along with various combinatorial and
algorithmic ideas.

The algorithm is sketched in Section 2 and the error analysis is detailed in Sec-
tion 3.

1.1. Definitions and results. We let T3(n) denote the set of all trees on n la-
beled leaves where all internal degrees are exactly 3. Note that if T = (V,E) ∈
T3(n), then |V| = 2n − 2. We will sometimes omit n from the notation. Below
we will always assume that the leaf set is labeled by the set [n] = {1, . . . , n}. We
also denote the leaf set by L. Two trees T1,T2 are considered identical if there is a
graph isomorphism between them that is the identity map on the set of leaves [n].
We define a caterpillar to be a tree on n leaves with the following property: the
subtree induced by the internal nodes is a path (and all internal vertices have de-
gree at least 3). See Figure 1 for an example. We let TC3(n) denote the set of all
caterpillars on n labeled leaves.

In a Markov model T on a (undirected) tree T = (V,E) rooted at r , each ver-
tex iteratively chooses its state given the one of its parent by an application of a
Markov transition rule. Consider the orientation of E where all edges are directed
away from the root. We note this set of directed edges Er . Then the probability
distribution on the tree is the probability distribution on CV given by

πT (s) = πT
r (s(r))

∏
(u,v)∈Er

P uv
s(u)s(v),(1)

where s ∈ CV , C is a finite state space, P uv is the transition matrix for edge
(u, v) ∈ Er and πT

r is the distribution at the root. We let k = |C|. We write πT
W

for the marginals of πT on the set W . Since the set of leaves is labeled by [n],
the marginal πT[n] is the marginal on the set of leaves. We will often remove the
superscript T . Furthermore, for two vertices u, v ∈ V , we let P uv

ij = P[s(v) = j |
s(u) = i]. We will be mostly interested in nonsingular Markov models.

DEFINITION 1. We say that a Markov model on a tree T = (V,E) is nonsin-
gular [(β,β ′, σ )-nonsingular] if we have the following:
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I. For all e ∈ Er , it holds that 1 > |detP e| > 0 [1 − β ′ ≥ |detP e| > β] and
II. For all v ∈ V , it holds that πv(i) > 0 [πv(i) > σ ] for all i in C.

It is well known [31] that if the model is nonsingular, then, for each w ∈ V , one
can write

πT (s) = πT
w (s(w))

∏
(u,v)∈Ew

P uv
s(u)s(v),(2)

where now all edges (u, v) are oriented away from w. In other words, the tree
may be rooted arbitrarily. Indeed, in the learning algorithms discussed below, we
will root the tree arbitrarily. We will actually refer to E as the set of directed edges
formed by taking the two orientations of all (undirected) edges in the tree. It is easy
to show that (β,β ′, σ )-nonsingularity as stated above also implies that property I
holds for all (u, v) ∈ E with appropriate values of β,σ .

Transition matrices P satisfying |detP | = 1 are permutation matrices. While
edges equipped with such matrices preserve information, it is impossible to deduce
the existence of such edges from the phylogenetic data. For example, if all edges
satisfy that P is the identity matrix, then the characters are always constant for all
possible trees.

Note, moreover, that if |detP uv| > 0 for all edges (u, v) and for all v ∈ V , the
distribution of s(v) is supported on at most |C|−1 elements, then one can redefine
the model by allowing only |C| − 1 values of s(v) at each node and deleting the
corresponding rows and columns from the transition matrices P e. (Note that the
labels of the character states at internal nodes are in fact determined only up to
a permutation and similarly for the mutation matrices. This will be explained in
more detail below.) Thus, condition II is very natural given condition I.

We call a Markov model as in (1) a phylogenetic tree. Given collections Mn of
mutation matrices P and collections T(n) of trees on n leaves, we let T(n) ⊗ Mn

denote all phylogenetic trees of the form (1), where T ∈ T(n) and P e ∈ Mn for
all e. Given numbers 0 ≤ σn < 1, we write (T(n)⊗ Mn, σn) for all the elements of
T3(n) ⊗ Mn satisfying πv(i) > σn for all i ∈ C and v ∈ V . We will be particularly
interested in the collections of all binary trees on n leaves denoted T3(n) and in the
collections of all caterpillars on n leaves denoted TC3(n). Our goal is to provide
efficient algorithms to infer the models T3(n) ⊗ Mn and TC3(n) ⊗ Mn, given
independent samples of the characters at the leaves. However, given any finite
amount of data, one cannot hope to estimate exactly with probability 1 the tree
and the transition matrices. Moreover, some degrees of freedom, such as the labels
of the characters at the internal nodes, cannot be recovered even from the exact
distribution at the leaves.

Since the model cannot be recovered exactly, an alternative approach is needed.
The standard approach in computational learning theory is to use the PAC learning
framework introduced by [32], here in its variant proposed by [22]. PAC learning
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has been studied extensively in the learning theory literature. For background and
references, see [23].

Let ε > 0 denote an approximation parameter, δ > 0, a confidence parame-
ter, (Mn), collections of matrices, (T(n)), collections of trees, and (σn), a sequence
of positive numbers. Then we say that an algorithm A PAC-learns (T(n)⊗Mn, σn)

if for all n and all T ∈ (T(n)⊗Mn, σn), given access to independent samples from
the measure πT[n], A outputs a phylogenetic tree T ′ such that the total variation

distance between πT[n] and πT ′
[n] is smaller than ε with probability at least 1 − δ and

the running time of A is poly(n,1/δ,1/ε).
In our main result we prove the following.

THEOREM 1. For every constant β,κβ, κπ > 0 and every finite set C, the
collection of (β,n−κβ , n−κπ )-nonsingular Markov phylogenetic models is PAC-
learnable. More formally, let C be a finite set, β,κβ, κπ > 0. Let Mn denote the
collection of all |C| × |C| transition matrices P , where 1 − n−κβ > |detP | > β .
Then there exists a PAC-learning algorithm for (T3(n) ⊗ Mn, n

−κπ ) whose run-
ning time is poly(n, |C|,1/ε,1/δ).

Furthermore, if the learning problem has an additional input which is the
true tree topology, then the assumption on determinants in Mn can be relaxed to
1 ≥ |detP | > β .

For hidden Markov models, we can prove more.

THEOREM 2. Let φd, κπ > 0 be constants. Let C be a finite set and Mn denote
the collection of |C| × |C| transition matrices P , where 1 ≥ |detP | > n−φd . Then
there exists a PAC-learning algorithm for (TC3(n)⊗Mn, n

−κπ ). The running time
and sample complexity of the algorithm is poly(n, |C|,1/ε,1/δ).

In many applications of HMMs, the state spaces at different vertices are of dif-
ferent sizes and, therefore, many of the Markov matrices have 0 determinant. The-
orem 2 is not applicable in these cases. Indeed, then, the negative result presented
in Section 1.3 may be more relevant.

1.2. Inferring the topology. We let the topology of T denote the underlying
tree T = (V,E). The task at hand can be divided into two natural subproblems.
First, the topology of T needs to be recovered with high probability. Second, the
transition matrices have to be estimated. Reconstructing the topology has been a
major task in phylogeny. It follows from [10, 11] that the topology can be recov-
ered with high probability using a polynomial number of samples. Here is one
formulation from [26].

THEOREM 3. Let β > 0, κβ > 0 and suppose that Mn consists of all matrices
P satisfying β < |detP | < 1−n−κβ . For all κT > 2, the topology of T ∈ (T3(n)⊗
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Mn, n
−κπ ) can be recovered in polynomial time using nO(1/β+κβ+κT +κπ ) samples

with probability at least 1 − n2−κT .

We will also need a stronger result that applies only to hidden Markov models.
The proof, which is sketched in the Appendix, is quite similar to the proofs in [10,
11].

THEOREM 4. Let ζ > 0, κπ > 0 and suppose that Mn consists of all ma-
trices P satisfying n−ζ < |detP | ≤ 1. Then for all θ > 0, τ > 0, and all
T ∈ (TC3(n) ⊗ Mn, n

−κπ ), one can recover from nO(ζ+θ+τ+κπ ) samples a tree-
topology T ′ with probability 1−n−θ , where the topology T ′ satisfies the following.
It is obtained from the true topology T by contracting some of the internal edges
whose corresponding mutation matrices P satisfy |detP | > 1 −n−τ . Note that T ′
may have some of its internal degrees greater than 3.

1.3. Hardness of learning singular models. We now briefly explain why
hardness of learning “parity with noise” implies that learning singular hidden
Markov models is hard. We first define the parity-learning problem, which has
been extensively studied in the computational learning theory. See, in particular,
[3, 4, 19, 21].

DEFINITION 2 (Learning parity with noise). Let x = (x1, . . . , xn) be a vector
in {0,1}n, T a subset of {1, . . . , n} and 0 < α < 1/2. The parity of x on T is the
Boolean function, denoted φT (x) = ⊕

i∈T xi , which outputs 0 if the number of
ones in the subvector (xi)i∈T is even and 0 otherwise. A uniform query oracle for
this problem is a randomized algorithm that returns a random uniform vector x, as
well as a noisy classification f (x) which is equal to φT (x) with probability α > 0
and 1 − φT (x) otherwise. All examples returned by the oracle are independent.
The learning parity with noise problem consists in designing an algorithm with
access to the oracle such that, for all ε, δ > 0, the algorithm returns a function
h : {0,1}n → {0,1} satisfying Px[h(x) = φT (x)] ≥ 1 − ε (where x is uniform over
{0,1}n) with probability at least 1 − δ in time polynomial in n,1/ε,1/δ.

Kearns’ work [21] on the statistical query model leads to the following conjec-
ture.

CONJECTURE 1 (Noisy parity assumption [21]). There is an α with 0 <

α < 1/2 such that there is no efficient algorithm for learning parity under uniform
distribution in the PAC framework with classification noise α.

In [22], this is used to show that learning probabilistic finite automata with an
evaluator is hard. It is easy to see that the same construction works with the prob-
abilistic finite automata replaced by an equivalent hidden Markov model (HMM)
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FIG. 1. Hidden Markov model for noisy parity. The model computes N ⊕ ⊕
i∈T xi , where the

xi ’s are uniform over {0,1}, T is a subset of {1, . . . , n}, and N is a small random noise. The
Si = ⊕

j∈T ,j≤i xj are the partial sums over variables included in T . The observed nodes are in light
gray. The hardness proof follows from a standard reduction technique similar to that used in [22].

with 4 states (this is a special case of our evolutionary tree model when the tree is
a caterpillar). The proof, which is briefly sketched in Figure 1, is left to the reader.
We remark that all matrices in the construction have determinant 0 and rank 2.
Note, moreover, that, by a standard coupling argument, it follows that if for all
edges (u, v) we replace the matrix P uv by the matrix (1 − n−τ )P uv + n−τ I , then
the model given in Figure 1 and its variant induces undistinguishable distributions
on K samples if K ≤ o(nτ−1). This shows that, assuming that learning parity with
noise is hard, Theorem 2 is tight up to the constant in the power of n.

2. Overview of the algorithm.

2.1. Chang’s spectral technique. One of the main ingredients of the algorithm
is the following important result due to Chang [5] that we rederive here for com-
pleteness. Let T be a 4-node (star) tree with a root r and 3 leaves a, b, c. (See
Figure 2.) Let P uv be the transition matrix between vertices u and v, that is,
P uv

ij = P[s(v) = j |s(u) = i] for all i, j ∈ C. Fix γ ∈ C. Then by the Markov prop-

FIG. 2. Star tree with three leaves.
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erty, for all i, j ∈ C,

P[s(c) = γ, s(b) = j |s(a) = i] = ∑
h∈C

P ar
ih P rc

hγ P rb
hj ,

or, in matrix form, P ab,γ = P ar diag(P rc·γ )P rb, where the matrix P ab,γ is defined
by

P
ab,γ
ij = P[s(c) = γ, s(b) = j |s(a) = i],

for all i, j ∈ C. Then, noting that (P ab)−1 = (P rb)−1(P ar)−1, we have

P ab,γ (P ab)−1 = P ar diag(P rc·γ )(P ar)−1,(�)

assuming the transition matrices are invertible. Equation (�) is an eigenvalue de-
composition where the l.h.s. involves only the distribution at the leaves. There-
fore, given the distribution at the leaves, we can recover from (�) the columns
of P ar (up to scaling), provided the eigenvalues are distinct. Note that the above
reasoning applies when the edges (r, a), (r, b), (r, c) are replaced by paths. There-
fore, loosely speaking, in order to recover an edge (w,w′), one can use (�) on
star subtrees with w and w′ as roots to obtain P aw and P aw′

, and then compute
P ww′ = (P aw)−1P aw′

. In [5], under further assumptions on the structure of the
transition matrices, the above scheme is used to prove the identifiability of the full
model, that is, that the output distributions on triples of leaves uniquely determine
the transition matrices. In this paper we show that the transition matrices can actu-
ally be approximately recovered using (�) with a polynomial number of samples.

There are many challenges in extending Chang’s identifiability result to our ef-
ficient reconstruction claim. First, as noted above, equation (�) uncovers only the
columns of P ar . The leaves actually give no information on the labelings of the
internal nodes. To resolve this issue, Chang assumes that the transition matrices
come in a canonical form that allows to reconstruct them once the columns are
known. For instance, if in each row, the largest entry is always the diagonal one,
this can obviously be performed. This assumption is a strong and unnatural re-
striction on the model we wish to learn and, therefore, we seek to avoid it. The
point is that relabeling all internal nodes does not affect the output distribution,
and, therefore, the internal labelings can be made arbitrarily (in the PAC setting).
The issue that arises is that those arbitrary labelings have to be made consistently
over all edges sharing a node. Another major issue is that the leaf distributions are
known only approximately through sampling. This requires a delicate error analy-
sis and many tricks which are detailed in Section 3. The two previous problems
are actually competing. Indeed, one way to solve the consistency issue is to fix a
reference leaf ω and do all computations with respect to the reference leaf, that is,
choose a = ω in every spectral decomposition. However, this will necessitate the
use of long paths on which the error builds up exponentially. Our solution is to par-
tition the tree into smaller subtrees, reconstruct consistently the subtrees using one
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FIG. 3. Algorithm FULLRECON.

of their leaves as a reference, and patch up the subtrees by fixing the connecting
edges properly afterward. We refer to the connecting edges as separators.

A detailed version of the algorithm, FULLRECON, including two subroutines,
appears in Figures 3, 4 and 5. The correctness of the algorithm uses the error
analysis and is therefore left for Section 3. The two subroutines are described next.

2.2. Subtree reconstruction and patching. We need the following notation to
describe the subroutines. If e = (u, v), let de(u) be the length of the shortest path
(in number of edges) from u to a leaf in L not using edge e. Then the depth of T
is

� = max
e=(u,v)∈E

{
max{de(u), de(v)}}.

It is easy to argue that � = O(logn). (See Section 3.) Also, for a set of vertices W
and edges S, denote N (W ,S) the set of nodes not in W that share an edge in E\S
with a node in W (“outside neighbors” of W “without using edges in S”). Let B�

a

be the subset of nodes in V at distance at most � from leaf a.
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FIG. 4. Algorithm LEAFRECON.

Subroutine LEAFRECON. The subtree reconstruction phase is performed by
the algorithm LEAFRECON depicted in Figure 6. The purpose of the subroutine
LEAFRECON is to partition the tree into subtrees, each of which has the property
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FIG. 5. Algorithm SEPRECON.

that all its nodes are at distance at most � from one of its leaves (same leaf for
all nodes in the subtree), which we refer to as the reference leaf of the subtree.
The correctness of the algorithm, proved in Section 3, thus establishes the exis-
tence of such a partition. This partition serves our purposes because it allows (1)
to reconstruct mutation matrices in a consistent way (in each subtree) using ref-
erence leaves, and (2) to control the building up of the error by using short paths
to the reference leaf. The matrix reconstruction is performed simultaneously by
LEAFRECON, as the partition is built. At the call of LEAFRECON, we consider
the subgraph T ′ of T where edges previously labeled as separators have been
removed. We are given a reference leaf a and restrict ourselves further to the (con-
nected) subtree Ta of T ′ consisting of nodes at distance at most � from a. Mov-
ing away from a, we recover edge by edge the mutation matrices in Ta by Chang’s
spectral decomposition. At this point, it is crucial that (1) we use the transition ma-
trices previously computed to ensure consistency in the labeling of internal nodes,
and that (2) in order to control error we choose the leaves b and c (in the notation of
the previous subsection) to be at distance at most �+1 from the edge currently re-

FIG. 6. Schematic representation of the execution of LEAFRECON. The only edges shown are
separators.
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constructed (which is always possible by definition of �). Note that the paths from
the current node to b and c need not be in Ta . Once Ta is reconstructed, edges on
the “outside boundary” of Ta (edges in T ′ with exactly one endpoint in Ta) are
added to the list of separators, each with a new reference leaf taken from the unex-
plored part of the tree (at distance at most �). The algorithm LEAFRECON is then
run on those new reference leaves, and so on until the entire tree is recovered. (See
Figure 6.) The algorithm is given in Figure 4. Some steps are detailed in Section 3.
We denote estimates with hats, for example, the estimate of P ar is P̂ ar .

Subroutine SEPRECON. For its part, the algorithm SEPRECON consists in tak-
ing a separator edge (w,w′) along with the leaf a′ from which it was found and
the new reference leaf a it led to, and computing

P̂ ww′ := (P̂ aw)−1P̂ aa′(
P̂ w′a′)−1

,

where the matrices P̂ aw , P̂ w′a′
have been computed in the subtree reconstruction

phase and P̂ aa′
can be estimated from the data. It will be important in the error

analysis that the two leaves a, a′ are at distance at most � from w,w′ respectively.
We then use Bayes’ rule to compute P̂ w′w . See Figure 5.

2.3. Modifications. The previous description of the reconstruction algorithm
is rather informal. Also, we are led to make a few modifications to the basic algo-
rithm. Those are described where needed in the course of the analysis in the next
section. Here is a list of the changes, all of which appear in the figures where the
corresponding routines are detailed.

1. In Chang’s spectral technique, it is crucial that the eigenvalues in (�) be differ-
ent and actually well separated. Below, we multiply the system (�) by random
Gaussians and obtain the new system (�′). See “Separation of exact eigenval-
ues.”

2. In (�′), once the eigenvectors are recovered, they have to be normalized properly
to obtain the estimated transition matrix P̃ ar . This is detailed in the subsection
“Error on estimated eigenvectors.”

3. All estimated transition matrices have to be made stochastic. This is done in
subsection “Stochasticity.”

3. Error analysis. As pointed out in the previous section, the distribution on
the leaves is known only approximately through sampling. The purpose of this
section is to account for the error introduced by this approximation.

For W a subset of vertices of T , recall that πW is the joint distribution on W .
We denote by π̂W our estimate of πW obtained by using the estimated mutation
matrices. For a vertex u, we let πu(·) = P[s(u) = ·]. We denote by 1 the all-one
vector (the size is usually clear from the context). For any vector ρ, we let diag(ρ)

be the diagonal matrix with diagonal ρ. Recall that for a vector x, ‖x‖1 = ∑
i |xi |,
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and for a matrix X, ‖X‖1 = maxj

∑
i |xij |. Recall that [n] stands for the set of

leaves. From now on, we assume that the tree is known and that the model is
(β,0, n−κπ )-nonsingular, for β,κπ > 0 constant. Theorems 1 and 2 both follow
from the following theorem.

THEOREM 5. Assume the tree is known and the model is (β,0, n−κπ )-
nonsingular, for β,κπ > 0 constant. For all ε, δ > 0 and n large enough, the re-
construction algorithm produces a Markov model satisfying∥∥π̂[n] − π[n]

∥∥
1 ≤ ε,

with probability at least 1 − δ. The running time of the algorithm is polynomial in
n,1/ε,1/δ.

We can now prove Theorem 1.

PROOF OF THEOREM 1. First apply Theorem 3 to recover the topology. Then
apply Theorem 5 to infer the transition matrices. �

The proof of Theorem 2 is similar—it uses Theorem 4 instead of Theorem 3.
The proof is given in the Appendix.

Below we use the expression with high probability (w.h.p.) to mean with
probability at least 1 − 1/poly(n). Likewise, we say negligible to mean at most
1/poly(n). In both definitions it is implied that poly(n) is O(nK) for a constant K

that can be made as large as one wants if the number of samples is O(nK ′
) with

K ′ large enough. Standard linear algebra results used throughout the analysis can
be found, for example, in [20].

In the rest of this section, β , κπ and k = |C| are fixed constants. In particular,
polynomial factors in β and k are dominated by polynomials in n.

3.1. Approximate spectral argument. In this subsection we address several is-
sues arising from the application of Chang’s spectral technique to an approximate
distribution on the leaves. Our discussion is summarized in Proposition 1. We use
the notation of Section 2.1.

PROPOSITION 1. Let a be a leaf and let r be an internal vertex at distance
at most � from a. Then there exists a relabeling of the states at r so that the
estimate P̂ ar recovered from (�) using poly(n) samples is such that the error
‖P̂ ar − P ar‖1 is negligible w.h.p.

The relabeling issue mentioned in Proposition 1 will be tackled in Section 3.2.
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Determinants on paths. The estimation error depends on the determinant of
the transition matrices involved. Since we use Chang’s spectral technique where
a → r , r → b and r → c are paths rather than edges, we need a lower bound on
transition matrices over paths. This is where the use of short paths is important.
Multiplicativity of determinants gives immediately that all determinants of transi-
tion matrices on paths of length O(�) are at least 1/poly(n).

LEMMA 1 (Bound on depth). The depth � of any full binary tree is bounded
above by log2 n + 1.

PROOF. Because the tree is full, the inequality � ≥ d implies that there is an
edge on one side of which there is a complete binary subtree of depth d . Since
there are only n vertices in the tree, we must have � ≤ log2 n + 1. �

LEMMA 2 (Determinants on paths). Fix θ > −2 log2 β constant. Let a, b

be vertices at distance at most 2� + 1 from each other. Then, under the
(β,0, n−κπ )-nonsingularity assumption, the transition matrix between a and b

satisfies |det[P ab]| ≥ n−θ for n large enough.

PROOF. This follows from the observation that P ab is the product of the mu-
tation matrices on the path between a and b. Every matrix has its determinant at
least β (in absolute value). By the multiplicativity of determinants and Lemma 1,

|det[P ab]| ≥ β2�+1 ≥ β2 log2 n+3 > n−θ ,

for n large enough. �

Error on leaf distributions. The algorithm estimates leaf distributions through
sampling. We need to bound the error introduced by sampling. Let a, b, c be leaves
at distance at most 2� + 1 from each other and consider the eigenvalue decompo-
sition (�). We estimate P ab by taking poly(n) samples and computing

P̂ ab
ij = N

a,b
i,j

Na
i

,

for i, j ∈ C, where Na
i is the number of occurrences of s(a) = i and N

a,b
i,j is the

number of occurrences of s(a) = i, s(b) = j . Likewise, for P
ab,γ
ij , we use poly(n)

samples and compute the estimate

P̂
ab,γ
ij = N

a,b,c
i,j,γ

Na
i

,

where N
a,b,c
i,j,γ is the number of occurrences of s(a) = i, s(b) = j, s(c) = γ . We also

bound the error on the 1-leaf distributions; this will be used in the next subsection.
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We use poly(n) samples to estimate πa using empirical frequencies. Standard con-
centration inequalities give that ‖P ab − P̂ ab‖1, ‖P ab,γ − P̂ ab,γ ‖1, and ‖πa − π̂a‖1

are negligible w.h.p.

LEMMA 3 (Sampling error). For all e,p > 0, there is an s > 0 such that if the
number of samples is greater than ns , then, with probability at least 1 − 1/np , the
estimation error on the matrices P ab and P ab,γ satisfies

‖P̂ ab − P ab‖1 ≤ 1

ne
, ‖P̂ ab,γ − P ab,γ ‖1 ≤ 1

ne
,

for all a, b ∈ L and γ ∈ C, and the estimation error on the leaf distributions sat-
isfies

‖π̂a − πa‖1 ≤ 1

ne
,

for all a ∈ L, provided n is large enough.

PROOF. Note that the nonsingularity assumption ensures that, for each leaf a

and state i, if one uses a sample size ns with s large enough, then w.h.p. there
will be poly(n) samples where s(a) = i. The bounds then follow from Hoeffding’s
inequality. �

Separation of exact eigenvalues. In Section 2 it was noted that the eigenvalues
in (�) need to be distinct to guarantee that all eigenspaces have dimension 1. This is
clearly necessary to recover the columns of the transition matrix P ar . When taking
into account the error introduced by sampling, we actually need more. From stan-
dard results on eigenvector sensitivity, it follows that we want the eigenvalues to be
well separated. A polynomially small separation will be enough for our purposes.
We accomplish this by using a variant of an idea of Chang [5] which consists in
multiplying the matrix P rc in (�) by a random Gaussian vector. One can think of
this as adding an extra edge (c, d) and using leaves a, b, d for the reconstruction,
except that we do not need the transition matrix P cd to be stochastic and only one
row of it suffices. More precisely, let U be a vector whose k entries are indepen-
dent Gaussians with mean 0 and variance 1. We solve the eigenvalue problem (�)
with P rc·γ replaced by ϒ = (υi)

k
i=1 = P rcU , that is, we solve

P ab,U (P ab)−1 = P ar diag(ϒ)(P ar)−1,(�′)

where P ab,U is a matrix whose (i, j)th entry is∑
γ∈C

Uγ P[s(c) = γ, s(b) = j |s(a) = i].
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To see that (�′) holds, multiply the following equation (in matrix form) to the right
by (P ab)−1 = (P rb)−1(P ar)−1:

[P ar diag(ϒ)P rb]ij = ∑
h∈C

P ar
ih υhP

rb
hj

= ∑
h∈C

P ar
ih

(∑
γ∈C

P rc
hγ Uγ

)
P rb

hj

= ∑
γ∈C

Uγ

∑
h∈C

P ar
ih P rc

hγ P rb
hj

= P
ab,U
ij .

A different (independent) vector U is used for every triple of leaves considered by
the algorithm. Next we show that w.h.p. the entries of ϒ = (υi)

k
i=1 are 1/poly(n)-

separated.

LEMMA 4 (Eigenvalue separation). For all d ≥ θ and p ≤ d − θ , with proba-
bility at least 1 −n−p , no two entries of ϒ = (υi)

k
i=1 are at distance less than n−d

for all n large enough.

PROOF. By Lemma 2, |det[P rc]| ≥ n−θ . Take any two rows i, j of P rc. The
matrix, say, A, whose entries are the same as P rc except that row i is replaced by
P rc

i· − P rc
j · , has the same determinant as P rc. Moreover,

|det[A]| ≤ ∑
σ

k∏
h=1

∣∣Ahσ(h)

∣∣ ≤
k∏

h=1

‖Ah·‖1,

where the sum is over all permutations of {1, . . . , k}. Therefore,

‖P rc
i· − P rc

j · ‖1 ≥ n−θ .

By the Cauchy–Schwarz inequality,

‖P rc
i· − P rc

j · ‖2 ≥ 1/
(√

knθ )
.

Therefore, (P rc
i· − P rc

j · )U is Gaussian with mean 0 and variance at least 1/(kn2θ ).
A simple bound on the normal distribution gives

P

[
|(P rc

i· − P rc
j · )U | < 1

nd

]
≤ 2

1

nd

√
knθ

√
2π

.

There are O(k2) pairs of rows to which we apply the previous inequality. The
union bound gives the result. �
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Error on estimated l.h.s. On the l.h.s. of (�′), we use the following estimate
P̂ ab,U = ∑

γ∈C Uγ P̂ ab,γ . Below we show that the error on the l.h.s. of (�′) is
negligible w.h.p.

LEMMA 5 (Error on l.h.s.). For all e,p > 0, there is an s > 0 such that if the
number of samples is greater than ns , then, with probability at least 1 − 1/np , the
error on the l.h.s. of (�′) satisfies

‖P̂ ab,U (P̂ ab)−1 − P ab,U (P ab)−1‖1 ≤ 1

ne

for all n large enough.

PROOF. From the submultiplicativity of ‖ · ‖1, we obtain

‖P̂ ab,U (P̂ ab)−1 − P ab,U (P ab)−1‖1

≤ ‖P ab,U‖1‖(P̂ ab)−1 − (P ab)−1‖1 + ‖(P ab)−1‖1‖P̂ ab,U − P ab,U‖1

+ ‖(P̂ ab)−1 − (P ab)−1‖1‖P̂ ab,U − P ab,U‖1,

(3)

so it suffices to prove that each term on the r.h.s. can be made small enough.
First, note that, using a standard formula for the inverse, we have

|(P ab)−1
ij | = 1

|det[P ab]| |(adj[P ab])ij | ≤ nθ ,(4)

where we have used the nonsingularity assumption, and the fact that the quantity
adj[P ar ]ij is the determinant of a substochastic matrix. Therefore, ‖(P ab)−1‖1 ≤
knθ .

A standard linear algebra result [20] gives

‖(P̂ ab)−1 − (P ab)−1‖1 ≤ ‖(P ab)−1‖1‖P̂ ab − P ab‖1

1 − ‖(P ab)−1‖1‖P̂ ab − P ab‖1
‖(P ab)−1‖1

≤ 2k2n2θ

ne′ ,

where e′ is the e from Lemma 3 and is taken larger than θ so that the denominator
on the first line is less than 1/2.

We now compute the error on P ab,U . We have

‖P̂ ab,U − P ab,U‖1 ≤ ∑
γ∈C

|Uγ |‖P̂ ab,γ − P ab,γ ‖1 ≤ 1

ne′ ‖U‖1.

Also,

‖P ab,U‖1 ≤ ∑
γ∈C

|Uγ |‖P ab,γ ‖1 ≤ k‖U‖1.
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By a simple bound (see, e.g., [9]), for g > 0,

P
[|Uγ | ≥

√
2 log(ng)

] ≤ 2
1√
2π

exp(−2 log(ng)/2)√
2 log(ng)

≤ 1

ng
√

π log(ng)
.

So with probability at least 1 − k/(ng
√

π log(ng) ), we get

‖U‖1 ≤ k
√

2 log(ng).

Taking s (and therefore e′) large enough, the above bounds give

‖P̂ ab,U (P̂ ab)−1 − P ab,U (P ab)−1‖1

≤ 2k4n2θ
√

2 log(ng)

ne′ + k2nθ
√

2 log(ng)

ne′ + 2k3n2θ
√

2 log(ng)

n2e′

≤ 1

ne
. �

Separation of estimated eigenvalues. We need to make sure that the estimated
l.h.s. of (�′) is diagonalizable. By bounding the variation of the eigenvalues and
relying on the gap between the exact eigenvalues, we show that the eigenvalues
remain distinct and, therefore, P̂ ab,U (P̂ ab)−1 is diagonalizable.

LEMMA 6 (Sensitivity of eigenvalues). For all p > 0, there is an s > 0 such
that if the number of samples is greater than ns , then, with probability at least
1−1/np , the l.h.s. of (�′), P̂ ab,U (P̂ ab)−1, is diagonalizable and all its eigenvalues
are real and distinct. In particular, all eigenspaces have dimension 1.

PROOF. Fix d = p + θ in Lemma 4. A standard theorem on eigenvalue sensi-
tivity [20] asserts that if υ̂j is an eigenvalue of P̂ ab,U (P̂ ab)−1, there is an eigen-
value υi of P ab,U (P ab)−1 such that (recall that P ar is the matrix of eigenvectors)

|υ̂j − υi | ≤ ‖P ar‖1‖(P ar)−1‖1‖P̂ ab,U (P̂ ab)−1 − P ab,U (P ab)−1‖1

≤ k2nθ

ne
≤ 1

3nd
,

(5)

where e from Lemma 5 is taken large enough so that the last inequality holds. We
have also used (4) from Lemma 5. Given that the separation between the entries
of ϒ is at least 1/nd by Lemma 4, we deduce that there is a unique υi at distance
at most 1/(3nd) from υ̂j (note that j might not be equal to i since the ordering
might differ in both vectors). This is true for all j ∈ C. This implies that all υ̂j ’s
are distinct and, therefore, they are real and P̂ ab,U (P̂ ab)−1 is diagonalizable as
claimed. �
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Error on estimated eigenvectors. From (�′), we recover k eigenvectors that are
defined up to scaling. Assume that, for all i ∈ C, υ̂i is the estimated eigenvalue
corresponding to υi (see above). Denote by X̂i , Xi their respective eigenvectors.
We denote X̂ (resp. X) the matrix formed with the X̂i’s (resp. Xi’s) as columns.
Say we choose the estimated eigenvectors such that ‖X̂i‖1 = 1. This is not exactly
what we are after because we need the rows to sum to 1 (not the columns). To
fix this, we then compute η = X̂−11. This can be done because the columns of X̂

form a basis. Then we define X̃i = ηiX̂
i for all i with the corresponding matrix X̃.

Our final estimate P̃ ar = X̃ is a rescaled version of X̂ with row sums 1. The care-
ful reader may have noticed that some entries of X̃ may be negative. This is not
an issue at this point. We will make sure in Lemma 12 that (one-step) mutation
matrices are stochastic. Next we show that ‖X̃ − X‖1 is negligible w.h.p.

LEMMA 7 (Sensitivity of eigenvectors). For all e,p > 0, there is an s > 0
such that if the number of samples is greater than ns , then, with probability at
least 1 − 1/np , we have

‖X̃ − X‖1 ≤ 1

ne
,

for all n large enough.

PROOF. We want to bound the norm of X̃i − Xi . We first argue about the
components of X̂i − Xi in the directions Xj , j �= i. We follow a standard proof
that can be found, for instance, in [17]. We need a more precise result than the one
stated in the previous reference and so give the complete proof here.

Because the Xi ’s form a basis, we can write

X̂i − Xi = ∑
j∈C

ρijX
j ,

for some values of ρij ’s. Denote A = P ab,U (P ab)−1, �i = υ̂i − υi and E =
P̂ ab,U (P̂ ab)−1 − P ab,U (P ab)−1. Then

(A + E)X̂i = υ̂iX̂
i ,

which, using AXi = υiX
i , implies∑

j∈C

υjρijX
j + EX̂i = υi

∑
j∈C

ρijX
j + �iX̂

i.

For all j ∈ C, let Zj be the left eigenvector corresponding to υj . It is well known
that (Xj )T Zj ′ = 0 for all j �= j ′ (see, e.g., [17]). Fix h �= i ∈ C. Multiplying both
sides of the previous display by Zh and rearranging gives

ρih = (Zh)T (EX̂i) + �i(Z
h)T X̂i

(υh − υi)(Zh)T Xh
.
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Here we make the Xi be equal to the columns of P ar and the Zi’s equal to
the columns of ((P ar)T )−1. In particular, we have (Zh)T Xh = 1. Recall that
the X̂i ’s were chosen such that ‖X̂i‖1 = 1. Fix d = p + θ in Lemma 4 so that
|υh − υi | ≥ n−d . Choose the value of e in Lemma 5 large enough so that the er-
ror |υ̂i − υi | in (5) (ref. proof of Lemma 6 where j is now i by the construction
above) is less than 1/nd+e′

for some fixed e′ > 0 (the d in Lemma 6 is d +e′ here).
Then using standard matrix norm inequalities, the Cauchy–Schwarz inequality and
Lemmas 4, 5 and 6, we get

|ρih| =
∣∣∣∣(Z

h)T (EX̂i) + �i(Z
h)T X̂i

(υh − υi)(Zh)T Xh

∣∣∣∣
≤ ‖Zh‖2‖E‖2‖X̂i‖2 + (1/nd+e′

)‖Zh‖2‖X̂i‖2

1/nd

≤ nd‖Zh‖1‖X̂i‖1
[√

k‖E‖1 + 1/nd+e′]
≤ 2knθ

ne′ ≤ 1

ne′′ ,

for some e′′ > 0, where we have used the bound ‖Zh‖1 ≤ knθ which follows
from (4) in Lemma 6 and the choice of Zh. We also used Lemma 5 to bound
‖E‖1 ≤ 1/(

√
knd+e′

) (which is possible if s is large enough; remember that k is a
constant).

We now proceed to renormalize X̂ appropriately. Define X̄i = X̂i/(1 + ρii).
From the inequality above, we get

1 = ‖X̂i‖1 ≤ |1 + ρii |‖Xi‖1 + ∑
j �=i

|ρij |‖Xj‖1

≤ k|1 + ρii | + k2/ne′′
.

Assuming that ne′′
is large enough (i.e., choosing e′ above large enough), we get

|1 + ρii | ≥ 1 − k2/ne′′

k
> 0.

Plugging X̄i into the expansion of X̂i , we get

‖X̄i − Xi‖1 =
∥∥∥∥∥
∑
j �=i

ρij

1 + ρii

Xj

∥∥∥∥∥
1

≤ k2

ne′′ − k2
≤ 1

ne′′′ ,

for some e′′′ > 0, where we have used ‖Xj‖1 ≤ k, j �= i.
Denote q̄ = X̄1 the row sums of X̄, the matrix formed with the X̄i’s as columns.

The scaling between X̄ and X̃ is given by η̄ = X̄−11. (Recall the definition
of X̃ from the paragraph above the statement of the lemma.) Indeed, because the
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columns of X̃ and X̄ are the same up to scaling, there is a vector η̃ such that
X̃ = X̄ diag(η̃). By the normalization of both matrices, we get

X̄η̄ = X̃1 = X̄ diag(η̃)1 = X̄η̃.

Because X̄ is invertible, η̃ = η̄. We want to argue that η̄ is close to 1, that is, that
X̄ and X̃ are close. Note that

‖η̄ − 1‖1 = ‖X̄−1(1 − q̄)‖1 ≤ ‖X̄−1‖1‖1 − q̄‖1.

By the condition ‖X̄i −Xi‖1 ≤ 1/ne′′′
for all i and the fact that the row sums of X

are 1, we get ‖1 − q̄‖1 ≤ k/ne′′′
. To bound ‖X̄−1‖1, let Ē = X̄ − X and note that,

using a standard theorem on the sensitivity of the inverse [20],

‖X̄−1‖1 ≤ ‖(X + Ē)−1 − X−1 + X−1‖1

≤ ‖X−1‖1
‖X−1‖1‖Ē‖1

1 − ‖X−1‖1‖Ē‖1
+ ‖X−1‖1

≤ ‖X−1‖1

1 − ‖X−1‖1‖Ē‖1
.

As we have seen before, ‖X−1‖1 ≤ knθ and by the bound above, ‖Ē‖1 ≤ 1/ne′′′
.

Assuming that knθ/ne′′′ ≤ 1/2, we get

‖X̄−1‖1 ≤ 2‖X−1‖1 ≤ 2knθ .

Therefore,

‖η̄ − 1‖1 ≤ 2k2nθ

ne′′′ .

This finally gives the bound

‖X̃ − X‖1 ≤ ‖X̃ − X̄‖1 + ‖X̄ − X‖1

≤ ‖X̄ diag(η̄) − X̄‖1 + 1

ne′′′

≤ ‖X̄‖1‖η̄ − 1‖1 + 1

ne′′′

≤ [‖X̄ − X‖1 + ‖X‖1]2k2nθ

ne′′′ + 1

ne′′′

≤
[

1

ne′′′ + k

]
2k2nθ

ne′′′ + 1

ne′′′ ≤ 1

ne
,

if e′′′ (i.e., e′) is large enough (where e on the last line is the one in the statement
of Lemma 7). �
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There is one last issue which is that X is the same as P ar up to permutation
on the states of r . But since relabeling internal nodes does not affect the output
distribution, we assume w.l.o.g. that P ar = X. We make sure in the next subsection
that this relabeling is performed only once for each internal node.

3.2. Bounding error propagation. The correctness of the algorithm proceeds
from the following remarks.

Partition. We have to check that the successive application of LEAFRECON

covers the entire tree, that is, that all edges are reconstructed. Figure 6 helps in
understanding why this is so. When uncovering a separator edge, we associate to it
a new reference leaf at distance at most �. This can always be done by definition
of �. It also guarantees that the subtree associated to this new leaf will cover the
endpoint of the separator outside the subtree from which it originated. This makes
the union of all subtrees explored at any point in the execution (together with their
separators) connected. It follows easily that the entire tree is eventually covered.

LEMMA 8 (Partition). The successive application of LEAFRECON covers the
entire tree.

PROOF. We need to check that the algorithm outputs a transition matrix for
each edge in T . Denote Tat the subtree explored by LEAFRECON applied to at .
The key point is that, for all t , the tree T≤t made of all Tat ′ for t ′ ≤ t , as well as
their separators, is connected. We argue by induction. This is clear for t = 0. As-
sume this is true for t . Because T is a tree, T≤t is a (connected) subtree of T and
(wt+1,w

′
t+1) is an edge on the “boundary” of T≤t , the leaf at+1 lies outside T≤t .

Moreover, being chosen as the closest leaf from w′
t+1, it is at distance at most �.

Therefore, applying LEAFRECON to at+1 will cover a (connected) subtree includ-
ing w′

t+1. This proves the claim. �

Subroutines. Using Lemma 7 and standard linear algebraic inequalities, we
show that the (unnormalized) estimates computed in LEAFRECON and SEPRECON

have negligible error w.h.p.

LEMMA 9 (Error analysis: LEAFRECON). Let a be a leaf. For all e,p > 0,
there is an s > 0 such that if the number of samples is greater than ns , then,
with probability at least 1 − 1/np , all edges (r0, r) reconstructed by LEAFRECON

applied to a satisfy

‖P̃ r0r − P r0r‖1 ≤ 1

ne
,

(after a proper relabeling of the rows and columns of P r0r to match the labeling
of P̃ r0r ), and also

‖π̃r − πr‖1 ≤ 1

ne
,
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(after a proper relabeling of the vertices) for all n large enough.

PROOF. Note that

‖P̃ r0r − P r0r‖1 = ‖(P̃ ar0)−1P̃ ar − (P ar0)−1P ar‖1,

and, thus, a calculation identical to the proof of Lemma 5 shows that the above
error can be made negligible w.h.p. Also,

‖π̃r − πr‖1 = ‖π̂aP̃
ar − πaP

ar‖1

≤ ‖π̂a‖1‖P̃ ar − P ar‖1 + ‖πa − π̂a‖1‖P ar‖1,

so, by Lemmas 3 and 5, ‖π̃r − πr‖1 can be made negligible w.h.p.
The algorithm computes the estimate P̃ rr0 by Bayes’ rule. Therefore,

|P̃ rr0
ij − P

rr0
ij | =

∣∣∣∣ π̃r0(j)P̃
r0r
j i

π̃r (i)
− πr0(j)P

r0r
j i

πr(i)

∣∣∣∣
≤ π̃r0(j)

π̃r (i)
|P̃ r0r

j i − P
r0r
j i | +

∣∣∣∣ π̃r0(j)

π̃r (i)
− πr0(j)

πr(i)

∣∣∣∣P r0r
j i .

Assume ‖P̃ r0r − P r0r‖1 ≤ n−e′
and ‖π̃r − πr‖1 ≤ n−e′′

with e′′ > κπ . Then,∣∣∣∣ π̃r0(j)

π̃r (i)
− πr0(j)

πr(i)

∣∣∣∣ ≤ πr(i)|π̃r0(j) − πr0(j)| + πr0(j)|π̃r (i) − πr(i)|
π̃r (i)πr(i)

≤ 2n−e′′

(n−κπ − ne′′
)2

.

Therefore,

|P̃ rr0
ij − P

rr0
ij | ≤ (1 + n−e′′

)n−e′

n−κπ − n−e′′ + 2n−e′′

(n−κπ − ne′′
)2

.

The r.h.s. can be made negligible with a large enough sample size (i.e., large
enough e′, e′′). �

LEMMA 10 (Error analysis: SEPRECON). For all e,p > 0, there is an s > 0
such that if the number of samples is greater than ns , then, with probability at least
1 − 1/np , every edge (w,w′) reconstructed by SEPRECON satisfies

∥∥P̃ ww′ − P ww′∥∥
1 ≤ 1

ne
,

(after permuting the rows and columns of P ww′
to match the labeling of P̃ ww′

) for
all n large enough.
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PROOF. Let a, a′ be the leaves used by SEPRECON to estimate P ww′
. Then,∥∥P̃ ww′ − P ww′∥∥

1 = ∥∥(P̃ aw)−1P̂ aa′(
P̃ w′a′)−1 − (P aw)−1P aa′(

P w′a′)−1∥∥
1.

By applying twice an inequality of the form (3), the r.h.s. can be bounded above
by a sum of terms involving primarily ‖P̃ aw − P aw‖1, ‖P̃ a′w′ − P a′w′‖1, and
‖P̂ aa′ − P aa′‖1. Those errors can be made negligible w.h.p. by Lemmas 3 and 5.
The algorithm then uses Bayes’ rule to compute P̃ w′w . The error on that estimate
can be obtained by a calculation identical to that in Lemma 9. �

Consistency. Next we prove that all choices of labelings are done consistently.
This follows from the fact that, for each node, say, w, the arbitrary labeling is
performed only once. Afterward, all computations involving w use only the ma-
trix P̃ aw , where a is the reference leaf for w.

LEMMA 11 (Consistency). The labelings are made consistently by subrou-
tines LEAFRECON and SEPRECON.

PROOF. We briefly sketch the proof. By Lemma 7, we know that, for a ref-
erence leaf a and an internal node r , the estimated transition matrix P̃ ar is close
to the exact transition matrix P ar after properly relabeling the columns of P ar

to match the arbitrary labeling of the columns of P̃ ar . Let �r be the permuta-
tion matrix performing this relabeling on the columns of P ar , that is, such that
‖P̃ ar − P ar�r‖1 is small. Let �r0 be the corresponding matrix for node r0. Then,
the matrix P r0r (which, contrary to Lemma 9, we assume not to have been rela-
beled according to P̃ r0r ) satisfies the equation(

P ar0�r0

)−1
P ar�r = �−1

r0
(P ar0)−1P ar�r

= �T
r0

P r0r�r .

The last line is the matrix P r0r after being properly relabeled according the ar-
bitrary choices made by LEAFRECON at nodes r0, r . By Lemmas 7 and 9, this
implies that ‖P̃ r0r − �T

r0
P r0r�r‖1 is small as required. A similar argument applies

to the computation of π̃r , π̃r0 and P̃ rr0 in LEAFRECON, as well as the computation
of P̃ ww′

, P̃ w′w , π̃w and π̃w′ in SEPRECON. �

Stochasticity. It only remains to make the estimates of mutation matrices into
stochastic matrices. Say P̃ ww′

is the (unnormalized) estimate of P ww′
. First, some

entries might be negative. Define P̃ ww′
+ to be the positive part of P̃ ww′

. Then renor-
malize to get our final estimate

P̂ ww′
i· = (P̃ ww′

+ )i·
‖(P̃ ww′

+ )i·‖1
,(6)
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for all i ∈ C. We know from Lemmas 9 and 10 that P̃ ww′
is close to P ww′

in L1 dis-
tance. From this, we show below that P̃ ww′

+ is also close to P ww′
and ‖(P̃ ww′

+ )i·‖1

is close to 1 and that therefore ‖P̂ ww′ − P ww′‖1 is negligible w.h.p.

LEMMA 12 (Stochasticity). For all e,p > 0, there is an s > 0 such that if the
number of samples is greater than ns , then, with probability at least 1 − 1/np , the
estimate P̂ ww′

is well defined and satisfies

∥∥P̂ ww′ − P ww′∥∥
1 ≤ 1

ne
,

(after permuting the rows and columns of P ww′
to match the labeling of P̂ ww′

) for
all n large enough.

PROOF. Because P ww′
is nonnegative, taking the positive part of P̃ ww′

can
only make it closer to P ww′

, that is,∥∥P̃ ww′
+ − P ww′∥∥

1 ≤ ∥∥P̃ ww′ − P ww′∥∥
1.

Assume that, by Lemmas 9 and 10, we have the bound ‖P̃ ww′ − P ww′‖1 ≤ n−e′
.

Then the row sums of P̃ ww′
are at least 1 − kn−e′

. Also, taking the positive part
of P̃ ww′

can only decrease its row sums by kn−e′
. Therefore, we get

∥∥(
P̃ ww′

+
)
i·
∥∥

1 ≥ 1 − 2k

ne′ .

Thus, ∥∥P̂ ww′ − P ww′∥∥
1 ≤ ∥∥P̃ ww′

+ − P ww′∥∥
1 + ∥∥P̂ ww′ − P̃ ww′

+
∥∥

1

≤ ∥∥P̃ ww′ − P ww′∥∥
1 + 2k

ne′
∥∥P̂ ww′∥∥

1 ≤ 1 + 2k2

ne′ ,

which can be made smaller than n−e. �

Note that we do not renormalize the node distributions because we only need
to know the distribution at one arbitrary node and that node can conveniently be
chosen among the leaves.

Precision and confidence. Now that all matrices have been approximately re-
constructed, we prove that the distributions on the leaves of the estimated and real
models are close. We show below that ‖π̂[n] − π[n]‖1 is negligible w.h.p., thereby
proving Theorem 5.

LEMMA 13 (Precision and confidence). Let ε, δ > 0. Using at most poly(n,

1/ε,1/δ) samples, with probability at least 1− δ, the reconstructed model satisfies∥∥π̂[n] − π[n]
∥∥

1 ≤ ε.
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PROOF. We only give a quick sketch. Assume that the number of samples is
taken large enough so that, by the sequence of lemmas above, the bounds on the
L1 error on the estimated transition matrices and on the estimated node distribu-
tions, n−e, is smaller than ε/(2nk) with probability at least 1 − δ. By the triangle
inequality, ‖π̂[n] − π[n]‖1 ≤ ‖π̂V − πV‖1, so it suffices to bound the L1 error on
the entire tree. Now, couple the exact model and the estimated model in a standard
fashion. We seek to bound the probability that the two models differ at any vertex.
Fix an arbitrary root. The probability that the models differ at the root is ε/(2nk)

by assumption. Stop if that happens. Otherwise, at each transition, the probability
that the transition is different in the two models is less than ε/(2n) (provided that
they start from the same initial state). Again, if that happens, stop. Since there are
at most 2n transitions, by the union bound, the probability that we stop at any step
in the process is ε. �

4. Concluding remarks. Many extensions of this work deserve further study:

• There remains a gap between our positive result (for general trees), where we
require determinants �(1) and the hardness result which uses determinants ex-
actly 0. Is learning possible when determinants are �(n−c) or even �(log−c n)

(as it is in the case of HMMs)?
• There is another gap arising from the upper bound on the determinants. Having

mutation matrices with determinant 1 does not seem like a major issue. It does
not arise in the estimation of the mutation matrices. But it is tricky to analyze
rigorously how the determinant 1 edges affect the reconstruction of the topology.

• We have emphasized the difference between k = 2 and k ≥ 3. As it stands, our
algorithm works only for nonsingular models even when k = 2. It would be
interesting to rederive the results of [7] using our technique.

APPENDIX: PROOFS FOR THE CATERPILLAR CASE

We first sketch the proof for the topology reconstruction in the caterpillar case.

THEOREM 4. Let ζ > 0, κπ > 0 and suppose that M consists of all matri-
ces P satisfying n−ζ < |detP | ≤ 1. Then for all θ > 0, τ ′ > 0, and all T ∈
(TC3 ⊗ M, n−κπ ), one can recover from nO(ζ+θ+τ ′) samples a topology T ′ with
probability 1 − n−θ , where the topology T ′ satisfies the following. It is obtained
from the true topology T by contracting some of the internal edges whose corre-
sponding mutation matrices P satisfy |detP | > 1 − n−τ ′

.

PROOF (SKETCH). We use a distance-based method similar to [10, 11].
For general Markov models of evolution, Steel [31] introduced the follow-
ing metric, known as log-det distance. Let Pab be the set of edges on the
(unique) path between leaves a, b. Define the matrix Fab = [fab(i, j)]i,j∈C , where
fab(i, j) = P[s(a) = i, s(b) = j ]. Then, Steel [31] showed that the quantity
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�ab ≡ − ln |det(Fab)| defines a tree metric on the set of leaves by deriving the
identity �ab = ∑

(u,v)∈Pab
νuv , where

νuv = − ln |det(P uv)| − 1
2 ln

( ∏
i∈C

πu(i)

)
+ 1

2 ln

( ∏
i∈C

πv(i)

)
.

Below, we will need a slightly different expression. Noting that P vu is the “time-
reversal” of P uv , one immediately obtains

νuv = −1
2 ln |det(P uv)| − 1

2 ln |det(P vu)|.
A crucial observation in [10, 11] is that, to obtain good estimates of distances

with a polynomial number of samples, one has to consider only pairs of leaves at
a “short” distance. We note �̂ab the estimate of �ab. For � > 0, define

S� = {(a, b) ∈ L × L : �̂ab > 2�}.
Let � = − ln[6n−ζ ]. Then it follows from [11], Proof of Theorem 14, that, for
any e,p > 0, there exists an s > 0 large enough so that, using ns samples, with
probability at least 1 − n−p , one has, for all (a, b) in S2�,

|�̂ab − �ab| < − ln[1 − n−e] ≤ n−e,

and S2� contains all pairs of leaves with �ab ≤ 2�, but no pair with �ab > 6�.
We now consider quartets of leaves at a short distance. Define

Z2� = {q ∈ L4 :∀ (a, b) ∈ q, (a, b) ∈ S2�}.
We then use the four-point method to reconstruct quartets in Z2�: if q is made of
leaves a, b, c, d , then (w.l.o.g.) we infer the split {a, b}{c, d}, where

�̂ab + �̂cd ≤ min{�̂ac + �̂bd, �̂ad + �̂bc}.
By [10], Lemma 5, this is guaranteed to return the right topology if, for all
a′, b′ ∈ q ,

|�̂a′b′ − �a′b′ | < x

2
,

where x is the length (in the log-det distance) of the internal edge in the subtree
induced by q . In other words, if Q is the transition matrix on the internal edge of q ,
we can only reconstruct the topology of q if |det(Q)| is bounded away from 1.
Therefore, we define a threshold δ = − ln[1 − n−τ ] for some τ > 0 and infer the
topology only on those quartets in S2� such that (w.l.o.g.)

�̂ab + �̂cd ≤ min{�̂ac + �̂bd, �̂ad + �̂bc} − 2δ.

If we further impose the restriction e > τ , then for n large enough, all such quartets
are correctly reconstructed w.h.p.

To contract small internal edges in a consistent fashion, we consider the fol-
lowing construction. Consider an undirected graph H with node set L. For two
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nodes a, b, there is an edge (a, b) if (a, b) ∈ S2� and if all reconstructed quar-
tets put a and b on the same side of their corresponding split. Let {Hα}Aα=1 be the
connected components of H . Ultimately, our inferred tree (say, T ′) will be such
that all leaves in a same connected component of H form a star in T ′. To justify
this approach, we make the following observations. Denote u (resp. v) the internal
node of T closest to a (resp. b). If

−1
2 ln |det(P uv)| ≤ − ln[1 − n−τ ] + ln[1 − n−e],

then w.h.p. there exists an edge between a and b in H . Conversely, the existence
of an edge (a, b) in H implies

−1
2 ln |det(P uv)| ≤ − ln[1 − n−τ ] − ln[1 − n−e],

or

|det(P uv)| ≥ [1 − n−τ ]2[1 − n−e]2.

Because there are at most n nodes in each component of H , if a and b are in the
same connected component, we have

|det(P uv)| ≥ 1 − n−τ ′
,

where τ ′ < 2τ − 1. Also, let a and b be two nodes in H connected by an edge and
assume there is a leaf c in T between a and b (i.e., c is sticking out of the path
between u and v). Let w be the internal node in T closest to c. Then we must have

−1
2 ln min{|det(P uw)|, |det(P wv)|} ≤ 1

2

[− ln[1 − n−τ ] − ln[1 − n−e]]
≤ − ln[1 − n−τ ] + ln[1 − n−e],

for n large enough and, therefore, we are guaranteed to have either (a, c) or (b, c)

in H w.h.p. All these observations imply that each connected component of H cor-
responds to a group of consecutive leaves with an internal path having a transition
matrix close to identity. Therefore, we can assume that the connected components
of H form stars in T ′.

Finally, we choose a representative leaf lα from each connected component Hα .
Let T ′′ be the subtree of T induced by l1, . . . , lA. It suffices to estimate T ′′. Then
the final estimate T ′ is T ′′, where all representative leaves are replaced by their
corresponding star.

The inference of T ′′ is straightforward. Note first that if lα and lβ are leaves
in T ′′ and u and v are their respective closest internal nodes in T , then

νuv ≥ − ln[1 − n−τ ] + ln[1 − n−e].
Also, by our choice of � and the construction of H , if lα and lβ are two consecutive
leaves in T ′′, then there is at least one reconstructed quartet where lα and lβ are on
different sides of the split, that is, each edge in the tree T ′′ is represented by a split
in the reconstructed quartets. To construct T ′′, we proceed by induction. We recall
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that a cherry in a tree is a pair of leaves whose topological distance is exactly 2.
We first identify a cherry by finding a pair of leaves which is always on the same
side of any split. This will be one of the two terminal cherries of T ′′. Then we
remove one of the two leaves in that cherry, and start over. This way, we build the
tree T ′′ a leaf at a time from one end to the other end. �

THEOREM 2. Let φd, κπ > 0 be constants. Let C be a finite set and M denote
the collection of |C| × |C| transition matrices P , where 1 ≥ |detP | > n−φd . Then
there exists a PAC-learning algorithm for (TC3(n)⊗Mn, n

−κπ ). The running time
and sample complexity of the algorithm is poly(n, k,1/ε,1/δ).

PROOF (SKETCH). From Theorem 4, we can infer a tree T ′ which is obtained
from the true topology T by contracting some of the internal edges whose cor-
responding mutation matrices P satisfy |detP | > 1 − n−τ ′

(refer to the proof of
Theorem 4 for notation). Now, note that the impossibility to infer (efficiently) quar-
tets with a very small internal edge is of no consequence for the following reason.
It is not hard to show that a stochastic matrix with a determinant close to 1 (in ab-
solute value) is close to a permutation matrix. More precisely, for any τ ′ > 0, there
is an e′ > 0 such that if Q is a stochastic matrix with |det(Q)| ≥ 1 − n−τ ′

, then
there is a permutation matrix J such that ‖J − Q‖1 ≤ n−e′

(we omit the proof ).
Let Eτ ′ be the set of such transition matrices in our Markov model (only those cor-
responding to internal edges). By relabeling the states at the internal nodes, we can
assume w.l.o.g. that all transition matrices on Eτ ′ are actually close to the identity
matrix. Then if e′ is large enough, any realization of the Markov model is such that
there is no transition on edges in Eτ ′ w.h.p. Put differently, from a PAC learning
point of view, we can contract any edge in Eτ ′ . �
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